

Supplement of

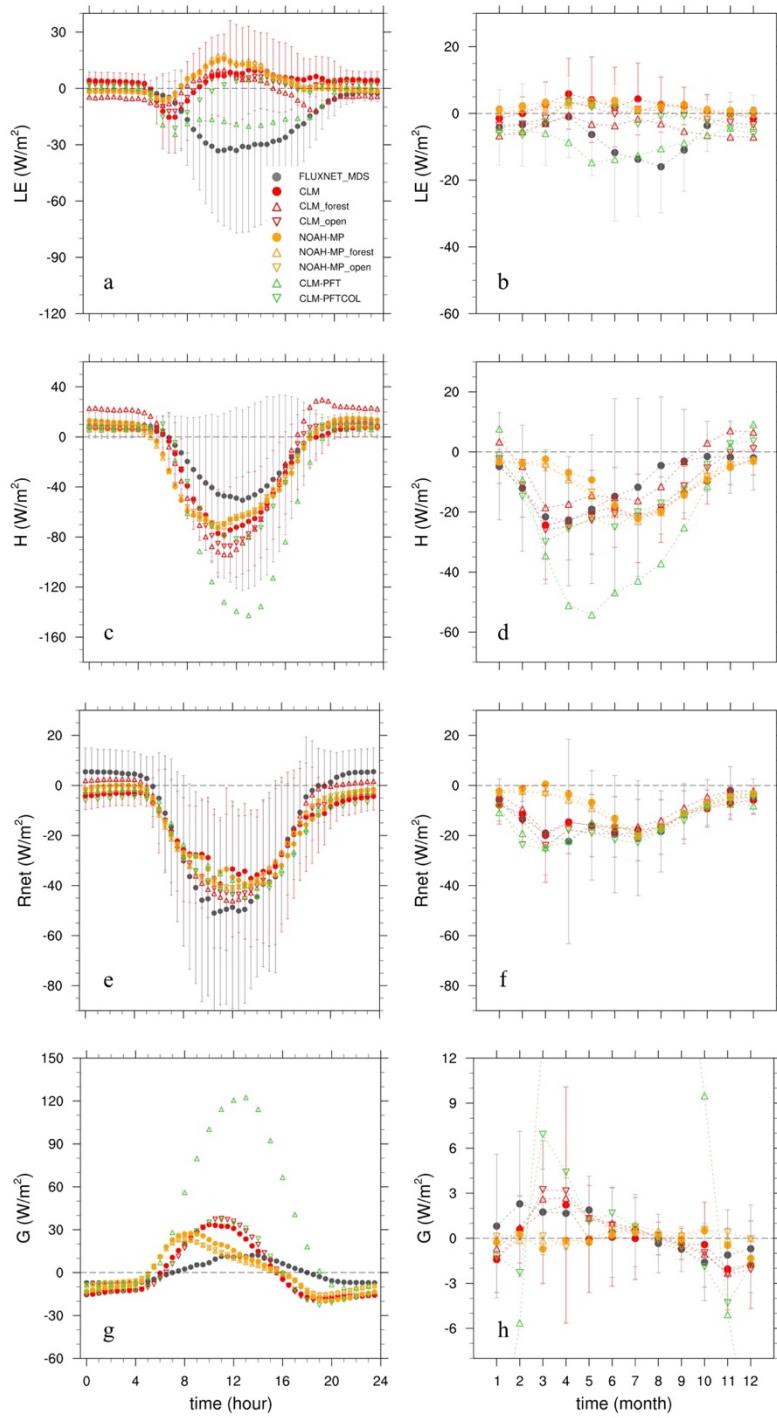
Pairing FLUXNET sites to validate model representations of land-use/land-cover change

Liang Chen et al.

Correspondence to: Liang Chen (lchen15@gmu.edu)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

Table S1. Detailed information about the paired sites. Pairs 6, 8, 12 and 16 are obtained from AmeriFlux; the rest of the pairs are from the FLUXNET2015 dataset. The pairs are grouped based on the type of LULCC: pairs 1~5, deciduous broadleaf forest – cropland; pair 6, deciduous broadleaf forest – grassland; pair 7, deciduous broadleaf forest – grassland; pairs 8~15, evergreen broadleaf forest – grassland; pairs 16~25, evergreen needleleaf forest – open shrubland; pairs 26~27, evergreen needleleaf forest – cropland; pair 28, mixed forest – cropland..


Pair ID	Name	Latitude (degrees N)	Longitude (degrees E)	Elevation (m)	Land cover type	Separation (km)	Period
1	IT-CA2	42.3772	12.026	200	Croplands	0.36	2011 – 2013
	IT-CA1	42.3804	12.0266	200	Deciduous Broadleaf Forests		
2	IT-CA2	42.3772	12.026	200	Croplands	0.44	2011 – 2013
	IT-CA3	42.38	12.0222	197	Deciduous Broadleaf Forests		
3	IT-CA2	42.3772	12.026	200	Croplands	8.75	2011 – 2012
	IT-Ro2	42.3903	11.9209	160	Deciduous Broadleaf Forests		
4	FR-Gri	48.8442	1.9519	125	Croplands	73.3	2005 – 2013
	FR-Fon	48.4764	2.7801	90	Deciduous Broadleaf Forests		
5	BE-Lon	50.5515	4.7461	165	Croplands	92.82	2004 – 2014
	BE-Vie	50.3050	5.9980	491	Deciduous Broadleaf Forests		
6	US-Dk1	35.9712	-79.0934	168	Grasslands	0.68	2003 – 2008
	US-Dk2	35.9736	-79.1004	168	Deciduous Broadleaf Forests		
7	AU-Rig	-36.6499	145.5759	152	Grasslands	48.82	2011 – 2013
	AU-Whr	-36.6732	145.0294	165	Evergreen Broadleaf Forests		
8	US-Dk1	35.9712	-79.0934	168	Grasslands	0.78	2004 – 2008
	US-Dk3	35.9782	-79.0942	163	Evergreen Needleleaf Forests		
9	CZ-BK2	49.4944	18.5429	855	Grasslands	0.96	2004 – 2006
	CZ-BK1	49.5021	18.5369	875	Evergreen Needleleaf Forests		

10	DE-Gri	50.9495	13.5125	385	Grasslands	4.12	2004 – 2010
	DE-Tha	50.9636	13.5669	380	Evergreen Needleleaf Forests		
11	DE-Gri	50.9495	13.5125	385	Grasslands	23.49	2008 – 2010
	DE-Obe	50.7836	13.7196	735	Evergreen Needleleaf Forests		
12	US-Fwf	35.4454	-111.7718	2270	Grasslands	33.91	2006 – 2010
	US-Fmf	35.1426	-111.7273	546	Evergreen Needleleaf Forests		
13	NL-Hor	52.2404	5.0713	2.2	Grasslands	46.55	2004 – 2011
	NL-Loo	52.1666	5.7436	25	Evergreen Needleleaf Forests		
14	AT-Neu	47.1167	11.3175	970	Grasslands	59.57	2002 – 2012
	IT-Ren	46.5869	11.4337	1730	Evergreen Needleleaf Forests		
15	US-Var	38.4133	-120.9507	129	Grasslands	60.29	2000 – 2007
	US-Blo	38.8953	-120.6328	1315	Evergreen Needleleaf Forests		
16	US-NC1	35.8118	-76.7119	5	Open Shrublands	4.03	2005 – 2009
	US-NC2	35.803	-76.6685	5	Evergreen Needleleaf Forests		
17	US-Wi6	46.6249	-91.2982	371	Open Shrublands	15.27	2002 – 2003
	US-Wi3	46.6347	-91.0987	411	Deciduous Broadleaf Forests		
18	US-Wi6	46.6249	-91.2982	371	Open Shrublands	16.22	2002 – 2003
	US-Wi4	46.7393	-91.1663	352	Evergreen Needleleaf Forests		
19	US-Wi6	46.6249	-91.2982	371	Open Shrublands	16.57	2002
	US-Wi0	46.6188	-91.0814	349	Evergreen Needleleaf Forests		
20	CA-SF3	54.0916	-106.0053	540	Open Shrublands	19.87	2001 – 2005
	CA-SF2	54.2539	-105.8775	520	Evergreen Needleleaf Forests		
21	CA-NS6	55.9167	-98.9644	244	Open Shrublands	27.43	2001 – 2005
	CA-NS2	55.9058	-98.5247	260	Evergreen Needleleaf Forests		
22	CA-NS6	55.9167	-98.9644	244	Open Shrublands	30.25	2001 – 2005
	CA-NS1	55.8792	-98.4839	260	Evergreen Needleleaf Forests		
23	CA-NS6	55.9167	-98.9644	244	Open Shrublands	30.48	2001 – 2005
	CA-NS5	55.8631	-98.485	260	Evergreen Needleleaf Forests		

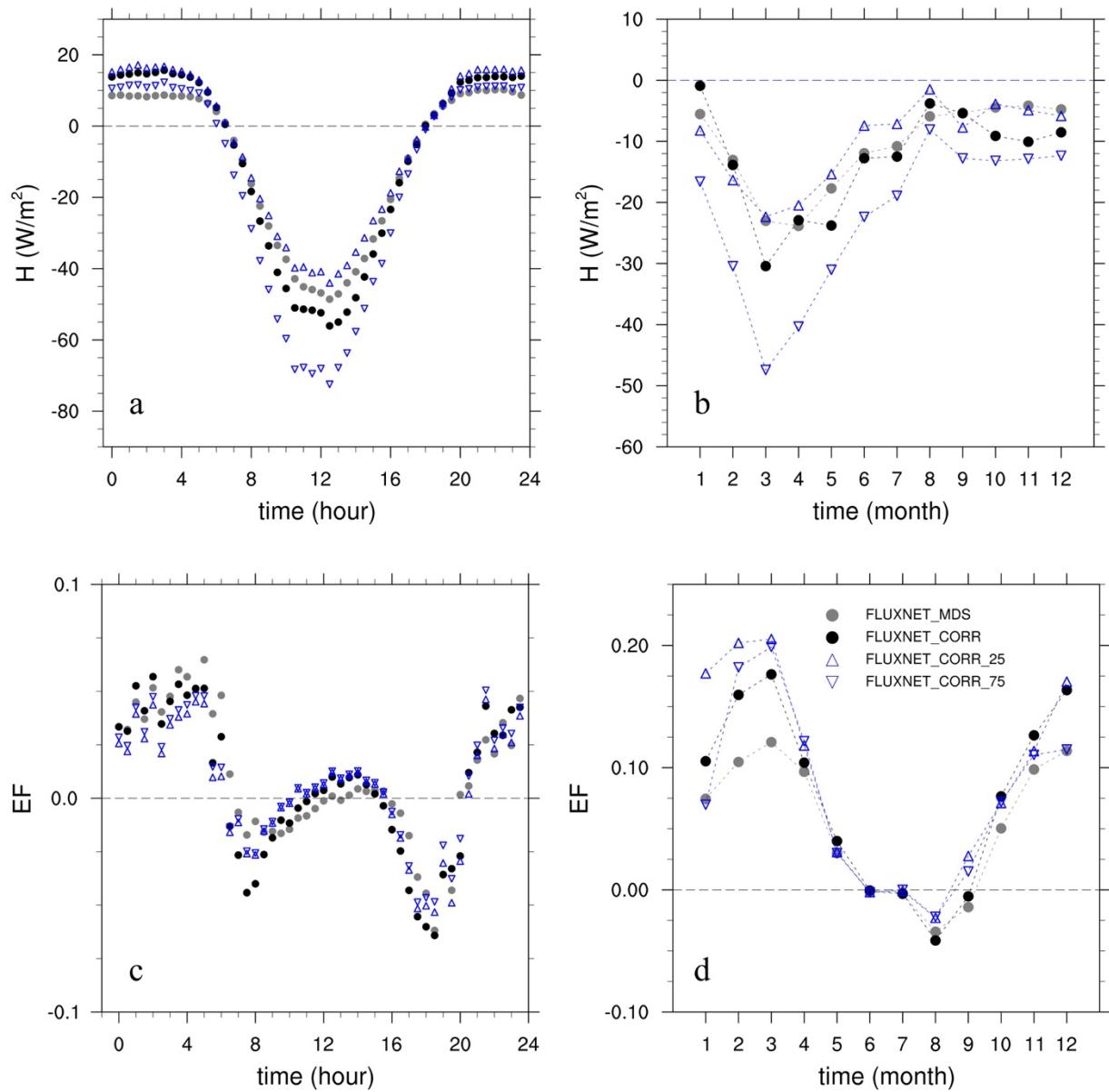
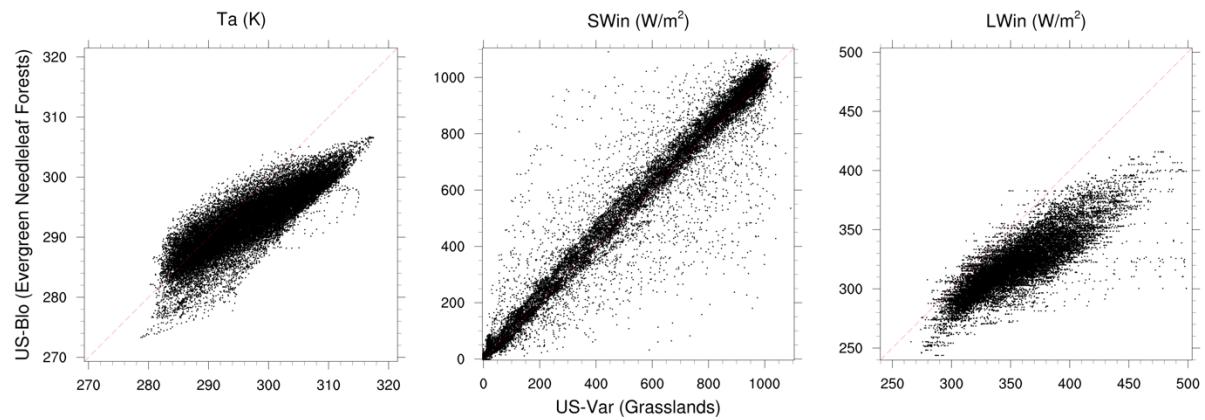

24	CA-NS6	55.9167	-98.9644	244	Open Shrublands	36.29	2001 – 2005
	CA-NS3	55.9117	-98.3822	260	Evergreen Needleleaf Forests		
25	CA-SF3	54.0916	-106.0053	540	Open Shrublands	45.41	2003 – 2006
	CA-SF1	54.485	-105.8176	536	Evergreen Needleleaf Forests		
26	DE-Kli	50.8929	13.5225	480	Croplands	8.46	2004 – 2014
	DE-Tha	50.9636	13.5669	380	Evergreen Needleleaf Forests		
27	DE-Kli	50.8929	13.5225	480	Croplands	18.42	2008 – 2014
	DE-Obe	50.7836	13.7196	735	Evergreen Needleleaf Forests		
28	DE-RuS	50.8659	6.4472	102.76	Croplands	69.96	2011 – 2014
	BE-Vie	50.3051	5.9981	493	Mixed Forests		

Table S2. Model scheme settings for Noah-MP used in this study.


model options	scheme used in this study
dynamic vegetation	on
canopy stomatal resistance	Ball-Berry
soil moisture factor for stomatal resistance	Noah
runoff and groundwater	SIMGM
surface layer drag coefficient (CH & CM)	Monin-Obukhov
supercooled liquid water	Niu & Yang 06
frozen soil permeability	Niu & Yang 06
radiation transfer	gap=F(3D,cosz)
snow surface albedo	CLASS
rainfall & snowfall	Jordan91
lower boundary of soil temperature	Noah
snow/soil temperature time scheme	semi-implicit

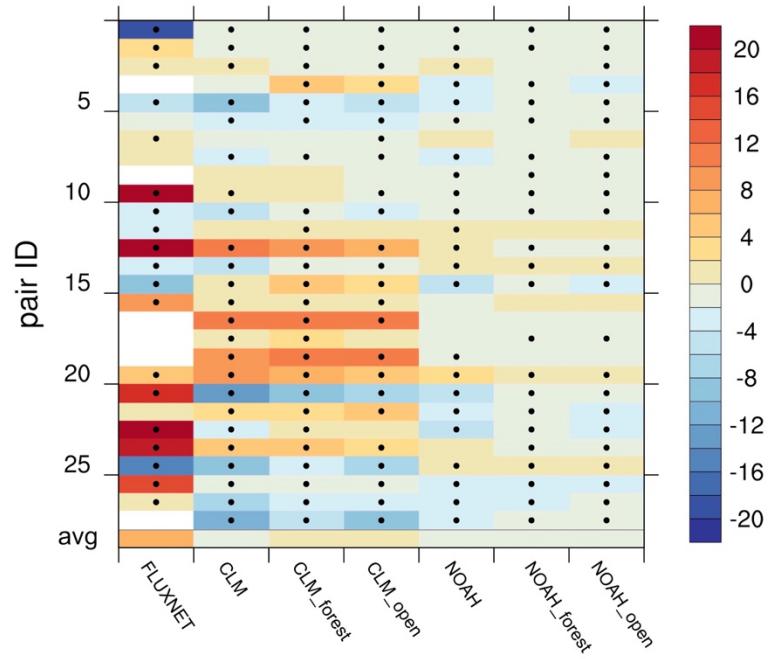

Figure S1. Change in the diurnal (left) and seasonal (right) cycle of LE (W/m^2 , a-b), H (W/m^2 , c-d), R_{net} (W/m^2 , e-f), and G (W/m^2 , g-h) from forest to open (open – forest) land excluding the pairs 3, 7, 12, and 15.

Figure S2. Change in the diurnal (left) and seasonal (right) cycle of H (W/m 2 , a-b) and evaporative fraction (EF , c-d) from forest to open land (open – forest) in the four types of FLUXNET observations.

Figure S3. Comparison of air temperature (K, left), downwelling shortwave (middle) and longwave (right) radiations (W/m^2) between the paired sites No. 15. The horizontal axis shows the observations from the grassland site US-Var, and the vertical axis shows the observations from the evergreen needleleaf forest site US-Blo.

Figure S4. Change (open – forest) in observed and simulated daytime surface soil moisture (%) during summer (JJA, b). White areas indicate missing observations.