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Abstract. Accurate spatially distributed estimates of actual
evapotranspiration (ET) derived from remotely sensed data
are critical to a broad range of practical and operational ap-
plications. However, due to lengthy return intervals and cloud
cover, data acquisition is not continuous over time, particu-
larly for satellite sensors operating at medium (∼ 100 m) or
finer resolutions. To fill the data gaps between clear-sky data
acquisitions, interpolation methods that take advantage of the
relationship between ET and other environmental properties
that can be continuously monitored are often used. This study
sought to evaluate the accuracy of this approach, which is
commonly referred to as temporal upscaling, as a function
of satellite revisit interval. Using data collected at 20 Ameri-
flux sites distributed throughout the contiguous United States
and representing four distinct land cover types (cropland,
grassland, forest, and open-canopy) as a proxy for perfect re-
trievals on satellite overpass dates, this study assesses daily
ET estimates derived using five different reference quantities
(incident solar radiation, net radiation, available energy, ref-
erence ET, and equilibrium latent heat flux) and three differ-
ent interpolation methods (linear, cubic spline, and Hermite
spline). Not only did the analyses find that the temporal auto-
correlation, i.e., persistence, of all of the reference quantities
was short, it also found that those land cover types with the
greatest ET exhibited the least persistence. This carries over
to the error associated with both the various scaled quanti-
ties and flux estimates. In terms of both the root mean square
error (RMSE) and mean absolute error (MAE), the errors in-
creased rapidly with increasing return interval following a
logarithmic relationship. Again, those land cover types with
the greatest ET showed the largest errors. Moreover, using a

threshold of 20 % relative error, this study indicates that a re-
turn interval of no more than 5 days is necessary for accurate
daily ET estimates. It also found that the spline interpolation
methods performed erratically for long return intervals and
should be avoided.

1 Introduction

As one component of a complex network of interconnected
processes, evapotranspiration (ET) is influenced by numer-
ous factors such as available energy, soil moisture, vegeta-
tion density, and humidity (Farquhar and Sharkey, 1982; Van
de Griend and Owe, 1994; Alves and Pereira, 2000; Alfieri
et al., 2007). For example, the amount of energy available to
drive ET depends on atmospheric properties, such as humid-
ity and aerosol content, which influence atmospheric trans-
missivity (Brutsaert, 1975; Bird and Riordan, 1986). The
available energy is also controlled by surface properties, such
as the type and density of vegetation cover and soil mois-
ture, which influence not only the surface albedo and emis-
sivity (Wittich, 1997; Asner et al., 1998; Myneni et al., 1989;
Song et al., 1999; Lobell and Asner, 2002), but also im-
pact the amount of energy conducted into the ground (Friedl
and Davis, 1994; Kustas et al., 2000; Abu-Hamdeh, 2003;
Santanell and Friedl, 2003). Moreover, the magnitude of the
moisture flux can vary over a range of timescales in response
to changes in the environmental conditions influencing ET.
One example of this, which has been pointed out by Williams
et al. (2003), Scott et al. (2014), and others, is the rapid and
often persistent change in ET in response to a rain event.
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Because it is a fundamental linkage between numerous
biogeophysical and biogeochemical processes, accurate in-
formation regarding evapotranspiration (ET) is critical for a
broad range of scientific and practical applications with sig-
nificant social, economic, and environmental impacts. For
example, reliable information about ET is essential for ac-
curately forecasting weather and assessing the impacts of
changing climate (Katul et al., 2012; Wang and Dickinson,
2012), monitoring and mitigating the adverse effects of ex-
treme weather events such as drought (Anderson et al., 2007,
2011, 2016; Otkin et al., 2016), and identifying and pre-
dicting the changes in both the biogeographical characteris-
tics of ecosystems and the services they provide in response
to changing environmental conditions (Hawkins and Porter,
2003; Kreft and Jetz, 2007; Midgley et al., 2002). However,
as pointed out by Seguin and Itier (1983), Abdelghani et
al. (2008), and Anderson et al. (2012), among others, per-
haps the most important application of ET data is in provid-
ing information critical to satisfying the competing demands
for scare water resources.

Already, the competing demands for freshwater by agri-
cultural, industrial, and urban consumers exceed the avail-
able supply for nearly one-third of the world’s population
(Qadir et al., 2003), and it is predicted that number will in-
crease to more than two-thirds of the global population in the
coming decades (Wallace, 2000; Vörösmarty et al., 2010).
To meet the current and future demand for water, resource
managers and other policymakers must make informed de-
cisions regarding the needs of competing stakeholders when
allocating limited water resources in order to maximize their
effective use. In the case of irrigated agriculture, which is the
largest consumer of freshwater and accounts for 1200 km3

or approximately 85 % of annual current water use (Drooger
et al., 2010; Thenkabail et al., 2010), the need for water is
largely driven by evaporative loss. Thus, ET measurements
are needed not only to monitor evaporative water loss and
determine crop irrigation needs, but also to develop the ir-
rigation techniques and management practices necessary to
ensure the efficient use of water in agricultural environments
(Howell, 2001; Schultz and Wrachien, 2002; Gordon et al.,
2010; de Fraiture and Wichelns, 2010).

While in situ observations are invaluable for some of these
applications, many of them require spatially distributed mea-
sures of ET at field to continental scales that cannot be sup-
plied by the existing flux measurement infrastructure. Re-
mote sensing-based approaches are the only viable means for
monitoring ET over this continuum of scales (McCabe et al.,
2008; Kalma et al., 2008; Gonzalez-Dugo et al., 2009). As
discussed by Anderson et al. (2012), any comprehensive pro-
gram for monitoring water resources will by necessity use re-
mote sensing data collected by multiple platforms at a range
of spatial and temporal scales.

Nonetheless, remote sensing is not without limitations.
Chief among these is the infrequent acquisition of the
medium to high-resolution imagery needed as input for re-

mote sensing-based models to determine ET. This infrequent
acquisition of imagery is due to both lengthy return intervals
and the presence of cloud cover (Ryu et al., 2012; Van Niel
et al., 2012; Cammalleri et al., 2013). To provide temporally
continuous ET estimates, the moisture flux during the period
between data acquisitions is often estimated using an inter-
polation technique commonly referred to as temporal upscal-
ing. This well-established approach, which can be applied at
either sub-daily or daily time steps, estimates the moisture
flux as the product of some reference quantity (χ ) and its
associate scaled metric (f ) according to

ÊTt = χtft , (1)

where ÊT is the estimated ET and t indicates the time period
of the estimate. While it is typically related to the moisture
flux, χ is a quantity that can be measured or estimated more
readily than the moisture flux itself. The scaled metric is the
ratio between χ and the moisture flux. For example, it is
quite common to estimate ET expressed in terms of the latent
heat flux (λE) using the available energy (A), here defined
as the net radiation less the soil heat flux, as the reference
quantity, and evaporative fraction (fA) as the scaled metric
(e.g., Crago and Brutsaert, 1996; Bastiaanssen et al., 1998;
Suleiman and Crago, 2004; Colaizzi et al., 2006; Hoedjes et
al., 2008; Van Niel et al., 2011; Delogu et al., 2012).

For the periods between data retrievals, f is estimated via
interpolation. As a result, this approach is predicated on the
assumption that f is self-preserving, i.e., that it is constant or
nearly constant, and thus varies only slowly over time (Brut-
saert and Sugita, 1992; Nichols and Cuenca, 1993; Crago,
1996). In order to conform to this assumption, the compo-
nents of the radiation or energy budget are often selected as
χ such that f is an analog of evaporative fraction. Examples
of these quantities include the incident solar radiation (K ↓
Jackson et al., 1983; Zhang and Lemeur, 1995) or extrater-
restrial solar radiation (K↓TOA; Ryu et al., 2012). However,
a number of recent studies indicate the assumption of self-
preservation is only approximate for these quantities. For ex-
ample, both Gentine et al. (2007) and Hoedjes et al. (2008)
showed that the self-preservation of evaporative fraction is
sensitive to soil moisture conditions and fractional vegetation
cover. Similarly, Lhomme and Elguero (1999) and later Van
Niel et al. (2012) showed that the degree of self-preservation
can be influenced by cloud cover. As such, the assumption
of clear-sky conditions is a significant potential source of er-
ror in the ET estimates that must be considered when uti-
lizing or evaluating temporally upscaled moisture flux data
(Van Niel et al., 2012; Peng et al., 2013; Cammalleri et al.,
2014). Other studies have focused on using a quantity de-
rived from the local meteorological conditions as χ because
it would consider many of the meteorological factors that in-
fluence the moisture flux. For example, Tasumi et al. (2005)
proposed using the reference ET for alfalfa (ETr) as χ ; later,
Allen et al. (2007) proposed using the standardized reference
evapotranspiration (ET0) as χ . In both cases, the resulting f
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is equivalent to a crop coefficient and would share its char-
acteristics. As a result, f derived from ETr or ET0 can be
treated in much the same fashion as a crop coefficient and
is assumed to be nearly constant, changing only slowly with
time (Colaizzi et al., 2006; Chavez et al., 2008).

By assessing the error introduced into ET estimates by
temporal upscaling under realistic conditions, this study
sought to achieve two goals: (i) to provide insights into
the relative strengths of the differing temporal upscaling
approaches, and (ii) to determine the maximum return in-
terval threshold for obtaining acceptable estimates of daily
ET. Specifically, this study uses in situ measurements col-
lected over a variety of land cover types as a proxy for re-
motely sensed data to evaluate the impact of multiple refer-
ence quantities and interpolation techniques, and to revisit
intervals on the estimated daily moisture flux. The study fo-
cuses on daytime mean data to evaluate temporal upscaling
at a daily time step. It also assumes perfect retrieval of the
flux; in other words, no error was introduced into ET data
to approximate the error or uncertainty in the estimates of
ET from the remote sensing-based models. Since any errors
in the remote sensing-based ET estimates propagate into the
calculation of f and the subsequent temporal upscaling, this
analysis represents the best-case scenario. The following sec-
tion provides an overview of the field measurements along
with the reference quantities, interpolation techniques, and
evaluation methods used in this study. Section 3 provides a
discussion of the results of this study, while the final section
encapsulates the conclusions that can be drawn from those
results.

2 Methods

2.1 Datasets

Data, including local meteorological conditions (wind speed
and direction, air temperature, humidity, atmospheric pres-
sure, and precipitation), radiation budget (incident and re-
flected solar radiation, incident and terrestrial longwave ra-
diation, and net radiation), surface fluxes (sensible, latent,
and soil heat fluxes), and surface conditions, collected at nu-
merous sites within the Ameriflux network (Baldocchi et al.,
2001), were used for this study. Specifically, the data were
collected at 20 Ameriflux sites (Figs. 1 and 2; Table 1) dis-
tributed across the contiguous United States and represent-
ing four distinct land cover types. These are (i) croplands
(maize (Zea mays)/soy (Glycine max) rotation); (ii) grass-
lands; (iii) forests (evergreen needleleaf and broadleaf de-
ciduous); and (iv) open-canopy (shrubland and woody sa-
vanna). Measurements were collected for a minimum of 5
years at each of the sites selected. Further information re-
garding the field sites, measurement procedures, and post-
processing protocols for Ameriflux is presented in Baldocchi

et al. (2001); the data are archived at the Oak Ridge National
Laboratory and are available at http://ameriflux.ornl.gov/.

After forcing closure of the energy balance while main-
taining a constant Bowen ratio (Twine et al., 2000) in order
to more closely match the characteristics of the output from
the models, the 30 min measurements were used to calcu-
late the various χ and f . Finally, the daytime mean of the
fluxes and other necessary quantities were calculated for use
in the subsequent analyses. Although it can be taken nomi-
nally as the period between 08:00 and 18:00 LST, daytime is
defined herein as the period between the first and last mea-
surements during a given day when the incident solar radia-
tion exceeded 100 W m−2.

2.2 Reference quantities and scaled metrics

The first of the χ derived from meteorological data, λE0, is
derived from ET0, which is described by Allen et al. (1998)
as the hypothetical ET (or λE) from a well-watered grass
surface with an assumed height of 0.12 m and albedo of
0.23. It is calculated using a simplified form of the Penman–
Monteith equation. For this study, the updated relationship
given by Walter et al. (2005) was used:

ET0 =
0.4081(Rn−G)+ γ

Cn
(T+273)U (es− ea)

1+ γ (1+UCd)
, (2)

where 1 is the slope of the saturation vapor pressure–
temperature curve (kPa K−1), Rn is the net radiation
(W m−2), G is the soil heat flux (W m−2), γ is the psychro-
metric constant (kPa K−1), Cn is a constant (37 ◦C s2 m−2),
T is the air temperature (◦C), U is the wind speed (m s−1),
es is the saturation water vapor pressure (kPa), ea is the
actual water vapor pressure (kPa), and Cd is a constant
(0.24 s m−1). This relationship is nearly identical to the one
given in Allen et al. (1998); the two formulae differ only with
regard to the assumed surface resistance. While the surface
resistance is assumed to be 70 s m−1 by Allen et al. (1998),
it is assumed to be 50 s m−1 in the later work. While mod-
est, this modification yields improved results when the day-
time moisture flux is calculated on an hourly basis (Walter
et al., 2005). The result is converted to λE0 by multiplying
by the product of the density of water and the latent heat of
vaporization. Similarly, λEeq, which can be thought of as the
energy-driven moisture flux that is independent of surface re-
sistance, can be expressed according to

λEeq = A
1

1+ γ
(3)

with the variables defined as above (McNaughton, 1976;
Raupach, 2001).

2.3 Interpolation techniques

In addition to piecewise linear interpolation, two piecewise
spline interpolation methods were evaluated as a part of this
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Figure 1. Map showing the location of the Ameriflux sites used in this study.

Table 1. Summary of Ameriflux sites used in this study.

Site Location Land Mean Mean Study Site Location Land Mean Mean Study
cover annual annual period cover annual annual period

temp. rainfall temp. rainfall

Bondville 40.006◦ N Cropland 11.0 ◦C 991 mm 2000–2008 Lucky 31.744◦ N Shrubland 17.6 ◦C 320 mm 2007–2012
88.290◦W (maize/soy) Hills 110.052◦W

Brookings 44.345◦ N Woody 6.0 ◦C 586 mm 2004–2010 Mead 41.165◦ N Cropland 10.1 ◦C 789 mm 2001–2012
96.836◦W savanna 96.477◦W (maize)

Brooks Field 41.692◦ N Cropland 8.9 ◦C 847 mm 2005–2011 Morgan 39.323◦ N Broadleaf 10.9 ◦C 1032 mm 2004–2014
93.691◦W Monroe 86.413◦W deciduous

forest

Chestnut Ridge 35.931◦ N Broadleaf 13.9 ◦C 1359 mm 2005–2010 Niwot 40.033◦ N Evergreen 1.5 ◦C 800 mm 2001–2012
deciduous needleleaf

84.332◦W forest Ridge 105.546◦W forest

Fermi Cropland 41.859◦ N Cropland 9.2 ◦C 929 mm 2005–2011 Missouri 38.744◦ N Broadleaf 12.1 ◦C 986 mm 2004–2013
88.223◦W (maize/soy) Ozarks −92.200◦W deciduous

forest

Fermi Grassland 41.841◦ N Grassland 9.2 ◦C 929 mm 2005–2011 Rosemount 44.714◦ N Cropland 6.4 ◦C 879 mm 2004–2012
88.241◦W 93.090◦W (maize/soy)

Freeman Ranch 29.940◦ N Woody savanna 19.5 ◦C 864 mm 2005–2009 Santa Rita 31.821◦ N Woody 17.9 ◦C 380 mm 2004–2012
−97.990 ◦ W Mesquite 110.866◦W savanna

Kendall Grassland 31.737◦ N Grassland 15.6 ◦C 407 mm 2004–2012 Tonzi 38.432◦ N Woody 15.8 ◦C 559 mm 2001–2012
109.942◦W Ranch 120.966◦W savanna

Konza Prairie 39.082◦ N Grassland 12.8 ◦C 867 mm 2006–2012 Vaira 38.407◦ N Grassland 15.8 ◦C 559 mm 2001–2012
96.560◦W Ranch 120.910◦W

Loblolly pine 35.978 ◦ N Evergreen needleleaf 14.4 ◦C 1170 mm 2001–2008 Walker Branch 35.959◦ N Broadleaf 13.7 ◦C 1372 mm 2001–2007
79.094◦W forest 84.787◦W deciduous

forest

study, namely cubic and Hermite spline interpolation. In con-
trast to linear interpolation, which tends to yield accurate re-
sults only when the underlying data vary smoothly over time,
the splining methods are less prone to error when the ob-
served data change abruptly (Trefethen, 2013). Similarly, the
more computationally complex Hermite spline method typ-
ically yields more accurate results when the gaps between
observed data points are large (De Boor, 1994).

As the name implies, the piecewise linear interpolation es-
timates f using a family of n−1 linear relationships defined
such that the linearly interpolated f (f̂L) at time t is deter-

mined according to

f̂Li (t)= fi + (ti+1− ti)mih, (4)

where n is the number of observed data points, fi is the
known f at time ti , mi is the slope of a straight line re-
lationship for the period between ti and ti+1 defined as
mi = (fi+1− fi)/(ti+1− ti), and h is the time normalized
between 0 and 1 and is defined as h= (t − ti)/(ti+1− ti).
The piecewise cubic spline interpolation function is a family
of n−1 cubic polynomials defined such that the interpolated
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Figure 2. The mean daytime latent heat flux is shown for each of
the land cover types. The mean flux was calculated using the day-
time mean flux data for all of the years considered at each site. The
shaded area represents 1 standard deviation about the mean.

f (f̂S) at time t is determined according to

f̂Si (t)= fi + ai
[
(ti+1− ti)h

]3
+ bi

[
(ti+1− ti)h

]2 (5)

+ ci
[
(ti+1− ti)h

]
,

where the coefficients ai , bi , and ci are determined by si-
multaneously solving the series of n− 1 equations with the
constraints that the interpolation function, as well as its first
and second derivatives, must be continuous and pass exactly
through the known values of f . Similarly, the final interpo-
lation technique, piecewise Hermite cubic spline, defines the

f̂Hi (t)= 2h3
− 3h2

+ 1)fi + (−2h3
− 3h2)fi+1

+ ·· ·h(h2
− 2h+ 1)(ti+1− ti)Si

+h(h2
−h)(ti+1− ti)Si+1, (6)

where Si is the slope of the curve at time ti (De Boor, 1994).
For this study, it is calculated according to

Si =
1
2

(
fi+1− fi

ti+1− ti
+
fi − fi−1

ti − ti−1

)
(7)

and the variables are defined as above (Moler, 2004).
For this analysis, temporal upscaling was conducted at

each of the Ameriflux sites using all possible combinations of
f and interpolation methods. Specifically, it was conducted

with data representing return intervals of up to 32 days gen-
erated from the daytime mean data at each site. In order to
maximize the robustness of the statistical analysis, all possi-
ble realizations – the unique yet equivalent time series that
can be generated from the data collected at a particular site
while maintaining a constant return interval – were consid-
ered in the analysis. The total number of possible realiza-
tions for a given return interval is equal to the length of the
return interval. The individual realizations were generated by
beginning the time series on consecutive days.

Again, to emulate the temporal upscaling of flux data de-
rived from remotely sensed data as closely as possible, efforts
were made to ensure that the observations used for the in-
terpolation were collected on clear-sky days. Clear-sky days
were identified as those where the daytime mean of the mea-
sured K ↓ was within 25 % of the predicted value from a
simple radiation model; this threshold was selected based on
a preliminary analyses comparing the model results with ob-
servations on known clear-sky days. The incident solar radi-
ation was estimated as the product of K↓TOA calculated fol-
lowing Meeus et al. (1991) and atmospheric transmissivity
calculated according to Brutsaert (1975). In order to ensure a
constant return interval for a given interpolation, if a day was
judged to be cloudy, both the observed flux on that day and
the estimated flux for those subsequent days derived from it
were omitted from the statistical analysis. Although the num-
ber of days flagged due to cloudy conditions and omitted
from subsequent analyses varied depending on the site and
the return interval being modeled, at least 1200 days were
considered for each of the analyses at each site.

2.4 Statistical metrics

As discussed by Wilks (2006), persistence, i.e., the degree of
self-preservation, can be assessed via autocorrelation (ρ). For
a given lag (h), i.e., the offset between measurement pairs,
the autocorrelation is defined according to

ρ =

∑n−h
i=1

[
(xi − x̄−)(xi+h− x̄+)

]√∑n−h
i=1 (xi − x̄−)

2∑n−h
i=1 (xi+h− x̄+)

2
, (8)

where n is the number of data points, x̄− is the mean of the
first m data points and x̄+ is the mean of the final m data
points; m is defined as the total number of data points less
the length of the lag, i.e., m= n−h.

A pair of statistics are used to evaluate the accuracy of the
temporal upscaling. The first of these is the root mean square
error (RMSE):

RMSE=

√
1
n

∑n

i=1

(
xi − x̂i

)2
, (9)

where n is the number of data points, x is the observed flux,
and x̂ is the flux predicted by temporal upscaling. However,
because the squared difference term in the RMSE tends to
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Figure 3. The representative autocorrelation function derived for each land cover type and scaled metric used in this study is shown. The
shaded area represents 1 standard deviation about the mean.

overemphasize the effects of large errors (Legates and Mc-
Cabe, 1999; Willmott and Matsuura, 2005; Willmott et al.,
2012), the mean absolute error (MAE) was also calculated as
follows:

MAE=
1
n

∑n

i=1

∣∣xi − x̂i∣∣ , (10)

with the variables defined as above.
Once calculated for the individual sites, the statistics were

aggregated to represent the typical results for a given land
cover type. The aggregation was accomplished by calculating
the arithmetic means after conducting any necessary trans-

form. For example, both the autocorrelation and the RMSE
are non-additive quantities that cannot be averaged directly;
instead, they must first be transformed into an additive quan-
tity. In the case of the former, the autocorrelation was aggre-
gated by averaging the results for the individual analysis pe-
riods at each of the sites after applying a Fisher z transforma-
tion (Burt and Barber, 1996). Similarly, the RMSE data were
averaged after first transforming them to the mean square er-
ror.
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Figure 4. The maximum lag where the autocorrelation function ex-
ceeds 0.50 plotted as a function of the mean daytime latent heat flux
is shown.

3 Results and discussion

3.1 Persistence of scaled quantities

Due to its importance in determining the accuracy of the es-
timates, the persistence or degree of self-preservation exhib-
ited by the various f used in this study was evaluated by
determining its autocorrelation function. For each site, the
autocorrelation was calculated for each contiguous segment
of daytime mean data that was at least 48 days in length (1.5
times the maximum return interval considered herein).

As can be seen in Fig. 3, which shows the mean autocor-
relation function for each f and land cover type, all f per-
formed similarly. In all cases, ρ decreased in inverse propor-
tion to h, dropping to less than 0.50 within 3 to 10 days. Also,
for any given land cover, the mean autocorrelation func-
tions for the analogs of evaporative fraction, namely fK↓,
fRn , and fA, were statistically indistinguishable from one an-
other based on t tests conducted at the 95 % confidence level.
Similarly, no statistically significant difference between the
mean autocorrelation functions of fλE0 and fλEeq was found.
Nonetheless, there were statistically significant, albeit mod-
est, differences between the autocorrelation functions asso-
ciated with f derived from evaporative fraction analogs and
those derived from meteorological data. Regardless of land
cover, ρ associated with fK↓, fRn , and fA tended to be
greater than ρ associated with either fλE0 or fλEeq . On av-
erage, the difference was approximately 0.03.

The results of this analysis, which are consistent with re-
sults of other studies (Farah et al., 2004; Lu et al., 2013) that
found significant day-to-day and seasonal variations in evap-
orative fraction, indicate that the long-term persistence of f
is very limited. This result also suggests that interpolated val-
ues of f may not accurately reflect the actual values and, as
a result, may be a key source of error when using temporal

upscaling to estimate the moisture flux between image re-
trievals.

The figure also shows there was significant variability
from site to site within a given land cover type, particu-
larly for longer lags. Although the specific causes of these
differences are not fully understood, there are a number of
factors that likely contribute. For example, there are differ-
ence in both species composition and climate at the various
sites. Consider, as an example, the forest class which includes
both coniferous and broadleaf deciduous forest. Moreover,
the species composition varies even among sites of the same
forest type; for example, the dominant species at the Niwot
Ridge site are subalpine fir (Abies lasiocarpa) and Engel-
mann spruce (Picea engelmannii) while, as the name implies,
the dominant species at the Loblolly Pine site is loblolly pine
(Pinus taeda). At the same time, the mean annual tempera-
ture at the forested sites ranged from 1.5 to 14.4 ◦C, while the
mean annual precipitation varied from 800 to 1372 mm. Sim-
ilarly the mean annual temperature and precipitation at the
cropland sites, which are all planted on a rotation of maize
and soy, range between 6.4 and 11.0 ◦C and 789 and 991 mm,
respectively.

Further analysis shows differences in the mean autocorre-
lation functions exist between land cover types. Regardless
of the scaled quantity considered, the mean autocorrelation
function decreases most rapidly over forested sites and most
slowly over the open sites. Indeed, if the lag where the mean
autocorrelation function reaches some threshold value, e.g.,
0.50, plotted as a function of the mean daytime latent heat
flux (Fig. 4), it can be seen that persistence decreases ex-
ponentially with the increasing moisture flux. While the un-
derlying cause of this relationship is unclear, it suggests the
return interval necessary to achieve accurate estimates of ET
via temporal upscaling will be longer over relatively dry re-
gions with a low moisture flux than over regions where ET is
high.

3.2 Accuracy of the interpolated scaled quantities

Both the RMSE and MAE of the interpolated estimates of
each f were calculated for all land cover types and return
intervals up to 32 days. As can be seen in Figs. 5 and 6,
both metrics behaved similarly; regardless of the land cover
type, scaled quantity, or interpolation method considered, the
error increased rapidly with increasing return interval un-
til a plateau was reached. In all cases, the RMSE, which
increased according to a logarithmic function of the return
interval, reached 75 % of its peak value within 5 days. For
comparison, the mean maximum RMSE for each land cover
type was 0.26, 0.21, 0.28, and 0.17 for croplands, grasslands,
forest, and open canopies, respectively. Although it also in-
creased logarithmically, the amount of time needed for the
MAE to reach 75 % of the peak value was more variable,
ranging between 5 and 10 days. Again, for purposes of com-
parison, the mean maximum MAE was 0.22, 0.14, 0.16, and
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Figure 5. The root mean square error (RMSE) of the estimates of the scaled quantities is shown for each land cover type and interpolation
scheme.

0.10, respectively, for croplands, grasslands, forest, and open
canopies. Further, the MAE increased most rapidly for those
land cover types that exhibited the highest moisture flux. The
largest error, whether measured in terms of RMSE or MAE,
also tended to be associated with the forest and cropland sites
where the mean ET was largest.

The results also show that all of the interpolation meth-
ods yielded similar results for short return intervals of less
than 8 days. In contrast, for longer return intervals, both the
RMSE and MAE of the estimates using the spline interpo-
lation methods were greater than when linear interpolation
is used (Figs. 5 and 6). Moreover, the error of the estimates
tended to be much noisier for the spline techniques, partic-

ularly the cubic spline method, which exhibited periods of
very large errors. These large noisy errors, which are most
evident in the RMSE – perhaps because it is more sensitive
to outliers than the MAE – are indicative of “overshoot” er-
rors by the spline interpolation. The large errors are also most
pronounced for those land cover types that also demonstrated
the highest average ET and the lowest autocorrelation.

3.3 Accuracy of the latent heat flux estimates

Not unexpectedly, the accuracy of the moisture fluxes esti-
mated via temporal upscaling closely mirrors the accuracy of
the interpolated f . As was the case with f , both the RMSE
and the MAE of the flux estimates increase rapidly with re-
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Figure 6. The mean absolute error (MAE) of the estimates of the scaled quantities is shown for each land cover type and interpolation
scheme.

turn interval to a maximum value following a logarithmic
function (Figs. 7 and 8). In the case of the RMSE, the maxi-
mum error ranged between 31 and 66 W m−2. In the case of
the MAE, it ranged between 22 and 54 W m−2. Again, the
greatest error is associated with the land cover with the high-
est ET, i.e., forest and cropland.

These plots, like those for f , show little difference among
the interpolation techniques when the return interval is short.
For return intervals longer than about 8 days, however,
the spline interpolation techniques, and especially the cubic
spline method, can introduce large errors into the flux esti-
mates due to the “overshoot” errors in the interpolation of
f . These large noisy errors are most evident in the RMSE

of forested sites (Fig. 8), but may also be seen to a lesser
extent at the cropland sites. Overall, this suggests there is
no substantive advantage to using the more computational
complex spline techniques over linear regression; rather, the
propensity of spline methods to introduce large errors due to
interpolation “overshoot” indicates these techniques should
be avoided.

The accuracy, and thus utility, of the various f was evalu-
ated while focusing specifically on the results when linear in-
terpolation was used. Regardless of f , an intercomparison of
the estimated fluxes using t tests conducted at the 95 % con-
fidence level indicated there was no statistically significant
difference in either the flux estimates or the error due to tem-
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Figure 7. The root mean square error (RMSE) of the latent heat flux derived from each of the scaled quantities is shown for each land cover
type and interpolation scheme.

poral upscaling when the return interval was less than 8 days.
For longer return intervals, analyses using RMSE (Fig. 9)
and MAE (not shown), which yielded similar results, indi-
cated that the error due to temporal upscaling was very sim-
ilar when fRn , fA, or fλEeq was used. Indeed, the error in-
troduced using any of these three quantities was statistically
identical based on t tests conducted at the 95 % confidence
level. Moreover, with the exception of the forest sites, where
the error due to temporal upscaling using fK↓ was the same
as the error introduced by using fRn , fA, or fλEeq , temporal
upscaling using fRn , fA, and fλEeq consistently introduced
the least error. For a 10-day return interval, as an example,
the percent error introduced by these quantities ranges be-
tween 21 and 23 %, depending on land cover. In contrast,

temporal upscaling using fλE0 introduced the greatest error.
Again, for a 10-day return interval, the percent error associ-
ated with fλE0 ranges between 24 and 30 %, depending on
land cover.

3.4 Estimating optimal return interval thresholds

Again focusing on the flux estimates when linear interpola-
tion was used, the return interval threshold yielding errors of
less than 20 % in the daily ET estimates was identified (Ta-
ble 2). The 20 % threshold was selected because it is the nom-
inal uncertainty commonly associated with in situ observa-
tions such as those collected via eddy covariance. While the
return interval associated with the 20 % threshold varied de-
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Figure 8. The mean absolute error (MAE) of the latent heat flux derived from each of the scaled quantities is shown for each land cover type
and interpolation scheme.

pending on land cover type and f , the longest return intervals
are associated with fλEeq followed by fRn , and fA, which
yield statistically identical results, and finally fK↓ and fλE0 ,
which also yield statistically indistinguishable results based
on t tests at the 95 % confidence level. The range of values
among the various f was 2 days, on average. This again in-
dicates that the accuracy of temporal upscaling is greatest for
fRn , fA, and fλEeq .

By plotting the average threshold return interval for each
land cover class against its corresponding mean latent heat
flux for that class (Fig. 10), it can be seen that the length of
the return interval that will result in no more than 20 % er-
ror decreases with the increasing moisture flux. Like ρ, the

relationship follows an exponential decay function. In this
case, however, the curve has a lower bound of 5 days. Based
on this, the maximum return interval that can be expected
to introduce less than 20 % error to the flux estimates via
temporal upscaling for all land cover classes is 5 days. If a
threshold of 10 % relative error is used, the threshold falls to
only 3 days. Importantly, since the determination of the max-
imum return interval was made assuming there is no error in
the moisture flux used to calculate f , they represent the best-
case scenario. In practice, any error in the flux retrieval will
propagate into the interpolated flux. As a result the maximum
return interval would be somewhat shorter.
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Table 2. The maximum return interval with a relative error of less than 20 % is given for each reference quantity and LULC when linear
interpolation was used.

Reference quantity

Incident solar Net Available Reference Equilibrium
radiation radiation energy latent heat latent heat

flux flux

Land cover Cropland 4 6 7 4 7
Grassland 5 7 6 5 8
Forest 5 6 5 5 6
Open canopy 6 8 8 7 8

Figure 9. The root mean square error (RMSE) of the latent heat
flux derived from each of the scaled quantities is shown for each
land cover type when linear interpolation is used.

4 Conclusions

The results of this study indicate that the day-to-day per-
sistence of χ typically used in the temporal upscaling of
satellite-based ET retrievals is quite limited. The autocorre-
lation of daytime means of these quantities decreases to less
than 0.5 within 10 days and to less than 0.25 in 7 to 24 days
depending on land cover class. More generally, it was found
that the number of days for ρ to reach to a given threshold
decreases with increasing λE following a well-defined expo-
nential decay function. This suggests that the utility of tem-
poral upscaling is limited to short return intervals, especially

Figure 10. The maximum return interval where the relative error is
less than 20 % plotted as a function of the mean daytime latent heat
flux.

for land covers such as forest and croplands, which are char-
acterized by large moisture fluxes. The analyses of the RMSE
and MAE confirm this inference; in both cases the magnitude
of the error increases rapidly with increasing return interval
and typically reaches 75 % of the maximum error within 3
to 7 days. Again, the magnitude of the error due to temporal
upscaling was greatest over those land cover types with the
highest ET. Using 20 % relative error as the threshold, the
maximum return interval ranged between 5 and 8 days, on
average, depending on land cover type. However, since the
maximum return interval decreases to a minimum of 5 days
following an exponential decay function of the mean mois-
ture flux, 5 days is the longest return interval that would allow
for accurate ET estimates over all land cover types assuming
perfect retrieval. While the study found that using λEeq, Rn,
or A as χ tended to produce the most accurate estimates of
λE for longer return intervals, for return intervals of 5 days
or less, there was no statistically significant difference in the
flux estimates. Finally, the comparison of interpolation meth-
ods indicated there is no advantage to using the more com-
putationally complex spline interpolation methods.
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5 Data availability

The raw micrometeorological datasets used in this study
were collected at 20 Ameriflux sites distributed across
the contiguous US. The datasets and additional infor-
mation regarding the Ameriflux network are available at
http://ameriflux.ornl.gov/. The datasets specific to each
site used here can be obtained as follows: Bondville,
http://sites.ameriflux.lbl.gov/US-Bo1/ (Meyers, 1996);
Brookings, http://sites.ameriflux.lbl.gov/US-Bkg/ (Meyers,
2004); Brooks Field, http://sites.ameriflux.lbl.gov/US-Br1/
(Prueger and Parkin, 2001); Chestnut Ridge,
http://sites.ameriflux.lbl.gov/US-ChR/ (Meyers, 2005);
Fermi Cropland, http://sites.ameriflux.lbl.gov/US-IB1/
(Matamala, 2004); Fermi Grassland, http://sites.ameriflux.
lbl.gov/US-IB2/ (Matamala, 2005); Freeman Ranch,
http://sites.ameriflux.lbl.gov/US-FR2/, (Litvak, 2004);
Kendall Grasslands, http://sites.ameriflux.lbl.gov/US-Wkg/,
(Scott, 2004b); Konza Prairie, http://sites.ameriflux.
lbl.gov/US-Kon/, (Brunsell, 2006); Loblolly Pine,
http://sites.ameriflux.lbl.gov/US-Dk3/, (Stoy et al., 2001);
Lucky Hills, http://sites.ameriflux.lbl.gov/US-Whs/, (Scott,
2007); Mead, http://sites.ameriflux.lbl.gov/US-NE1/,
(Suyker, 2001); Morgan Monroe, http://sites.ameriflux.lbl.
gov/US-MMS/, (Novick and Phillips, 1999); Niwot Ridge,
http://sites.ameriflux.lbl.gov/US-NR1/, (Blanken, 1998);
Missouri Ozarks, http://sites.ameriflux.lbl.gov/US-Moz/,
(Wood and Lainhong, 2004); Rosemount, http://sites.
ameriflux.lbl.gov/US-Ro1/, (Baker and Griffis, 2002); Santa
Rita Mesquite, http://sites.ameriflux.lbl.gov/US-SRM/,
(Scott, 2004a); Tonzi Ranch, http://sites.ameriflux.
lbl.gov/US-Ton/, (Baldocchi, 2001); Vaira Ranch,
http://sites.ameriflux.lbl.gov/US-Var/ (Baldocchi, 2000);
and Walker Branch, http://sites.ameriflux.lbl.gov/US-WBW/
(Meyers, 1995).
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