
Hydrol. Earth Syst. Sci., 21, 99–116, 2017
www.hydrol-earth-syst-sci.net/21/99/2017/
doi:10.5194/hess-21-99-2017
© Author(s) 2017. CC Attribution 3.0 License.

A comprehensive one-dimensional numerical model for solute
transport in rivers
Maryam Barati Moghaddam, Mehdi Mazaheri, and Jamal MohammadVali Samani
Department of Water Structures, Tarbiat Modares University, Tehran, Iran

Correspondence to: Mehdi Mazaheri (m.mazaheri@modares.ac.ir)

Received: 4 October 2015 – Published in Hydrol. Earth Syst. Sci. Discuss.: 17 November 2015
Revised: 25 November 2016 – Accepted: 29 November 2016 – Published: 5 January 2017

Abstract. One of the mechanisms that greatly affect the pol-
lutant transport in rivers, especially in mountain streams, is
the effect of transient storage zones. The main effect of these
zones is to retain pollutants temporarily and then release
them gradually. Transient storage zones indirectly influence
all phenomena related to mass transport in rivers. This pa-
per presents the TOASTS (third-order accuracy simulation
of transient storage) model to simulate 1-D pollutant trans-
port in rivers with irregular cross-sections under unsteady
flow and transient storage zones. The proposed model was
verified versus some analytical solutions and a 2-D hydrody-
namic model. In addition, in order to demonstrate the model
applicability, two hypothetical examples were designed and
four sets of well-established frequently cited tracer study data
were used. These cases cover different processes governing
transport, cross-section types and flow regimes. The results
of the TOASTS model, in comparison with two common
contaminant transport models, shows better accuracy and nu-
merical stability.

1 Introduction

First efforts to understand the solute transport subject led to
a longitudinal dispersion theory which is often referred to
as the classical advection–dispersion equation (ADE; Taylor,
1954). This equation is a parabolic partial differential equa-
tion derived from a combination of a continuity equation and
Fick’s first law. The one-dimensional ADE equation is as fol-
lows:

∂ (AC)

∂t
=−

∂ (QC)

∂x
+
∂

∂x

(
AD

∂C

∂x

)
− λAC+AS, (1)

where A is the flow area, C the solute concentration, Q the
volumetric flow rate,D the dispersion coefficient, λ the first-
order decay coefficient, S the source term, t the time and x
the distance. When this equation is used to simulate the trans-
port in prismatic channels and rivers with relatively uniform
cross-sections, accurate results can be expected; but field
studies, particularly in mountain pool-and-riffle streams, in-
dicate that observed concentration–time curves have a lower
peak concentration and longer tails than the ADE equation
predictions (Godfrey and Frederick, 1970; Nordin and Sabol,
1974; Nordin and Troutman, 1980; Day, 1975). Thus a group
of researchers, based on field studies, stated that to accom-
plish more accurate simulations of solute transport in nat-
ural rivers and streams, the ADE equation should be mod-
ified. They added some extra terms to it for consideration
of the impact of stagnant areas that were so-called storage
zones (Bencala et al., 1990; Bencala and Walters, 1983; Jack-
man et al., 1984; Runkel, 1998; Czernuszenko and Rowinski,
1997; Singh, 2003). Transient storage zones mainly include
eddies, stream poolside areas, stream gravel bed, streambed
sediments, porous media of river bed and banks and stag-
nant areas behind flow obstructions such as big boulders,
stream side vegetation, woody debris and so on (Jackson et
al., 2013).

In general, these areas affect pollutant transport in two
ways: on the one hand, temporary retention and gradual re-
lease of solute cause an asymmetric shape in the observed
concentration–time curves, which could not be explained by
the classical advection–dispersion theory; on the other hand,
it is also affected by the opportunity for reactive pollutants
to be frequently contacted with streambed sediments that in-
directly affect solute sorption, especially in low-flow condi-
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Table 1. Comparison of the features of the three models used in this study.

Model features

Model Limitations on Irregular Unsteady Transient Kinetic
input parameters cross-sections flow storage sorption

OTIS Yes No No Yes Yes
MIKE 11 No Yes Yes No No
TOASTS No Yes Yes Yes Yes

Table 2. Comparison of numerical methods used in the three models.

Numerical methods

Model Discretization scheme Order of accuracy Stability Numerical
dispersion

TOASTS Centered Time–QUICK Space (CTQS) 2nd-order in time Pe< 8
3 0

3rd-order in space
OTIS Centered Time–Centered Space (CTCS) 2nd-order in time Pe< 2 0

2nd-order in space

MIKE 11 Backward Time–Centered Space (BTCS) 1st-order in time Pe< 2 U21t
2

2nd-order in space

* Pe= U1x
D

.

Table 3. Error indices of verification by the analytical solution for
continuous boundary condition.

With storage Without
storage

Index 50 m 75 m 100 m 100 m

R2 (%) 99.97 99.96 99.96 99.99
RMSE (mg m−3) 0.021 0.026 0.033 0.009
MAE (mg m−3) 0.017 0.023 0.029 0.006
MRE (%) 0.450 0.780 1.20 0.640

tions (Bencala, 1983, 1984; Bencala et al., 1990; Bencala and
Walters, 1983).

In the literature, several approaches have been proposed
to simulate solute transport in the rivers with storage areas,
that one of the most commonly used is the transient storage
model (TSM). TSM has been developed to consider solute
movement from the main channel to stagnant zones and vice
versa. The simplest form of the TSM is the one-dimensional
advection–dispersion equation with an additional term to
consider transient storage (Bencala and Walters, 1983). Af-
ter the introduction of the TSM, transient storage processes
have been studied in a variety of small mountain streams, as
well as large rivers, and it was shown that simulation results
of tracer study data considering the transient storage impact
have good agreement with observed data. Also, it was shown
that the interaction between the main channel and storage
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Figure 1. Results of the TOASTS model verification by the analyt-
ical solution for continuous boundary condition (α 6= 0).

zones, especially in mountain streams, has a great effect on
solute transport behavior (D’Angelo et al., 1993; DeAnge-
lis et al., 1995; Morrice et al., 1997; Czernuszenko et al.,
1998; Chapra and Runkel, 1999; Chapra and Wilcock, 2000;
Laenen and Bencala, 2001; Fernald et al., 2001; Keefe et al.,
2004; Ensign and Doyle, 2005; Van Mazijk and Veling, 2005;
Gooseff et al., 2007; Jin et al., 2009).

In this study, a comprehensive model, called TOASTS
(third-order accuracy simulation of transient storage), able
to obviate shortcomings of current models of contaminant
transport, is presented. The TOASTS model uses high-order
accuracy numerical schemes and considers transient storage
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Table 4. Error indices of verification by the analytical solution for
Heaviside boundary condition.

With storage Without
storage

Index 50 m 75 m 100 m 100 m

R2 (%) 99.98 99.97 99.96 99.99
RMSE (mg m−3) 0.034 0.045 0.058 0.0094
MAE (mg m−3) 0.031 0.044 0.056 0.007
MRE (%) 3.5 4.2 5 1.49
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Figure 2. Results of the TOASTS model verification by the analyt-
ical solution for continuous boundary condition (α = 0).

in rivers with irregular cross-sections under non-uniform and
unsteady flow regimes. This model presents a comprehensive
modeling framework that links three sub-models for calculat-
ing geometric properties of irregular cross-sections, solving
unsteady flow equations and solving transport equations with
transient storage and kinetic sorption.

To demonstrate the applicability and accuracy of the
TOASTS model, results of two hypothetical examples (de-
signed by the authors) and four sets of well-established tracer
study data, are compared with the results of two existing fre-
quently used solute transport models: the MIKE 11 model,
developed by the Danish Hydraulic Institute (DHI), and the
OTIS (one-dimensional transport with inflow and storage)
model that today is the only existing model for solute trans-
port with transient storage (Runkel, 1998). The TOASTS
model and the two other model features are listed in Ta-
ble 1. It should be noted that the OTIS model, in simu-
lating solute transport in irregular cross-sections under un-
steady flow regimes, has to rely on external stream routing
and geometric programs. By contrast, in the TOASTS and
MIKE 11 models, geometric properties and unsteady flow
data are directly evaluated from river topography, bed rough-
ness, flow initial and boundary conditions data. Another im-
portant point is in the numerical scheme which has been
used in the TOASTS model solution. The key and basic dif-
ference of the TOASTS model is spatial discretization of
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Figure 3. Results of the TOASTS model verification by the analyt-
ical solution for Heaviside boundary condition (α 6= 0).
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Figure 4. Results of the TOASTS model verification by the analyt-
ical solution for Heaviside boundary condition (α = 0).

the transport equation. This model uses the control-volume
approach and QUICK (quadratic upstream interpolation for
convective kinematics) scheme in spatial discretization of the
advection–dispersion equation considering transient storage
and kinetic sorption; whereas the two other models employ
central spatial differencing. More detailed comparison of nu-
merical schemes used in the structure of three subjected mod-
els is given in Table 2.

As many researchers claim, central spatial differencing
is incapable of simulation of pure advection problems and
does not introduce good performance in this regard (it
leads to non-convergent results with numerical oscillations;
Zhang and Aral, 2004; Szymkiewicz, 2010; Versteeg and
Malalasekera, 2007). It should be mentioned that, in recent
years, the QUICK scheme has been widely used in numerical
solutions of partial differential equations due to its high-order
accuracy, very small numerical dispersion and higher stabil-
ity range (Neumann et al., 2011; Lin and Medina, 2003).
Hence, usage of the QUICK scheme in numerical discretiza-
tion of the transport equation leads to significantly better re-
sults, especially in advection-dominant problems.
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Figure 5. Bed elevation contours of the 2-D hypothetical example.

 

Figure 6. Bed elevation three-dimensional view of the 2-D hypo-
thetical example.

2 Methodology

2.1 Governing equations

There are several equations for solute transport with transient
storage, the most well known being the TSM presented by
Bencala and Walters (1983). By writing conservation of mass
principle for solute in the main channel and storage zone and

Table 5. Error indices of verification by the 2-D model.

Index With Without
storage storage

R2 (%) 99.97 99.91
RMSE (mg m−3) 0.095 1.88
MAE (mg m−3) 0.066 0.77
MRE (%) 3.1 36.5
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Figure 7. Results of the TOASTS model verification using the 2-D
model.

doing some algebraic manipulation, a coupled set of differ-
ential equations is derived:

∂C

∂t
=−

Q

A

∂C

∂x
+

1
A

∂

∂x

(
AD

∂C

∂x

)
+
qLIN

A
(CL−C)+α (CS −C) (2)

dCS

dt
= α

A

AS
(C−CS) , (3)

whereA andAS are the main channel and storage zone cross-
sectional area respectively, C, CL and CS are the main chan-
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Table 6. Properties of the test cases used for the TOASTS model application.

Solute transport processes

Physical Chemical

Transient storage

Example Section Flow regime Advection Dispersion Surface Hyporheic First-order Kinetic
no. type exchange decay sorption

1 Regular Steady Yes No No No No No
Uniform

2 Regular Steady Yes Yes No No Yes No
Uniform

3 Irregular Steady Yes Yes Yes No No No
Non-uniform

4 Irregular Steady Yes Yes Yes No No Yes
Non-uniform

5 Irregular Steady Yes Yes Yes No No No
Non-uniform

6 Irregular Unsteady Yes Yes No Yes No No
Non-uniform
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Figure 8. Comparison of the CTQS, CTCS and BTCS schemes for
the pure advection test case.

Table 7. Simulation parameters related to test case 2.

L (m) D λ Case Space Peclet
(m2 s−1) (s−1) step (m) number

1 10 0.24
2200 5 0.00002 2 100 2.4

3 100 10

nel, lateral inflow and storage zone solute concentration, re-
spectively, qLIN is the lateral inflow rate and α is the storage
zone exchange coefficient. For reactive solute, considering
two types of chemical reactions (kinetic sorption and first-
order decay) Eqs. (2) and (3) are rewritten as:

Table 8. Error indices of concentration time series in test case 2.

Model

Index TOASTS OTIS MIKE 11

Pe= 0.24 R2 (%) 99.93 99.93 99.98
RMSE (mg m−3) 0.460 0.460 0.850
MAE (mg m−3) 0.236 0.238 0.480
MRE (%) 0.9 1.0 1.7

Pe= 2.4 R2 (%) 98.26 97.82 97.75
RMSE (mg m−3) 2.66 2.98 3.24
MAE (mg m−3) 1.42 1.55 1.73
MRE (%) 3.77 4.11 4.93

Pe= 10 R2 (%) 98.8 98.2 98.24
RMSE (mg m−3) 3.60 4.41 4.46
MAE (mg m−3) 0.80 1.12 1.17
MRE (%) 1.25 1.95 2.15

∂C

∂t
= L(C)+ ρλ̂(Csed−KdC)− λC (4)

dCS

dt
= S (CS)+ λ̂S

(
ĈS−CS

)
− λSCS (5)

dCsed

dt
= λ̂ (KdC−Csed) , (6)

where ĈS is the background storage zone solute concentra-
tion, Csed is the sorbate concentration on the streambed sed-
iment, Kd is the distribution coefficient, λ and λS are the
main channel and storage zone first-order decay coefficients
respectively, λ̂ and λ̂S are the main channel and storage zone
sorption rate coefficients respectively, ρ is the mass of acces-
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Figure 9. Comparison of the TOASTS, OTIS and MIKE 11 models in test case 2 for Pe= 0.24.

sible sediment/volume water and L and S are the right-hand
side differential operator of Eqs. (2) and (3) respectively.

2.2 Numerical solution scheme

Numerical solution of Eqs. (4) to (6) in this study are based
on the control-volume method and centered time–QUICK
space (CTQS) scheme. The spatial derivatives are discretized
by the QUICK scheme, which is based on quadratic upstream
interpolation of discretization of the advection–dispersion
equation (Leonard, 1979). In this scheme, face values are
computed using quadratic function passing through two up-
stream nodes and a downstream node. For an equally spaced
grid, the values of a desired quantity, ϕ, on the cell faces are
given by the following equations:

φface =
6
8
φi−1+

3
8
φi −

1
8
φi−2 (7)

φw =
6
8
φW +

3
8
φP −

1
8
φWW (8)

φe =
6
8
φP +

3
8
φE −

1
8
φW , (9)

where P denotes an unknown node with neighbor nodes W
(at left) and E (at right). It should be noted that the corre-
sponding cell faces are denoted by the lowercase letters, w
and e. Gradient at cell faces can be estimated using the fol-
lowing relationships:
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Figure 10. Comparison of the TOASTS, OTIS and MIKE 11 models in test case 2 for Pe= 2.4.

(
∂φ

∂x

)
w

=
φP −φW

1x
(10)(

∂φ

∂x

)
e

=
φE −φP

1x
. (11)

Finally, the difference equations related to the Eqs. (4)
to (6) can be derived as follows:

Cn+1
P −CnP

1t
=

1
2

[(
−QP

AP1x
(Ce−Cw)

)n+1

+

(
−QP

AP1x
(Ce−Cw)

)n]

+
1
2

{
1

An+1
P 1x

[(
AD

∂C

∂x

)
e

−

(
AD

∂C

∂x

)
w

]n+1

+
1

AnP1x

[(
AD

∂C

∂x

)
e

−

(
AD

∂C

∂x

)
w

]n}
+

1
2

[
qn+1

LIN

An+1
P

(CL−CP )
n+1
+
qnLIN
AnP

(CL−CP )
n

]
+
α

2

[
(CS−CP )

n+1
+ (CS−CP )

n
]

+
ρλ̂

2

[
(Csed−KdCP )

n+1
+ (Csed−KdCP )

n
]

−
λ

2

(
Cn+1
P +CnP

)
(12)

www.hydrol-earth-syst-sci.net/21/99/2017/ Hydrol. Earth Syst. Sci., 21, 99–116, 2017



106 M. Barati Moghaddam et al.: A comprehensive one-dimensional numerical model

‐0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1

C
/C

in

t/tmax

(a)TOASTS (500 m)
TOASTS (2000 m)
Analytical

‐0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1

C
/C

in

x/xmax

(d) TOASTS
Analytical

‐0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1

C
/C

in

t/tmax

(b)OTIS (500 m)
OTIS (2000 m)
Analytical

‐0.2
‐0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1
C
/C

in

x/xmax

(e) OTIS
Analytical

‐0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1

C
/C

in

t/tmax

(c)MIKE11 (500 m)
MIKE11 (2000 m)
Analytical

‐0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1

C
/C

in

x/xmax

(f) MIKE11

Analytical

Figure 11. Comparison of the TOASTS, OTIS and MIKE 11 models in test case 2 for Pe= 10.

Cn+1
S −CnS
1t

=
1
2

[(
α
AP

AS
(CP −CS)

+λ̂S

(
ĈS−CS

)
− λSCS

)n+1

+

(
α
AP

AS
(CP −CS)

+λ̂S

(
ĈS−CS

)
− λSCS

)n]
(13)

Cn+1
sed −C

n
sed

1t
=

1
2

[(
λ̂ (KdCP −Csed)

)n+1

+

(
λ̂ (KdCP −Csed)

)n]
. (14)

Writing Eqs. (12) to (14) for all control-volumes in the solu-
tion domain and applying the boundary conditions, a system
of linear algebraic equations will be introduced:

aWWC
n+1
WW + aWC

n+1
W + aPC

n+1
P + aEC

n+1
E = RP , (15)

where aWW , aW , aP , aE and RP are the corresponding co-
efficients and the right-hand side term. Solving this system,
main channel concentrations in n+1 time level will be com-
puted. Having main channel concentration values, the storage
zone and streambed sediment concentrations could be calcu-
lated.
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Table 9. Error indices of concentration longitudinal profiles in test
case 2.

Model

Index TOASTS OTIS MIKE 11

Pe= 0.24 R2 (%) 99.9 99.9 99.9
RMSE (mg m−3) 0.146 0.154 0.360
MAE (mg m−3) 0.105 0.108 0.280
MRE (%) 1.91 1.97 3.20

Pe= 2.4 R2 (%) 98.6 98 96
RMSE (mg m−3) 0.53 0.65 0.86
MAE (mg m−3) 0.40 0.47 0.64
MRE (%) 5.40 6.56 11.20

Pe= 10 R2 (%) 95.7 92 88.4
RMSE (mg m−3) 5.46 7.24 7.88
MAE (mg m−3) 3.02 4.47 5.05
MRE (%) 6.27 12.44 13.50

2.3 Damköhler Index

The Damköhler number is a dimensionless number that re-
flects the exchange rate between the main channel and stor-
age zones (Jin et al., 2009; Harvey and Wagner, 2000; Wag-
ner and Harvey, 1997; Scott et al., 2003). For a stream or
channel this number is defined as:

DaI = α

(
1+

A

AS

)
L

u
, (16)

where L is the main channel length, u the average flow ve-
locity and DaI the Damköhler number. When DaI is much
greater than unity (e.g., 100), the exchange rate between the
main channel and storage zone is too fast and it could be as-
sumed that these two segments are in balance. Accordingly,
when DaI is much lower than unity (e.g., 0.01) the exchange
rate between main channel and storage zone is very low and
negligible. In other words, in such a stream where DaI is very
low, there is practically no significant exchange between the
main channel and storage zone, and transient storage zones
do not affect downstream solute transport. Therefore, for rea-
sonable estimation of transient storage model parameters, the
DaI value must be within 0.1 to 10 range (Fernald et al.,
2001; Wagner and Harvey, 1997; Ramaswami et al., 2005).

3 Model verification

In this section the TOASTS model is verified using several
test cases. These test cases include analytical solutions of
constant-coefficient governing equations for two types of up-
stream boundary condition (continuous and Heaviside) and
also by comparing the model results with the 2-D model.
Complementary explanations for each case are given below.

Figure 12. Uvas Creek (Santa Clara County, California) tracer
study site map (Bencala and Walters, 1983).

3.1 Verification by analytical solutions

In this section, model verification is carried out using an-
alytical solutions presented by Kazezyılmaz-Alhan (2008).
The designed example is a 200 m length channel with con-
stant cross-sectional area equal to 1 m2. The flow discharge,
dispersion coefficient, storage zone area and exchange co-
efficient are 0.01 m3 s−1, 0.2 m2 s−1, 1 m2 and 0.00002 s−1,
respectively. The DaI number can be calculated from the
Eq. (19) equal to 0.8. This example is implemented for two
different types of upstream boundary conditions: (a) contin-
uous and (b) Heaviside.

3.1.1 (a) Continuous boundary condition

In this case, a solute concentration of 5 mg m−3 is injected
continuously for 10 h at the inlet. The time and space steps
are considered equal to 30 s and 1 m, respectively. Figure 1
shows the TOASTS model results compared to the analytical
solution at 50, 75 and 100 m from the inlet. Note that both
axes have been nondimensionalized with respect to the max-
imum values. Also, square of correlation coefficient (R2),
root mean square error (RMSE), mean absolute error (MAE)
and mean relative error (MRE) are given in Table 3. Accord-
ing to Fig. 1 and the error indices given in Table 3, it is clear
that the trends of numerical and analytical solutions are sim-
ilar, and the TOASTS model shows a good accuracy in this
example.

In order to show the model capability and assess the model
accuracy in a case without transient storage, the model is exe-
cuted for α = 0 for this example, and the result at the distance
of 100 m from the inlet is compared to the analytical solution
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Table 10. Simulation parameters for the Uvas Creek experiment (test case 3).

Cross-sectional areas

Reach (m) Flow Dispersion Main channel Storage zone Exchange
discharge (m3 s−1) coefficient (m2 s−1) coefficient (s−1)

0–38 0.0125 0.12 0.30 0 0
38–105 0.0125 0.15 0.42 0 0
105–281 0.0133 0.24 0.36 0.36 3× 10−5

281–433 0.0136 0.31 0.41 0.41 1× 10−5

433–619 0.0140 0.40 0.52 1.56 4.5× 10−5

Table 11. Error indices of simulation of the Uvas Creek experiment (test case 3).

38 m 281 m 433 m

Index TOASTS OTIS MIKE 11 TOASTS OTIS MIKE 11 TOASTS OTIS MIKE 11

R2 (%) 94.30 94.20 94.10 99.40 99.31 99.10 98.84 98.8 97.82
RMSE (mg m−3) 0.727 0.728 0.730 0.180 0.183 0.340 0.203 0.205 0.440
MAE (mg m−3) 0.202 0.203 0.212 0.108 0.109 0.205 0.121 0.125 0.280
MRE (%) 3.50 3.55 3.68 2.07 2.08 3.60 2.27 2.40 5.30

of the classical advection–dispersion equation. The results
are shown in Fig. 2 and Table 3. Figure 2 also illustrates that
in the case of transient storage, the concentration–time curve
has a lower peak than the one without storage (α = 0), which
matches the previously mentioned transient storage concept.

3.1.2 (b) Heaviside boundary condition

In this case a solute concentration of 5 mg m−3 is injected
at the inlet for a limited time of 100 min. The time and space
steps are considered equal to 30 s and 1 m, respectively. Com-
parison of the model results and the analytical solution at the
distance of 50, 75 and 100 m from the inlet is presented in
Fig. 3 and Table 4. Also, corresponding results at the dis-
tance of 100 m for the case without storage (α = 0) are given
in Fig. 4 and Table 4. It is obvious that the TOASTS model
results in both cases (with and without storage) have a rea-
sonable agreement with the analytical solution.

3.2 Verification by 2-D model

The main cause of transient storage phenomena is veloc-
ity difference between the main channel and storage zones.
2-D depth-averaged models consider velocity variations in
two dimensions and give more accurate predictions of solute
transport behavior in reality. Hence, they could be used for
verification of the presented 1-D model as a benchmark. For
this purpose, a hypothetical example was designed. To do so,
a 1200 m long river, with irregular cross-sections, is consid-
ered. Figures 5 and 6 show bed topography of the hypotheti-
cal river. In order to take into account a hypothetical storage
zone, the distance between 300 and 600 m of the river has

been widened. The flow conditions in the river are considered
to be non-uniform and unsteady. The solute concentration in
the main channel and storage zone, at the beginning of the
simulation (initial conditions), is assumed to be zero. In cal-
culations of both flow and transport models, space and time
steps are considered equal to 100 m and 1 min respectively.
The dispersion coefficient, storage zone area and exchange
coefficient are 10 m2 s−1, 22 m2 and 1.8× 10−4 s−1, respec-
tively. For this example the DaI number is calculated equal
to 0.4. The upstream boundary condition for transport sub-
model is a 3 h lasting step loading pulse with 20 mg m−3 pick
concentration. The results of the TOASTS model for simu-
lating with and without transient storage were compared to
the 2-D model at the distance of 800 m from the inlet. Fig-
ure 7 and Table 5 illustrates these results. This figure shows
that with appropriate choice of AS and α, concentration–
time curves given by the TOASTS model are close to those
given by the 2-D model. These results also imply the neces-
sity of considering transient storage term in the advection–
dispersion equation for more accurate simulation of solute
transport, especially in natural rivers and streams.

4 Application

In this section, the applications of the TOASTS model us-
ing a variety of hypothetical examples and several sets of
observed data are presented. Some properties of these test
cases are given in Table 6. As shown in this table, the test
cases include a wide variety of solute transport simulation
applications at different conditions.
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Figure 13. Observed and simulated chloride concentrations in the main channel (test case 3).

Table 12. Simulation parameters related to test case 4.

Sorption rate coefficient (s−1) Background concentration (mg L−1)

Distribution Main Storage Main Storage Bed Input
coefficient channel zone channel zone sediments concentration
(m2 s−1) (mg L−1)

70 56× 10−6 1 0.13 0.13 9.1× 10−3 1.73

4.1 Test case 1: pure advection

In order to show the advantage of the numerical scheme used
in the TOASTS model, for advection-dominant problems,
a hypothetical example was designed and three numerical
schemes were applied: CTQS (centered time–quick space),
CTCS (centered time–centered space) and BTCS(backward
time–centered space). To do so, steady flow by velocity of
1 m s−1 was assumed. Total simulation time was 5 h and
space and time steps were 100 m and 10 s respectively. Note
that advection is the only transport mechanism. The results
of this test case are depicted in Fig. 8. It is clear that, for
the pure advection simulation, the CTQS scheme has less
oscillation than the other two schemes. In particular, this
figure indicates that the result of the CTCS scheme, which
is used in the OTIS model, shows high oscillations. There-
fore, it can be concluded that for advection-dominant sim-

ulation the TOASTS model has a better performance. It is
interesting to note that in mountain rivers where the transient
storage mechanism is more observed, due to relatively high
slope, higher flow velocities occur which lead to advection-
dominant solute transport.

4.2 Test case 2: transport with first-order decay

This example illustrates the application of the TOASTS
model in solute transport simulation by first-order decay. A
decaying substance enters the stream with steady and uni-
form flow during a 2 h period. The solute concentration at
the upstream boundary is 100 mg m−3. Also, in order to as-
sess the TOASTS model capability in the case of high-flow
velocity and advection-dominant transport, this example im-
plemented for three cases with different Peclet numbers. The
simulation parameters for different cases are given in Table 7.

www.hydrol-earth-syst-sci.net/21/99/2017/ Hydrol. Earth Syst. Sci., 21, 99–116, 2017



110 M. Barati Moghaddam et al.: A comprehensive one-dimensional numerical model

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
/C

in

t/tmax

TOASTS with storage
TOASTS without  storage
Observed 281 m
Observed 433 m

Figure 14. The TOASTS model results for simulation with and
without transient storage (test case 3).
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Figure 15. Observed and simulated storage zone concentrations
computed by the TOASTS model (test case 3).

Figures 9–11 show simulation results of the three numerical
models in comparison with analytical solution. Error indices
are given in Tables 8 and 9. It is obvious from Fig. 9a–c that
in the first case (Peclet number less than 2), all methods sim-
ulated concentration–time curves accurately. Also, Fig. 9d–f
show that the MIKE 11 model cannot simulate a concentra-
tion longitudinal profile accurately, because it does not con-
sider the transient storage effect on solute transport.

In the second case, by increasing the computational space
step, all methods show a drop in the peak concentration,
that its amount for the MIKE 11 model is more and for the
TOASTS model is less than the others (Fig. 10a–c). Fig-
ure 10d–f and Table 9 show that the results of the models that
use the central differencing scheme in spatial discretization
of transport equations show more discrepancy in comparison
with the analytical solution.

In the third case, flow velocity increased about four times.
As illustrated in Fig. 11c, by increasing the Peclet num-
ber, the OTIS model results show more oscillations. This
model also shows very intense oscillations in the longitudinal
concentration profile in the form of negative concentrations

(Fig. 11e), while observed oscillations in the TOASTS model
are very small compared to the OTIS model (Fig. 11d). How-
ever, the QUICK scheme oscillations in advection-dominant
cases are less likely to corrupt the solution. Also the MIKE
11 model results, in comparison with the TOASTS model,
have greater difference with the analytical solution.

The main reason for the difference between the obtained
results in the three cases is actually related to how advec-
tion and dispersion affect the solute transport. The disper-
sion process affects the distribution of solute in all directions,
whereas advection acts only in the flow direction. This fun-
damental difference manifests itself in the form of limitation
in computational grid size.

4.3 Test case 3: conservative solute transport with
transient storage

This example shows the TOASTS model application to field
data, by using the conservative tracer (chloride) injection
experiment results, which was conducted in Uvas Creek, a
small mountain stream in California (Fig. 12). Details of the
experiments can be found in Avanzino et al. (1984). Table 10
shows simulation parameters for the Uvas Creek experiment
(Bencala and Walters, 1983). For assessing efficiency and ac-
curacy of the three discussed models in simulation of the im-
pact of physical processes on solute transport in a mountain
stream, they are implemented for this set of observed data.
Figure 13a–c illustrates simulated chloride concentration in
the main channel. It can be seen from these figures and Ta-
ble 11 that the TOASTS model simulated the experiment re-
sults slightly better than the two other models. Comparison
of Fig. 13a and b shows that the TOASTS and OTIS mod-
els have good accuracy in modeling the peak concentration
and the TOASTS model has a slightly better performance in
simulation of a rising tail of concentration–time curve, par-
ticularly in the 281 m station. Figure 13c shows MIKE 11
model results. It shows significant discrepancies with the ob-
served data, particularly in peak concentrations. However, at
the 38 m station, where transient storage has not still affected
solute transport, the results of the three models have little
difference with the observed data (Table 11). Figure 14 de-
picts the TOASTS model results for the Uvas Creek exper-
iment for simulations with and without transient storage at
the 281 and 433 m stations. This figure shows that in simula-
tion with transient storage, the results have more fitness with
the observed data in general shape of the concentration–time
curve, peak concentration and peak arrival time. Figure 15
shows the simulated chloride concentrations in the storage
zone. The concentration–time curves in the storage zone have
longer tails in comparison with the main channel. That means
some portions of the solute mass remain in the storage zones
and gradually return to the main channel.
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Figure 16. Observed and simulated strontium concentrations in the main channel (test case 4).
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Figure 17. Observed and simulated sorbate strontium concentrations in the Uvas Creek experiment (test case 4).

4.4 Test case 4: non-conservative solute transport with
transient storage

The objective of this test case is to demonstrate the capability
of the TOASTS model in non-conservative solute transport
modeling in natural rivers. For this purpose, the field exper-
iment of the 3 h reactive tracer (strontium) injection into the
Uvas Creek was used. The experiment was conducted at low-
flow conditions and, due to the high opportunity of solute
having frequent contact with relatively immobile streambed
materials, solute and streambed interactions and solute sorp-
tion into bed sediments were more intense than during the
high-flow conditions. Hence, the sorption process must be

considered in simulation of this experiment (Bencala, 1983).
Some of the simulation parameters are given in Table 12 and
the other parameters are the same as those given in Table 10.
Figure 16a–c and Table 13 show solute transport simulation
results of the three subjected models in comparison with the
observed data. According to these figures it could be said
that the TOASTS model shows better fitness with the ob-
served data. Figure 16c shows that simulation without tak-
ing into account the transient storage and kinetic sorption in
the MIKE 11 model leads to very poor results. The zero ex-
change coefficient at the 38 m station causes reasonable re-
sults by this model at this station. Figure 17 illustrates the
TOASTS and OTIS model results for sorbate concentrations
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Table 13. Error indices of simulation of the Uvas Creek experiment (test case 4).

Main channel concentration Sorbate concentration

38 m 281 m 105 m 281 m

Index TOASTS OTIS MIKE 11 TOASTS OTIS MIKE 11 TOASTS OTIS TOASTS OTIS

R2 (%) 99.30 93.17 93.00 99.00 96.00 90.80 99.40 99.30 99.16 98.6
RMSE (mg m−3) 0.05 0.12 0.17 0.055 0.070 0.200 1.05 1.64 2.67 2.86
MAE (mg m−3) 0.021 0.044 0.086 0.048 0.055 0.115 0.75 1.50 2.40 2.41
MRE (%) 6.40 11.80 24.60 13.60 18.00 27.40 3.04 5.66 10.50 10.80

Table 14. Error indices of the Athabasca River experiment (test case
5).

Distance from upstream, 1850 m

Index TOASTS OTIS MIKE 11

R2 (%) 99.75 99.8 62.5
RMSE (mg m−3) 0.030 0.047 0.50
MAE (mg m−3) 0.020 0.025 0.260
MRE (%) 1.70 4.77 28.60

Table 15. Simulation parameters related to test case 6.

Reach Dispersion Storage zone Exchange
(m) coefficient (m2 s−1) area (m2) coefficient (s−1)

0–213 0.50 0.20 1.07× 10−3

213–457 0.50 0.25 5.43× 10−4

457–726 0.50 0.14 1.62× 10−2

on the streambed sediments versus the observed data at the
105 and 281 m stations. It is clear from this figure and Ta-
ble 13 that the TOASTS model is slightly better fitted to the
observed data.

4.5 Test case 5: solute transport with transient storage
in a river with irregular cross-sections

This test case shows the TOASTS model application for a
river with irregular cross-sections under non-uniform flow
conditions. The real data set for this test case was col-
lected in a tracer experiment which has been done in the
Athabasca River near Hinton, Alberta, Canada. Details of
the experiments can be found in Putz and Smith (2000). In
this study, the simulation reach length is 8.3 km, between
4.725 to 13.025 km of the river. The main reason for select-
ing this reach is that it has common geometric properties
of rivers with storage zones. Total simulation time is 10 h,
space and time steps are considered equal to 25 m and 1 min,
respectively. The exchange coefficient is assumed equal to
6× 10−4 s−1 by calibration. According to the estimated pa-
rameters, DaI is calculated equal to 3.8 which is in the ac-
ceptable range and therefore transient storage zones affect
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Figure 18. Simulation results for the Athabasca River experiment
(test case 5).

Figure 19. Huey Creek tracer study site map (Runkel et al., 1998).

downstream solute transport in the simulation reach. Since
samples were collected only in four cross-sections down-
stream of the injection site, the observed concentration–time
curve at 4.725 km was used as an upstream boundary condi-
tion of the transport model and the observed concentration–
time curve at 11.85 km was used to compare the model re-
sults with the observed data. Figure 18 and Table 14 repre-
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Table 16. Huey Creek experiment error indices (test case 6).

213 m 457 m

Index TOASTS OTIS MIKE 11 TOASTS OTIS MIKE 11

R2 (%) 68.6 67 84 78 63.5 94
RMSE (mg m−3) 0.673 0.674 0.740 0.48 0.63 0.62
MAE (mg m−3) 0.28 0.30 0.54 0.23 0.28 0.52
MRE (%) 7.14 7.32 20.40 6.46 7.60 15
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Figure 20. Observed and simulated main channel lithium concentrations (test case 6).

sent Athabasca experiment simulation results. It is clear that
the concentration–time curves simulated by the TOASTS and
OTIS models fit very well with the observed data; but again
the MIKE 11 model failed to reproduce an accurate result,
which means a poor performance of the classical advection–

dispersion equation in simulation of solute transport in natu-
ral rivers.
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Figure 21. Simulated storage zone concentrations (test case 6).

4.6 Test case 6: solute transport with hyporheic
exchange under unsteady flow conditions

This test case shows an application of the TOASTS model
to simulate solute transport in a stream with irregular cross-
sections, under an unsteady flow regime. In most of solute
transport models, for simplification, flow is considered to be
steady, while in most natural rivers unsteady flow condition
is common, and neglecting temporal flow variations may lead
to inaccurate results for solute transport simulation.

Tracer study that is used in this section, conducted in
January 1992 at Huey Creek, located in McMurdo valleys,
Antarctica (Fig. 19). The flow rate was variable from 1
to 4 c f s−1 (cubic feet per second) during the experiments.
Since this stream does not have obvious surface storage
zones, the cross-sectional area of storage zones and exchange
rate of this area actually represent the rate of hyporheic ex-
change and interaction between surface and subsurface water
(Runkel et al., 1998). Details of the experiments can be found
in Runkel et al. (1998). Table 15 shows the simulation param-
eters. Figure 20a–c and Table 16 represent simulation results
of lithium concentration at the 213 and 457 m stations, by the
three subjected models. The results of the TOASTS model
have a slightly better fitness to the observed data than the two
other models. This figure also indicates that the general shape
of the concentration–time curve for this example is a little
different from the other examples. Figure 20c represents the
results of the MIKE 11 model. As seen in this figure, results
have large differences with the observed data in peak concen-
trations and general shape of the curve. Figure 21 shows the
corresponding storage zone concentrations at 213 and 457 m
stations. It can be seen that solute concentration–time curves
in the storage zone have lower peaks and much longer tails,
which imply longer residence time of solute in these areas
compared to the main channel.

5 Conclusions

In this study a comprehensive model was developed that
combines numerical schemes with high-order accuracy for
solution of the advection–dispersion equation, considering
transient storage zones term in rivers. In developing the
subjected model (TOASTS), for achieving better accuracy
and applicability, irregular-cross sections and an unsteady
flow regime were considered. For this purpose the QUICK
scheme, due to its high stability and low approximation er-
ror, has been used for spatial discretization.

The presented model was verified successfully using sev-
eral analytical solutions and 2-D hydrodynamics and trans-
port model as benchmarks. Also, its validation and applica-
tions were proved using several hypothetical examples and
four sets of well-established tracer experiments data under
different conditions. The main concluding remarks of this re-
search are as the following:

The numerical scheme used in the TOASTS model (i.e.,
CTQS scheme), in cases where advection is the dominant
transport process (higher Peclet numbers), has less numerical
oscillations and higher stability compared to the CTCS and
BTCS numerical schemes.

For a specified level of accuracy, TOASTS can provide
larger grid size, while other models based on the central
scheme face step limitation that leads to more computational
cost.

As shown by other researchers, the inclusion of tran-
sient storage and sorption in a classical advection–dispersion
equation, in many cases, leads to more accurate simulation
results.

The TOASTS model is a comprehensive and practical
model, that has the ability of solute transport simulation (re-
active and non-reactive), with and without storage, under
both steady and unsteady flow regimes, in rivers with irreg-
ular cross-sections that from this aspect is unique compared
to the other existing models. Thus, it could be suggested as a
reliable alternative to current popular models in solute trans-
port studies in natural rivers and streams.

6 Data availability

In order to access the data, we kindly ask researchers to
contact the corresponding author.
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