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Abstract. Daily, quasi-global (50◦ N–S and 180◦W–E),
satellite-based estimates of actual evapotranspiration at
0.25◦ spatial resolution have recently become available,
generated by the Global Land Evaporation Amsterdam
Model (GLEAM). We investigate the use of these data to
improve the performance of a simple lumped catchment-
scale hydrologic model driven by satellite-based precipi-
tation estimates to generate streamflow simulations for a
poorly gauged basin in Africa. In one approach, we use
GLEAM to constrain the evapotranspiration estimates gen-
erated by the model, thereby modifying daily water bal-
ance and improving model performance. In an alternative
approach, we instead change the structure of the model to
improve its ability to simulate actual evapotranspiration (as
estimated by GLEAM). Finally, we test whether the GLEAM
product is able to further improve the performance of the
structurally modified model. Results indicate that while both
approaches can provide improved simulations of streamflow,
the second approach also improves the simulation of actual
evapotranspiration significantly, which substantiates the im-
portance of making “diagnostic structural improvements” to
hydrologic models whenever possible.

1 Introduction

1.1 Statement of the problem

As a primary mechanism in the surface-to-atmosphere por-
tion of the water cycle, evapotranspiration (ET) plays a cru-
cial role in the water and energy budgets of a hydrologic
system. Although there are several different methods avail-

able for estimating potential ET (see Penman, 1948; Thorn-
thwaite, 1948; Monteith, 1965; Priestley and Taylor, 1972;
Hargreaves and Samani, 1985; Shuttleworth, 1992; Allen et
al., 1998), or pan evaporation (e.g., data-driven approaches
by Bruton et al., 2000; Sudheer et al., 2002; Jain and Roy,
2017), the estimation of actual ET is not straightforward. In
practice, actual ET can be derived from model simulations,
remotely sensed observations of different variables, etc. The
quality of a model-derived estimate of ET depends on various
sources of uncertainty (inputs, parameters, process represen-
tation, structure, etc.) inherent to the model-based scheme
used, and common problems include both over- and under-
estimation of evaporative fluxes (Trambauer et al., 2014).
Recently, methods that use satellite-based remotely sensed
climatic and environmental observations have provided an al-
ternative approach to the estimation of ET (e.g., Bastiaanssen
et al., 1998; Arboleda et al., 2005).

Several studies have advocated and/or implemented the
idea of using physically consistent estimates for the pa-
rameters of hydrologic models (Pokhrel et al., 2008, 2012;
Savenije, 2010; Schaefli et al., 2011; Kumar et al., 2013;
Troch et al., 2015, and references therein). However, in
catchment-scale modeling, it is a common practice to use pa-
rameter estimates that are calibrated by adjusting the simu-
lated streamflows to try to match the observed data. If due
care is not taken during calibration, this approach can re-
sult in conceptually unrealistic estimates for the parameters.
Such a result defeats an important purpose of using concep-
tual/physically based models (as opposed to empirical data-
based models), which is to help us better understand the dy-
namical behavior of the system.
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In principle, the potential of such models can be better re-
alized by incorporating more information about the physi-
cal system during model development. Such information can
take various forms and be incorporated in different ways.
Evapotranspiration (ET) can be used to constrain model pa-
rameters that are sensitive to the ET process (Winsemius et
al., 2008; van Emmerik et al., 2015). Alternatively, ET can
be used as a calibration target along with streamflow within
a multi-objective setting (Zhang et al., 2009). There has also
been a recent drive towards structurally flexible models that
are able to both better characterize the uncertainty associated
with model structure and use additional information to help
reduce such uncertainty (Wagener et al., 2001; Marshall et
al., 2006; Clark et al., 2008, 2015; Savenije, 2010; Schae-
fli et al., 2011; Fenicia et al., 2008a, b, 2011; Bulygina and
Gupta, 2009, 2010, 2011; Martinez and Gupta, 2011; Near-
ing, 2013; Nearing and Gupta, 2015).

A variety of satellite-based remotely sensed estimates
of daily precipitation have been available for some time
(e.g., Hsu et al., 1997; Joyce et al., 2004; Huffman et al.,
2007; Funk et al., 2014), making it possible to consider the
model-based generation of streamflow simulations for un-
gauged locations. Recently, satellite-based remotely sensed
estimates of daily ET have become available, based on a va-
riety of different retrieval algorithms of varying complex-
ity (e.g., Bastiaanssen et al., 1998; Arboleda et al., 2005;
Miralles et al., 2011). Worldwide evaluations suggest that
satellite-based ET estimates are strongly correlated with
ground-based observations made at flux towers (Demaria and
Serrat-Capdevila, 2016).

For this study, we use the Global Land Evaporation Am-
sterdam Model (GLEAM) as the source of the satellite-
based ET (SET) data. In the GLEAM algorithm, ET is
computed using only a small number of satellite-based in-
puts, which makes it particularly beneficial for applica-
tion to sparsely gauged basins. Miralles et al. (2011) have
shown that GLEAM estimates of evaporation are strongly
correlated (0.80) with annual cumulative evaporation esti-
mated via eddy covariance at 43 stations, and have a very
low (−5 %) average bias. The correlations at individual sta-
tions are strong (0.83) for all vegetation and climate con-
ditions, and improve to 0.9 for monthly time series (Mi-
ralles et al., 2011). McCabe et al. (2016) reported satisfac-
tory statistical performance (R2

= 0.68; root mean square
difference= 64 W m−2; Nash–Sutcliffe efficiency= 0.62) of
GLEAM when compared against data from 45 globally dis-
tributed eddy-covariance stations. Michel et al. (2016) com-
pared Priestley–Taylor Jet Propulsion Laboratory model (PT-
JPL), Moderate Resolution Imaging Spectroradiometer evap-
oration product (PM-MOD), Surface Energy Balance Sys-
tem (SEBS), and GLEAM simulations against 22 FLUXNET
tower-based flux observations and found GLEAM and PT-
JPL to more closely match in situ observations for the se-
lected towers and reference period (2005–2007). Their ex-
tended analysis over 85 towers also had a similar overall out-

come. Miralles et al. (2016) compared three process-based
ET methods (PM-MOD, GLEAM and PT-JPL) for surface
water balance from 837 globally distributed catchments, and
reported that GLEAM and PT-JPL provide more realistic es-
timates of ET. They found these two products to provide su-
perior overall performance for most ecosystem and climate
regimes, whereas PM-MOD tends to underestimate the flux
in the tropics and subtropics.

While previous studies have used SET estimates to con-
strain the parameters of hydrologic models (Winsemius et
al., 2008; van Emmerik et al., 2015), the recent interest in
diagnostic improvements to model structure (Gupta et al.,
2008, 2012; Gupta and Nearing, 2014) suggests that it would
be potentially more valuable to use the ET data to actu-
ally improve the model structure when possible. This study
attempts to explore this possibility in the context of using
satellite-based data to drive a streamflow simulation model
for a poorly gauged basin in Africa.

1.2 Objectives and scope

In this study, we explore the use of the GLEAM daily SET
product (Miralles et al., 2011; Martens et al., 2016) to im-
prove the performance of a simple lumped catchment-scale
hydrologic model driven by satellite-based precipitation esti-
mates to generate streamflow simulations for a poorly gauged
basin in Africa. We first use the GLEAM product to constrain
the evapotranspiration estimates generated by the model,
thereby improving the daily water balance. Next, we instead
change the structure of the model to make it more physically
consistent and improve its ability to simulate actual evap-
otranspiration (as estimated by GLEAM). Finally, we test
whether the use of GLEAM SET can further improve the
performance of the structurally modified model, and whether
there is any decline in model performance if GLEAM SET
data become unavailable.

2 Study area, data and methodology

2.1 Study area

This study is carried out for the Nyangores River basin,
which is a sub-basin of the Mara River basin in Kenya
and Tanzania (Fig. 1). The Nyangores River basin has an
aerial coverage of 697 km2 and is located at the northeastern
side of the Mara River basin (location: 33◦88′ E, 35◦90′ E,
0◦28′ S, 1◦97′ S). The perennial Nyangores River originates
from the Mau Escarpment (3000 m a.s.l.) fault scarp pass-
ing through the western side of the Great Rift Valley in
Kenya. It then merges with the Amala River at the Na-
puiyapi swamp (2932 m a.s.l.) to form the Mara River, which
flows all the way to Lake Victoria at Musoma Bay, Tanzania
(1130 m a.s.l.). The Mara River basin (or Nyangores River
basin) has two wet seasons consequent to the yearly oscil-
lations of the inter-tropical convergence zone (ITCZ), the
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Figure 1. The Mara River basin and the Nyangores River sub-basin
(Roy et al., 2017a). The discharge station is located at Bomet Bridge
(red dot). Meteorological stations (green dots) are located in the
surrounding regions.

primary wet season occurring during March to May and the
secondary one during October to December. The long-term
mean rainfall in the Mau Escarpment is around 1500 mm.
The rainfall in the basin is influenced by factors like topogra-
phy, elevation, regional influence of Lake Victoria, and sea-
surface temperature (SST) of the Indian Ocean (Camberlin et
al., 2009; Dessu and Melesse, 2012).

2.2 Data

2.2.1 Estimates of actual evapotranspiration

The source of the SET data used in this study is the
Global Land Evaporation Amsterdam Model (GLEAM) Ver-
sion 3.0. GLEAM comprises a set of algorithms that use re-
motely sensed climatic and environmental observations to
estimate various components of ET. Satellite-based observa-
tions of surface net radiation and near-surface air tempera-
ture are processed via the Priestley–Taylor equation (Priest-
ley and Taylor, 1972) to calculate potential evapotranspira-
tion (PET), which is then converted to actual evapotranspi-
ration (AET) by incorporating an evaporative stress factor
obtained from microwave observations of vegetation optical
depth (as a proxy for vegetation water content) and root-zone
soil moisture (simulations). Interception loss is calculated us-
ing the Gash analytical model (Gash, 1979).

Three different versions of the GLEAM datasets are cur-
rently available, depending on the satellite observations used.
The version used in this study (GLEAM_v3.0b) is based on
satellite observations, is quasi-global (50◦ N–S, 180◦W–E),
has a spatial resolution of 0.25◦, and has a daily temporal
coverage of 13 years (2003 to 2015).

Figure 2 shows the annual mean of GLEAM AET (GAET)
over the entire Mara River basin. As can be seen, GAET

Figure 2. Annual mean of GAET over the entire Mara River basin.

increases towards the western side of the basin. The an-
nual average GAET varies between 900 and 1200 mm yr−1.
We computed corresponding estimates of PET via the Harg-
reaves equation (HPET; Hargreaves and Samani, 1985) using
temperature data collected from the stations surrounding the
Mara River basin (Fig. 1). For a small number (∼ 0.6 %) of
days, the lumped GAET values were found to be larger than
the lumped HPET values; for these few anomalous values,
HPET was replaced by GAET. Figure 3 shows the time se-
ries of HPET and GAET for the Nyangores River basin.

2.2.2 Estimates of precipitation

The Real Time Multi-satellite Precipitation Analysis of
the NASA Tropical Rainfall Measuring Mission (TMPA-
RT) combines information from multiple satellites to pro-
duce a quasi-global (50◦ N–S, 180◦W–E), near-real-time
(1 March 2000 to near-present) precipitation product at
0.25◦× 0.25◦ spatial and 3-hourly temporal resolution (this
product is the real-time version of TMPA; Huffman et al.,
2007). Until it was shut down on 8 April 2015 due to fuel
deficiency and battery issues in the satellite, TMPA used
to include the TRMM Microwave Imager (TMI) products.
TRMM was the first satellite dedicated for precipitation stud-
ies. The after-real-time TMPA product also incorporates rain
gauge information wherever feasible. In this study, we aggre-
gated the 3-hourly TMPA-RT data to daily level, resampled
from the coarse resolution (0.25◦× 0.25◦) to a resolution of
0.05◦× 0.05◦, and implemented a bias correction using the
Climate Hazards Group InfraRed Precipitation with Station
product (CHIRPS; Funk et al., 2014, 2015) and rain gauge
measurements (Roy et al., 2017a, b).

2.2.3 Estimates of streamflow

Streamflow data were computed using the calibrated stage–
discharge relationship for the Bomet Bridge discharge station
(station ID: 1LA03; location: 0◦47′23.50′′ S 35◦20′47.45′′ E)
on the Nyangores River (drainage area approximately
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Figure 3. Time series of HPET and GAET for the Nyangores River basin.

Figure 4. Schematic diagram of HYMOD2.

697 km2), which is one of the two main tributaries of the
Mara River. Data are available for the period 1 January 1996
to 30 June 2010, during which only about ∼ 8 % of the
records are missing.

2.2.4 Estimates of temperature

We computed PET using the Hargreaves equation, the annual
mean of which closely matched the reported PET value for
the study area (WREM, 2008). The temperature data used
in the Hargreaves equation were extracted from the Global
Surface Summary of the Day (GSOD) product produced by
the National Climatic Data Center (NCDC) in Asheville, NC.
The daily temperature data include multiple observations and
are available in three forms: maximum, minimum, and aver-
age.

2.3 The HYMOD2 hydrologic model

The spatially lumped HYMOD Version 1 (HYMOD1) con-
ceptual rainfall–runoff model with five/six parameters has
previously been used in several studies (Boyle et al., 2000;
Vrugt et al., 2003, 2009; Moradkhani et al., 2005; Duan
et al., 2007; Wang et al., 2009; Razavi and Gupta, 2016).
The model is driven using daily precipitation and PET
data to generate daily estimates of AET (HAET: HYMOD-
generated AET) and streamflow. Nonlinear vertical flow pro-
cesses are controlled by a two-parameter soil moisture ac-

counting module based on the rainfall excess model proposed
by Moore (1985). Horizontal flows are simulated in a linear
routing module that includes a Nash cascade for quick-flow
routing and a linear reservoir for slow-flow routing.

In this study, we improved the ET process parameteriza-
tion within the model by relying on satellite-based AET esti-
mates provided by GLEAM. In this regard, we were careful
to ensure that the structural modifications (1) do not over-
complicate the model since that defeats the whole purpose of
having simpler models such as HYMOD, (2) do not require
a large number of additional model parameters, (3) are more
physically consistent, (4) consistently produce improved ET
simulations, and finally (5) do not deteriorate the streamflow
simulations. We refer to the structurally modified version of
the model as HYMOD Version 2 (HYMOD2), as shown in
Fig. 4. As can be seen, a new ET resistance module is added
to the soil moisture accounting module of the model. A de-
tailed description of the ET resistance module is provided in
Sect. 2.4. Details of the overall model structure and process
equations are presented in Appendix A.

2.4 Study approach

We conducted the investigation in two stages. The first stage
consists of five steps designed to improve model perfor-
mance (as assessed against data), but without making struc-
tural modifications to the model. The strategy includes using
GAET to constrain simulated evapotranspiration, recalibra-
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tion of model parameters, and constraint adjustments. In do-
ing so, we specifically do not directly assimilate GAET into
the model so that the model’s representation of the overall
water balance is not compromised. Accordingly, while we
are extracting information from the GLEAM product, we do
so via a process of “constraining” rather than “assimilation”.
In the second stage, we modify the structure of the model
(by capturing the physics of the underlying processes more
accurately) to directly improve its ability to simulate ET (us-
ing GAET as the target). The steps followed in Stage-I are
repeated so that the results of the different strategies can be
compared.

Conceptually, the main difference between Stage-I and
Stage-II is that, in the former, the information provided by
GAET is used only to constrain the evapotranspiration fluxes
of the model, whereas in the latter the information contained
in GAET is used to alter the model structure. While the
former provides a temporary improvement to model perfor-
mance, achieved as long as GLEAM data are available, the
latter is expected to provide a lasting improvement to model
performance that should persist even when GLEAM data
are not available. In Stage II, we further check whether the
GAET product contains residual information that, not having
yet been used to improve the model structure, remains useful
for improving model performance via the constraining oper-
ation.

The entire study approach is summarized in Fig. 5. As can
be seen, only Step-1 is different for both the stages (Stage-I
and Stage-II), while the remaining four steps (Steps-2–5) are
similar. Thus, in each stage, there are five steps altogether.
Stage-I Step-1 is for generating benchmark simulations us-
ing the calibrated model but without any ET constraint or
structural modifications. On the other hand, Stage-II Step-
1 has four different cases (A–D) corresponding to different
structural modifications in the ET process parameterization.
Both the benchmark model from Stage-I Step-1 and the best
performing model from Stage-II Step-1 are used in the fol-
lowing steps. Step-2 is based on imposing the ET constraint
but without recalibration. Step-3 is based on recalibrating the
model while imposing the ET constraint. Step-4 is conceptu-
ally similar to Step-3; however, additionally, some constraint
adjustments (Eqs. 1 and 2) are applied and the adjustment
parameters are calibrated together with model parameters (to
match the simulated and observed streamflows). Finally, in
Step-5, we remove the ET constraint to see whether the per-
formance of the new model will decline when satellite ET
data become unavailable (note this is no longer the bench-
mark model since we recalibrated the parameters in Step-4).

y = f (x, · · ·) and x = a ·GAET (1)

y = f (x, · · ·) and x = a ·GAETb (2)

In Eqs. (1) and (2), y represents the streamflows after the ad-
justment of the GAET constraint, and a and b are the param-

Figure 5. The approach followed in this study.

eters of the adjustment formulations (a controls the variance
and b controls the degree of nonlinearity).

2.4.1 ET constraining

The ET constraint was imposed by modifying the original
ET equation of the model (Eq. A5) from HAET=min{PET,
C} to the new form HAET=min{PET, GAET, C}. Note that
this is not a structural modification to the form of the process
equation; rather, GAET sets the upper limit of HAET in this
case, which is more realistic than using PET directly as the
upper limit.

2.4.2 Structural modifications

The ET process parameterization within the original model
(HYMOD1) is modified in Stage-II Step-1 to improve its
ability to reproduce GAET more accurately without dete-
riorating the streamflow simulations. Four ET equations of
progressive complexity and physical basis are tested. In each
case, the model parameters are recalibrated to match the sim-
ulated streamflows to the observed data. The final result is a
structurally modified model called HYMOD2.

More specifically, the ET equation of HYMOD1 is multi-
plied by a function K( q) such that 0≤K( q)≤ 1. This func-
tion acts as a resistance to the ET flux of the model. Four
different forms for K( q) that represent incremental increases
in complexity and physical basis (Table 1) are tested. Writing
the main ET equation in the general form

Yt =Kt ·Xt ·EDRt, (3)

where Yt is the AET generated by HYMOD (HAETt), Xt is
the soil moisture storage (CSMAt), and EDRt is the evapora-
tion demand ratio computed as min{1, PETt

Xt
}. The most gen-

eral form for Kt is given by

Kt =Kmin+ [Kmax−Kmin] · f (ψt) , (4)
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Figure 6. Time series and scatter plots of HPET, GAET, and HAET.

Table 1. K function in different cases.

Cases Kmax Kmin f (ψt) Additional
parameters

A 1 0 1 None
B K0 0 1 K0
C K0 0 Xt/Xmax K0
D Kmax γ ·Kmax (Xt/Xmax)

BE Kmax, γ , BE

where Kmin and Kmax are lower and upper limits for K , and
ψt is the ratio of actual storage to maximum storage capacity
(ψt=Xt/Xmax).

2.5 Calibration methodology and benchmark model
calibration

Calibration of the model (and adjustment) parameters was
performed using the SCE-UA algorithm (Duan et al., 1992).
In all cases, the calibration runs were carried out using
10 complexes and 25 loops. Model simulated streamflows
were matched against the observed streamflows in the λ-
transformed space to minimize the effects of skewness and
reduce heteroscedasticity. The λ-transformation was applied
after modifying the original equation as proposed by Box and
Cox (1964) (see Appendix B), and the value of the λ param-
eter was calculated from the observed streamflow records.
The performance criterion used was the mean squared er-
ror (MSE) of transformed flows. The model was run con-
tinuously for the 7.5-year period January 2003 to June 2010,
with the first 4 years (2003 to 2006) used for calibration and
the remaining 3.5 years (2007 to mid-2010) used to pro-
vide an additional assessment of model performance. Re-
sults are shown for the “calibration (4 years)”, “evaluation
(3.5 years)” and “total (7.5 years)” simulation periods.

2.6 Metrics used for performance evaluation

Four metrics are used in this study to assess the model perfor-
mance (Table 2). These metrics measure performance in re-
gards to overall mean squared error, bias, variability, and cor-
relation (see Gupta et al., 2009), are computed in the trans-
formed space where applicable (e.g., for streamflows), and
are normalized to be comparable.

3 Results

3.1 Results from Stage-I (ET constraints)

The performance of the HYMOD1 benchmark model, driven
using TMPA-RT satellite-based precipitation and with pa-
rameters calibrated to match simulated streamflow to ob-
served data, is reported in Table 5. The NMSE varies be-
tween 0.56 (calibration period) and 0.84 (evaluation period),
where NMSE= 0.56 means that on average only about 44 %
(1.0− 0.56= 0.44) of the variability in the flows has been
explained. This is not surprising given the use of a simple
lumped conceptual model driven by satellite-based estimates
of precipitation for a poorly gauged basin. The flow biases
are small (NBµ< 15 %), indicating that long-term water bal-
ance is approximately preserved. The calibrated values of the
model parameters are reported in Appendix C.

Table 3 presents a comparison of the model-generated
HAET with the GAET data (for the total 7.5-year simula-
tion period). HAET tends to be larger on average, varies over
a wider range, is considerably more skewed, and is less kur-
totic. Some of the reasons for this can be understood from
the time-series plot and scatter plot shown in Fig. 6. The be-
havior of HAET tends to be more erratic and, although both
HAET and GAET show seasonal patterns, the former regu-
larly drops to zero or near zero (explained by the very sim-
ple, threshold-like, ET process representation in the model,
which does not contain a resistance term). The result is that
HAET and GAET are not well correlated (Fig. 6b) and have
different shapes for their empirical probability distributions
(Fig. 7). Even if we were to ignore the time steps when
HAET drops closer to zero, HAET is strongly positively bi-
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Table 2. Performance evaluation metrics used in this study.

Metrics Equations

Normalized mean squared error (NMSE) MSE=mean((Oi − Si)2); NMSE= MSE
var(O )

Normalized bias in mean (NBµ) NBµ= mean(S)−mean(O)
mean(O)

Normalized bias in standard deviation (NBσ ) NBσ = SD(S)−SD(O)
SD(O)

Correlation coefficient (ρ) ρ=

N∑
i=1
(Oi−mean(O))(Si−mean(S))√

N∑
i=1
(Oi−mean(O))2

N∑
i=1
(Si−mean(S))2

O: observed flows; S: simulated flows; N : number of data points.

Figure 7. Histogram and ECDF plots of GAET and HAET.

Table 3. Descriptive statistics of GAET and HAET.

Statistics GAET HAET

Maximum 4.62 6.12
Minimum 0.119 0.00
Mean 3.03 3.52
Median 3.08 4.21
Mode 0.11 0.00
SD 0.59 1.72
Skewness −0.58 −1.03
Kurtosis 3.84 2.62

ased (too large), which results from trying to satisfy the po-
tential evapotranspiration (PET).

Table 4 reports a water balance estimate WBAET of
the mean annual AET for the basin, obtained by sub-
tracting mean annual streamflow (at the discharge station)
from mean annual precipitation (estimated from TMPA-
RT). WBAET is similar in magnitude to GAET, and we
have GAET<WBAET<HAET<HPET, indicating that
the AET computed by the model tends to be a little high.

The benchmark model was constrained using the GAET
estimates in Step-2, but the model parameters were not re-
calibrated. As can be seen in Table 5, the model performance
has become significantly worse due to streamflow becom-
ing positively biased. Given that GAET<HAET, this makes
sense because imposing GAET as a constraint alters the wa-

Table 4. Annual mean of AETs and HPET.

Source Annual mean
(mm)

GAET 1100
HAET 1263
WBAET 1146
HPET 1704

ter balance of the model. To try and fix this water balance
problem, we recalibrated the parameters of the model to im-
prove the match to observed streamflows while continuing
to use GAET to constrain HAET in the model (Step-3). Al-
though the large positive bias was reduced (Table 5) and the
NMSE statistic was improved as compared to Step-2, most of
the error statistics deteriorated for all three periods (calibra-
tion, evaluation, and total simulation) as compared to Step-1.
Importantly, this calibration step resulted in an unrealistically
large value of 17.36 m for the size of the soil moisture stor-
age (previously a more realistic 0.76 m). This value is clearly
conceptually and physically inconsistent (the realistic range
is about 0 to 2 m), and while it improved calibration period
performance, the lack of consistency is reflected in the sharp
deterioration in performance during evaluation. Unrealistic
parameter values, such as this, are indications of either se-
vere errors in the data or structural errors in the model. Since
GAET agrees well with WBAET on average, it is likely that
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Table 5. Streamflow error statistics for calibration, evaluation, and total simulation (in parentheses) for all five different steps in Stage-I
analysis.

Metrics Step-1 Step-2 Step-3 Step-4 Step-5

Calibration

NMSE 0.56 1.68 0.64 0.43 0.60
NBµ 0.09 0.32 0.12 0.09 −0.09
NBσ −0.12 −0.15 −0.19 −0.06 −0.04
ρ 0.76 0.81 0.74 0.83 0.75

Evaluation (total simulation)

NMSE 0.84 (0.77) 2.13 (2.17) 0.92 (1.19) 0.88 (0.75) 0.64 (0.56)
NBµ 0.14 (0.14) 0.38 (0.38) 0.09 (0.22) 0.15 (0.16) −0.01 (−0.02)
NBσ −0.04 (−0.08) −0.03 (−0.10) 0.04 (−0.01) 0.17 (0.02) 0.14 (0.05)
ρ 0.66 (0.72) 0.71 (0.76) 0.61 (0.69) 0.74 (0.78) 0.73 (0.74)

the major cause here is model structural inadequacy (Gupta
et al., 2012). We next checked (Step-4) to see whether this
problem could instead be resolved by implementing empiri-
cal adjustments to GAET.

We tested two empirical constraint adjustment schemes
(Eqs. 1 and 2) applied to the GAET data, and calibrated
the additional parameters (from these equations) along with
HYMOD1 parameters. Results for both schemes were simi-
lar, but Eq. (2) provided slightly better performance for the
evaluation and total simulation periods, and so we selected
Eq. (2). Compared to the benchmark (Step-1), NMSE and
NBµ calibration period statistics reduced from 0.56 to 0.43
and 12 to 6 %, respectively (Table 5) while ρ increased from
(0.76/0.66/0.72; Cal/Eval/Tot) to (0.83/0.74/0.78). Perhaps
more important, the calibrated value of parameter H is now
0.65 m, which is within the conceptually acceptable range.
Finally, the model obtained in Step-4 was run without the use
of GAET to see how well the model would perform if GAET
data were to become unavailable. The results (Table 5) in-
dicate that model performance does not deteriorate signifi-
cantly when GAET data become unavailable and, in some
cases, the performance is better than the benchmark.

3.2 Results from Stage-II (structural modifications)

Results from Stage-I confirm that GAET constraining can
improve the overall performance of HYMOD. However, for
operational implementation, the method requires real-time
estimates of SET, which could sometimes pose a challenge
for practical applications. To overcome the need for real-time
data availability, a simple approach could be to establish a
functional relationship between HAET and GAET from the
historical records and use that relationship to adjust HAET.
In our case, however, HAET and GAET did not show a suf-
ficiently strong relationship (Fig. 6). Therefore, we instead
investigated whether we could use the historical GAET data
to improve the structure of the model itself.

Our previous results (Fig. 6) showed that HAET generated
by HYMOD1 did not match well with GAET. This is likely
because the entire soil moisture storage was exposed to the
ET process. Consequently, it is common for all of the soil
moisture to evaporate away during a single time step, leaving
no water available for evaporation at the next time step (pro-
vided no precipitation is added), so that HAET drops to zero.
This tendency can be reduced by modifying the ET process
representation so that HAET more closely follows GAET.

Step-1 in the Stage-II analysis has four different cases as
shown in Table 1. The first case (Case-A) is identical to
the benchmark step (Step-1) in the Stage-I analysis, where
the calibrated HYMOD1 is run without GAET estimates. In
Case-B,Kt=K0 is applied as a constant multiplier to the ET
equation (see Table 1), which acts as a constant surface resis-
tance to ET. Calibration (of all of the model parameters) re-
sulted in improved error statistics (Table 6). The estimate ob-
tained for the surface resistance wasK0= 0.73. However, we
again obtained a conceptually unrealistic value (H = 9.5 m)
for the soil moisture storage parameter. In Case-C, the more
complex form Kt=K0 · f (ψt) was used (see Table 1). This
resulted in a model performance (Table 6) comparable to that
of the previous one, but with a more realistic calibrated value
of the soil moisture storage (H = 0.90 m). Interestingly, the
calibrated value for K0 was 1, implying that K0 becomes ir-
relevant once f (ψt) is introduced to the ET equation.

Finally, the most complex form Kt=Kmin+ [Kmax
−Kmin] · f (ψt) was introduced in Case-D. Kmax was a cali-
bration parameter and Kmin was defined as Kmin= γ ·Kmax
via a second calibration parameter γ (ranging from 0 to 1)
(see Table 1). Results indicate that although the calibration
error statistics (Table 6) are similar to those of Case-C, the
evaluation and total simulation statistics are better. The cal-
ibrated value of parameter “BE” (derived by transforming
the parameter “be”; see Eq. A7) was 0.86, indicating only
a mildly nonlinear relationship between ψt and K . The min-
imum and maximum limits of K were close to zero and one,
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Table 6. Streamflow error statistics for calibration period, evalua-
tion period, and total simulation period (in parentheses) for all four
different cases in Stage-II Step-1 analysis.

Metrics Case-A Case-B Case-C Case-D

Calibration

NMSE 0.56 0.52 0.51 0.51
NBµ 0.09 0.10 0.10 0.10
NBσ −0.12 −0.19 −0.04 −0.04
ρ 0.76 0.77 0.80 0.80

Evaluation (total simulation)

NMSE 0.84 (0.77) 0.65 (0.77) 0.88 (0.72) 0.84 (0.70)
NBµ 0.14 (0.14) 0.07 (0.16) 0.14 (0.14) 0.14 (0.13)
NBσ −0.04 (−0.08) 0.00 (−0.06) 0.16 (0.10) 0.16 (0.10)
ρ 0.66 (0.72) 0.70 (0.75) 0.73 (0.78) 0.74 (0.78)

Figure 8. Scatter plots of streamflow and AET from Case-C and
Case-D.

respectively, confirming the findings of Case-C, where K0
became irrelevant once f (ψt)was introduced to the ET equa-
tion.

3.2.1 Final model selection from Stage-II Step-1

In this section, we address two main questions: (a) does
the structural modification of the model (to the representa-
tion of the ET process) improve ET estimation? If so, then
(b) what level of complexity is adequate? Table 7 presents
the streamflow and AET performance statistics for the to-
tal simulation period for the four cases. Since Case-A pro-
vides very poor error statistics for AET (e.g., NMSE= 8.93
and NBσ = 1.89), we disregard this case. Although Case-B
shows the best NBσ (−0.06) statistics for streamflow, and
the best NMSE (1.28) and NBµ (0.12) statistics for AET,
the value obtained for the soil moisture storage capacity (H )
was unrealistic; we therefore also disregard this case. Com-
parison of Case-C and Case-D shows that while their stream-
flow and AET simulations are similar (Fig. 8), Case-D pro-
vides slightly better NMSE (0.70) and NBµ (0.13) statistics
for streamflow and slightly better ρ (0.49) statistics for AET
(Table 7 and Fig. 9). We therefore selected the most complex
form Kt=Kmin+ [Kmax−Kmin] · f (ψt) for the ET func-

Table 7. Streamflow and AET error statistics in total simulation for
all four cases in Stage-II Step-1 analysis.

Metrics Case-A Case-B Case-C Case-D

Streamflow

NMSE 0.77 0.77 0.72 0.70
NBµ 0.14 0.16 0.14 0.13
NBσ −0.08 −0.06 0.10 0.10
ρ 0.72 0.75 0.78 0.78

AET

NMSE 8.93 1.28 1.70 1.71
NBµ 0.18 0.12 0.17 0.17
NBσ 1.89 −0.26 −0.10 −0.13
ρ 0.22 0.43 0.48 0.49

Figure 9. Streamflow and AET error statistics in total simulation
for all four cases in Stage-II Step-1 analysis.

tion (Case-D). The corresponding model is hereafter referred
to as “HYMOD2”. Note that, for practical applications, any
simpler structural modification (Case-B or Case-C) can be
adapted, if that proves convenient.

Comparing the streamflow error statistics of Stage-I Step-
4 (Table 5) and Stage-II Step-1 Case-D (Table 6), we see
that they are quite similar, indicating that the ET constraining
(first approach) and diagnostic structural improvement (sec-
ond approach) strategies produce dynamical behaviors that
are similar (as measured by the four performance metrics
used).
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Table 8. Streamflow error statistics for calibration, evaluation, and total simulation (in parentheses) for all five different steps in Stage-II
analysis.

Metrics Step-1 Step-2 Step-3 Step-4 Step-5

Calibration

NMSE 0.51 1.82 0.64 0.51 0.50
NBµ 0.10 0.32 0.12 0.10 0.10
NBσ −0.04 0.16 −0.19 −0.04 −0.04
ρ 0.80 0.81 0.74 0.80 0.80

Evaluation (total simulation)

NMSE 0.84 (0.70) 2.46 (2.29) 0.92 (1.19) 0.84 (0.70) 0.84 (0.70)
NBµ 0.14 (0.13) 0.37 (0.36) 0.10 (0.22) 0.14 (0.14) 0.14 (0.13)
NBσ 0.16 (0.10) 0.38 (0.31) 0.05 (−0.01) 0.16 (0.10) 0.16 (0.09)
ρ 0.74 (0.78) 0.70 (0.77) 0.61 (0.69) 0.74 (0.78) 0.74 (0.78)

3.2.2 Is further improvement possible?

The modified model (HYMOD2) selected in the previous
section (Stage-II Step-1 Case-D) was next used with GAET
in Step-2 to Step-5 (see Fig. 5) to address two questions:
(1) could more information from GAET be incorporated (via
constraining) into the model, or is the improved model struc-
ture already good enough? (2) Is the constraint adjustment
on GAET (Step-4) still relevant once the model structure has
been improved?

When GAET was used to constrain the ET process (Step-
2) in HYMOD2 without model recalibration (parameters
used were from Case-D), there was significant overestima-
tion bias evident in the simulations of streamflow (Table 8).
Clearly, recalibration of the modified model was necessary to
see whether the model performance could be improved any
further. The recalibration of HYMOD2 improved the error
statistics (Table 8); compare these results with Stage-I Step-3
results in Table 5 derived the same way for HYMOD1. While
a small improvement was obtained for the soil moisture stor-
age capacity parameterH (reduced from 17.4 to 12.8 m), this
value remained conceptually inconsistent (too large). Over-
all, the error statistics deteriorated compared to the best re-
sults from Case-D. The HYMOD2 parameters were then cal-
ibrated along with the parameters of the GAET adjustment
equation (using Eq. 2). Although the results improved (Ta-
ble 8), and the value of theH parameter became conceptually
realistic (0.88 m), the results were not significantly different
from Case-D in Step-1. Finally, when the GAET data were
made unavailable, the model performance remained stable,
as also seen in Stage-I Step-5 results.

Therefore, in regards to the two questions that motivated
this section, the results indicate that (1) once information
from GAET was incorporated into the model as a modifi-
cation to the structure, there was no further need for the use
of GAET to constrain the simulation of ET (use of GAET
even caused some of the results to deteriorate), and (2) im-

plementation of a constraint adjustment to GAET (Step-4) in
the structurally modified model (Stage-II) did not improve
the overall results.

3.3 Overall comparison and analysis of uncertainty

Figure 10 compares the streamflow time series obtained from
Stage-I Step-4 (constraining ET) and Stage-II Step-1 Case-
D (selected model after structural modification) against the
benchmark (Stage-I Step-1) in both actual and λ-transformed
spaces. Simulations from the HYMOD2 structurally modi-
fied model follow the observations most closely, followed by
the simulations from Stage-I Step-4 (ET constraining) and
benchmark. Clearly, while the streamflow simulations are
improved by both ET constraining and model structural mod-
ification, the latter performs the best.

Using the best model from Stage-II (HYMOD2), we next
investigate the change in simulation uncertainties for stream-
flow and AET due to the model structural improvement. The
calibration period residual distributions (assumed stationary)
were superimposed on the daily estimates of the correspond-
ing variables for the total simulation period. Figure 11 shows
the histograms of calibration period residuals for the bench-
mark and final (Stage-II Step-1 Case-D) steps. In both cases
(AET and streamflow), the residuals become more normally
distributed, with the improvement being more prominent for
AET. This result is expected, since HYMOD1 in Stage-I
Step-1 showed poor performance in regards to AET. Over-
all, the structural modification is clearly beneficial.

Figure 12 shows the streamflow and AET time series along
with their corresponding 90 % confidence intervals for the
benchmark and the final steps. Both the streamflow and AET
simulations improve as a result of the model structural mod-
ification. Although the streamflow uncertainty bounds have
not narrowed significantly, the flow series is clearly less bi-
ased and tracks the recessions better. Meanwhile, the AET
simulations have improved significantly: (a) the bias has been
reduced, (b) the uncertainty bounds are narrower, and (c) the
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Figure 10. Time-series plots of streamflow for the best simulations in Stage-I and Stage-II, the benchmark simulation, and the observations.

Figure 11. AET and streamflow error distributions for the bench-
mark and the final steps.

erratic behavior originally seen in the AET simulations (fre-
quent drops to zero) has disappeared. Further, although the
improvement in streamflow performance is evident from the
statistics in Tables 5 and 6, the improved behavior is even
more apparent in Fig. 12, where the model can be seen to
track the recessions quite well.

4 Discussion

In this study, we have explored two different approaches
for using the recently available GLEAM satellite-based AET
dataset to improve the realism and performance of the HY-
MOD conceptual catchment-scale hydrologic model. In the

first approach, GAET is used as a constraint to the ET pro-
cess equation in the model, while in the second approach,
the model structure has been modified so that the ET pro-
cess parameterizations become more physically consistent
and realistic. We avoided making the model overly compli-
cated in terms of its structural representations and/or hav-
ing a large number of parameters, since both of these would
defeat its main purpose of being a simple model. Our goal
was to increase the realism within the model and improve its
performance in simple manners. Furthermore, we also made
sure that the improvements in some particular process sim-
ulation (e.g., AET) do not deteriorate the model’s perfor-
mance in simulating some other process (e.g., streamflow).
Our results show that both the approaches (process constrain-
ing and structural modification) can improve the simulations
of streamflow, while the latter also significantly improves
the AET simulations. Clearly, the satellite-based ET datasets
(GLEAM in this case) can significantly benefit the process
of hydrologic modeling in poorly gauged basins.

The use of ET data as a constraint can improve streamflow
forecasts, provided some additional processing steps are im-
plemented. If the GAET data are used directly as a constraint
to the ET equation, the model tends to show bias in stream-
flow simulations. This behavior can be attributed to the fact
that once GAET is incorporated, the water balance within the
model is altered, the effects of which are reflected in terms
of bias in the simulated streamflows. The type of this bias, of
course, is subject to change depending on the dataset. While
recalibration of the model with the ET constraint improves
the performance, it can result in conceptually unrealistic es-
timates of certain parameters (H in this case). However, the
model produces conceptually realistic values of the H pa-
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Figure 12. Time-series plots of streamflow (λ-transformed and actual) and AET for the benchmark and the final steps. For clarity, we only
show a window of 1000 days.

rameter if some adjustments are made in the GAET con-
straints, instead of using them directly. Note that constraint
adjustment is not similar to bias correction; for the latter we
need the “ground truth” of actual ET. Therefore, the adjust-
ment process is not necessarily indicative of the presence of
any actual bias in GAET estimates. The adjustment factors
are model parameters that correspond to the structural defi-
ciencies within the model. They may or may not be necessary
as the structure changes. As we have seen in Stage-II Step-4,
the constraint adjustment became irrelevant once the struc-
ture of the model itself was improved. We also found that a
simple adjustment (using a multiplicative factor) can perform
equally well as a more complex alternative (power function).

Improving the model structure provides several other ben-
efits. For example, a model that simulates ET more accu-
rately can be a suitable candidate for real-time forecasting
applications. This type of a model can also prove useful
for projecting future water availability. Although ET plays
a significant role in the hydrological cycle, traditionally, for
conceptual models, the main focus has been drawn towards
improving their streamflow simulation performance, while
making the ET process overly simplified (e.g., a simple wa-
ter budget). In this study, we show that by incorporating sim-
ple but physically consistent structural changes, the ET sim-
ulation performance can be improved significantly. In poorly
gauged basins, the satellite-based estimates of AET provide
useful information to carry out this improvement.

In this study, we tested several conceptually reasonable
model structural modifications of varying levels of complex-
ity and physical basis (Case-A to Case-D), and selected the
one that provided the best simulations of both AET and
streamflow. We found that relatively simple changes to the
model’s ET equation significantly improved the ET simula-
tions as assessed by GAET. While our goal was to improve
the AET and streamflow simulations, we were also careful to
ensure that the model parameters remain conceptually realis-
tic. We saw that using a simple multiplicative factor (parame-
ter K) as a resistance to AET produced excellent streamflow
and AET forecasts (Case-B), but resulted in an unrealistic es-
timate of basin storage capacity (parameter H ). In contrast,
inclusion of a soil moisture dependent function, f (ψt), re-
sulted in a more realistic estimate of basin storage capac-
ity without compromising the streamflow and AET simula-
tions. Once the model structure was appropriately modified
to provide good simulations, the model simulations were ro-
bust/stable, and there was no need to impose the ET con-
straint (with/without constraint adjustment). The modified
model structure provided significantly improved AET fore-
casts with much narrower uncertainty intervals (see Fig. 12),
along with reduced bias in streamflow and improved tracking
of the streamflow recessions.

Overall, by incorporating an additional source of external
information in a sensible manner (here by structural modifi-
cation), the need for calibration can be reduced (note that the
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model was not calibrated against GAET); see the extensive
discussion by Gharari et al. (2014) and Bahremand (2016) on
this topic. Nevertheless, given the simplistic nature of the hy-
drologic models and the large uncertainties that exist therein,
some degree of calibration will generally remain important
and relevant. We do not mean to imply, therefore, that cal-
ibration is not essential, because we will rarely (correctly)
know everything we need to know about the system we are
modeling. Instead, we should be aware of the strengths and
weaknesses involved in the use of calibration and apply it
carefully in such a way that useful information is gained
about the underlying nature of the actual physical system.
In this study, we demonstrate the need for both approaches.
On the one hand, improving the model structure resulted in
improved AET simulations without any need for calibration
(against AET). On the other hand, the best streamflow perfor-
mance was achieved when the structurally modified model
was tuned via a calibration procedure.

Note that this study is based on testing the model on
a single basin using a single satellite-based AET product.
While not demonstrating universal applicability, the results
are clearly indicative and the methodology illustrates how
such data can be used to investigate potential improvements
to the structures of simple catchment-scale models used for
hydrologic studies in data-scarce regions. A rigorous anal-
ysis of the methodology over multiple basins is a future re-
search need. For more detailed process-based models, the ET
process parameters can be calibrated against some reliable
satellite-based AET estimates (e.g., GLEAM), or the process
representation itself can be improved by adapting some sim-
ilar strategies that these AET products are based on.

5 Conclusions

In conclusion, SET data can be used to improve model per-
formance in different ways. However, strategies that result
in model structural modifications can generally be expected
to provide longer lasting benefits than ones that simply up-
date or constrain the state trajectories of the model. This is
because structural modifications can both improve the ini-
tial estimates of the state at each time step and sustain these
improvements into future time steps (Bulygina and Gupta,
2009, 2010, 2011; Nearing and Gupta, 2015). In contrast,
even though data assimilation to directly adjust state es-
timates can improve model performance, inadequacies in
model structure will tend to cause the state estimates to drift
away from their more appropriate values over time, because
of which the performance will deteriorate markedly when
the constraining data are not available. Of course, we have
only tested a simple “constraining” strategy for assimilating
ET information, and more sophisticated approaches such as
the ensemble Kalman filter (EnKF) could instead be imple-
mented. However, the efficiency of the EnKF for soil mois-
ture retrieval has been shown to be as low as 30 % (Nearing
et al., 2013a, b), and so it is not clear that more sophisticated
forms of DA are justified, especially given the large uncer-
tainties associated with both the data and the model structure
for this poorly gauged catchment. We leave such investiga-
tion for future work.

6 Code and data availability

Data and codes (HYMOD2 in Matlab) used in this study
are available on request from the corresponding author,
Tirthankar Roy (royt@email.arizona.edu).
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Appendix A: Original HYMOD equations

The benchmark version of the HYMOD spatially lumped
conceptual rainfall–runoff model has six parameters. The
model is driven by mean daily precipitation and PET data to
generate daily estimates of AET and streamflow. It has two
main components, a two-parameter soil moisture account-
ing (SMA) module based on the Moore (1985) rainfall excess
concept, and a linear routing (ROUT) module with parallel
quick-flow and slow-flow pathways. In the SMA module, the
state variable (soil moisture storage, C) and the indicator
variable (storage height, H ) are nonlinearly related via the
following equation (Moore, 1985):

C(t)= Cmax

(
1−

(
1−

H(t)

Hmax

)1+b
)
, (A1)

where the maximum storage capacity (Cmax) and the maxi-
mum indicator height (Hmax) are related as

Cmax =
Hmax

1+ b
. (A2)

First, the initial storage (Cbeg) is calculated from the initial
indicator height (Hbeg) using Eq. (A1). Next, Hmax is sub-
tracted from the sum of precipitation (P ) and Hbeg to calcu-
late overland flow (OV) as

OV= P +Hbeg−Hmax. (A3)

Infiltration (I ) is then calculated by subtracting OV from P ,

I = P −OV, (A4)

and an intermediate indicator height (Hint) is computed by
adding I toHbeg, and used to calculate the intermediate stor-
age (Cint). By subtracting Cint from the sum of I and Cbeg we
obtain the interflow (IF). Finally, the total runoff is obtained
by adding together OV and IF.

Finally, the HYMOD AET (called HAET) is taken to be
the smaller of available water Cint and PET (which is pro-
vided as input to the model):

HAET=min {PET,Cint} , (A5)

and the storage at the end of the time step is computed by
subtracting AET from Cint:

Cend = Cint−HAET. (A6)

The power coefficients in HYMOD (“BE” in Table 1 and “b”
in Eqs. A1 and A2) can have values ranging from 0 to infinity.
For calibration it is useful to be able to impose finite values
on the feasible ranges of the parameters; therefore we ap-
plied the following transformation (Eq. A7) which converts
the [0, inf) range of parameter BE to the [0, 2) range of trans-
formed parameter “be” so that the search can be conducted
on the finite range of parameter “be” (similarly for parame-
ter “b” in Eqs. (A1) and (A2):

BE= ln(1− be/2)/ ln(0.5); be= [0,2). (A7)

Appendix B: The λ-transformation used

The λ-transformation on streamflows used in this study is
given by the equation

TQt =

(
Qt

µQobs

)λ
, (B1)

where Qt and TQt represent streamflows in the actual space
and the transformed space, µQobs is the mean of the obser-
vations in the actual space, and λ is the transformation pa-
rameter that reduces the skewness. This expression differs
slightly from the form TQt=

(Qt)
λ
−1

λ
recommended by Box

and Cox (1964), in that the flows are normalized by the mean
µQobs before transformation, and the transformed flows all
remain positive. This form works as long as the transfor-
mation parameter λ 6= 0, which is true in our case; if λ= 0,
then one should use TQt= ln(Qt) as discussed by Box and
Cox (1964).
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Appendix C: Calibrated HYMOD (actual and modified)
parameters

Table C1. This table provides calibrated parameters of the actual and modified HYMOD models.

Para Stage-I Stage-I Stage-I Stage-II Stage-II Stage-II Stage-II Stage-II
Step-1 Step-3 Step-4 Step-1 Step-1 Step-1 Step-3 Step-4

Case-B Case-C Case-D

H 761.0 17 364.0 646.4 9494.0 903.7 866.0 12 763.8 878.7
B 1.93 1.95 1.24 1.87 0.29 0.34 1.86 0.32
α 0.48 0.37 0.67 0.38 0.31 0.27 0.45 0.31
Nq 1.44 4.54 1.25 4.22 4.80 4.71 3.51 4.50
Ks 0.00 0.09 0.00 0.10 0.10 0.09 0.10 0.10
Kq 0.10 0.22 0.10 0.19 0.24 0.24 0.18 0.20
Kmax – – – 0.73 1.00 1.00 1.00 1.00
γ – – – – – 0.00 1.00 0.00
BE – – – – – 0.86 0.06 0.90
a – – 1.33 – – – – 1.82
b – – 0.93 – – – – 2.00
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