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Abstract. The primary objective of this study is to develop a
stochastic rainfall generation model that can match not only
the short resolution (daily) variability but also the longer res-
olution (monthly to multiyear) variability of observed rain-
fall. This study has developed a Markov chain (MC) model,
which uses a two-state MC process with two parameters
(wet-to-wet and dry-to-dry transition probabilities) to sim-
ulate rainfall occurrence and a gamma distribution with two
parameters (mean and standard deviation of wet day rain-
fall) to simulate wet day rainfall depths. Starting with the
traditional MC-gamma model with deterministic parameters,
this study has developed and assessed four other variants of
the MC-gamma model with different parameterisations. The
key finding is that if the parameters of the gamma distribu-
tion are randomly sampled each year from fitted distributions
rather than fixed parameters with time, the variability of rain-
fall depths at both short and longer temporal resolutions can
be preserved, while the variability of wet periods (i.e. num-
ber of wet days and mean length of wet spell) can be pre-
served by decadally varied MC parameters. This is a straight-
forward enhancement to the traditional simplest MC model
and is both objective and parsimonious.

1 Introduction

Observed rainfall data generally provide a single realisation
of a short record, often not more than a few decades. The
direct application of these data in hydrological and agricul-
tural systems may not provide the necessary robustness in
identification and implication of extreme climate conditions
(e.g. droughts, floods). In particular, for urban water secu-
rity analysis of reservoirs, long-term hydrologic records are
required to sample extreme droughts that drive the security
of the urban system (Mortazavi et al., 2013). However, the
observed data may still be suitable to calibrate stochastic
rainfall models that can, in turn, be used to generate long
stochastic streamflow sequences for use in reservoir reliabil-
ity modelling. In addition to historical and current scenarios,
the stochastic models are useful to evaluate the climate and
hydrological characteristics of future climate change scenar-
ios (Glenis et al., 2015).

There is a major issue in the use of stochastic daily rain-
fall models. The daily models generally preserve the short-
term daily rainfall variability (since they are calibrated to the
daily resolution data) but tend to underestimate the longer-
term rainfall variability of monthly and multiyear resolutions
(Wang and Nathan, 2007). Such underestimation is critically
important for the application of these models in hydrologi-
cal planning and design. Preserving the long-term variabil-
ity is important for drought security analysis of reservoirs
because the reservoir water levels usually vary at monthly
to multiyear resolutions. The underestimation of longer-term
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variability of rainfall may cause an overestimation of reser-
voir reliability in urban water planning (Frost et al., 2007).
Therefore, preserving key statistics of wet and dry spells, and
rainfall depths in daily to multiyear resolutions, is important
in stochastic rainfall simulation.

Markov chain (MC) models are very common for stochas-
tic rainfall generation. A typical MC rainfall model is com-
posed of two parts: a rainfall occurrence model that uses a
transition probability between wet and dry days, and a rain-
fall magnitude model that uses a probability distribution of
wet day rainfall depths (commonly a gamma distribution)
fitted to the observed data. The two-part MC-gamma model
is one of the most popular parametric models for daily rain-
fall simulation, primarily proposed by Richardson (1981) and
known as WGEN (weather generator). In addition to rainfall,
the WGEN also simulates temperature and solar radiation.
While other models such as point process models (Cowpert-
wait et al., 1996) are also used for stochastic rainfall genera-
tion, this study has focused on MC-type models.

The first component of the MC model defines wet and dry
days. This is determined by the state and order of the Markov
process. Most MC models (Richardson, 1981; Dubrovský et
al., 2004) use a simple two-state, first-order approach, that is,
a day can be either “wet” or “dry” (two-state) and the state of
the current day is only dependent on the state of the preced-
ing day (first-order). Other models use higher states and or-
ders; examples include the four-state model (Jothityangkoon
et al., 2000), the alternating renewal process model with
negative binomial distribution of wet and dry spell lengths
(Wilby et al., 1998), the bivariate mixed distribution model
(Li et al., 2013), and the multi-order model (Lennartsson
et al., 2008). These models are more complex as the num-
ber of parameters required in the model increases with the
number of states and orders of the Markov process. How-
ever, the two-state, first-order MC model can often repro-
duce the statistics of wet and dry periods just as well as
these higher state/order models (Chen and Brissette, 2014).
Dubrovský et al. (2004) recommended that, rather than try-
ing an increased order MC, one should consider other ap-
proaches for better reproduction of wet and dry days. Mehro-
tra and Sharma (2007) proposed a modified MC process us-
ing memory of past wet periods, which has been found to
reproduce the wet and dry spell statistics reasonably well.
They also tested a first-order and a second-order process in
their modified MC model and found that the second-order
process provided only marginal improvements over the first-
order process. Another important finding of Dubrovský et
al. (2004) was that the order of MCs generally had no effect
on the variability of monthly rainfall depths.

The second component of the MC model is the prob-
ability distribution for the wet day rainfall. As the distri-
bution of wet day rainfall is generally right-skewed (Hun-
decha et al., 2009), it is common practice to use right-
skewed exponential-type distributions. Common distribu-
tions include the gamma distribution (Wang and Nathan,

2007; Chen et al., 2010), Weibull distribution (Sharda and
Das, 2005), truncated normal distribution (Hundecha et al.,
2009), and kernel-density estimation techniques (Harrold et
al., 2003). A number of other studies fitted a mixture of
two or more distributions; for example, the mixed expo-
nential distribution (Wilks, 1999a; Liu et al., 2011), gamma
and generalised Pareto distribution (Furrer and Katz, 2008),
and transformed normal and generalised Pareto distribution
(Lennartsson et al., 2008). However, the gamma distribution
is the most commonly used distribution, because it has only
two parameters, that can be calculated from the mean and
standard deviation (SD) of wet day rainfall, and adequately
represent the rainfall probability distribution functions. The
parameterisation and application of the distribution in the
model is straightforward. Although the gamma distribution
has been found to be appropriate for simulating most of the
variability in rainfall depth (Bellone et al., 2000), the major
drawback of using a gamma distribution is that its tail is too
light to capture heavy rainfall intensities (Vrac and Naveau,
2007). Therefore, direct use of a gamma distribution usually
causes an underestimation of SD and extreme rainfall depths
at monthly to multiyear resolutions.

A number of methods have been developed in an attempt
to resolve the underestimation of long-term variability. The
major approaches for resolving this issue include (i) models
with mixed distributions, (ii) nesting-type models, (iii) mod-
els with rainfall-climate index correlation, and (iv) models
with modified Markov chains.

The models with mixed distributions concentrate on the
upper tail behaviour of the probability distribution of wet
day rainfall depths. Since a single component distribution
cannot incorporate the extreme rainfall depths well, a mix-
ture of distributions is introduced. In these models, rainfall
above a threshold depth is defined as “extreme” and two sep-
arate distributions are used to simulate the “extreme” and
“small” rainfall amounts. Wilks (1999b) proposed a mixture
of two exponential distributions with one shape parameter,
but two scale parameters which are used to incorporate the
extreme and small rainfall depths. In other models, the “ex-
treme” rainfall depths are modelled by a generalised Pareto
distribution (Vrac and Naveau, 2007) or a stretched exponen-
tial distribution (Wilson and Toumi, 2005), while small rain-
fall depths are modelled by a gamma distribution. Nonethe-
less, these models have difficulty in objectively defining the
threshold corresponding to the “extreme value”. Wilson and
Toumi (2005) defined extreme rainfall as daily totals with
an exceedance probability less than 5 %. Although Vrac and
Naveau (2007) used a dynamic mixture to avoid choos-
ing a threshold for “extreme”, Furrer and Katz (2007) de-
scribed the method as over-parameterised. Recently, Naveau
et al. (2016) proposed a new model with a smooth transition
between the “small rainfall” and “extreme rainfall” simula-
tion process to generate low, moderate, and heavy rainfall
depths without selecting a threshold.
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Nesting models adjust the daily rainfall series at differ-
ent temporal resolutions to obtain statistics that are optimal
for all resolutions. These models initially generate a daily
rainfall series, which is then modified to adjust the monthly
and yearly statistics. Several models (Dubrovský et al., 2004;
Wang and Nathan, 2007; Srikanthan and Pegram, 2009; Chen
et al., 2010) use the nesting method. They generally generate
a daily rainfall series, then the generated daily rainfall data
are aggregated to monthly rainfall values, and these monthly
values are modified by a lag–1 autoregressive monthly rain-
fall model. The modified monthly rainfall values are aggre-
gated to annual rainfall values and these values are then mod-
ified by another lag–1 autoregressive annual model (Srikan-
than and Pegram, 2009). The nesting-type models gener-
ally perform well to reproduce the rainfall variability at all
resolutions. Dubrovský et al. (2004) also showed satisfac-
tory performance of their nesting-type model to reproduce
the variability of monthly streamflow characteristics and the
frequency of extreme streamflow. Although the nesting-type
models preserve the daily, monthly and yearly statistics, they
are generally based on subjective statistical adjustments and
thus have a weak physical basis.

Some parametric models introduced the influence of large-
scale climate mechanisms such as the El Niño/Southern Os-
cillation (ENSO) in parameterisation (Hansen and Mavroma-
tis, 2001; Furrer and Katz, 2007). Bardossy and Plate (1992)
used the correlation between atmospheric circulation pat-
terns and rainfall in a transformed conditional multivariate
autoregressive AR(1) model for daily rainfall simulation.
Katz and Parlange (1993) developed a model with parame-
ters conditioned on the ENSO indices. Yunus et al. (2016)
developed a generalised linear model for daily rainfall by us-
ing ENSO indices as predictors. Although the climate indices
were often not strongly correlated to the rainfall, Katz and
Zheng (1999) described it as a diagnostic element to detect a
“hidden” (i.e. unobserved) index, which could be used to ob-
tain long-term variability. Thyer and Kuczera (2000) devel-
oped a hidden state MC model for annual data, while Ramesh
and Onof (2014) developed a hidden state MC model for
daily data. The major drawback of this model approach is
that the hidden index is unobserved and its origin is un-
known.

Modified MC models concentrate not only on the order of
MC but also introduce modifications to the parameterisation
of the MC process to better reproduce the rainfall variability.
The transition probabilities are generally modified by consid-
ering their long-term variability (i.e. memory of past wet and
dry periods), and the wet day rainfall depth is modelled using
a nonparametric kernel-density simulator conditional on pre-
vious day rainfall (Lall et al., 1996; Harrold et al., 2003).
The nonparametric kernel-density techniques usually used
resampling of observed data (Rajagopalan and Lall, 1999).
While these models perform reasonably well, they usually
cannot generate extreme values higher than the observed ex-
tremes, because only the original observations are resam-

pled in the model (Sharif and Burn, 2006). Mehrotra and
Sharma (2007) proposed a semi-parametric Markov model,
which was further evaluated by Mehrotra et al. (2015). To in-
corporate the long-term variability, they modified the transi-
tion probabilities of the MC process by taking the memory of
past wet periods (i.e. beyond lag–1) into account, while the
wet day rainfall depths were simulated by a nonparametric
kernel-density process. For rain gauge data around Sydney,
the semi-parametric model preserved the rainfall variability
at daily to multiyear resolutions (Mehrotra et al., 2015).

The MC models that focus specifically on resolving the
underestimation of long-term variability involve subjective
assumptions and limitations. In the models with mixed distri-
butions, defining a certain rainfall depth as an extreme value
is subjective. The nesting-type models used empirical adjust-
ment factors, generally without physical foundation. The hid-
den indices of hidden state MC models are unobserved. The
models with modified MC parameters, modified the transi-
tion probabilities of wet and dry periods to obtain long-term
variability, but used the kernel-density technique to resam-
ple wet day rainfall depths from observed records. Therefore,
they usually cannot generate more extreme values than the
observed extremes.

The overarching objective of the research, that this paper
forms part of, is to develop a stochastic rainfall generator that
can be calibrated to daily rainfall data derived from dynami-
cally downscaled global climate simulations, and which also
preserves long-term variability (Evans et al., 2014). A com-
mon problem with these simulations is that typical compu-
tational CPU limits mean that the length of the simulation is
rarely more than a few decades, not long enough to facili-
tate stochastic assessment of the reliability of water supply
reservoirs (e.g. Lockart et al., 2016). Accordingly, we need a
rainfall simulator that can be calibrated and run at the daily
timescale (to be used as input into a hydrology model at the
daily resolution), but which has the right statistical properties
(specifically variability about the mean) when averaged over
periods up to a decade. In this paper, we develop and test five
models using observed rainfall at two sites in Australia with
contrasting climates.

Accordingly, this study details the development of a MC
model for stochastic generation of daily rainfall. This MC
model uses a two-state MC process with two parameters
(wet-to-wet and dry-to-dry transition probabilities) for sim-
ulating rainfall occurrence and a two-parameter gamma dis-
tribution (mean and SD of wet day rainfall) for simulating
wet day rainfall depths. Five variants of the MC model, with
gradually increasing complexity of parameterisation, are de-
veloped and assessed. Starting with a very simple model
against which the performances of the other models will be
compared. Each of the successive models provide better per-
formance in reproducing the variability and dependence of
observed rainfall over the range of resolutions from day to
decade, and we assess the incremental improvements in per-
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Figure 1. Location map of 12 rain gauge stations around Australia.
This study has presented the assessment results of the developed
models for Sydney and Adelaide stations (red circled) only. The
shaded green, yellow, and red colours indicate the coastal, inland,
and monsoonal areas, respectively.

formance against the incremental increases in model com-
plexity.

2 Data and study sites

This study has used daily rain gauge data from Sydney Ob-
servatory Hill and Adelaide Airport stations (station num-
ber 66062 and 023034, respectively) obtained from the Bu-
reau of Meteorology (BoM), Australia (Fig. 1) for 1979–
2008 (BoM, 2013). These two stations have been used be-
cause they provide a contrast between a highly seasonal
Mediterranean climate with low interdecadal variability in
Adelaide and a relatively non-seasonal climate with high
interdecadal variability in Sydney (see Fig. 2). Risbey et
al. (2009) also showed that the major climate drivers of rain-
fall (e.g. ENSO) in Sydney and Adelaide are different for
all seasons. This paper also used the Oceanic Nino Index
(ONI) and the Interdecadal Pacific Oscillation (IPO) index at
monthly resolution for the 1979–2008 period (Folland, 2008;
NOAA, 2014). These climate indices are used to develop two
variants of the MC models discussed in Sect. 4.2.2.

3 Model assessment procedures

3.1 Statistics for assessment of model performance

Each model developed in this study has been assessed to un-
derstand its ability to reproduce the distribution and autocor-
relation of observed rainfall. Assessment of the distribution
and autocorrelation are generally used to inform the suitabil-
ity of the model for urban drought security assessment. The
assessment criteria of each model consider its ability to re-

produce (i) mean, SD, and 95th percentile of rainfall depths
at daily to multiyear resolutions; (ii) mean and SD of the
number of wet days and mean length of wet spells at monthly
to multiyear resolutions; and (iii) month-to-month autocor-
relations of monthly rainfall depths and monthly number of
wet days. The performances of the MC models for dry pe-
riod statistics are found to be similar to the wet period statis-
tics (the term “wet period statistics” will hereafter refer to
the number of wet days and mean length of wet spells), and
hence, only representative results for annual mean length of
dry spells are shown.

At daily and monthly resolutions, the distribution statistics
are assessed for each month starting from January; while at
multiyear resolutions, the distribution statistics are assessed
for 1 to 10 overlapping years. Mean length (in days) of wet
spells are calculated at monthly, and annual resolution by ex-
tracting wet spells of one or more consecutive wet days (two
successive wet spells are separated by at-least one dry day)
and using Eq. (1):

mean lengthofwet spell =
∑
(lengthofwet spells)∑

(occurrencesofwet spells)
. (1)

Similar to wet spells, the mean length of dry spells are also
calculated at monthly and annual resolution by extracting dry
spells of one or more consecutive dry days.

3.2 Calculation of Z scores

For the distribution statistics (i.e. mean and SD) of rainfall
depths and wet periods (number of wet days and mean length
of wet spells), this study has calculated the expected value
and error limit (SD) to calculate the Z score of a model sim-
ulation. The calculation of the Z score is as follows:

1. Run the model 1000 times using the probability distri-
bution of the parameters calibrated to the observed data,
with each run being the same length as the observed
data.

2. Calculate the desired statistics (e.g. mean and SD of the
daily rainfall depths) in each run, which gives 1000 re-
alisations of each statistic.

3. For each statistic, calculate the mean (expected value)
and SD (error limit) of the 1000 realisations.

4. Calculate the Z score of each statistic by comparing the
expected value with the respective observed value (cal-
culated from the observed data), as follows:

Z Score=
Observedvalue − Expectedvalue

SD
. (2)

A Z score between−2 and+2 for a statistic indicates that
the observed value falls within the 95 % confidence limits
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of the simulated rainfall, assuming a normal distribution ap-
proximates the sampling distribution of Z. A Z score less
than −2 or greater than +2 suggests that the statistic is over-
or under-estimated, respectively, in the model simulation.

4 Markov chain (MC) models

This study has developed and assessed the following five
variants of a Markov chain (MC) model:

– Model 1: Average Parameter Markov Chain (APMC)
model,

– Model 2: Decadal Parameter Markov Chain (DPMC)
model,

– Model 3: Compound Distribution Markov Chain
(CDMC) model,

– Model 4: Hierarchical Markov Chain (HMC) model,

– Model 5: Decadal and Hierarchical Markov Chain
(DHMC) model.

4.1 Model 1: Average Parameter Markov Chain
(APMC) model

The first MC model – the APMC – is a traditional two-part
MC-gamma distribution model. This is similar to the rainfall
generator proposed by Richardson (1981), widely known as
the WGEN model. The exception is that the parameters in
WGEN were smoothed with Fourier harmonics, which has
not been done in the case of APMC parameters. Although
APMC is not the final model of this study, it is the base-
line modelling approach against which the more sophisti-
cated models developed in this study are compared.

The APMC simulates the daily rainfall in two steps: daily
rainfall occurrence (i.e. wet and dry day) simulation by first-
order Markov chain, and wet day rainfall depth simulation by
gamma distribution. To incorporate the seasonal variability
in the model, the APMC uses a separate set of parameters
for each month, where the first month of the simulation is
January.

4.1.1 Rainfall occurrence simulation

The APMC uses 24 (2 parameters× 12 months) MC param-
eters, and transition probabilities of dry-to-dry day (P00) and
wet-to-wet day (P11) for dry and wet day occurrence simu-
lation. In addition, the unconditional probability of a dry day
(π0) in January is used to simulate rainfall occurrence for
the first day of the series. In the model calibration, these de-
terministic MC parameters are calculated from the observed
daily rainfall data. To calculate these parameters, a day with
rainfall depth of 0.3 mm and above has been considered a wet
day, otherwise it was considered a dry day (similar to Mehro-
tra et al., 2015). In simulation, the MC parameters are used

in a Monte-Carlo process to simulate the occurrences of wet
and dry days.

4.1.2 Rainfall depth simulation

After simulation of the rainfall occurrence using MC param-
eters, the next step is to generate rainfall depths for the wet
days. The rainfall depth for dry days is zero. The APMC rain-
fall depth simulation process assumes that (i) daily rainfall
depth for wet days follows a gamma distribution, and (ii) the
rainfall depth for a wet day is independent of the rainfall
depth of the preceding day.

The gamma distribution has two parameters, α (shape pa-
rameter) and β (scale parameter), with mean µ= αβ and
variance σ 2

= αβ2. Since both αi and βi are directly pro-
portional to and can be derived from µi and σi of wet day
rainfall of the month i, then during calibration of the model
it is convenient to calculate µi and σi values from the daily
rainfall observed data. The appropriate ratios ofµi and σi can
then be used in the rainfall depth generation process using the
gamma distribution. Therefore, µi and σi will be referred to
as the gamma distribution parameters in further discussions
of this paper.

In the calibration of APMC, deterministic average values
of µi and σi are calculated from the entire period of the data
record for each month. This gives 12 values of µ and σ each.
In simulations, the rainfall depth for each wet day of a month
i is generated using the µi and σi values of the respective
month using the gamma distribution. In generating the rain-
fall depth for a wet day, if a random sample from the gamma
distribution gives a rainfall depth less than 0.3 mm then the
rainfall for that day is set to 0.3 mm (i.e. the threshold rain-
fall depth), while the rainfall depths for dry days are set to
0.0 mm. Chowdhury (2017) showed that setting rainfall be-
low 0.3 mm to 0.3 mm for the lowest rainfall depth does not
significantly affect the overall distribution of modelled rain-
fall depths.

4.1.3 Independence of rainfall depths in successive wet
days

The APMC assumes that the rainfall depth for a particular
day is independent of the rainfall depth of the preceding day.
To validate this assumption, this study examined the auto-
correlation of wet day rainfall depths, and only found very
weak lag–1 autocorrelations (r2 < 0.1) for both Sydney and
Adelaide. This finding is consistent irrespective of seasonal
variations. The conclusion is that the underlying assumption
of daily independence of the APMC is consistent with the
respective characteristic of the observed data.

4.2 Model 2: Decadal Parameter Markov Chain
(DPMC) model

Section 6 will show that the APMC significantly underes-
timates the rainfall variability at monthly to multiyear res-
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Figure 2. Comparison of the decadal variability of the DPMC parameters P11 and µ (mm) with the APMC parameters.

olutions. The DPMC assumes that the interannual rainfall
variability can be captured by the decade-to-decade variabil-
ity of the parameters that APMC failed to capture. The idea
is to divide the observed rainfall sample into subsamples of
10 years duration (similar models with climate-based sub-
samples are discussed in Sect. 4.2.2). For example, a 30-year
rainfall sample is divided into three subsamples of 10 years in
duration. Then, 4× 12 parameters of P00, P11, µ, and σ (one
set of four parameters for each of the 12 months) are calcu-
lated from each of the subsamples. The simulation proceeds
in a way similar to the APMC, except that the determinis-
tic, decadal average, parameters of DPMC are varied from
decade to decade.

4.2.1 Decadal variability of DPMC parameters

Figure 2 shows the DPMC values of P11 and µ for each
decade along with APMC values (i.e. the 30-year averages)
for Sydney and Adelaide. For Sydney, DPMC values of P11
and µ show clear variability between the three decadal sam-
ples and deviations from the APMC values. However, DPMC
values of P11 and µ for Adelaide show less variability be-
tween the decadal samples.

The use of decadally varied parameters in DPMC is sub-
ject to the question of how significant the decadal variability
of these parameters is – is the decadal variability statistically
significant or just sampling variability? Therefore, the sta-
tistical significance of the decadal variability of DPMC pa-
rameters were examined by Monte-Carlo simulations as per
Sect. 3.2. This examination suggested that the sampling vari-
ability of DPMC parameters in decadal samples is mostly
within the sampling variability of their corresponding APMC
values (not shown). This suggests that the decadal variability
of DPMC parameters is not statistically significant.

4.2.2 Potential impact of climate modes

This study has also investigated other subsampling ap-
proaches of the MC-gamma parameters similar to the
DPMC. In these models, this study has calibrated the MC-
gamma parameters to subsamples of rainfall time series di-
vided according to the phases of IPO (e.g. positive and neg-
ative) and ENSO (La Niña, Neutral, and El Niño). Since
previous studies (Verdon-Kidd et al., 2004) found that the
interannual variabilities of east-Australian rainfall are influ-
enced by these large-scale climate drivers, the idea behind
these models was to introduce more interannual variability
to the model by simulating rainfall for different phases of cli-
mate drivers with parameters calibrated to respective phases.
These climate-based models are very similar to DPMC, ex-
cept that the subsamples are different. The following two
types of climate-based models have been tested:

– The IPO based model: the observed data for every
month was divided into two subsamples according to
the positive and negative phases of the monthly IPO in-
dex (e.g. for January, data of the years with positive IPO
index and data of the years with negative IPO index
are separated). Then, for each month, the MC-gamma
parameters (P00, P11, µ, and σ) are calibrated to each
subsample. In simulation, the rainfall for the months of
each IPO phase were modelled by using parameters of
the respective phase.

– The ENSO based model: the observed data for every
month was divided into three subsamples according
to monthly ONI index: La Niña (ONI≤−0.5), neutral
(−0.5 < ONI < 0.5), and El Niño (ONI≥ 0.5). Then, the
MC-gamma parameters are calibrated to each subsam-
ple and the rainfall for the months of each ENSO phase
were modelled by using parameters of the respective
phase.
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Figure 3. Lognormal probability plots of µ and σ for July (typical of other months).

4.3 Model 3: Compound Distribution Markov Chain
(CDMC) model

The results in Sect. 6 will show that neither APMC nor
DPMC can satisfactorily reproduce the SD of rainfall depths
for monthly to multiyear resolutions. Therefore, in the third
MC model – the CDMC – this study has incorporated the
long-term variability of rainfall depths by introducing ran-
dom variability in µ and σ . However, for wet and dry period
simulation, the CDMC still uses the deterministic parameters
of P00 and P11, as in the APMC. Thus, this model stochasti-
cally varies the rainfall depth model, but not the rainfall oc-
currence model.

In the CDMC, µi and σi are randomly sampled for each
month of each year. The random sampling was done inde-
pendently of the sampling for the preceding month(s). To es-
timate the distribution of µi and σi , this study has calculated
µi and σi for every month of every year from the observed
data. For example, from the 30-year observed data, for Jan-
uary (i = 1), this study has calculated 30 samples of µ1 and
σ1 values each.

By testing the probability distributions of µi and σi val-
ues for each month, this study has found that both µi and σi
values for each month are lognormally distributed. Figure 3
shows the lognormal probability plots of µi and σi values for
July (i = 7), which is representative of the other months. The
r2 for log µi and log σi are generally above 0.90, indicating
a very good fit of the lognormal distributions. Additionally,
the hypothesis that log µi and log σi are normally distributed
is supported by the Kolmogorov–Smirnov test at 5 % signifi-
cance level. In addition to the lognormally distributed µi and
σi values, this study has also found that the log µi and log σi
values for each month are strongly correlated with each other
with correlation coefficient rc,i around 0.90 (Fig. 4). There-
fore, for each month i, this study has fitted a bivariate-normal
distribution to the log µi and log σi values with parameters
(λµ,i , ζµ,i), (λσ,i , ζσ,i), and rc,i . The λ and ζ parameters de-
note the mean and SD of the log variate, while rc is the cor-
relation coefficient between log µ and log σ .

At the start of each month of each year of the simulation,
the log µi is sampled from its fitted normal distribution log

Figure 4. Correlation between log µ and log σ for July (typical of
other months).

µi ∼N(λµi ζ
2
µi
) for month i. Then, the log σi is sampled

from the fitted conditional normal distribution:

logσi | logµi

∼N

(
λσi +

ζσi

ζµi
rc,i

(
logµi − λµi

)(
1− r2

c,i

)(
ζσi
)2)

. (3)

These stochastically sampled µi and σi values are then used
to generate rainfall in the wet days for the month in question,
while the sequence of wet and dry days is determined using
the deterministic APMC values of P00,i and P11,i . However,
the sampledµi and σi values of a month (i) are not correlated
to the µi−1 and σi−1 of the preceding month (i− 1) as this
study has found that the month-to-month autocorrelations of
µ and σ values are not strong (Fig. 5).

4.4 Model 4: Hierarchical Markov Chain (HMC)
model

The results in Sect. 6 will show that the CDMC cannot sat-
isfactorily reproduce the SD of wet periods for monthly to
multiyear resolutions. Therefore, in the fourth MC model –
the HMC – we introduce stochastic variation in both MC and
the gamma distribution models to incorporate long-term vari-
ability of rainfall depths as well as wet and dry periods. In the
calibration, for month i, the P00,i and P11,i are calculated for
each month of each year from the observed data. For month
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Figure 5. Month-to-month autocorrelations of P00, P11, µ, and σ
for (a) Adelaide and (b) Sydney. The shadings indicate 95 % confi-
dence limits.

i, these P00,i and P11,i values (e.g. 30 P11,7 values for July
from the 30-year observed data) are found to be normally dis-
tributed with values between 0 and 1 (Fig. 6). Therefore, this
study has fitted a truncated normal distribution, bounded by
0 and 1, to the calculated P00 and P11 values. In simulation,
for each year, the P00,i and P11,i are sampled from their trun-
cated normal distributions. This procedure is similar to what
was done for µi and σi to sample from bivariate-lognormal
distribution. However, it does not include a bivariate distri-
bution because the correlation between P00,i and P11,i was
weak.

4.4.1 Impact of autocorrelations on stochasticity of MC
parameters

In the HMC, the sampled MC parameters of each month are
independent of the parameters of the preceding month. How-

ever, this study has found strong month-to-month autocorre-
lations of the P00 and P11 for Adelaide (Fig. 5a), although
the autocorrelations are weak for Sydney (Fig. 5b). There-
fore, this study has tested an alternative to the HMC (referred
to as HMC2), which uses a lag–1 autocorrelation equation (a
similar equation was used by Wang and Nathan (2007) in
their rainfall depth model) in the stochastic sampling of P00,i
and P11,i from the truncated normal distribution. The follow-
ing lag–1 autocorrelation equation has been used to modify
the randomly sampled P00,i (same method used for P11,i)

for month i by correlating with the P00,i−1 of month i− 1
(preceding month):

P00,i −mean(P00,i)

sd(P00,i)

= r ×
P00,i−1−mean(P00,i−1)

sd(P00,i−1)

+ (1− r2)1/2
P00,i −mean(P00,i)

sd(P00,i)
, (4)

where for a month i (e.g. January),

– mean(P00,i) is the mean of the yearly varied parameter
values calculated from observed data for month i (e.g.
mean of 30 P00,7 values for July),

– sd(P00,i) is the SD of the yearly varied parameter values
calculated from observed data for month i,

– mean(P00,i−1) is the mean of the parameter values cal-
culated from observed data for month i− 1,

– sd(P00,i−1) is the SD of the parameter values calculated
from observed data for month i− 1,

– r is the lag–1 autocorrelation coefficient for observed
month-to-month autocorrelation of P00 (constant for all
month),

– P00,i is the stochastic parameter value sampled from a
truncated normal distribution fitted to the yearly varied
observed parameter values for month i,

– P00,i−1 is auto-correlated parameter value for month
i− 1 (used to simulate the dry days of the preceding
month),

– P00,i is the final auto-correlated parameter value which
was used in simulation of dry days for month i.

P11,i for month i is sampled using a similar process.

4.4.2 Impact of cross-correlations on stochasticity of
MC parameters

We observed a strong positive correlation between P11,i , and
log µi and log σi , although the correlations between P00,i ,
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Figure 6. Normal probability plots of P00 and P11 for July (typical of other months).

and log µi and log σi are weak. Therefore, another alterna-
tive to HMC (referred to as HMC3) was tested by using a
multivariate sampling system for the P11,i , µi , and σi , while
P00,i remains independent.

4.5 Model 5: Decadal and Hierarchical Markov Chain
(DHMC) model

Section 6 will show that the CDMC, with APMC values of
MC parameters, significantly underestimates the wet period
variability at multiyear resolutions, while the HMC (includ-
ing the two alternatives HMC2 and HMC3) with stochastic
MC parameters, significantly overestimates the wet period
variability at monthly resolution. However, we found that
the DPMC can satisfactorily preserve the wet period vari-
ability at both monthly and multiyear resolutions, although
it underestimates the rainfall depth variability. Therefore, in
the DHMC model, this study has used the DPMC values of
MC parameters (the parameter values vary for each decade
of simulation) for simulation of wet and dry days, while the
stochastic parameters of the gamma distribution (same as
CDMC) are used for simulation of wet day rainfall depths.

5 Methodological comparison of five MC models

The following points discuss the key common features in the
five MC models of this study, while other key methodological
comparisons are shown in Table 1:

– All models use first-order MC parameters to simulate
the rainfall occurrences and gamma distribution to sim-
ulate rainfall depths in wet days.

– Simulation of rainfall depth for each wet day is inde-
pendent of the rainfall depth of the preceding day.

– Separate sets of parameters are used for each month
(e.g. 12 sets of MC and gamma parameters) to incor-
porate seasonal variability.

6 Model comparison for distribution statistics

This section compares the performances of the five MC mod-
els for the mean and SD of rainfall depths and wet period
statistics (i.e. number of wet days and mean length of wet
spells).

6.1 Mean and SD of rainfall depths

Figures 7, 8, and 9 compare the five MC models for the
mean and SD of rainfall depths at daily, monthly, and mul-
tiyear resolutions, respectively. Figure 9 also compares the
95th percentile of multiyear rainfall depths. For mean and
SD of rainfall depths, the performances of APMC and DPMC
are similar. The performances of CDMC, HMC, and DHMC
are also similar, but different from APMC and DPMC. All
five models preserve the mean (i.e. satisfactorily reproduce
the observed mean) rainfall depths at all resolutions with
Z scores between −2 and +2. However, the CDMC, HMC,
and DHMC show a tendency to underestimate the mean
with mostly positive Z scores (between 0 and +2). The
APMC and DPMC preserve the SD of rainfall depths only
at daily resolution and significantly underestimate the SD at
monthly and multiyear resolutions for Sydney but preserve
the SDs at all resolutions for Adelaide (Figs. 7, 8, and 9).
The CDMC, HMC, and DHMC preserve the SD of rainfall
depths at all resolutions for both stations except a slight ten-
dency to underestimate the SD for February and November
at daily resolution in Sydney. We conclude that those models
with stochastic parameters for the gamma distribution (i.e.
CDMC, HMC, and DHMC) best preserve SDs at all reso-
lutions for both stations. For the 95th percentile of rainfall
depths, we found that models which can preserve the SD at
a given resolution can also preserve the 95th percentile at
that resolution and vice versa. In Fig. 9, the representative
results at multiyear resolution (average of the absolute val-
ues of Z scores for daily and monthly resolutions are shown
in Table 2) show that the CDMC, HMC, and DHMC pre-
serve the 95th percentile for both stations but the APMC and
DPMC underestimate the statistic for Sydney.
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Table 1. Methodological comparison of the five MC models.

Wet and dry day simulation Wet day rainfall depth simulation

APMC Uses deterministic MC parameters, same set of
parameters for each simulation year.

Uses deterministic gamma parameters, same set of
parameters for each simulation year.

DPMC Uses decadally varied deterministic MC parame-
ters.

Uses decadally varied deterministic gamma parameters.

CDMC Same as APMC. Uses stochastic parameters (sampled from fitted
bivariate-lognormal distribution) of gamma distribu-
tion, parameters vary for each simulation year.

HMC Uses stochastic MC parameters (sampled from fit-
ted truncated normal distribution), parameters vary
for each simulation year.

Same as CDMC.

DHMC Same as DPMC. Same as CDMC.

Table 2. Average of the absolute values of Z scores (average of the Z scores for all 12 months at daily and monthly resolutions, and average
of the Z scores for 1 to 10 years at multiyear resolution) for Sydney (SY) and Adelaide (AD). The averaged Z scores greater than 2 are
shown in bold.

Variable Resolution Average of the absolute values of Z scores

APMC DPMC CDMC HMC DHMC

SY AD SY AD SY AD SY AD SY AD

Mean of rainfall depth Daily 0.1 0.1 0.0 0.1 0.3 0.4 0.4 0.4 0.3 0.4
Monthly 0.1 0.1 0.1 0.1 0.3 0.4 0.3 0.3 0.3 0.4
Multiyear 0.1 0.1 0.1 0.2 0.9 0.9 0.7 0.3 1.0 0.9

SD of rainfall depth Daily 0.1 0.2 0.1 0.2 0.6 0.4 0.7 0.4 0.7 0.4
Monthly 1.9 0.9 1.4 0.7 0.5 0.6 0.6 0.8 0.5 0.6
Multiyear 3.7 1.3 2.6 0.4 0.6 0.5 0.6 0.8 0.6 0.6

95th percentile of rainfall depth Daily 0.8 0.7 0.5 0.6 0.5 0.6 0.5 0.5 0.5 0.6
Monthly 1.7 0.8 1.3 0.6 0.5 0.6 0.5 0.7 0.5 0.6
Multiyear 2.6 0.3 2.0 0.3 1.0 0.2 0.5 0.4 1.0 0.2

Mean of number of wet days Monthly 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.1 0.1
Multiyear 0.0 0.0 0.0 0.1 0.2 0.2 0.6 0.9 0.0 0.1

SD of number of wet days Monthly 1.0 0.9 0.8 0.8 1.0 0.8 1.7 1.8 0.8 0.8
Multiyear 3.3 0.8 1.6 0.5 3.3 0.9 0.7 0.7 1.5 0.5

Mean of mean wet spell length Monthly 0.4 0.5 0.3 0.4 0.4 0.5 0.4 0.5 0.3 0.4
Annual 0.1 0.0 0.1 0.3 0.1 0.3 0.2 0.5 0.1 0.2

SD of mean wet spell length Monthly 0.9 0.7 0.8 0.6 0.8 0.7 0.8 1.0 0.8 0.7
Annual 0.2 0.2 0.3 0.6 0.3 0.4 2.6 2.3 0.3 0.6

Mean of mean dry spell length Monthly 0.5 0.6 0.4 0.6 0.5 0.6 0.7 0.7 0.4 0.5
Annual 0.1 0.0 0.2 0.0 0.1 0.0 0.3 0.4 0.2 0.1

SD of mean dry spell length Monthly 0.9 1.3 0.8 1.2 0.9 1.3 1.1 1.3 0.8 1.3
Annual 0.9 0.5 0.1 0.2 0.9 0.4 1.4 1.4 0.1 0.2
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Figure 7. Comparison of the mean and SD of daily rainfall depths for the five MC models.

Figure 8. Comparison of the mean and SD of monthly rainfall depths for the five MC models.

6.2 Mean and SD of number of wet days

Figures 10 and 11 compare the five MC models for the mean
and SD of number of wet days at monthly and multiyear
resolutions, respectively. All five models preserve the mean
of number of wet days for both monthly and multiyear res-
olutions. For the SD of the monthly number of wet days,
all models except HMC can satisfactorily reproduce the SD
with Z scores between −2 and +2 for almost all months of
both stations, while the HMC tends to overestimate the SD
(Fig. 10). For the SD of multiyear number of wet days, the
APMC and CDMC significantly underestimate the SD for
Sydney but preserve the statistic for Adelaide. The DPMC
and DHMC perform similarly and satisfactorily to preserve
the SD of multiyear number of wet days for both Sydney
and Adelaide, while HMC also preserves the statistic for both
stations. We conclude that the models with decadally varied
MC parameters (i.e. DPMC and DHMC) perform satisfacto-
rily at reproducing the variability of the number of wet days
at monthly and multiyear resolutions for both stations.

6.3 Mean and SD of mean length of wet and dry spells

Figure 12 compares the five MC models for the mean and
SD of mean length of wet and dry spells at annual resolu-
tion. The averages of the absolute values of the Z scores for
monthly resolution are shown in Table 2. The comparative
performances of the five MC models for the mean and SD of
mean length of wet spells at monthly (Table 2) and annual
(Fig. 12) resolutions are mostly consistent with their respec-
tive performances for mean and SD of number of wet days.
All models except HMC preserve the mean and SD of mean
length of wet spells, while the HMC tends to overestimate
the SD (Fig. 12).

For the mean and SD of mean length of dry spells, we
found that models that can preserve the wet spells distribu-
tions also preserve the dry spells distributions and vice versa.
As a representative result, the Z scores for the mean and SD
of annual mean length of dry spells shown in Fig. 12 indi-
cate that all models except HMC preserve both mean and
SD, while HMC overestimates the SD. Figure 12 also indi-
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Figure 9. Comparison of the mean, SD, and 95th percentiles of multiyear rainfall depths for the five MC models.

Figure 10. Comparison of the mean and SD of monthly number of wet days for the five MC models.

cates that the DPMC and DHMC perform better (Z scores
closer to zero) than the APMC and CDMC to reproduce the
SD of annual mean length of dry spells.

We conclude that models with decadally varied MC pa-
rameters (i.e. DPMC, DHMC) perform relatively better and
more satisfactorily at reproducing the variability of the length
of wet and dry spells. The HMC introduces too much vari-
ability in the length of wet and dry spells, while the APMC
and CDMC tend to underestimate the variability.

6.4 Potential impact of climate modes

Since the DPMC significantly underestimates the SD of rain-
fall depths at monthly and multiyear resolutions, the ma-
jor target of the models with subsamples according to cli-

mate modes such as IPO and ENSO indices (discussed in
Sect. 4.2.2) was to preserve the SD of rainfall depths at
monthly and multiyear resolutions. However, we found that
these climate-based models also significantly underestimate
the SD of rainfall depths at month and multiyear resolutions
with performances similar to the DPMC, and are therefore
not considered further.

6.5 Impact of stochasticity on MC parameters

Since the HMC significantly overestimates the SD of
monthly wet periods (i.e. number of wet days and mean
length of wet spell), the major target of the HMC2 and
HMC3 models (with a lag–1 autocorrelation equation and a
multivariate sampling system, respectively; see Sect. 4.4.1)
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Figure 11. Comparison of the mean and SD of multiyear number of wet days for the five MC models.

Figure 12. Comparison of the mean and SD of annual mean length
of wet and dry spells for the five MC models.

was to better preserve the SD. However, these models also
significantly overestimate the SD of monthly wet periods
with performances similar to the HMC (negative Z scores
less than −2 for all months). We conclude that the models
with stochastic, yearly varied, parameters for the MC part of
the model (i.e. HMC, HMC2, and HMC3) consistently over-
estimate the variability of monthly wet periods.

6.6 Overall performances

Table 2 shows the average of the absolute values of Z scores
(average of 12 values at daily and monthly resolutions and 10
values at multiyear resolution) for the distribution statistics
of rainfall depths, and wet and dry periods at daily, monthly,
annual, and multiyear resolutions. It shows that models 1–
4 (APMC, DPMC, CDMC, and HMC) fail to preserve the
following statistics:

– the APMC fails to preserve the SD and 95th percentile
of rainfall depths and SD of number of wet days at mul-
tiyear resolution for Sydney,

– the DPMC fails to preserve the SD and 95th percentile
of rainfall depths at multiyear resolution for Sydney,

– the CDMC fails to preserve the SD of number of wet
days at multiyear resolution for Sydney,

– the HMC fails to preserve SD of mean length of wet
spell at annual resolution for both Sydney and Adelaide.

However, model 5, DHMC, has preserved all of the statistics
for both stations. We conclude that the DHMC is better than
the other four models at reproducing the distributions of rain-
fall depths, and wet and dry periods for resolutions varying
from daily to multiyear.

7 Reproduction of seasonal autocorrelations

Figure 13 compares how the five MC models reproduce
the month-to-month autocorrelations of the monthly num-
ber of wet days and monthly rainfall depths. For Adelaide
(Fig. 13a), the lag–1 and lag–12 autocorrelations are strong
with systematic seasonal variation, which have been re-
produced very well in the corresponding APMC, DPMC,
CDMC, and DHMC simulations, while the HMC (the model
with stochastic MC parameters) tends to underestimate the
autocorrelations. For Sydney (Fig. 13b), the month-to-month
autocorrelations of monthly number of wet days and monthly
rainfall depths in the data are weak and all models perform
well.

8 Discussion

The primary motivation of this study was to develop a
stochastic rainfall generation model that can reproduce not
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Figure 13. Comparison of the autocorrelations of monthly number
of wet days and monthly rainfall depths for the five MC models
for (a) Adelaide and (b) Sydney. The shadings indicate 95 % confi-
dence limits.

only the short resolution (daily) variability, but also the
longer resolution (monthly to multiyear) variability of ob-
served rainfall. Preserving long-term variability in rainfall
models has been a difficult challenge for which a number of
solutions have been proposed in the stochastic rainfall gen-
eration literature. The solutions developed and tested by this
study are relatively simple MC models: two MC parameters
(P00 and P11) of two-state, first-order processes defining the
wet and dry days, and two gamma-distribution parameters
(µ and σ) defining the rainfall depths in wet days. For sea-
sonal variability, the models operate at daily time step with
monthly varying parameters for each of the 12 months. Start-
ing with the simplest MC-gamma modelling approach with

deterministic parameters (similar to Richardson, 1981), this
study has developed and assessed four other variants of the
MC-gamma modelling approach with different parameterisa-
tions. The key finding is that if the parameters of the gamma
distribution are randomly sampled from fitted distributions
prior to simulating the rainfall for each year, the variabil-
ity of rainfall depths at longer resolutions can be preserved,
while the variability of wet periods (i.e. number of wet days
and mean length of wet spell) can be preserved by decadally
varying parameters for the MC model. This is a straightfor-
ward enhancement to the traditional simplest MC model, and
the enhancement is both objective and parsimonious.

The overall comparative performances of the models to re-
produce the distribution and autocorrelation characteristics
of observed rainfall are as follows:

– For the simulation of the distribution of rainfall depths,
the performances of the APMC and DPMC with de-
terministic gamma parameters are similar, although
DPMC with more parameters (e.g. the decadally vary-
ing MC parameters) performs slightly better. The per-
formances of CDMC, HMC, and DHMC are similar as
they use the same stochastic sampling for the parame-
ters of the gamma distribution.

– For the mean and SD of daily rainfall depths, all five
models perform satisfactorily. Good reproduction of
daily statistics is expected as the model parameters
are calibrated to daily time series. While the APMC
and DPMC reproduce the statistics almost exactly, the
CDMC, HMC, and DHMC show a slight tendency to
underestimate the SD. This indicates that the stochas-
tic parameters of these three models slightly affected
their performances at daily resolution compared to the
APMC and DPMC with deterministic parameters.

– For the monthly to multiyear resolution, the APMC and
DPMC reproduce the mean of rainfall depths well, but
significantly underestimate the SD of rainfall depths.
The underestimation of rainfall variability at monthly to
multiyear resolutions by APMC-like models with deter-
ministic parameters is a well-known limitation of these
models (Wang and Nathan, 2007). Although the DPMC
uses more parameters than the APMC, the DPMC has
not significantly improved performance in reproducing
the SD of rainfall depths at monthly to multiyear res-
olutions. Other models similar to DPMC (e.g. models
with parameters varying for phases of IPO or ENSO)
show similar performances to the DPMC and still sys-
tematically underestimate the SD of rainfall depths at
monthly to multiyear resolutions. This suggests that the
use of deterministic parameters in DPMC-like models
might not be adequate to satisfactorily reproduce the SD
of rainfall depths at longer resolutions.

– While the APMC and DPMC, with deterministic pa-
rameters for the gamma distribution, significantly un-
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derestimate the SD of rainfall depths at monthly to mul-
tiyear resolutions, the CDMC, HMC, and DHMC, with
stochastic parameters for the gamma distribution, pre-
serve the SD of rainfall depths at monthly to multiyear
resolutions. This indicates that the stochastic parame-
ters for the gamma distribution are useful to incorporate
the longer-term variability of rainfall depths. However,
these three models show a tendency to underestimate
the mean of rainfall depths at all resolutions.

– The models that can preserve the SD of rainfall depths
can also preserve the 95th percentile of rainfall depths.

– For the simulation of the distribution of wet periods, the
performances of the APMC and CDMC are similar as
both models use the same deterministic MC parame-
ters. With a similar trend, the DPMC and DHMC per-
form better than the APMC and CDMC, while DPMC
and DHMC use more deterministic MC parameters. The
performance of the HMC, with stochastic MC parame-
ters, is different (discussed below) from the other four
models (that use deterministic MC parameters).

– For the mean of wet period statistics (e.g. number of
wet days and mean length of wet spells) at monthly
to multiyear resolutions, all models except HMC per-
form similarly and satisfactorily, while the HMC tends
to overestimate the mean. We conclude that introducing
stochasticity from year to year into the MC parameters,
as in HMC, degrades the performance.

– For the SD of monthly wet period statistics, all models
except HMC perform similarly and satisfactorily, while
the HMC significantly overestimates the SD. This in-
dicates that the stochastic MC parameters of the HMC
introduce excessive variability in the wet period simu-
lation at monthly resolution. This study has further ex-
amined two other variants of the HMC with different
stochastic parameterisation of the MC process, but they
did not perform better than the HMC. We conclude that
introducing stochasticity from year to year into the MC
parameters, as in HMC, degrades the ability to repro-
duce the variability about the mean of all of the wet pe-
riod statistics.

– For the SD of wet period statistics at annual and mul-
tiyear resolutions, the APMC and CDMC tend to un-
derestimate the SDs. This suggests that the APMC val-
ues of MC parameters (same monthly parameter values
for each year of simulation) limits the reproduction of
the wet period variability at multiyear resolutions. How-
ever, the APMC and CDMC preserved the multiyear
SDs for Adelaide, where the interdecadal variability of
MC parameters is less variable. This suggests that for
locations with less variability of wet-to-wet and dry-to-
dry day transitions, a single set of deterministic MC pa-
rameters is adequate, however for locations with more

transition variability, a single set of MC parameters (i.e.
not varying with time) is insufficient, as it cannot intro-
duce enough variability.

– The DPMC and DHMC with decadally varied MC pa-
rameters show a better ability to reproduce the SD
of annual mean length of wet spells and SD of mul-
tiyear number of wet days. This suggests that the
decadally varied MC parameters can significantly im-
prove the simulation of wet period variability, although
the decadally varied gamma parameters cannot improve
the simulation of rainfall depth variability. However,
the HMC preserves the SD of multiyear number of wet
days but overestimates the SD of annual mean length of
wet spells. This suggests that the monthly and annually
varying stochastic MC parameters can improve the sim-
ulation of wet period (i.e. number of wet days and mean
length of wet spell) variability at multiyear resolutions,
although they significantly overestimate the wet period
variability at monthly and annual resolutions (i.e. they
introduce too much variability).

– The models that can preserve the wet spells distributions
can also preserve the dry spells distributions and vice
versa probably because the wet and dry days are mod-
elled using similar transition probabilities of wet-to-wet
and dry-to-dry days, respectively.

– The autocorrelation assessments have shown that the
APMC, DPMC, CDMC, and DHMC can satisfactorily
reproduce the strong lag–1 and lag–12 monthly autocor-
relations of monthly number of wet days and monthly
rainfall depths. However, the HMC (the only model with
monthly and annually varying MC parameter values)
tends to underestimate the autocorrelations, which is
possibly due to excessive variability in wet period sim-
ulation at monthly resolution.

9 Conclusions

Each model developed in this study has advantages and dis-
advantages. The APMC and DPMC with deterministic pa-
rameters significantly underestimate the variability of rainfall
depths at monthly to multiyear resolutions. This systematic
underestimation of the rainfall depth variability at monthly to
multiyear resolutions is critical for using the models in urban
water security assessment as the reservoir water levels usu-
ally vary at these longer resolutions. The CDMC, HMC, and
DHMC with stochastic parameters of the gamma distribu-
tion preserve the rainfall depth variability at all resolutions,
but the CDMC and HMC have limitations in reproducing the
variability of wet periods. The CDMC with APMC values
of MC parameters tends to underestimate the multiyear vari-
ability of wet periods, while the HMC with stochastic MC
parameters tends to overestimate the monthly variability of

www.hydrol-earth-syst-sci.net/21/6541/2017/ Hydrol. Earth Syst. Sci., 21, 6541–6558, 2017



6556 A. F. M. K. Chowdhury et al.: Development and evaluation of a stochastic daily rainfall model

wet periods. However, the DHMC with decadally varied MC
parameters (same as DPMC) performs better than the CDMC
and HMC, and preserves the wet period and dry period vari-
ability at monthly to multiyear resolutions.

Among the five MC models of this study, the overall
performance of the DHMC is the best. The DHMC model
has (1) monthly varying MC parameters that vary from
decade to decade and (2) stochastic parameters for the
gamma rainfall distribution, where the parameters are ran-
domly varied from year to year using a probability distribu-
tion function that is derived for each month of the year. While
the DHMC has great potential to be used in hydrological and
agricultural impact studies (e.g. urban drought security as-
sessment), there are two important limitations of the DHMC:

– The DHMC tends to underestimate the mean of multi-
year rainfall depths, which is probably linked to the use
of stochastic gamma parameters. A more sophisticated
stochastic sampling strategy for the gamma parameters
might overcome this limitation.

– The performance of the DHMC suggests that the use
of decadally varied MC parameters are effective to in-
corporate the long-term variability of wet periods (al-
though the use of decadally varied gamma parameters
in DPMC was not effective to incorporate the long-term
variability of rainfall depths). However, other climate-
based subsamples (e.g. according to the ENSO phases)
instead of decadal samples can be used for parameter
calibration. This study tested the subsamples according
to the phases of IPO and ENSO climate modes with a
focus on incorporating the long-term variability of rain-
fall depths, but has not incorporated climate-based sub
sampling into DHMC because DHMC had not been de-
veloped at the time this analysis was performed. A more
comprehensive assessment of such ideas might improve
the wet period simulation of the DHMC.

In a subsequent paper, the performances of the CDMC,
HMC, and DHMC will be compared against the semi-
parametric model of Mehrotra and Sharma (2007) using rain
gauge data from 30 stations around Sydney (those used in
Mehrotra et al., 2015) and the 12 stations (Fig. 1) around
Australia.

Data availability. Daily rainfall data used in this study can be ob-
tained from the Bureau of Meteorology, Australia (BoM, 2013) at
http://www.bom.gov.au/climate/data/index.shtml by using weather
station number 66062 and 023034 for Observatory Hill and Ade-
laide Airport stations, respectively.

ONI and IPO indices used in this study can be obtained
from the National Oceanic and Atmospheric Administration
(NOAA, 2014) website link https://www.esrl.noaa.gov/psd/data/
climateindices/list/ and Folland (2008), respectively.
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