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Abstract. Water resources and agriculture are often affected
by the weather anomalies in India resulting in disproportion-
ate damage. While short to sub-seasonal prediction systems
and forecast products are available, a skilful hydrologic fore-
cast of runoff and root-zone soil moisture that can provide
timely information has been lacking in India. Using precip-
itation and air temperature forecasts from the Climate Fore-
cast System v2 (CFSv2), the Global Ensemble Forecast Sys-
tem (GEFSv2) and four products from the Indian Institute of
Tropical Meteorology (IITM), here we show that the IITM
ensemble mean (mean of all four products from the IITM)
can be used operationally to provide a hydrologic forecast in
India at a 7–45-day accumulation period. The IITM ensem-
ble mean forecast was further improved using bias correction
for precipitation and air temperature. Bias corrected precipi-
tation forecast showed an improvement of 2.1 mm (on the all-
India median mean absolute error – MAE), while all-India
median bias corrected temperature forecast was improved by
2.1 ◦C for a 45-day accumulation period. Moreover, the Vari-
able Infiltration Capacity (VIC) model simulated forecast of
runoff and soil moisture successfully captured the observed
anomalies during the severe drought years. The findings re-
ported herein have strong implications for providing timely
information that can help farmers and water managers in de-
cision making in India.

1 Introduction

Droughts in India have enormous implications for water
resources and agriculture (Mishra et al., 2014; Shah and
Mishra, 2015). Many regions in India face drought risks due
to lack of monsoon season rainfall. In 2015, a large part of
India was under drought which affected agriculture and wa-
ter resources (Mishra et al., 2016). Moreover, in 2015, about
33 million people were affected by the drought that covered
256 districts and 10 states, and that caused an estimated loss
of 650 000 crore Indian rupee (Rs 6.50.000 crore, 2016). The
major driver of hydrological (based on runoff) or agricul-
tural (based on soil moisture) droughts in India remains the
Indian summer monsoon (Mishra et al., 2014, 2016; Shah
and Mishra, 2015), which accounts for about 80 % of the
mean annual rainfall and has 10 % year-to-year variability
(Rahman et al., 2009; Rajeevan et al., 2005, 2006). How-
ever, during recent decades, increased air temperature has af-
fected hydrologic and agricultural droughts in many regions
of the world (Dai et al., 2004; Livneh and Hoerling, 2016;
Park Williams et al., 2012; Shukla et al., 2015).

One of the relatively well-known drivers of drought occur-
rence in India is the positive sea surface temperature anomaly
in the Pacific Ocean (Kumar et al., 1999, 2006) and in the In-
dian Ocean (Mishra et al., 2012; Roxy et al., 2015). However,
in the absence of hydrologic forecast at an appropriate lead
time, planning of the agricultural and water resource sectors
is often adversely affected. For instance, many times the cost
of seeds, field preparation, and transplantation cannot be re-
covered due to prolonged anomalies of soil moisture or rain-
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fall. Furthermore, water resources, reservoir operations, and
irrigation planning are affected in the absence of a skilful
forecast at a sufficient lead time. Prediction of anomalies in
meteorological and hydrological conditions well in advance
can assist timely decision making to minimize impact on
the agricultural and water resource sectors. R. D. Shah and
Mishra (2016) showed the potential of the Global Ensemble
Forecast System (GEFS; Hamill et al., 2013) for hydrologic
prediction in India with a lead time of up to 7 days. They
reported that, up to 7 days in lead time, major skill in hy-
drologic prediction is derived from initial hydrologic condi-
tions (i.e. initial soil moisture content) as shown in Shukla
and Lettenmaier (2011). Yuan et al. (2011) reported that soil
moisture forecast from the CFSv2 (CFSv2; Saha et al., 2014)
provides useful information to predict droughts in the trop-
ical region. Moreover, Yuan and Wood (2012a) showed that
the CFSv2 can provide a better seasonal hydroclimatic fore-
cast than ensemble streamflow prediction in the USA.

Despite the utility of the various forecast products that can
provide useful skill in hydrologic predictions, efforts have
largely been limited to evaluating the potential of these prod-
ucts to provide forecasts at a 7–45-day accumulation period
that can be used for agricultural and water resource planning
in India. Here we provide an assessment of skill in hydrologic
forecast that can be utilized for drought forecast at a 7–45-
day accumulation period using data from GEFSv2, CFSv2,
and IITM to improve management of water and agricultural
resources in India.

2 Data and methodology

2.1 Observed data

Forecast products were evaluated against observed data from
the India Meteorological Department (IMD). We used the
0.25◦ daily gridded precipitation product from the IMD
which was developed based on ground observations from
6995 stations across India using an inverse distance weigh-
ing scheme (Shepard, 1984) and is available for the period
of 1901–2015 (Pai et al., 2015). The IMD precipitation cap-
tures the spatial variability of the monsoon season rainfall
and features related to orographic rainfall in the Western
Ghats and foothills of the Himalayas. We used 0.5◦ daily ob-
served maximum and minimum temperatures from the IMD,
which were developed based on 395 stations across India
(Srivastava et al., 2009). The gridded air temperature dataset
is available for 1951–2013 and has been used in many pre-
vious studies (Mishra et al., 2014; Shah and Mishra, 2015,
2014; R. D. Shah and Mishra, 2016; Mishra et al., 2016).

2.2 Forecast products

We evaluated prediction skill of precipitation, maximum and
minimum temperatures from the CFSv2 reforecast (Saha et
al., 2014), GEFSv2 reforecast (Hamill et al., 2013) and fore-

cast products from IITM. Reforecast from the CFSv2 are
based on a dynamical coupled model and are available at
every 5th day from the start of year from the National Cen-
tre of Environmental Prediction (NCEP). Moreover, 6-hourly
forecasts at every 5th day from CFSv2 are available with up
to 9 months’ lead time and at 1◦ resolution for 1982–2009.
Climate forecast System (CFS) model’s atmospheric com-
ponent is operational at T126 spectral truncation (∼ 100 km
horizontal resolution) and 64 sigma-pressure hybrid vertical
resolution. Shukla and Lettenmaier (2011) using CFSv2 re-
ported that initial hydrologic conditions dominate skill of hy-
drologic prediction in the continental US (CONUS) up to a
1-month lead time, beyond which skill from meteorological
forcing dominated. McEvoy et al. (2016) recently demon-
strated higher skill for potential evapotranspiration than pre-
cipitation using the CFSv2. Moreover, Yuan et al. (2011) re-
ported that CFSv2 performs better than CFSv1 for predic-
tion of precipitation and air temperature in the United States.
Mo and Lettenmaier (2014) found that for shorter lead times
(about 1 month), CFSv2 forecast has higher skill for soil
moisture prediction than the benchmark forecast (climato-
logical mean). Moreover, Tian et al. (2016) evaluated CFSv2
for the CONUS and found that extreme indices based on tem-
perature were better predicted than that of precipitation.

Other than CFSv2, we compared precipitation and temper-
ature forecast from GEFSv2 reforecast (Hamill et al., 2013),
which is based on the Global Forecast System (GFS) model,
for 7 and 15 days’ lead time. Ensemble members are gener-
ated in GEFS by making perturbations in initial atmospheric
conditions which lead to 11 ensemble members. The GEFS
model runs at T254L42 resolution (∼ 40 km horizontal reso-
lution) for the first 8 days’ lead time and at T190 (∼ 54 km)
for lead time beyond 7.5 days. The GEFS reforecasts are
available at 1◦ resolution for lead times of up to 16 days and
at 0.5◦ for an 8-day lead from 1985 to the present. R. D. Shah
and Mishra (2016) evaluated the skill of GEFSv2 reforecast
for drought prediction in India for an accumulation period
of 7 days and found that the GEFS reforecast showed a cor-
relation of more than 0.5 with drought estimates from the
observed data.

We obtained four forecast products from the IITM. The
forecast products of the IITM are generated from the same
CFSv2 model that has been described above. Abhilash et
al. (2014b) developed an ensemble prediction system us-
ing CFSv2 at T126 horizontal resolution (∼ 100 km) (here-
after: IITM-CFST126) for prediction of monsoon intrasea-
sonal oscillations (MISOs) over the Indian monsoon region
15–20 days in advance. They found that though the skill was
reasonable, there was a significant dry bias over the Indian
land. Sharmila et al. (2013) reported that CFSv2 simulates
the northward propagating MISO reasonably well, but it has
a cold bias in sea-surface temperature (SST) and tropospheric
temperatures. Thus, Abhilash et al. (2014a) implemented a
lead-time-dependent SST bias correction, forced the GFS
(atmospheric component of CFSv2) with slightly different
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physics and showed that it has improved skill over India
compared to the CFSv2 (hereafter: IITM-GFST126). Subse-
quently, Sahai et al. (2015a) implemented a high-resolution
version of CFSv2 (at T382 horizontal resolution ∼ 35 km;
hereafter: IITM-CFST382) and showed that it has better
skills in steep orographic regions. Although these three in-
dividual models show similar prediction skill and their er-
rors saturate at about the same lead time of around 25 days,
there are many instances where the three models disagree
in predicting particular events, such as the amplitude and
phase of MISO propagation. Considering these facts, Abhi-
lash et al. (2015) proposed a CFS-based multimodel ensem-
ble mean (MME), which improved the spread error relation-
ship and added value to both the deterministic and proba-
bilistic forecasts. Real-time skill for these models has been
reported in the previous studies (Borah et al., 2015; Joseph
et al., 2015a, b; Sahai et al., 2013, 2015b). Subsequently,
bias corrected SST forced GFS was also run at T382 resolu-
tion (hereafter: IITM-GFST382). Thus the IITM’s forecasts
are available for four models, named IITM-CFST126, IITM-
GFST126, IITM-CFST382, and IITM-GFST382. Model in-
tegrations for the years from 2001 to 2015 are carried out
from 16 May and continued up to 28 September at every 5-
day interval (16, 21, 26 May, . . . , 23, 28 September) for the
next 45-day period. Forecast ensemble members from the
IITM are available at 1◦ resolution. The ensemble mean of
all four IITM products (hereafter: IITM ensemble) and indi-
vidual products were compared with CFSv2 and GEFSv2 to
evaluate the hydrologic prediction skill. The aim of this com-
parison was to evaluate whether IITM forecast products pro-
vide better prediction skill than CFSv2 and GEFSv2. More-
over, the product that provides the best hydrologic prediction
skill in India can be used operationally to forecast hydrologic
conditions and rainfall and temperature anomalies that can
help in decision making in agricultural and water resources.

We used the ensemble mean (of all available ensemble
members) of individual forecast products for evaluation. We
selected forecasts at every 15th day, which was evaluated for
the 7-, 15-, 30-, and 45-day accumulation periods using ac-
cumulated precipitation and average temperature. We use the
term “accumulation period” instead of “lead time” as fore-
cast evaluation was performed for accumulated precipitation
and mean temperature for 7, 15, 30, and 45 days. We se-
lected forecasts starting from 16 May till the end of Septem-
ber as currently the IITM provides forecast during the mon-
soon season. However, the IITM will extend forecast to the
non-monsoon season in the near future. We aggregated all the
observed and forecast variables (precipitation, maximum and
minimum air temperatures) to the daily scale (if they were
available at a sub-daily time period) and regridded to 0.25◦

horizontal resolution to make them consistent with the spatial
resolution of observed data. We regridded precipitation and
air temperature using Maurer et al. (2002), which uses the
Synergraphic Mapping System (SYMAP) algorithm (Shep-
ard, 1984) for precipitation and lapse rate based on elevation

data for air temperature. We, however, carefully evaluated all
the products at their original spatial resolution and at 0.25◦

to make sure that datasets are consistent at both resolutions
for spatial and temporal variability. We found that the bias
in the forecast products at coarser and higher resolution was
consistent.

We considered a common period of 2001–2009 for com-
parison and evaluation of different forecast products against
the observed gridded data from the IMD.

2.3 Forecast evaluation

For evaluation of the forecast from each product against the
observations, we prepared yearly time series of precipitation
and temperature forecast for each forecast date by accumulat-
ing precipitation and averaging temperature for a given lead
time (7–45 days). For instance, if the date of forecast was
1 June and the lead time 15 days, accumulated precipitation
and mean temperature for 15 days from 1 June for each of
the products were estimated for the period 2001–2009. As
the period for evaluation was 2001–2009, the sample size
was 10, and we acknowledge that a larger sample size with
data for a longer retrospective record will help us to better
categorize uncertainty in forecast skill. We used the coeffi-
cient of correlation, mean absolute error (MAE), and critical
success index (CSI) to evaluate the performance of the fore-
cast products. A non-parametric Spearman rank correlation
coefficient (Wilks, 2006) was used to evaluate the perfor-
mance of forecast products in capturing the temporal rela-
tionship with observations (OBS). For this the forecast prod-
uct and the corresponding OBS are assigned ranks and then
the correlation was estimated using the following Eq. (1):

rs = 1−
6
∑

d2
i

n
(
n2− 1

) , (1)

where rs is the Spearman rank correlation coefficient; di is
the difference in rank between paired forecast and OBS; and
n is the sample size (here 10). Significance of correlation was
tested using the exact permutation distribution test (Robson,
2002). Observed samples were permuted and rank correla-
tions were estimated. Estimated correlation is significant if it
rejects the null hypothesis at the 5 % significance level.

The MAE was used to estimate error in the forecast prod-
ucts as compared to OBS. Absolute error was estimated in all
the forecast products for each year as compared to OBS and
then the mean of all the years was taken to estimate MAE.
The critical success index (CSI; Wilks, 2006) was used to
evaluate anomalies predicted using forecast products as com-
pared to OBS, similar to (AghaKouchak and Mehran, 2013).
The CSI is ratio of hit events and the sum of hit and miss,
and false events (hit+miss+ false).
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2.4 The Variable Infiltration Capacity (VIC) model

We used the Variable Infiltration Capacity (VIC, ver-
sion 4.1.2) (Liang et al., 1994, 1996) model to simulate hy-
drologic variables (total runoff and root-zone soil moisture)
using meteorological forcing (daily precipitation, and max-
imum and minimum temperatures) from the IMD and the
forecast products. Soil moisture and runoff predicted using
forecast products were evaluated against soil moisture and
runoff simulated using the observed forcing from the IMD.
The VIC model simulates water and energy fluxes at each
grid cell, and sub-grid variability of precipitation, elevation,
soil, and vegetation is well represented (Gao et al., 2010).
The soil parameters used were developed based on the Har-
monized World Soil Database (HWSD) v1.2. The vegetation
parameters used in this study were developed using 1 km Ad-
vanced Very High Resolution Radiometer (AVHRR) global
land cover information. We used the vegetation library that
was developed at the University of Washington. The vege-
tation parameters were not specifically developed to incor-
porate crops that are grown in India. However, the existing
parameters were successfully used in the model application
over India (Shah and Mishra, 2015, 2016). The VIC model’s
version that was used in this study does not explicitly repre-
sent groundwater; rather, it only accounts for baseflow. We
acknowledge that India-specific soil and vegetation parame-
ters along with the representation of irrigation, reservoir, and
groundwater can improve the water budget; however, these
were not considered in the present study due to the unavail-
ability of either observations or the model version that has
the representation of human interventions. The VIC model
set-up used in this study is well calibrated and evaluated
against observed streamflow and satellite-based evapotran-
spiration and soil moisture in H. L. Shah and Mishra (2016)
and R. D. Shah and Mishra (2016). The VIC model has
been widely used for hydrologic prediction at watershed
and regional scales (Mo and Lettenmaier, 2014; R. D. Shah
and Mishra, 2016; Shukla and Lettenmaier, 2011; Yuan and
Wood, 2012b).

2.5 Bias correction of precipitation and temperature
forecast

Improvements in hydrologic prediction can be achieved by
post-processing the forecast of meteorological variables (pre-
cipitation, maximum and minimum temperatures). We cor-
rected precipitation forecast using the linear scaling approach
as described in R. D. Shah and Mishra (2016) and Shah and
Mishra (2015). For each forecast date, we corrected precip-
itation for the selected (7-, 15-, 30- and 45-day) accumula-
tion period. We first corrected accumulated precipitation due
to extreme events (above the 90th percentile) for each fore-
cast date in the training period and a scaling factor was ob-
tained for each forecast date based on the ratio of precip-
itation for the 45-day accumulation period due to extreme

events in the observed and forecast products. In the second
step, after the correction for extreme precipitation, scaling
factors were obtained based on precipitation for the 45-day
accumulation period, for each forecast date from the forecast
products and OBS for the entire training period. Scaling fac-
tors were estimated for the training period (9 years), which
were evaluated in the testing period (1 year). More detailed
information on this method can be obtained from R. D. Shah
and Mishra (2016).

To correct the daily mean (of maximum and minimum)
temperature from the forecast, we performed quantile–
quantile (Q–Q) mapping (Wood et al., 2002). Initially, we
prepared yearly time series of a 45-day accumulation pe-
riod average temperature forecast for all the forecast dates
along with the corresponding observed time series. For each
forecast date and for each grid cell, we estimated quantiles
of mean temperature for the 45-day accumulation period for
each year using the climatology of the entire period. To es-
timate quantiles, cumulative distribution functions (CDFs)
were fitted. The Weibull plotting position was used to map
the cumulative distribution function when percentiles fall be-
tween 1/(N + 1) and N/(N + 1), where N is the number
of climatological years during the training period. In cases
when percentiles fall beyond these limits, normal distribu-
tion was fitted and values were extrapolated. More details
on the Q–Q mapping can be obtained from R. D. Shah and
Mishra (2016). Similarly, quantiles were estimated for OBS
temperature for corresponding time series. Based on esti-
mated quantiles, Q–Q mapping was done and forecast was
replaced with the corresponding value based on OBS. We es-
timated the bias corrected mean temperature using Q–Q map-
ping. Bias (difference between the corrected and uncorrected
45-day average mean temperature) was then added equally
to daily raw Tmax and Tmin to get the corrected values of
daily maximum and minimum temperatures. We did not bias
correct Tmax and Tmin individually, as that will affect the di-
urnal temperature range (Tmax–Tmin). We adopted the multi-
fold validation approach of leaving 1 year out for testing both
precipitation and mean temperature (R. D. Shah and Mishra,
2016).

Forecast of soil moisture and runoff is essential for plan-
ning and decision making in agriculture and water resources
(Asoka and Mishra, 2015). Hence, we evaluated the forecast
skill of soil moisture and runoff simulated using meteorolog-
ical variables from the IITM ensemble. Using the raw and
bias corrected forecasts (precipitation, maximum and mini-
mum temperatures), the Variable Infiltration Capacity (VIC)
model was run to obtain a soil moisture and total runoff
(surface runoff+ baseflow) forecast. We evaluated improve-
ments in the correlation of runoff and soil moisture predicted
using the bias corrected precipitation and temperatures from
the IITM ensemble (IITM ensemble-bc) against uncorrected
(raw) precipitation and temperatures from the IITM ensem-
ble mean (IITM ensemble) and CFSv2 (Fig. S14). For simu-
lating runoff and soil moisture, forcings from all three prod-
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ucts were used to run the VIC model at 0.25◦ and daily res-
olution, while initial hydrologic conditions were generated
using the observed forcing from the IMD. Forecast skill in
hydrologic prediction was evaluated for mean total runoff
and soil moisture for the 7–45-day accumulation period. We
considered the 45-day accumulation period to evaluate the
hydrologic prediction skill, as for shorter lead times forecast
skill is generally higher owing to persistence of initial hydro-
logic conditions.

3 Results and discussion

3.1 Comparison of forecast skill for precipitation and
temperature forecast

3.1.1 Lead time 7 and 15 days

We estimated forecast skill (against observations, OBS here-
after) in precipitation and air temperature from all the fore-
cast products for 7-, 15-, 30-, and 45-day accumulation pe-
riods. Hydrologic forecast at these accumulation periods can
be used for planning (field preparation, sowing, irrigation,
water management, and reservoir operations) and decision
making in water resources and agriculture. All the forecast
products showed a significantly high (more than 0.75) Spear-
man rank correlation (Fig. 1a–n) in the majority of India for
the accumulation period of 7 days, indicating a higher skill
for a shorter lead time. We noticed that correlation declines as
the accumulation period was increased from 7 to 15 days, es-
pecially in the central region (Fig. 1). Moreover, we find that
GEFSv2 and the IITM ensemble (correlation more than 0.6
for the majority of India) perform better than CFSv2 for the
15-day accumulation period. Correlations between observa-
tion and forecast were generally lower for forecast initiated
during the months of July and August (Fig. 1o–p). Among all
the forecast products, IITM products and their IITM ensem-
ble mean (mean of all four IITM forecast products) showed
better correlations with OBS as compared to GEFSv2 and
CFSv2 for the 7- and 15-day accumulation periods (Fig. 1
and Table S1 in the Supplement). Among the IITM products,
products with the atmospheric model operating at higher res-
olution (IITM-CFST382 and IITM-GFST382) showed rela-
tively better performance as compared to the other two IITM
products, which demonstrates that the models operating at
higher resolution provide a better forecast skill (Duffy et al.,
2003; Roebber et al., 2004).

We estimated MAE in precipitation forecast from all the
products as compared to OBS for accumulation periods of
7 and 15 days (Fig. S1 in the Supplement). We find that
MAE is proportional to the magnitude of precipitation as the
monsoon season precipitation is higher in the core monsoon,
northeastern, and Western Ghats regions (Fig. S1). Moreover,
all the products showed a lower MAE in the arid and semi-
arid regions of western India during the monsoon season,

and MAE was higher during the months of July–September
(Fig. S1o and p). MAE, however, decreases as the forecast
accumulation period was increased from 7 to 15 days, which
is due to a longer accumulation period for precipitation. We
noticed that the all-India median MAE (median of all the
grids) in the forecast products varies with the date of fore-
cast; however, both CFSv2 and the IITM ensemble mean
showed comparable MAE at the all-India scale for the 7-day
accumulation period (Fig. S1o and Table S1). However, for
the 15-day accumulation period, and for most of the fore-
cast dates (Fig. S1p), the IITM ensemble showed lower error
compared to the other products. Overall, based on correlation
and MAE, we find that the IITM ensemble performs better
than the other forecast products for the 7- and 15-day accu-
mulation periods for precipitation prediction.

Lower skill in precipitation forecast in July and August
can be attributed to high intraseasonal variability as a large
fraction of total precipitation in the monsoon season occurs
during these months. Intraseasonal variability can be charac-
terized by spells of active–break periods of length 3–5 days
(Rajeevan et al., 2010). Active–break spells are dominated
by SST, wind pattern, the Madden–Julian oscillation (MJO),
and the Inter Tropical Convergence Zone (ITCZ) (Goswami
and Ajayamohan, 2000; Rajeevan et al., 2010; Woolnough et
al., 2007). Predictability of precipitation in India depends on
the ability of models to capture intraseasonal and interannual
variability in precipitation (Webster et al., 1998). Improve-
ments in the spatial resolution of the atmospheric model and
bias corrected SST in the IITM forecast products lead to en-
hancement in forecast skill, which potentially can be used for
decision making in water resources and agriculture in India.

Similar to precipitation for 7- and 15-day accumulation
periods, we evaluated skill in maximum (Tmax) and min-
imum (Tmin) temperatures from all the forecast products
against observed air temperatures from the IMD (Fig. S2).
Tmax averaged for the 7-day accumulation period from all the
forecast products showed a good correlation with OBS over
most of India (Fig. S2a–g). Similar to precipitation from the
IITM ensemble, Tmax showed the highest correlation with
OBS (0.78; Table S1). However, correlation for the 15-day
accumulation period was lower than that of the 7-day ac-
cumulation period (Fig S2h–n and p; Table S1). The IITM
ensemble showed correlation above 0.8 over most of the re-
gions in India and generally skill in the Tmax forecast is bet-
ter than that of precipitation. However, all the forecast prod-
ucts showed a negative correlation (OBS and forecast) in the
northern Himalayan region, which can be partially attributed
to sparse gage stations in the complex regions of the Hi-
malayas (Mishra, 2015).

At the 7-day accumulation period, the forecast products
showed a higher MAE in the northwestern arid region, Hi-
malayan range, and Western Ghats (Fig. S3). The IITM prod-
ucts and the ensemble mean showed improvement in MAE,
which was contributed by enhancements in spatial resolution
and bias corrected inputs (SST) in IITM models (Fig. S3a–g

www.hydrol-earth-syst-sci.net/21/707/2017/ Hydrol. Earth Syst. Sci., 21, 707–720, 2017



712 R. Shah et al.: Short to sub-seasonal hydrologic forecast to manage water and agricultural resources in India

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

10˚

15˚

20˚

25˚

30˚

35˚

Lead−7

(a) GEFSv2

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

(b) CFSv2

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

10˚

15˚

20˚

25˚

30˚

35˚(c) IITM 
Ensemble

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

10˚

15˚

20˚

25˚

30˚

35˚ (d) IITM
GFST126

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

(e)IITM
CFST126

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

(f) IITM
GFST382

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

10˚

15˚

20˚

25˚

30˚

35˚(g) IITM
CFST382

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

10˚

15˚

20˚

25˚

30˚

35˚

Lead−15

(h) GEFS

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

(i) CFS

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

10˚

15˚

20˚

25˚

30˚

35˚(j) IITM 
Ensemble

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

10˚

15˚

20˚

25˚

30˚

35˚ (k) IITM
GFST126

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

(l)IITM
CFST126

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

(m) IITM
GFST382

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

10˚

15˚

20˚

25˚

30˚

35˚(n) IITM
CFST382

−0.30 0.00 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.68

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
or

re
la

tio
n

(o) Lead−7 days

05/16 06/05 06/20 07/05 07/20 08/04 08/19 09/03 09/18

GEFSv2 CFSv2 IITM_ensemble

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
C

or
re

la
tio

n
(p) Lead−15 days

05/16 06/05 06/20 07/05 07/20 08/04 08/19 09/03 09/18

IITM_GFST126 IITM_CFST126IITM_GFST382 IITM_CFST382

Figure 1. Correlation between precipitation forecasts and observed precipitation (OBS). (a) Correlation between precipitation forecast from
the GEFSv2 accumulated up to a 7-day accumulation period and the corresponding OBS. (b) Same as (a) but for the CFSv2. (c) Same as (a)
but for the IITM ensemble. (d) Same as (a) but for the IITM GFST126. (e) Same as (a) but for the IITM GFST382. (f) Same as (a) but
for the IITM CFST382. (h–n) Same as (a–f) but for an accumulation period of 15 days. (o) All-India median correlation between different
precipitation forecasts at a 7-day accumulation period and the corresponding OBS for the forecasts initiated on different dates. (p) Same
as (o) but for an accumulation period of 15 days (period: 2001–2009).

and o; Table S1). Overall, the IITM ensemble showed lower
MAE for most of the forecast dates during the monsoon sea-
son (Fig. S3o and Table S1). Moreover, the IITM ensemble
showed a lower all-India median MAE (1.2 ◦C) as compared
to GEFSv2 (2.0 ◦C) and CFSv2 (1.7 ◦C) for the 15-day ac-
cumulation period (Fig. S3h–n and p). Similar to the 7-day

accumulation period, the all-India median MAE in Tmax was
the lowest in the IITM ensemble for the 15-day accumula-
tion period. CFSv2 models showed better skill in Tmax than
GEFSv2, which is consistent with the findings of R. D. Shah
and Mishra (2016).
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Similar to precipitation and Tmax, forecast skill was esti-
mated based on correlation and MAE for minimum tempera-
ture (Tmin). Tmin from all the forecast products showed lower
correlation with OBS as compared to precipitation and Tmax
in July–August (Fig. S4). For Tmin, GEFSv2 (correlations for
the accumulation period of 7 days: 0.55; and the accumula-
tion period of 15 days: 0.52) and the IITM ensemble (corre-
lation 0.52 and 0.48 for 7 and 15 days) showed comparable
skill (Table S1). For Tmax and Tmin forecasts, the IITM en-
semble showed lower all-India median MAE as compared
to GEFSv2 (Figs. S3 and S5; Table S1). Predictions of Tmin
from all the products showed weaker performance than Tmax,
which was also reported in R. D. Shah and Mishra (2016).
The difference in the performance of Tmax and Tmin can be
explained as Tmax is mostly governed by partitioning of the
energy budget which can be simulated by land surface mod-
els, whereas Tmin depends on nighttime boundary conditions
and the presence of clouds in infrared losses (which may be
difficult to simulate) (Pattantyus-Abraham et al., 2004; Pit-
man and Perkins, 2009). Overall, predictions of Tmin from all
the forecast products showed higher errors in the northwest
and the Himalayan range and, for most of the cases, the IITM
ensemble outperformed the other forecast products (Fig. S5).

3.1.2 Lead time 30 and 45 days

Since GEFSv2 reforecast is available only up to a lead time
of 16 days, our comparison for the accumulation periods of
30 and 45 days was limited to the forecast products from
the IITM and CFSv2. The four IITM products and their
ensemble mean showed comparatively better (though not
significant) correlations with OBS as compared to CFSv2
(Fig. S6, Table S1). We found that the correlations were
higher than 0.5 in the majority of western and central In-
dia, indicating a reasonable skill at the 30-day accumula-
tion period in the IITM ensemble. However, at the 45-day
accumulation period, satisfactory forecast skill can only be
seen in the arid and semi-arid regions, where precipitation
amount is substantially lower than the other regions in India
(Fig. S6). These results indicate that, based on correlations,
reasonable skill can be obtained in the precipitation forecast
from the IITM products. Precipitation forecast at the accu-
mulation periods of 30 and 45 days showed spatial patterns
similar to that of MAE, as were observed for the accumula-
tion periods of 7 and 15 days (Fig. S7). The IITM ensem-
ble showed an improvement in error over CFSv2 in the ma-
jority of India (Fig. S7). The IITM ensemble mean showed
lower error for the accumulation periods of 30 and 45 days
(Fig. S7m and n). This improvement in correlation and MAE
can be attributed to the finer resolution of the models and
bias corrected SSTs, as shown by the IITM-CFST382 and
IITM-GFST382 in comparison to IITM-GFST126, IITM-
CFST126, GEFSv2, and CFSv2.

Prediction of Tmax from the IITM ensemble showed sig-
nificant and higher correlation with OBS at the 30-day accu-

mulation period, with a major contribution from the IITM-
GFST382 product (Fig. S8). We notice that the IITM ensem-
ble showed correlations of more than 0.6 for the majority of
India between OBS and predicted Tmax at the 30-day accu-
mulation period. At the 45-day accumulation period, corre-
lation decreases (in comparison to the 30-day accumulation
period); however, predictions of Tmax from the IITM ensem-
ble mean showed better skill than CFSv2 with OBS. Spatial
patterns of MAE in Tmax prediction for the accumulation pe-
riods of 30 and 45 days were consistent with spatial patterns
for the accumulation periods of 7 and 15 days, indicating
larger errors in predicted Tmax in the northern and western
parts of the country (Fig. S9). Predictions of Tmin showed
lower correlation as compared to Tmax (similar to shorter lead
times), especially in the northwestern region, where corre-
lations were negative (Fig. S10). Predictions of Tmin from
the IITM-GFST126 and GFST382 showed better correlation
in the southern peninsula. Spatial patterns of MAE in Tmin
predictions at the accumulation periods of 30 and 45 days
were consistent with spatial patterns for the 7- and 15-day
accumulation periods (Fig. S11). Predictions from the IITM-
CFST382 product showed lower errors as compared to all
the other products (Table S1). Predictions of Tmin from the
IITM ensemble mean showed lower error (30-day accumula-
tion period: 0.9; and 45-day accumulation period: 1.1 ◦C) as
compared to CFSv2 (1.2 and 1.2 ◦C for the 30- and 45-day
accumulation periods) (Table S1). Overall, the IITM ensem-
ble performs better than GEFSv2 and CFSv2 for all the accu-
mulation periods (7–45 days). Moreover, the IITM ensemble
mean also outperforms other products from the IITM in most
of the cases in terms of their individual performance.

Since the IITM ensemble performed better than the other
forecast products from the IITM, the performance of the
IITM ensemble was compared against CFSv2 for 7–45-day
accumulation periods (Fig. 2). Since the forecast skill de-
clines with the lead time, we discuss forecast skill at a 45-
day accumulation period in detail, and results for the other
leads are presented in Fig. S12. At the 45-day accumulation
period, correlation in the precipitation forecast from CFSv2
is more than 0.2 only in a few regions (mainly centered in
northern and western India) (Fig. 2a). The IITM ensemble
showed a correlation (∼ 0.3) higher than CFSv2 (Fig. 2b)
in most of the regions, especially during the July–August
months (Fig. 2c). For the Tmax and Tmin forecasts, the IITM
ensemble showed higher correlations than CFSv2 in the ma-
jority of India (Fig. 2d, e, g, h). We found that the difference
in forecast skill from the IITM ensemble and CFSv2 is higher
for longer accumulation periods. At the 7-day accumulation
period, precipitation forecast from CFSv2 and the IITM en-
semble showed a correlation of more than 0.6 in most regions
in India; therefore, for shorter accumulation periods, the dif-
ference in the forecast skill of CFSv2 and the IITM ensemble
is moderate (Fig. S12a). For 15- and 30-day accumulation
periods, the difference in correlations shown by CFSv2 and
the IITM ensemble was higher than for the 45-day accumu-
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Figure 2. Improvements in correlations in the IITM ensemble forecast in comparison to CFSv2 for the 45-day accumulation period. (a) Cor-
relation between precipitation forecast from the CFSv2 and OBS. (b) Change in the correlation coefficient of the precipitation forecast from
the IITM ensemble and OBS as compared to (a). Correlations in (a) and (b) are the median of correlations for the different forecast dates
during the monsoon season. (c) All-India averaged median correlation for forecasts initiated on different forecast dates. (d–f) is the same
as (a–c) but for daily maximum temperature, and (g–i) is the same as (a–c) but for daily minimum temperature.

lation period (Figs. S13 and S14). These results show that the
IITM ensemble forecast of precipitation, Tmax, and Tmin have
better skill than CFSv2 for the majority of India, which can
be used for hydrologic prediction of runoff and soil moisture
that can be valuable for decision making of water resources
and agriculture. Moreover, for the 30- and 45-day accumu-
lation periods, the IITM ensemble showed relatively better
forecast skill than that of CFSv2.

3.2 Performance of the bias corrected IITM ensemble

Our results show that the bias correction resulted in a re-
duction in all-India median MAE in precipitation predictions
for all the forecast dates during the monsoon season months
(Fig. 3c), especially in the Himalayan range and the north-
eastern region (Fig. 3a and b). We find substantial improve-
ments in the MAE of maximum and minimum temperatures
after the bias correction (Fig. 3d and e). For instance, all-
India median MAE was reduced for all the forecast dates af-
ter the bias correction (Fig. 3f). Median reduction in MAE
for all dates was observed as 2.1 ◦C. We find that the bias cor-

rection substantially improved temperature forecast from the
IITM ensemble. This improvement in temperature forecast
can be valuable for hydrologic applications. For instance,
air temperature influences the energy budget in hydrologic
models and therefore can affect the partitioning of evapotran-
spiration and runoff. Due to high intraseasonal variability in
the monsoon season precipitation, bias correction resulted in
only marginal improvements in the precipitation forecast.

We find that linear scaling improved negative bias in pre-
cipitation forecast in central India and the Western Ghats
and positive bias in the Himalayan range and the southern
peninsula. During the testing period (1 year), improvement in
bias is consistent with the training period (9 years; Fig. S15c
and d). Improvements in the correlation of all-India aver-
age precipitation predictions from the IITM ensemble before
and after bias correction can be noticed (Fig. S16). At a 45-
day accumulation period a substantial improvement was no-
ticed as compared to other accumulation periods (Fig. S16d).
Overall, we noticed that the IITM ensemble mean showed
improved forecast skill after the bias correction for most of
the regions. We bias corrected the forecast products for the

Hydrol. Earth Syst. Sci., 21, 707–720, 2017 www.hydrol-earth-syst-sci.net/21/707/2017/



R. Shah et al.: Short to sub-seasonal hydrologic forecast to manage water and agricultural resources in India 715

10˚

15˚

20˚

25˚

30˚

35˚

PCP

(a) Raw

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

10˚

15˚

20˚

25˚

30˚

35˚ (b) Corrected

0

1

2

3

4

5

6

7

2

3

E
rr

or
 (

m
m

2

3

E
rr

or
 (

m
m

(c) 

05
/1

6

06
/0

5

06
/2

0

07
/0

5

07
/2

0

08
/0

4

08
/1

9

09
/0

3

09
/1

8

2

3

E
rr

or
 (

m
m

 d
ay

  )

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

10˚

15˚

20˚

25˚

30˚

35˚

Tmean

(d) Raw

70˚ 75˚ 80˚ 85˚ 90˚ 95˚

10˚

15˚

20˚

25˚

30˚

35˚(e) Corrected

0.0

0.5

1.0

1.5

2.0

2.5

1

2

3

E
rr

or
 (

0 C
)

1

2

3

E
rr

or
 (

0 C
)

(f) 

05
/1

6

06
/0

5

06
/2

0

07
/0

5

07
/2

0

08
/0

4

08
/1

9

09
/0

3

09
/1

8

1

2

3

E
rr

or
 (

0 C
)

-1

Figure 3. Median absolute error (MAE) in forecast at the 45-day
accumulation period from the IITM ensemble before and after bias
correction. (a, b) Median (of all forecast dates) MAE (mm day−1)
in precipitation forecast before and after bias correction. (c) Com-
parison of the all-India median MAE for each forecast date. (d–f)
Same as (a–c) but for daily mean temperature in ◦C.

accumulation period of 45 days. However, the bias in the
forecast products may have temporal variability and may not
be constant for the entire period of 45 days. Therefore, bias
correction approaches based on the variable lead time (Stock-
dale, 1997) need to be evaluated in future when IITM fore-
cast for a long-term retrospective period is available. How-
ever, the bias correction approach that we presented can be
applied to evaluate seasonal forecast skill.

3.3 Prediction of soil moisture and total runoff

The VIC model was calibrated and evaluated using ob-
served streamflow, satellite soil moisture and evapotranspi-
ration (H. L. Shah and Mishra, 2016; R. D. Shah and Mishra,
2016). In this study, we used the calibrated VIC model forced
with observed IMD data to simulate soil moisture and runoff,
which was considered as a reference to evaluate the forecast
of soil moisture and runoff. Forecast of root-zone soil mois-
ture and runoff was simulated using the VIC model forced
with the forecast products (IITM ensemble-bc, IITM ensem-

ble, and CFSv2), which were evaluated against the soil mois-
ture/runoff obtained from the VIC model simulation using
the observed forcing from the IMD (Fig. S17). For all the
forecast dates, predicted root-zone soil moisture (top 60 cm
soil moisture; Fig. S14) showed a higher correlation than to-
tal runoff (Fig. S17), which is due to a higher persistence in
soil moisture as compared to runoff (R. D. Shah and Mishra,
2016). The bias corrected IITM ensemble showed higher cor-
relations than the uncorrected IITM ensemble and CFSv2.
The CSI of predicting the dry anomaly in precipitation using
the IITM ensemble was higher in the northwestern region but
lower in the Himalayan range and southern peninsula as com-
pared to CFSv2, which is consistent with the results based on
correlation and MAE (Fig. 4). The bias corrected IITM en-
semble showed an improved CSI in comparison to the raw
forecast from the IITM ensemble and CFSv2 for the major-
ity of the regions in India. However, the CSI of predicting
warm temperature anomalies was lower than that of the CSI
of predicting dry precipitation anomalies (Fig. 4), especially
in the Himalayan range. This can be due to higher uncertainty
among observations in this region (Mishra, 2015). The CSI in
runoff and soil moisture is higher as compared to precipita-
tion and temperature due to persistence in initial hydrologic
conditions (Fig. 4). For the 7-, 15- and 30-day accumulation
periods the CSI is higher than that of the 45-day accumula-
tion period (Fig. S18). We observed that as the accumulation
period was increased from 7 to 45 days, the CSI of runoff
declines in the arid and semi-arid regions of the northwest.
Overall, we found that the bias correction of the forecast im-
proves the CSI of precipitation, temperature, total runoff, and
soil moisture anomalies in India.

To show the utility of bias corrected forecast in hydro-
logic prediction in India, we analysed the forecast for one of
the recent drought years in India. Anomalies of total runoff
and root-zone soil moisture predicted on 15 July 2009 for
the 45-day accumulation period using the VIC model with
the bias corrected IITM ensemble forecast were compared
against the observed anomalies (Fig. 5). Forecast of these hy-
droclimatic anomalies at a sufficient lead time can be help-
ful in decision making related to water resources and agri-
culture. We found that the IITM ensemble-bc successfully
captured the spatial pattern of observed anomalies, which
demonstrates the utility of hydroclimatic forecast for vari-
ous applications. Persistence in initial hydrologic conditions
simulated using the observed forcing and the ability of the
IITM ensemble-bc to capture anomalies in precipitation and
temperature (Fig. S19) resulted in an improved forecast of
total runoff and root-zone soil moisture in the majority of
regions in India. However, some overestimation in the areal
extent and severity of hydroclimatic anomalies can be noted
in central India. These results show that the framework de-
veloped using the IITM ensemble-bc forecast and the VIC
model can be used to predict runoff and soil moisture up to a
45-day accumulation period of forecast. Early warning based
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Figure 4. Critical success index (CSI, averaged for forecast dates) of predicting precipitation (a–c), temperature (d–f), runoff (g–i), and soil
moisture (j–l) anomalies with respect to the observed anomalies for CSFv2, the IITM ensemble, and the bias corrected IITM ensemble (IITM
ensemble_bc).

on predictions can be helpful in decision making in the water
resource and agricultural sectors so as to minimize risk.

4 Summary and conclusions

Hydrologic forecast at the 7–45-day accumulation period is
essential for decision making in agriculture and water re-
sources. Considering the importance of hydrologic predic-
tion in India, we evaluated CFSv2, GEFSv2, and forecast
products from the IITM. We found that meteorological vari-
ables predicted using the IITM products, especially the IITM
ensemble, showed better forecast skill than the other two
(CFSv2 and GEFSv2) products for all the accumulation pe-
riods (7, 15, 30, and 45 days) during the monsoon season.
We observed improved skills for the accumulation periods of

30 and 45 days by using the IITM ensemble in comparison
to CFSv2, which may be associated with the improvement
in model resolution and initial conditions used at the IITM.
For instance, Roxy et al. (2015) reported that CFSv2 has a
cold bias of 2–3 ◦C in SSTs which may lead to a dry bias in
the monsoon season in India. Abhilash et al. (2014a) showed
that forcings from the GFS and CFS models with bias cor-
rected SSTs lead to improvement in predictability over the
Indian region, and that is due to improvement in the ability
to capture active and break spells. The IITM ensemble per-
forms better than individual IITM products for most of the
selected forecast dates. This is consistent with the findings of
Palmer et al. (2004) and Kirtman et al. (2014), where they
reported that the multimodel ensemble outperforms the indi-
vidual model. One of the limitations of the evaluation of the
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Figure 5. Predicted anomalies of hydrologic variables for the forecast initiated on 15 July 2009 for the accumulation periods of 7, 15, 30, and
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using the bias corrected IITM ensemble for the accumulation period of 7 days. (c, d) Same as (a, b) but for root-zone soil moisture. (e–p)
Same as (a)–(d) but for the accumulation periods of 15, 30, and 45 days, respectively.

forecast products in this study is the small sample size. The
evaluation of all the forecast products was based on 10 com-
mon years between all products and nine forecast dates dur-
ing the monsoon season. Increasing the sample size in fu-
ture based on the availability of forecasts for a longer pe-
riod may further improve evaluation and the bias correction.
Our results showed higher forecast skill in the IITM ensem-
ble, which might be associated with its ability to capture in-
traseasonal variability of rainfall during the monsoon season.
The major factors that might have contributed in the improve-
ments in the IITM forecast are the following.

i. Ensemble members of the IITM forecast are generated
by perturbing initial atmospheric conditions to improve
simulation of northward propagation.

ii. Improvements in the boundary conditions with bias cor-
rected SST result in improved precipitation prediction.

iii. A higher spatial resolution of the IITM forecast can bet-
ter resolve orographic rainfall.

We evaluated the performance of the bias corrected fore-
cast from the IITM ensemble for accumulation periods of
up to 45 days. Linear scaling of precipitation forecast and
Q–Q mapping of temperature forecast resulted in reduced
errors and bias in forecast in India. Linear scaling precipi-
tation with multifold validation showed an improvement in
the Himalayan range and southern central region. Bias cor-
rection of precipitation and air temperatures resulted in an
improvement of about 2.1 mm and 2.1 ◦C, respectively, in
the all-India median of mean absolute error. Total runoff
and root-zone soil moisture forecasts obtained using the cor-
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rected IITM ensemble showed higher skill as compared to
CFSv2 and a raw IITM ensemble for an accumulation pe-
riod of up to 45 days. We found that the all-India median
CSI for runoff forecast was improved from 0.63 to 0.71 after
bias correction, while the CSI of soil moisture forecast was
improved from 0.6 to 0.67 for a 45-day accumulation period.

Using forcing from the IITM ensemble and the VIC
model, anomalies in precipitation, temperature, root-zone
soil moisture, and total runoff were successfully predicted,
which can be used in decision making in water resources and
agriculture. The bias corrected forecast from the IITM en-
semble, which outperforms GEFSv2 and CFSv2, can be used
to develop a hydrologic prediction platform for India. Infor-
mation on forecast of anomalies in 7–45 days’ advance with
the existing drought monitoring system in India (Shah and
Mishra, 2015) can be valuable for decision making in water
resources and agriculture. The hydrologic prediction based
on the IITM ensemble and the VIC model can provide a basis
for predicting both meteorological and hydrological anoma-
lies and the information can be provided to farmers and water
managers. The forecast of root-zone soil moisture along with
precipitation and temperature anomalies can be used for ir-
rigation planning. Moreover, runoff forecast at the 7–45-day
accumulation period can be valuable for water managers in
India.

5 Data availability

Gauge-based gridded precipitation and temperature can
be obtained from the India Meteorological Department
(http://www.imd.gov.in/WelcomeToIMD/Welcome.php).
The NOAA’s GEFSv2 reforecast data are available from
NCEP (ftp://ftp.cdc.noaa.gov/Projects/Reforecast2/).
The CFSv2 data are available from NCEP (https:
//nomads.ncdc.noaa.gov/data/cfsr-rfl-ts9/). IITM’s
Forecast product can be obtained from the IITM
(http://www.tropmet.res.in/).

The Supplement related to this article is available online
at doi:10.5194/hess-21-707-2017-supplement.
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