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Abstract. In this study, we examine the potential of snow
water equivalent data assimilation (DA) using the ensem-
ble Kalman filter (EnKF) to improve seasonal streamflow
predictions. There are several goals of this study. First, we
aim to examine some empirical aspects of the EnKF, namely
the observational uncertainty estimates and the observation
transformation operator. Second, we use a newly created en-
semble forcing dataset to develop ensemble model states that
provide an estimate of model state uncertainty. Third, we ex-
amine the impact of varying the observation and model state
uncertainty on forecast skill. We use basins from the Pacific
Northwest, Rocky Mountains, and California in the west-
ern United States with the coupled Snow-17 and Sacramento
Soil Moisture Accounting (SAC-SMA) models. We find that
most EnKF implementation variations result in improved
streamflow prediction, but the methodological choices in the
examined components impact predictive performance in a
non-uniform way across the basins. Finally, basins with rel-
atively higher calibrated model performance (> 0.80 NSE)
without DA generally have lesser improvement with DA,
while basins with poorer historical model performance show
greater improvements.

1 Introduction

In the snow-dominated watersheds of the western US, spring
snowmelt is a major source of runoff (Barnett et al., 2005;
Clark and Hay, 2004; Singh and Kumar, 1997; Slater and
Clark, 2006). In such basins, the initial conditions of the

basin, primarily in the form of snow water equivalent (SWE),
drive predictability out to seasonal timescales (Wood et al.,
2005; Wood and Lettenmaier, 2008; Mahanama et al. 2012;
Staudinger and Seibert, 2014; Wood et al., 2016). Thus, bet-
ter estimates of basin mean initial SWE should lead to bet-
ter seasonal streamflow predictions (Arheimer et al., 2011;
Clark and Hay, 2004; Slater and Clark, 2006; Wood et al.,
2016). For various reasons (e.g., the uncertainty in model pa-
rameters, forcing data, model structures), simulated SWE in
hydrological models can be very different from reality (Pan
et al., 2003). Fortunately, a variety of snow observations (in-
cluding point gauge and spatial satellite data) contain valu-
able information (Andreadis and Lettenmaier, 2006; Barrett,
2003; Engeset et al., 2003; Mitchell et al., 2004; Su et al.,
2010; Sun et al., 2004).

Many studies have explored the role of snow data as-
similation in different modeling frameworks (Moradkhani,
2008; Takala et al., 2011; McGuire et al., 2006; Wood and
Lettenmaier, 2006). Of particular focus here are papers that
have examined the impact of SWE data assimilation (DA)
on runoff modeling and prediction (e.g., Bergeron et al.,
2016; Griessinger et al., 2016; Wood and Lettenmaier, 2006;
Franz et al., 2014; Jörg-Hess et al., 2015; Moradkhani, 2008;
Slater and Clark, 2006). Among the major challenges fac-
ing SWE-based DA are that the time–space resolution of
remote sensing SWE data are too coarse or period limited
for many watershed-scale hydrological applications in moun-
tainous regions (Dietz et al., 2012; Jörg-Hess et al., 2015),
and point gauge snow data have sparse and uneven spatial
coverage (Slater and Clark, 2006). For point measurements,
spatial interpolation of SWE measurements is typically used
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to estimate the observed SWE state in a watershed of inter-
est (e.g., Franz et al., 2014; Jörg-Hess et al., 2015; Slater and
Clark, 2006; Wood and Lettenmaier, 2006).

Here, we use the ensemble Kalman filter (EnKF) method
for DA using an implementation that allows for seasonally
varying estimates of observation and model error variances
(Evensen, 1994, 2003; Evensen et al., 2007). The EnKF
framework has been successfully implemented in research
basins in several previous studies (Clark et al., 2008; Franz
et al., 2014; Moradkhani et al., 2005; Slater and Clark, 2006;
Vrugt et al., 2006). The EnKF provides an objective analyt-
ical framework to optimize the update of model states based
on observed values and their corresponding uncertainties.
While the EnKF approach has a formal theory, its overall
objectivity in an application (contrasting with an arbitrary
DA approach such as direct insertion) nonetheless depends
on several methodological choices that are often empirical
when applied to SWE DA.

Following Slater and Clark (2006), this study uses two
slightly different approaches to estimate ensemble SWE ob-
servations with point gauge SWE data from surrounding
gauge sites for study basins. When using calibrated hydro-
logic modeling systems, model SWE states may exhibit sys-
tematic biases from observed SWE estimates for a number
of reasons – e.g., all hydrologic models must simplify real
watershed physics and structure, and model parameter es-
timation (calibration) may result in SWE behavior that in
part compensates for forcing or model errors (e.g., Slater
and Clark, 2006). Therefore, transformation of snow obser-
vations to model space is needed before they are used to up-
date the model states to ensure that the model ingests SWE
estimates that are as close to unbiased, relative to the model
climatology, as possible. We explore two variations on an ap-
proach using cumulative density function (CDF) transforma-
tions of observations to model space (following Wood and
Lettenmaier, 2006, among others). Additionally, we under-
take a sensitivity analysis to highlight the importance of ro-
bust observations and model uncertainty estimates. We focus
on the impacts of updates made just once per snow accumula-
tion season, noting that an important choice that is not exam-
ined as a result is the selection of DA dates and frequency.
For a given generally optimal selection of the EnKF ap-
proach, the ensemble streamflow prediction (ESP) approach
is used to test the impact of SWE DA on subsequent stream-
flow forecasts.

For context, operational seasonal streamflow forecasts in
the US currently do not use formalized DA. If the initial
states of the model are suspected to contain error (He et al.,
2012), DA is performed through subjective forecaster inter-
vention. Manual adjustments (termed MODs; e.g., Ander-
son, 2002) to model states (e.g., SWE) are applied repeatedly
throughout the water year, and particularly before initializing
seasonal forecasts. This manual nature of the correction hin-
ders the ability to scale up DA procedures to many basins,
to benchmark DA performance, and quantify improvements

Figure 1. Location of nine case basins in the western United States
(US) and SWE gauge sites.

to the forecast system, as skill depends on the forecaster’s
experience (Seo et al., 2003).

The central motivating aim of this study is thus to as-
sess the potential benefits of objective, automated SWE DA
against a reference model configuration to identify forecast
improvement opportunities. We apply the EnKF DA ap-
proach to nine river basins in the western US that have a
range of basin features and environmental conditions, over a
period of multiple decades. This experimental scope differs
from many previous studies that focus on one or two basins
(e.g., Clark et al., 2008; Franz et al., 2014; He et al., 2012;
Moradkhani et al., 2005) or assess DA performance over
shorter periods. We also use ensemble simulations driven by
a new probabilistic forcing dataset (Newman et al., 2015b, c)
as a basis for estimating model SWE uncertainty, in contrast
to prior studies that relied on more arbitrary distributional
assumptions. This range of basins permits us to explore the
question of “In what types of basins might automated SWE
DA improve seasonal streamflow forecasts?”.

Additionally, as discussed throughout the introduction, the
EnKF approach has several empirical components that re-
quire tuning. We therefore examine performance sensitivi-
ties related to three elements: (1) the estimation of watershed
mean SWE from surrounding point measurements; (2) the
transformation operator that relates watershed mean SWE to
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Table 1. Basin features of nine case basins.

Region Basin ID Elevation Minimum Maximum DA date Basin area Slope Forest Basin name
(m) elevation elevation (km2) (m km−1) fraction

(m) (m)

14 09081600 3092.15 2050 4250 1 April 436.88 150.58 0.61 Crystal River
14 09352900 3459.15 2450 4250 1 April 187.74 156.09 0.52 Vallecito Creek
17 13023000 2468.57 1750 3450 1 March 1163.72 98.51 0.68 Greys River
17 12147600 998.25 550 1650 1 April 16.07 159.37 1 SF Tolt River
17 13235000 2077.16 1150 3250 1 April 1158.47 126.25 0.86 SF Payette River
17 14158790 1210.48 750 1750 15 March 40.76 116.44 1 Smith River
16 10336645 2180.92 1850 2650 1 April 20.09 118.27 0.71 General Creek
16 10336660 2188.08 1850 2650 1 April 32.46 83.46 0.79 Blackwood Creek
18 11266500 2576.54 1150 3950 1 April 836.15 140.18 0.67 Merced River

model mean SWE; and (3) sensitivity analyses of the relative
size of observed and model error variance.

The following sections discuss the study basins and
datasets, and the model and EnKF DA approach, before the
presenting study results and discussion, and a summary.

2 Study basins and data

In this study, nine basins across the western US are selected
for SWE DA evaluation. They are in the Pacific Northwest,
California (Sierra Nevada Mountains), and central Rocky
Mountains. We focus on these three areas as they span a
range of snow accumulation and melt conditions of the west-
ern US and are in areas with active seasonal streamflow pre-
diction and water resource management. We do not examine
rain-driven low-lying basins because they do not have signifi-
cant SWE contributions to runoff. The locations of the basins
and nearby SWE gauge sites are shown in Fig. 1, illustrat-
ing that all of the study watersheds have SWE measurements
distributed in and/or around the basins. The main features of
these basins are shown in Table 1. The basin areas range from
16 to 1163 km2, and the mean elevations of the basins range
from 998 to 3459 m with a large spread in basin mean slopes
(as estimated from a fine-resolution digital elevation model)
and forest percentage.

Two sources of SWE observations are used in this study:
(1) the widely used snow telemetry network (SNOTEL)
for Natural Resources Conservation Service (NRCS), which
covers most of the western US (NRCS, https://www.wcc.
nrcs.usda.gov/snow/); and (2) the California Department of
Water Resources (DWR, denoted as CADWR sites here-
after), which maintains a snow pillow network for California
(CADWR, http://cdec.water.ca.gov/snow/). The SWE data
from CADWR sites have frequent missing data and some un-
realistic extreme values; thus, extensive manual quality con-
trol was required before using the CADWR data in the study.

3 Methodology

3.1 Models and calibration

The Snow-17 temperature index snow model is coupled to
the Sacramento Soil Moisture Accounting (SAC-SMA) con-
ceptual hydrologic model (Anderson, 2002, 1973; Burnash
and Singh, 1995; Burnash et al., 1973; Franz et al., 2014;
Newman et al., 2015a) to simulate streamflow in this study.
This model combination has been in operational use by US
National Weather Service (NWS) River Forecast Centers
(RFCs) since the 1970s (Anderson, 1972, 1973). The Snow-
17 model is a conceptual snow pack model that employs an
air temperature index to partition precipitation into rain and
snow and parameterize energy exchange and snowpack evo-
lution processes. The only required forcing inputs are near-
surface air temperature and precipitation. The output rain-
plus-snowmelt (RAIM) time series from Snow-17 is part of
the forcing input of the SAC-SMA model. SAC-SMA is a
conceptual hydrologic model that uses five moisture zones
to describe the movement of water through watersheds. The
required forcing input is the potential evaporation and the
surface water input from Snow-17.

Daily streamflow data from United States Geological Sur-
vey (USGS) National Water Information System server (http:
//waterdata.usgs.gov/usa/nwis/sw) are used to calibrate 20
parameters of Snow-17 and SAC-SMA model. The calibra-
tion is obtained using the shuffled complex evolution global
search algorithm (SCE; Duan et al., 1992) via minimizing
daily simulation root mean square error (RMSE). USGS
streamflow data are also used to verify the model predictions.

Model uncertainty arises from model parameter and struc-
tural uncertainty (e.g., Clark et al., 2008) and forcing input
uncertainty (e.g., Carpenter and Georgakakos, 2004). Focus-
ing on the latter, we drive the hydrology models with 100
equally likely members of the meteorological data ensemble
generated as described in Newman et al. (2015b, c), produc-
ing an 100-member ensemble of model moisture states, in-
cluding SWE, and streamflow. The daily varying spread of
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Figure 2. Box plots of ensemble model SWE and estimated ensemble SWE observations for the nine case basins on the data assimilation
date in 2004 for three window lengths – 7 days (7-d), 3 months (3-m), and 1 year (1-y).

the ensemble model states serves as the estimate of model
uncertainty. Because this method estimates SWE uncertainty
without also considering sources other than forcing input
uncertainty, and therefore may underestimate model uncer-
tainty in initial SWE (e.g., Franz et al., 2014), we also in-
clude a sensitivity analysis to explore the sensitivity of DA
results to variations in the estimated observation and model
uncertainty magnitudes.

3.2 Generating ensembles of estimated observed
watershed SWE

Since the SWE gauge observations are point measurements
that do not represent the watershed mean conditions and have
observation error, observation uncertainty needs to be ro-
bustly estimated to ensure reasonable DA performance. In

this study, we follow Slater and Clark (2006) to generate en-
semble estimated catchment SWE from gauge observations
using a multiple linear regression in which the predictors are
the attributes of SWE gauge sites (longitude, latitude, and el-
evation). The observation uncertainty is estimated by leave-
one-out (LOO) cross validation; i.e., each station is left out
of the regression training and then its SWE is predicted and
verified against its actual measurement. For reducing inter-
polation uncertainty caused by spatial heterogeneity of SWE
gauge sites, the SWE values are transformed into percentiles
orZ scores (e.g., standard normal deviates) before the regres-
sion is performed, and the corresponding inverse transforma-
tions are used to convert them back to SWE values. These
two approaches are denoted as percentile and Z score inter-
polation, respectively, and detailed descriptions for them are
as follows.
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Figure 3. Evaluation metrics for April–July ensemble mean streamflow from the percentile-based interpolation method for the nine case
basins using perfect forcing. The verification metrics from upper left to lower right are as follows: R-RMSE is the relative (normalized) root
mean squared error, R is the linear (Pearson) correlation coefficient, NSE is the Nash–Sutcliffe efficiency, bias is the same as mean error, and
CRPS is the continuous ranked probability skill score.

3.2.1 Percentile interpolation

First, the non-exceedance percentile po
y(k) of each SWE ob-

servation (observation-based values noted with superscript o)
at gauge site k on the DA date in year y is calculated based
on its rank, or percentile, within a sample of all SWE obser-
vations in all years at the same site within a time window of
±n days centered on the date of the observation in each year.

Then, we use the percentiles to do linear regression on geo-
graphic features latitude, longitude, and elevation to estimate
the SWE percentile for the target basin: p̂o

y , where the hat
indicates the basin mean estimate. By LOO cross validation,
the interpolation error of the linear regression is estimated as
êo
y . We sample from normal distribution N(p̂o

y ,êo
y) to get the

ensemble percentiles {p̂o
y(j)}, where j = 1, . . . , 100 repre-

sents the ensemble member.
Finally, we take the corresponding p̂o

y(j) percentile from
the full ensemble model SWE within the time window of±n
days centered on the DA date each year in all years, denoted
as Ŝf

y(j). The final ensemble SWE observations on the DA
date in year y for the target basin are {Ŝf

y(j)}, where j = 1,
. . . , 100.

3.2.2 Z score interpolation

First, we use the observed SWE at gauge site k on the DA
date in year y to calculate the Z score:

Z scorey (k)=
So
y (k)− S

o (k)

σ (So (k))
, (1)

where So (k) and σ (So (k)) are the long-term mean and stan-
dard deviation of a sample of all non-zero SWE observations
at the same site within a time window of ±n days centered
on the date of the observation, respectively. Here, we use the
Z score in the linear regression and again use LOO cross
validation to estimate the mean and interpolation error of the
Z score for a target basin. Then, we sample from the normal
distribution to get ensemble Z scores for the target basin, de-
noted as {Ẑ scoreoy(j)}, where j = 1, . . . , 100 represents the
ensemble member. Finally, we use the following equation to
transform Z score back to SWE values:

Ŝo
y (j)= Ẑ score(j)oy × σ

(
Sf (k)

)
+ Sf (k), (2)

where Sf (k) and σ
(
Sf (k)

)
are the long-term non-zero mean

and standard deviation of the full ensemble model SWE
within the time window of ±n days centered on the DA date
each year in all years, respectively. The final ensemble SWE
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Figure 4. Evaluation metrics for April–July ensemble mean streamflow from the Z score interpolation for the nine case basins using perfect
forcing. The verification metrics from upper left to lower right are as follows: R-RMSE is the relative (normalized) root mean squared
error, R is the linear (Pearson) correlation coefficient, NSE is the Nash–Sutcliffe efficiency, bias is the same as mean error, and CRPS is the
continuous ranked probability skill scores.

observations on the DA date in year y for the target basin are
{Ŝoy (j)}, where j = 1, . . . , 100.

Both percentile and Z score transformations normalize
the original SWE values to decrease their spatial variability
(Slater and Clark, 2006; Wood and Lettenmaier, 2006). The
latter ensures the ensemble observations have the same mean
as the ensemble model SWE and the variance of ensemble
observations is proportional to ensemble model SWE vari-
ance. The former emphasizes the shape of the observation
time series. SWE observations in and near a watershed but
at different elevations may have greatly varying values, but
their percentile and Z score statistics will show reduced vari-
ation because they arise from similar relative weather condi-
tions with respect to conditions in other years. Using normal-
ized statistics significantly reduces the interpolation uncer-
tainty and systematic biases relative to the watershed’s SWE
climatology.

3.3 EnKF approach and experimental design

For evaluating the relative performance of DA and for re-
initializing the soil moisture of DA runs at the beginning of
each water year (WY), an open-loop or “control” retrospec-
tive simulation (denoted No DA) is performed using the cal-
ibrated model parameters with ensemble forcing data. This
control run is one continuous simulation per ensemble mem-

ber for the entire hindcasting and evaluation period (1981–
201X) for each basin, where “201X” is the last simulation
year available between 2010 and 2014. Because this study
focuses on assessing variations in methodological aspects
of the DA approach rather than differences in performance
throughout a forecasting season, we apply DA updates only
once per year, using the date on which the SWE correlation
with future runoff is highest for the study basin, but no later
than 1 April, a common date for initiation of spring seasonal
runoff forecasts.

The EnKF method used in this study is a time-discrete
forecast and linear observation system described by two rela-
tionships (generally following the notation of Ide et al., 1997
and Wu et al., 2012):

xt
i+1 =M

(
xt
i

)
+ ηi, (3)

yo
i = h

(
xt
i

)
+ εi, (4)

where i is the time step;M is the coupled Snow-17 and SAC-
SMA model; x is the state variable and y is the observation
variable (in this study both x and y are the one-dimensional
vectors containing basin mean SWE for the target watershed
across all ensemble members); the superscripts t and o stand
for truth and observed, respectively; η and ε are the model
and observation errors, respectively; and h is the observation
operator that maps the model states to the observation vari-
able. In this study, h is simply the identity vector, as we re-
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Figure 5. Evaluation statistics of percentile interpolation for the nine case basins with the two variations of ensemble streamflow prediction
(ESP) and with perfect forcing data (ens in the legend denotes ensemble). The verification metrics are the same as in Fig. 4.

gard the SWE estimates that have been transformed to model
space as observation y as a preprocessing step.

The SWE DA approach is implemented via the following
procedure:

1. The watershed model is run once for each ensemble
forcing member from the beginning of a WY until the
DA date with initial states x0 taken from the retrospec-
tive control runs, producing the ensemble forecast states
xf
i . The superscript f denotes forecast.

2. The ensemble analysis states are calculated as follows:

xa
i = xf

i + sih
T
i

(
hisih

T
i + oi

)−1
di, (5)

where superscript a means analysis, o and s are the ob-
served and model simulation error variances (estimated
by the variance of ensemble observations and model
states, respectively), and the innovation vector (resid-
ual) is calculated as

di = yo
i −hi

(
xf
i

)
. (6)

3. The Snow-17 SWE states are updated with the analysis
states to use for initialization of forecasts through the
end of the WY.

Steps 1–3 are repeated for all WYs available in the hind-
cast period (1981–201X). Soil states are re-initialized using
the states from the retrospective (No DA) run at the start of
every WY (October 1), when there is no SWE. To summa-
rize, we calculate an analysis via Eq. (5) and use that analy-
sis to update the Snow-17 SWE states. We then run the model
with the updated states until the end of the WY.

3.4 Model and observation error variance

In this study, only the uncertainty of the forcing data is
taken into account in our model uncertainty, and uncertainty
that arises from model structural and parameter errors could
cause the true model error to be larger. Thus, we assess the
impacts of inflating model error variance to evaluate the rel-
ative size of observed and forecast error variance. We simply
set the model SWE error variance to half of and 2 times the
original size to see how the DA performances change. If in-
creasing the model error variance results in DA performance
improvements, it would indicate that the model error vari-
ance is underestimated, and vice versa. This sensitivity anal-
ysis underscores the importance of a careful effort to prop-
erly estimate both model and observational uncertainty when
using the EnKF – a challenge that is well known in the DA
community.
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Figure 6. Incremental change in evaluation statistics for ESP and perfect forcing forecasts using percentile-based interpolation for the nine
case basins. R is the linear (Pearson) correlation coefficient, NSE is the Nash–Sutcliffe efficiency, and CRPS is the continuous ranked
probability skill score.

Figure 7. Difference of the rank correlation of SWE and runoff from the best SNOTEL site (of nearest 10) and calibrated model without DA.

3.5 Seasonal ensemble streamflow prediction

Although the impacts of the SWE DA on forecast accuracy
can be assessed through verification of post-adjustment sim-
ulations using “perfect” future forcing, we demonstrate the
performance of SWE DA by initializing seasonal ESP fore-
casts for a streamflow forecast product that is widely used in
water management, the snowmelt period runoff volume from

April through July. ESP uses historical climate data to repre-
sent the future climate conditions each year from the starting
point of the forecast period to predict streamflow. Two typ-
ical ESP applications are tested in this study. Because we
have an ensemble of historical forcing instead of the tradi-
tional application in which only a single historical forcing
time series is available, there are different ways to construct
an ESP. We adopt two: (1) we construct the ESP forcing en-
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Figure 8. Time series plots for SWE and runoff for the Greys River
for water year 1997. Light blue lines indicate individual ensemble
member traces. Vertical black dashed line denotes the DA date.

semble by randomly selecting 1 year of the historical ensem-
ble forcing data for each historical member of the ESP; and
(2) we use all historical years of ensemble mean forcing data
for each ESP historical year member, yielding a 30× 100-
member ensemble for an ESP based on meteorology from
1981 to 2010 (variations are noted as ens forcing and ens
mean forcing, respectively, in subsequent figures discussing
ESP results).

3.6 Verification metrics

In this study, five frequently used statistics are calculated for
April through July seasonal streamflow volume expressed as
runoff (mm) for evaluating the two DA approaches. The bias,
correlation coefficient (R), relative root mean squared error
(R-RMSE), and Nash–Sutcliffe efficiency (NSE) are based
on the ensemble averages. The continuous ranked probabil-
ity score (CRPS) is a measurement of error for probabilistic
prediction (Murphy and Winkler, 1987). It is defined as the
integrated squared difference between the CDF of forecasts
and observations:

CRPS=

+∞∫
−∞

[
F f(x)−F o(x)

]2
dx, (7)

where F f and F o are CDFs for forecasts and observations
of streamflow, respectively. Small CRPS values mean more

Figure 9. Time series plots for SWE and runoff for the south fork
(SF) of the Tolt River for water year 1988. Light blue lines indi-
cate individual ensemble member traces. Vertical black dashed line
denotes the DA date.

accurate forecasts, with a 0 value indicating a perfect forecast
accuracy.

4 Results and discussion

4.1 Overall performance in the case basins

Using the two approaches described in Sect. 3.2 with three
different window lengths (7 days, 3 months, 1 year), a sample
comparison from 1 year (2004) of the results for estimated
watershed SWE from the two methods versus the model
SWE ensemble on the DA date (DA dates for the case basins
are listed in Table 1) for the case basins is shown in Fig. 2.
The distributions of SWE from the model ensemble and from
the percentile and Z score interpolation methods differ in
ways that are not consistent across all watersheds. The vari-
ance of the estimated observed SWE for both methods is gen-
erally largest for the 1-year window, an effect that is more
pronounced for the Z score interpolation. However, we also
note that the ensemble observations of 7-day window can
have a larger variance than the 3-month window, and as large
as the 1-year window in some cases. For more details, see
the percentile interpolation for the Payette River for the 7-day
window in Fig. 2 where the 7-day window interquartile range
is about 250 mm and the 1-year window range is 300 mm,
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Figure 10. Time series plots for SWE and runoff for the Merced
River for water year 1986. Light blue lines indicate individual en-
semble member traces. Vertical black dashed line denotes the DA
date.

while the 3-month window is only about 120 mm. This is
likely due to the more limited sample size for the regression,
which can reduce the positive impact of DA performance.
For example, the SF Payette River and the Greys River have
positive DA impact for both the 7-day and 3-month win-
dows but for the 7-day window the positive impact is reduced
by roughly half in both basins for most metrics (Tables S1
and S3 in the Supplement). Increased estimated observation
variance decreases the weight of the observations in an EnKF
approach and thus decreases the impact of the observations.
In this study, a 3-month window of SWE observations gen-
erally gives the best performance. However, in some basins,
a different window length may bring larger improvements.
Longer windows mean that the transformation is more statis-
tically representative of the long-term model–observation cli-
matology. Shorter time windows imply that the model SWE
values used for transformation are more relevant to a specific
seasonal time period, avoiding aliasing for seasonality, but
have much smaller sample sizes and may not properly rep-
resent the relationship between model and observation cli-
matologies. The window length must be a balance between
these two considerations. Therefore, a 3-month window is
recommended for both approaches.

The evaluation statistics for simulated streamflow using
perfect forcing after DA with ensemble SWE observations
estimated by the percentile and Z score interpolation ap-

proaches for the 3-month window are shown in Figs. 3 and 4.
They are also compiled in Tables S1–6. In those tables, the
second column shows the forecast error variance used to cal-
culate analysis states, where “No DA” means the open-loop
control run (see Sect. 3.3), and the P , 1/2P and 2P re-
fer to the DA runs with the model error variance estimated
by 1, one-half, and 2 times the original size of the ensem-
ble model variance. Both percentile and Z score interpola-
tion approaches exhibit enhanced DA performance among
the case basins, indicating that both approaches are effec-
tive in adding observation-based information to the model
simulations. Overall, using the original model variance esti-
mate (case P ), the mean improvement for the percentile in-
terpolation method (Z score method) is a reduction in relative
RMSE (R-RMSE) of about 11 % (12 %) and an increase in
NSE of 0.03 (0.05). The percentile interpolation and Z score
interpolation methods vary in performance across the basins
with both performing better in some basins and not others
(e.g., percentile interpolation performs slightly better than
Z score interpolation in the Greys River using NSE as the
evaluation metric (0.94 versus 0.93) and slightly worse than
that in the SF Tolt River (0.82 versus 0.88)). Using NSE,
percentile interpolation performs better in the Greys River,
while Z score interpolation performs better in the Vallecito,
south fork of the Tolt, Merced, and Smith rivers. To the hun-
dredth NSE value (0.01), both methods are equivalent in the
south fork of the Payette River, and General and Blackwood
creeks.

The results of forecast error variance inflation shows that
for both percentile and Z score interpolation, 2P has bet-
ter performance than P in most of the case basins – i.e., in-
creasing the model error variance leads the assimilation to
trust observations more and improves the DA performance
(circles in both figures generally have improved evaluation
metrics than squares or triangles). Using NSE, the percentile
(Z score) interpolation 2P case is on average another 0.01
(0.01) better than the P case across the nine basins. This
sensitivity analysis of model uncertainty impacts on DA per-
formance suggests that either the forcing-alone-based esti-
mation of model errors underestimates the total model error
variance, or the observed SWE error estimation approaches
(interpolation plus the SWE regression) tend to overestimate
observation uncertainty, or both. It is likely we are underesti-
mating model uncertainty because we have not taken model
structural and parameter uncertainty into consideration. Both
approaches bring incremental enhancements to the ensem-
ble mean streamflow hindcast in most basins when evaluated
across the R-RMSE, R, and NSE metrics; however, DA does
not help correct forecast biases in these simulations. Post-
processing procedures (e.g., bias correction) could be used to
further enhance the forecast performance, but this is not a fo-
cus of this study. These figures also show that forecasts with-
out DA (“No DA” in figures, “NoDA” in text) that have rel-
atively better performance, mostly due to better simulations
of forecast initial conditions, benefit less from DA. Three of
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Figure 11. Scatterplots for seasonal runoff and SWE on the DA date for the Greys River. Black dashed diagonal lines indicate the 1 : 1 line,
while the green lines indicate linear regression fits to data. Perfect forcing results are shown in the top row, while ESP results are in the
bottom row.

the basins have a NoDA seasonal runoff NSE of less than
0.8, with an average improvement of 0.05 for the percentile
regression and 0.12 for the Z score regression versus 0.03
and 0.05 across all nine basins. Four basins have seasonal
runoff NSE values of at least 0.89 and the two DA methods
result in minimal improvement, 0.02 for both methods. With
a sample size of nine, little statistical significance can be at-
tached to these results, but they do suggest DA is more ben-
eficial in poorly calibrated basins. Future work will examine
the potential for DA based on NoDA (open-loop) model per-
formances and the characteristics of nearby observed SWE
data.

Figure 5 summarizes the ESP evaluation statistics. For
simplicity, only the percentile interpolation approach with
a 3-month window is shown without forecast error infla-
tion. It shows that for both ESP forcing methodologies used
(Sect. 3.5) in all the case study watersheds, SWE DA en-
hances seasonal runoff prediction skill, including the prob-
abilistic prediction metric CRPS. Again, higher skill NoDA
watersheds saw smaller DA improvements. The DA evalua-
tion metric improvement increment versus the corresponding
NoDA evaluation metric score for the case basins is shown in
Fig. 6. The DA improvements in all evaluation metrics have
a generally weak negative correlation with NoDA perfor-

mance, which again highlights that better-simulated basins
benefit less from SWE DA.

4.1.1 Broader DA potential

In general, the incremental DA improvements are relatively
smaller where the NoDA model performance is relatively
better. However, specific basin performance is dependent on
many factors, including (1) representativeness of nearby ob-
servations to basin conditions; (2) quality of observations;
and (3) specific basin characteristics of the calibrated hy-
drologic model. Because we use calibrated, watershed-scale
hydrologic models, transferability of performance character-
istics of the DA approach without implementation in each
basin is limited. That being said, Fig. 7 displays the differ-
ence between the rank correlation of SWE and runoff for the
calibrated model (NoDA) and highest correlated observation
site (from the nearest 10 sites). It highlights the same gen-
eral spatial patterns seen in the nine basins simulated here.
The potential for larger DA improvement appears to be in the
Pacific Northwest (upper left of figure). Basins in the Dako-
tas (upper right basins) are far from SNOTEL sites and have
little areal SWE; basins along the far southern US have lit-
tle SWE and runoff as well. Throughout the central Rockies
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Figure 12. Scatterplots for seasonal runoff and SWE on the DA date for the south fork of the Tolt River. Black dashed diagonal lines indicate
the 1 : 1 line, while the green lines indicate linear regression fits to data. Perfect forcing results are shown in the top row, while ESP results
are in the bottom row.

(central basins), model–observation correlation differences
are small, potentially indicating reduced DA improvement
potential, in agreement with the results seen above.

4.2 Case study analyses

To provide a more in-depth examination of the SWE DA im-
pacts to the watershed model states and fluxes, time series
of runoff and SWE are shown in Figs. 8, 9, and 10 for three
example basins, one for each region (the same figures for the
other six basins are included in the Supplement), and for one
hindcast year. The feedback from the change of SWE on the
DA date to seasonal runoff is readily apparent. Increasing
the ensemble model SWE through DA will lead to increased
model runoff, and vice versa. For basins with a strong sea-
sonal cycle of streamflow (e.g., Greys and Merced rivers),
SWE DA may improve daily runoff forecasts in years when
seasonal volume forecast improvements are seen, although
this is not true in every watershed (e.g., Tolt River). For ex-
ample, the daily NSE for the Greys River in 1997 after DA
was improved from 0.53 to 0.80 in the perfect forcing exam-
ple, and this is via bias reduction, as the daily flow timing is
essentially unchanged. In Fig. 9, the NSE of the daily flow
prediction of the Tolt River is essentially unchanged (0.54

for DA, 0.53 for NoDA) even though the seasonal volume
prediction is improved (1990 mm observed, 1968 mm DA,
1534 mm NoDA). In this case, improvements to bias did not
improve NSE as the bias improvements did not improve the
squared daily flow differences (e.g., RMSE: 7.76 versus 7.88
for DA versus NoDA).

Figures 11, 12, and 13 show several scatterplots of fore-
cast period runoff for the ESP ensemble forcing and perfect
forcing forecasts versus observed runoff, in the three case
basins for all of the hindcast years. The left two columns
show the comparison for NoDA- and DA-simulated seasonal
runoff versus observed runoff for perfect (top row) and ESP
ensemble forcing (bottom row), respectively. The 1 : 1 lines
are shown as grey dashed lines, and regression lines for the
results are shown as green solid lines. The results after DA
have higher correlation and are generally closer to the 1 : 1
line, which indicates that for both forcing types SWE DA im-
proves seasonal runoff simulation and prediction skill. The
rightmost columns in these three figures show the scatter-
plots of SWE increment (i.e., SWE analyses states minus
model SWE without DA) versus runoff error (i.e., the sim-
ulated seasonal runoff without DA minus the observed sea-
sonal runoff). If the runoff errors are positive (the seasonal
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Figure 13. Scatterplots for seasonal runoff and SWE on the DA date for the Merced River (same as Fig. 12).

runoff is overestimated), we would expect the SWE incre-
ment to be negative in order to decrease the model seasonal
runoff (counteract model error) and vice versa. Thus, the
ideal results are that the points fall onto different sides of
the y = 0 and x = 0 lines (shown as grey dashed lines in this
panel); i.e., the points all fall into the second (upper left) and
fourth (lower right) quadrants. This is generally the case for
our case basins for both perfect and ESP forcing, which again
shows that the SWE DA approach is successful in reducing
model and forecast error.

For the three basins highlighted here, there are years where
the DA SWE increment is not in the second or fourth quad-
rants. In these years, the increment decreases subsequent
forecast skill. Overall, there are 11 of 28 (39 %), 4 of 24
(17 %), and 12 of 26 (46 %) years for the Greys, Tolt, and
Merced rivers where this is the case using perfect forcing.
These years generally correspond to small SWE increments
relative to that year’s SWE and runoff in all basins, except
for 5 years in the Merced River, where the SWE increment
is larger than 10 % of that year’s streamflow production and
is incorrect. In the Greys River, all incorrect increments are
less than 10 % of the observed runoff for that year and also
in years where the NoDA runoff error is less than 10 % of
observed. A small increment implies that the estimated ob-
served and model SWE are very similar, and thus, in years

with small model error, the model SWE climatology closely
matches observed climatology after transformation for this
basin. Figure 14 highlights an example WY in the Merced
River where the SWE increment and runoff error are both
negative, indicating that DA increased the model forecast er-
ror.

The Merced River is the only basin to use California SWE
observations, and these may be of lower quality as evidenced
by the large amount of manual quality control we had to per-
form on the data and the discussion of these data in Lundquist
et al. (2015). This suggests that observed SWE data need to
be of higher quality (or information content) than the cali-
brated model SWE to have the positive impact in the DA ap-
proach. The calibrated Merced model has −19 % April–July
runoff bias with 23 (88 %) of years having a negative runoff
error. EnKF SWE increments are negative in 15 (58 %) and
positive in 11 (42 %) of the years. This indicates that the ob-
served SWE transformation to model space is largely unbi-
ased, but the calibrated model bias impacts SWE DA per-
formance. Calibration of the model specifically for seasonal
flow to ensure minimal bias, or hydrologic parameter estima-
tion within the EnKF approach (e.g., He et al., 2012), would
likely improve hydrologic model performance and thus sea-
sonal SWE DA forecasts in the Merced. Finally, examination
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Figure 14. Time series plots for SWE and runoff for the Merced
River for water year 1984. Light blue lines indicate individual en-
semble member traces. Vertical black dashed line denotes the DA
date.

of El Niño/La Niña signals (not shown) revealed no clear pat-
tern with degradation of DA forecast skill.

Lastly, there are years where the NoDA runoff error is
large, but the SWE increment is small in all three basins. This
is not unexpected, as spring SWE is not perfectly correlated
with subsequent runoff. This may also hint at a level of data
loss in the EnKF approach, and future work should compare
streamflow hindcasts using this type of DA approach with
traditional statistical methods using SWE as a primary input.
It also suggests that improved model calibration, or in com-
bination with model parameter estimation in the EnKF ap-
proach (e.g., He et al., 2012), may improve DA performance
across all basins, not just the Merced.

5 Summary and conclusions

This study tests variants of EnKF SWE DA approaches in
nine case basins in the western US. These basins have sea-
sonal runoff representative of basins used for water resource
management across the western US and have at least six
close SWE gauge sites with 20 or more years of observa-
tion history. Two approaches of constructing SWE ensemble
observations, percentile and Z score interpolation, are exam-
ined in this study in an effort to reduce the spatial variability
and decrease the interpolation uncertainty while also trans-

forming the observations to model space (e.g., the range of
the model climatology). A 3-month window of SWE obser-
vations generally gives the best performance for these two
approaches in this study (Figs. 2–4, Tables S1–6). However,
in some basins a different window length may bring larger
improvements. A suitable window length needs to include
sufficient samples for transformation as well as including the
most relevant samples (i.e., a specific seasonal time period).
Sensitivity analyses of model uncertainty impacts on DA per-
formance suggest that either the forcing-alone-based estima-
tion of model errors underestimates the total model error
variance, or the observed SWE error estimation approaches
(interpolation plus the SWE regression) tend to overestimate
observation uncertainty, or both (Figs. 3–4, Tables S1–6). Fu-
ture work should examine this in more detail, as this work
clearly indicates that uncertainty scaling approaches (for the
model and/or the observations) are likely to be a valuable
step for further DA improvements.

Encouragingly, the ESP-based assessment of automated
SWE DA in the case study watersheds shows clearly the po-
tential for SWE DA to enhance seasonal runoff forecasts,
which is notable as the objective incorporation of observed
SWE has been a long-standing challenge in operational fore-
casting. We show at least minor improvement in seasonal
runoff forecasts in all nine basins (Figs. 5–6). A notable find-
ing is also that the benefits of SWE DA are linked to the
quality of the model simulations of the basin, which can help
to target the application of DA to locations where it will
have the most benefit (Figs. 5–6). For the basins with poor
NoDA simulations (e.g., the SF Tolt River; Fig. 12), the SWE
DA can potentially have greater model performance impacts.
The Pacific Northwest and California were found to have the
greatest potential for DA improvements to seasonal forecast-
ing in this study (Fig. 7). This stems from weaker NoDA
model performance; the NoDA model run will have more
years with larger runoff errors. However, there are still in-
dividual years where DA may not improve the forecast. This
likely stems from hydrologic model bias that leads to SWE
state corrections enhancing rather than reducing runoff errors
(e.g., Merced River; Figs. 13–14).

We chose a DA update frequency of once per year, on the
date of climatological maximum correlation of modeled and
observed runoff. In operational practice, updates would be
applied more frequently, pointing to an area for future re-
search. We note also that this study was conducted using con-
ceptual lumped watershed models, similar to those used in
operational practice in the US. As a result, this study does not
shed light on how to address additional challenges that may
be associated with using SWE DA in spatially distributed
models, or with spatially continuous datasets (e.g., satellite
and remote sensing SWE estimates) that are increasingly
being developed or applied in streamflow forecasting con-
texts. SWE DA has been implemented in distributed mod-
els in prior experimental contexts across large domains (e.g.,
Wood and Lettenmaier, 2006), but a systematic examination
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of EnKF DA in spatially distributed hydrological models,
coupled with a thoughtful accounting for model parameter
and structural errors, remains a potentially fruitful area of re-
search and development.

6 Data availability

All data used in this study are publicly available. The water-
shed shapefiles and basin information are described in New-
man et al. (2015a) at doi:10.5065/D6MW2F4D (Newman et
al., 2014). The forcing ensemble is described in Newman et
al. (2015b) and is available at doi:10.5065/D6TH8JR2 (New-
man et al., 2015c). The streamflow data are available through
the USGS via http://waterdata.usgs.gov/usa/nwis/sw and in
doi:10.5065/D6MW2F4D (Newman et al., 2014). The SNO-
TEL observations are available at www.wcc.nrcs.usda.gov/
snow/ while the California SWE observations are available
at http://cdec.water.ca.gov/snow.

The Supplement related to this article is available online
at doi:10.5194/hess-21-635-2017-supplement.
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