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Abstract. Agricultural drought events can affect large re-
gions across the world, implying the need for a suitable
global tool for an accurate monitoring of this phenomenon.
Soil moisture anomalies are considered a good metric to cap-
ture the occurrence of agricultural drought events, and they
have become an important component of several operational
drought monitoring systems. In the framework of the JRC
Global Drought Observatory (GDO, http://edo.jrc.ec.europa.
eu/gdo/), the suitability of three datasets as possible represen-
tations of root zone soil moisture anomalies has been evalu-
ated: (1) the soil moisture from the Lisflood distributed hy-
drological model (namely LIS), (2) the remotely sensed Land
Surface Temperature data from the MODIS satellite (namely
LST), and (3) the ESA Climate Change Initiative combined
passive/active microwave skin soil moisture dataset (namely
CCI). Due to the independency of these three datasets, the
triple collocation (TC) technique has been applied, aiming
at quantifying the likely error associated with each dataset
in comparison to the unknown true status of the system. TC
analysis was performed on five macro-regions (namely North
America, Europe, India, southern Africa and Australia) de-
tected as suitable for the experiment, providing insight into
the mutual relationship between these datasets as well as an
assessment of the accuracy of each method. Even if no defini-
tive statement on the spatial distribution of errors can be pro-
vided, a clear outcome of the TC analysis is the good perfor-
mance of the remote sensing datasets, especially CCI, over
dry regions such as Australia and southern Africa, whereas
the outputs of LIS seem to be more reliable over areas that
are well monitored through meteorological ground station
networks, such as North America and Europe. In a global
drought monitoring system, the results of the error analysis

are used to design a weighted-average ensemble system that
exploits the advantages of each dataset.

1 Introduction

Drought is a recurring natural extreme, triggered by lower
than normal rainfall, and often exacerbated by a strong evap-
orative demand due to high temperatures and strong winds.
Drought events may occur in all climates and in most parts
of the world, since drought is defined as a temporary devia-
tion from the local normal condition. Due to the usually wide
extension of the area of interest, drought affects millions of
people across the globe each year (Wilhite, 2000).

On the basis of the economic and natural sectors impacted
by this phenomenon, a drought event is usually classified
as meteorological, agricultural and hydrological drought, de-
pending on the persistence of the water deficit within the hy-
drological cycle. Of particular interest for this study are the
agricultural (or ecosystem) drought events, defined as pro-
longed periods with drier than usual soils that negatively af-
fect vegetation growth and crop production, and, as a conse-
quence, human welfare (Dai, 2011).

Soil moisture is commonly seen as one of the most
suitable variables for monitoring and quantifying the im-
pact of water shortage on vegetated lands due to its ef-
fects on the terrestrial biosphere and the feedbacks into
the atmospheric system. As a consequence, time-aggregated
soil moisture anomalies (e.g., monthly) are included in
numerous drought monitoring systems from regional to
continental scales (i.e., European Drought Observatory,
http://edo.jrc.ec.europa.eu; United States Drought Monitor,
http://droughtmonitor.unl.edu; African Flood and Drought
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Monitor, http://hydrology.princeton.edu/adm/; among oth-
ers).

In the context of drought monitoring, the soil moisture
dynamic over large areas is usually modeled through either
distributed hydrological models or land-surface schemes of
climate models (Crow et al., 2012; Sheffield et al., 2004),
as well as by thermal or passive/active microwave remote
sensing-derived quantities (see, e.g., Anderson et al., 2007;
Houborg et al., 2012; Mo et al., 2010). With regard to global-
scale monitoring, remote sensing-based approaches have the
advantage of intrinsic worldwide coverage. However, mi-
crowave sensors can explore only the first few centimeters of
soil and are characterized by decreasing sensitivity with in-
creasing vegetation coverage (Jackson, 2006). In the case of
thermal data, the lack of coverage during cloudy conditions
and the nontrivial connection between thermal and soil mois-
ture signals (Price, 1980) are other limitations. By contrast,
diagnostic models allow for continuous monitoring of soil
moisture at the desired soil depths, but the accuracy of the
data is constrained by uncertainties in the parameterization
of soil hydrological characteristics, as well as by the actual
availability of near-real-time reliable meteorological forcing
data. Generally, the use of in situ observations for large area
monitoring is limited, mainly due to the lack of long records,
the sparseness of recording stations and the high spatial het-
erogeneity of soil moisture fields.

It follows that both satellite measurements and model pre-
dictions are subject to errors and uncertainties that need to
be accounted for in their interpretation and application (Gru-
ber et al., 2016). This also suggests that a monitoring sys-
tem based on a single dataset is rarely capable of providing
global reliable estimates, and a combination of different data
sources is desirable in order to minimize the errors in the de-
tection of drought events. Recently, Cammalleri et al. (2015)
demonstrated the value of an ensemble of modeled soil mois-
ture anomalies for drought monitoring over Europe, similarly
to the findings of the US National Land Data Assimilation
System (NLDAS) (Dirmeyer et al., 2006). However, a key
point in combining different modeled data is the need to es-
timate the affinity and divergence between the models across
the modeling domain.

In the most recent years, the triple collocation (TC) tech-
nique (Stoffelen, 1998) has been established as a practical ap-
proach to evaluate the unknown error variance (with respect
to the truth) of three mutually independent measurement sys-
tems without knowing the “true” status of the system (Yilmaz
and Crow, 2014). This technique has been widely applied
in hydrology to estimate errors in soil moisture, as well as
to evaluate precipitation and vegetation property indicators
(Dorigo et al., 2010; McColl et al., 2014). One key require-
ment in TC is the existence of linearity between the three
estimates and the truth, which can fail in the case of strongly
seasonal geophysical variables such as soil moisture (Su et
al., 2014). Luckily, drought monitoring systems are usually
based on soil moisture anomalies rather than actual values,

hence providing a partial remedy to this problem and making
soil moisture anomalies directly suitable for this methodol-
ogy (Miralles et al., 2010). However, since most TC studies
focused on soil moisture dynamics rather than standardized
anomalies, specific analyses are required to evaluate the ac-
curacy of each dataset across the spatial domain.

In the framework of operational monitoring of agri-
culture and ecosystem drought, the availability of soil
moisture, or proxy datasets available in near-real time,
is crucial; within the Global Drought Observatory (GDO,
http://edo.jrc.ec.europa.eu/gdo/), developed by the Joint Re-
search Centre (JRC) of the European Commission, the soil
moisture outputs of the Lisflood hydrological model and the
Land Surface Temperature (LST) anomalies derived from the
Moderate-Resolution Imaging Spectroradiometer (MODIS)
onboard the Terra satellite have been detected as suitable
datasets for near-real-time monitoring. In particular, Cam-
malleri and Vogt (2016) have highlighted how monthly-
average LST anomalies represent the best proxy of soil mois-
ture variations across different climates in Europe when com-
pared to other LST-derived quantities.

As a third dataset for the TC analysis, the combined ac-
tive/passive microwave soil moisture dataset produced by the
European Space Agency (ESA) in the context of the Cli-
mate Change Initiative (CCI) is used; even if this dataset is
not currently updated in near-real time, it represents a valu-
able reference dataset for a globally consistent time series
of microwave-based soil moisture maps (also, near-real-time
updating is foreseen in the framework of the Copernicus Cli-
mate Change Services).

The agreement between anomaly time series derived from
these three products has not been fully investigated in the
literature, especially on a global scale; hence, given the inde-
pendency of the three sources of data (hydrological model,
and thermal and microwave remote sensing) and the likely
fulfillment of the main TC key hypothesis (i.e., independency
between the errors of the three datasets), the TC approach
seems suitable for quantifying the spatial distribution of the
errors associated with each dataset.

Following these considerations, the overall goal of this
study is two-fold. First, the agreement between the monthly
anomalies of the three datasets is evaluated, in order to iden-
tify the macro-areas where reliable monitoring of soil mois-
ture extreme conditions can be performed based on these
three datasets that are available globally and suitable for use
in a near-real-time monitoring system. Second, the TC anal-
ysis is performed over those macro-areas in order to quan-
tify the spatial distribution of the expected random errors for
each model compared to the unknown true status. The ulti-
mate objective of the error analysis reported in this study is
to provide information on the accuracy of the datasets that
can be injected into a weighted-average ensemble procedure
for near-real-time detection of the occurrence of ecosystem
drought events, thus contributing to the future development
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of a robust agricultural drought monitoring index within the
GDO system.

2 Methods

Drought events are commonly defined as prolonged periods
during which a given drought indicator significantly deviates
from the usual condition for the specific site and period (e.g.,
soil moisture content is lower than the climatology). Follow-
ing this definition, this study will focus on standardized z-
score values in order to make the different datasets directly
comparable (i.e., minimizing the differences related to sea-
sonality, soil depth, etc.). Specifically, monthly z-score val-
ues, or anomalies, are evaluated as

zx,i,k =
xi,k −µx,i

σx,i
, (1)

where xi,k is the monthly average variable for the ith month
at the kth year, and µx,i and σx,i are the long-term average
and standard deviation of the variable x for the ith month,
respectively. The baseline period adopted to compute the 12
µ and σ monthly reference values should be 15–30 years in
order to ensure a stable benchmark. The three datasets used
here, as described in the next section, are the root zone soil
moisture data from the Lisflood model (x =LIS), the ESA
Climate Change Initiative skin soil moisture microwave com-
bined product (x =CCI) and the thermal remote sensing de-
rived Land Surface Temperature (x =LST); in the case of
LST data, the sign of the anomalies is reversed due to the ex-
pected inverse relationship between soil moisture and LST.

The monthly aggregation period is chosen to ensure sta-
tistical robustness of the computed anomalies, as well as to
minimize the presence of missing data in the remote sens-
ing datasets due to sub-optimal acquisition conditions (e.g.,
cloudy days for LST). The transition from daily data to
monthly aggregated values also ensures a reduction in the
likely discrepancies among the three datasets introduced by
the differences in the explored soil depth, since the phase
shift in time-aggregated quantities is usually less marked
(Campbell and Norman, 1998). Additionally, the anomalies
computed according to Eq. (1), characterized by a null aver-
age and a unitary standard deviation, allow for a direct com-
parison of the different datasets thanks to the removal of po-
tential biases. In the particular case of a regression analy-
sis between two standardized anomaly quantities, the Pear-
son correlation coefficient, R, represents not only a measure
of the linear dependency of the two random variables, but
also the slope of the linear relationship and a proxy of the
difference and biases of the two datasets. In this respect, R
can be seen as a good synthetic descriptor of the relation-
ship between two standardized z-score datasets. The statisti-
cal significance of the existence of a positive correlation can
be evaluated by means of the Student’s t test (two-sided) by
computing the R value corresponding to a significance level
p = 0.05.

Analysis of the correlation among the datasets is interest-
ing in the framework of the TC technique and its basic hy-
potheses. In TC, a first key hypothesis is the existence of lin-
earity between the “true” status of the system and the three
models; this is formally expressed as

zx = αx +βxz2+ εx, (2)

where z2 is the unknown true dataset of soil moisture anoma-
lies, αx and βx are the systematic slope and bias parameters
for the dataset x with respect to the truth, and εx is the ad-
ditive zero-mean random noise. It follows that the absence
of a statistically significant linear relation between all three
models openly violates this hypothesis.

Other key underlying hypotheses of TC are the station-
arity of both signals and errors, the independency between
the errors and the signal (error orthogonality) and the in-
dependence between the errors of the three datasets (zero-
cross correlation) (Gruber et al., 2016). Finally, operational
limitations regard the minimum sample size of each dataset,
which is commonly assumed equal to 100 values (Scipal et
al., 2008; Dorigo et al., 2010), even if some other authors
suggest much larger sample sizes for a lower relative uncer-
tainty (Zwieback et al., 2012).

Under these assumptions, Stoffelen (1998) proposed a for-
mulation to estimate each model error variance, σ 2

εx , based
on a combination of the covariance between the datasets. In
this approach, known as the covariance notation (Gruber et
al., 2016), the error variance values are computed without a
common (arbitrary) reference dataset as

σ 2
ε1
= σ 2

1 −
σ12σ13

σ23
,

σ 2
ε2
= σ 2

2 −
σ21σ23

σ13
,

σ 2
ε3
= σ 2

3 −
σ31σ32

σ12
,

(3)

where, for the sake of simplicity, LIS, LST and CCI were
renamed 1, 2 and 3, respectively. The first term on the right-
hand side of Eq. (3) represents the single model data vari-
ance, whereas the second term represents the so-called sen-
sitivity of the model to variations in the true status, which is
a function of the covariance terms between the three models.
The advantage of this formulation is to directly estimate the
unscaled error variances, which can (eventually) be scaled to
a common data space, if needed.

In the case of the application of the covariance notation
to standardized quantities (with zero mean and unitary stan-
dard deviation), the error variance values computed through
Eq. (3) are expressed as dimensionless multiples of standard
deviation, and a transformation to a common data space is
not needed.

Different performance metrics can be derived from the
covariance notation, including relative error variance met-
rics such as the fractional root-mean-squared error (fRMSE,
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Draper et al., 2013) and the correlation coefficient of each
model with the underlying true signal (McColl et al., 2014).
However, these metrics can be derived from each other by
means of simple relationships (see Gruber et al., 2016) and
they are analogous to the absolute error variance values in the
case of z-scores that have known unitary dataset variance.

3 Data and materials

3.1 Lisflood model soil moisture

Root zone soil moisture dynamics are simulated by means
of the Lisflood model (de Roo et al., 2000), a GIS-based
distributed hydrological rainfall–runoff routing model de-
signed to reproduce the main hydrological processes that oc-
cur in large and trans-national European river catchments.
The model simulates all the main hydrological processes oc-
curring in the land–atmosphere system, including infiltration,
actual evapotranspiration, soil water redistribution in three
sub-layers (surface, root zone and sub-soil), surface runoff
rooting to the channel, and groundwater storage and trans-
port (Burek et al., 2013).

Static maps used by the model are related to topography
(i.e., digital elevation model, local drain direction, slope gra-
dient, elevation range), land use (i.e., land use classes, for-
est fraction, fraction of urban area), soil (i.e., soil texture
classes, soil depth), and channel geometry (i.e., channel gra-
dient, Manning’s roughness, bankfull channel depth, channel
length, bottom width and side slope). Root zone depth is de-
fined for each modeling cell on the basis of soil type and land
use, where the soil-related hydraulic properties are obtained
from the ISRIC 1 km SoilGrids database (Hengl et al., 2014),
whereas topography data are obtained from the Hydrosheds
database (Lehner et al., 2008).

Daily meteorological forcing maps are derived from
the European Centre for Medium-range Weather Forecasts
(ECMWF) data as spatially resampled and harmonized by
the JRC Monitoring Agricultural ResourceS (MARS) group.
The dataset includes daily average air temperature, poten-
tial evapotranspiration (for soil, water and reference surfaces)
and total rainfall at 0.25◦ spatial resolution, which were re-
sampled on the model grid using the nearest neighbor algo-
rithm.

The model run used in this study includes daily maps at
0.1◦resolution between 1989 and 2015; the grid domain of
this dataset is used as a reference for the other two, whereas
the baseline for the anomalies’ computation is defined by the
period 2001–2015 in order to match the LST data availability.
Monthly data to be used in Eq. (1) are computed as a simple
average of all the data available for each month, given that
no gaps can be found in this dataset due to its continuous
nature as a hydrological model. However, some areas were
masked out due to the minimum or null temporal dynamic of
soil moisture, such as Greenland and the Sahara.

3.2 Land Surface Temperature dataset

The use of the Land Surface Temperature (LST) anomalies
as a proxy of soil moisture anomalies is based on the well-
known role of LST in the surface energy budget as a control
factor for the partitioning between latent and sensible heat
fluxes. In recent years, the existence of a connection between
soil moisture and LST has been analyzed, mainly through the
thermal inertia and the triangle methods (e.g., Carlson, 2007;
Verstraeten et al., 2006), as well as by using LST as a direct
proxy (see, e.g., Park et al., 2014; Srivastava et al., 2016).
In a study over the pan-European domain, Cammalleri and
Vogt (2016) have demonstrated the good agreement between
monthly LST and LIS-based root zone soil moisture z-score
values during summer time, where LST outperforms other
LST-based indicators such as the day–night difference and
the surface–air gradient.

Following these findings, this study adopts the dataset
collected by the Moderate-Resolution Imaging Spectro-
radiometer (MODIS) sensor onboard the Terra satel-
lite (http://terra.nasa.gov/about/terra-instruments/modis) as a
source of monthly-scale long records of LST maps. In par-
ticular, the MOD11C3 monthly CMG (Climate Modelling
Grid) LST product is used in this study, which is constituted
by monthly composited and averaged temperature and emis-
sivity maps at a spatial resolution of 0.05◦ over a regular
latitude–longitude grid; data for the period 2001–2015 are
used, being the only fully completed years at the time of the
analysis.

This monthly composite product is obtained as an aver-
age of the clear-sky data in the MOD11C1 products on the
calendar days of the specific month, which are derived after
re-projecting and re-sampling the MOD11B1 product. De-
tails on the algorithm used to obtain the daily MOD11B1
maps can be found in Wan et al. (2002); in summary, a
double screening procedure is applied, based on (i) the dif-
ference between the two independent LST estimates of the
day–night algorithm (Wan and Li, 1997) and the generalized
split-window algorithm (Wan and Dozier, 1996), and (ii) the
histogram of the difference between daytime and nighttime
LSTs.

LST monthly maps were spatially co-registered to the Lis-
flood 0.1◦ regular latitude–longitude grid by means of a sim-
ple average of the values within each cell, and anomaly maps
were computed according to Eq. (1) by using only the data
for which LST> 1 ◦C; this threshold value (commonly used
in snowmelt and snow–rainfall discrimination procedures;
WMO, 1986) allows removal from the analysis of the data
that are likely affected by snow or frost.

3.3 Microwave combined dataset

The ESA Climate Change Initiative (CCI) aims at developing
a multi-satellite soil moisture dataset by combining data col-
lected in both the past and present by passive and active mi-
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crowave instruments (Liu et al., 2012; Wagner et al., 2012).
The current version of the dataset (v03.2) combines data
from nine different sensors (SMMR, ERS-1/2, TMI, SSM/I,
AMSR-E, ASCAT, WindSat, AMSR2 and SMOS) between
1978 and 2015.

Satellite-based microwave estimates of soil moisture are
usually related to the first few centimeters of a soil column
(i.e., skin layer), which is quite closely related to the soil
moisture content in the root zone (Paulik et al., 2014), except
for very dry conditions in sandy soils. Additionally, numer-
ous validations against land-surface models have highlighted
good performance across the globe, with notable exceptions
over densely vegetated areas (e.g., Loew et al., 2013).

The algorithm adopted to merge the different data sources
is the one developed by Liu et al. (2012), which is a three-
step procedure that (i) merges the original passive microwave
products, (ii) merges the original active microwave products,
and (iii) blends the two merged products into a single final
dataset. The merging procedure of passive datasets includes
pixel-scale separation between seasonality and anomalies,
rescaling of the data based on the piece-wise cumulative dis-
tribution function (CDF) and merging of the dataset using a
common reference seasonality. For the active microwave in-
struments, the CDFs are directly used to rescale the data un-
der the assumption that active datasets have an identical dy-
namic range, this mainly due to the limited overlap between
datasets. The final blending of the two merged datasets is ob-
tained by adopting a common resolution of approximately
25 km and daily frequency, as well as by using the GLDAS-
1-Noah model (ftp://agdisc.gsfc.nasa.gov/data/s4pa/) as a
reference dataset for the CDF matching.

In this study, the daily blended dataset is spatially resam-
pled to a 0.1◦ regular latitude–longitude grid (the same used
in Lisflood simulations) by means of the nearest neighbor al-
gorithm, and successively aggregated to a monthly timescale
by simply averaging the data (only if at least eight daily
values were available in the specific month). Monthly av-
erage maps were converted into z-score maps by using the
baseline period 2001–2015 (the time frame available for the
LST dataset). Monthly aggregated z-score values of skin soil
moisture are analyzed, jointly with the other two datasets,
under the assumption that time-aggregation and normaliza-
tion procedures minimize some of the discrepancies that are
likely present between skin and root zone daily time series.

4 Results and discussion

4.1 Linear regression analysis

Considering the assumption of linearity between each one
of the datasets and the unknown true status of the system
in TC, a preliminary analysis of the linear correlation be-
tween the three anomaly products has been performed in or-
der to detect the macro-areas where the TC procedure can

be applied without violating this basic hypothesis. The cor-
relation analysis was performed by using only the monthly
anomalies that were available for all three datasets, with a
sample size of at least 100 values (max sample size= 12
months× 15 years= 180), and by defining a minimum corre-
lation threshold (R0.05) that ensures a statistical significance
of the linear relationship on the basis of the Student’s t test
(at p = 0.05).

The map in Fig. 1 reports in grey the areas where all three
datasets are significantly linearly correlated according to the
described criteria, representing the areas where the first basic
hypothesis of the TC is not clearly violated. It is worth point-
ing out that some areas are excluded from the analysis by the
lack of data in LIS (low temporal variability, as over Green-
land and the Sahara), LST (due to the minimum temperature
threshold or low temporal variability) or CCI (densely vege-
tated areas, such as the Amazon forest and the Congo basin).
These results suggest focusing the successive detailed anal-
yses on five macro-regions (denoted by the boxes in Fig. 1)
that have consistent positive correlation values for all three
datasets; these areas are named, from now on, (1) NA (North
America, including the contiguous US and Mexico), (2) EU
(southern and central Europe), (3) SA (southern countries of
the African continent and Madagascar), (4) IN (Indian sub-
continent), and (5) AU (Australia)1.

The correlation coefficient maps over those regions, ob-
tained by inter-comparing the three datasets, are reported
in Figs. 2 to 4, where the cells in red and yellow are the
ones with negative or non-significant correlation, respec-
tively, whereas the blue scale represents the cells with in-
creasing significant linear correlation (from light to dark
tones). The comparison between LIS and LST (Fig. 2) shows
an overall good agreement between the two datasets, with
only minor areas characterized by negative/non-significant
correlation values; notably, low correlation values can be ob-
served over the Great Lakes and Rocky Mountain areas in the
US, over the Alps in Europe, and in northern Angola and the
western Himalaya. Similar results can be observed in Fig. 3,
where LIS and CCI datasets are compared; this comparison
shows an increasing number of negative values in the west-
ern US, the Alps, and southern Turkey, but overall high cor-
relation values across most of the five regions. Finally, the
comparison between LST and CCI reported in Fig. 4 shows
an increase in areas with low/non-significant correlation in
the eastern and western US and both northeastern and south-
eastern Europe and the Alps, whereas high correlation values
can be observed all over the other regions.

On average, the data in Table 1 summarize the results ob-
tained for all the regions together, as well as for each re-
gion independently, showing how CCI and LST are the two

1Consider the countries and boundaries reported here as only
indicative of the interested areas; they may not under any circum-
stances be regarded as stating an official position of the European
Commission.
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Figure 1. Map of the areas where all three models are positively significantly linearly correlated (cells in grey) according to the Student’s
t test at p = 0.05. The boxes delimitate the macro-regions selected for the successive analyses.

Table 1. Summary of the Pearson correlation coefficient values (average ± standard deviation) observed for all the regions.

Comparison ALL NA EU SA IN AU

LIS vs. LST 0.44± 0.09 0.41± 0.08 0.39± 0.07 0.48± 0.09 0.44± 0.07 0.50± 0.10
LIS vs. CCI 049± 0.10 0.47± 0.09 0.42± 0.08 0.48± 0.10 0.48± 0.08 0.58± 0.11
CCI vs. LST 0.56± 0.13 0.49± 0.14 0.37± 0.09 0.63± 0.09 0.52± 0.10 0.68± 0.07

datasets best correlated with each other overall, even if this
result is mainly driven by the results over the AU, SA and
IN macro-areas. The LIS model data are similarly correlated
with the ones of LST and CCI, with a more uniform distri-
bution of the results across the various sub-regions. Another
outcome of this analysis is that the area with the lowest aver-
age correlation between the three datasets is the EU, probably
due to the high heterogeneity of this region at the 0.1◦ spatial
scale.

Some of the discrepancies observed in Figs. 2 to 4 can be
explained by the differences in both horizontal and vertical
resolution of the three raw datasets. LIS is characterized by
a higher spatial resolution (5 km) compared to CCI (25 km)
and a vertical resolution that encompasses the full root zone
against the skin soil moisture of the latter; LST has a spatial
resolution close to LIS but a vertical resolution that varies
as a function of the vegetation coverage between skin (for
bare soil) and root zone (for full vegetation coverage). The
impact of such differences is partially reflected in the ob-
served results, with CCI-LST better related over shallow soil
in homogeneous areas, and LIS-LST better in agreement over
sparse agricultural areas in Europe. Overall, it seems that the
adopted expedients (i.e., monthly average, standardization)
successfully minimized these issues, given that the results in
Table 1 show a substantial and similar agreement of the three
datasets in the main areas.

Additionally, the obtained results seem to suggest that it
is reliable to adopt LST anomalies as a proxy of soil mois-

ture anomalies, since there is a clear consistency of LST
anomalies with the other two datasets. Similar results were
obtained by Fang et al. (2016) over the continental United
States, where the outputs of the thermal-based ALEXI (At-
mosphere Land EXchange Inverse) model compare well with
soil moisture anomalies from CCI and the Noah land-surface
model. This consideration allows application of the TC anal-
ysis to the LST dataset as well, whereas most of the studies in
the literature focus on land-surface modeled and microwave
soil moisture datasets (i.e., Dorigo et al., 2010; Gruber et al.,
2016; Su et al., 2014), with only a few notable exceptions
including thermal data (e.g., Hain et al., 2011; Yilmaz et al.,
2012).

4.2 Triple collocation analysis

The outcomes of the correlation analysis were used to detect
the cells suitable for the TC technique; since a key hypothesis
of the technique is the existence of a linear relation between
each model and the (unknown) truth, a necessary condition
(even if not sufficient) is the existence of linear relationships
among the three datasets. As the outcome of the correlation
analysis, around 10 % of the five macro-areas were removed
from the TC analysis due to the absence of this basic condi-
tion.

The maps in Figs. 5 to 7 show the main outcome of the TC
analysis, which is the spatial distribution of the error variance
(dimensionless, showing a multiple of the model standard de-
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Figure 2. Spatial distribution of the Pearson correlation coefficient (R) between Lisflood soil moisture anomalies (LIS) and land-surface
temperature anomalies (LST) over the five selected macro-regions. Values in red and yellow are negatively correlated or not significant at
p = 0.05, respectively.

Figure 3. Spatial distribution of the Pearson correlation coefficient (R) between Lisflood (LIS) and ESA Climate Change Initiative (CCI) soil
moisture anomalies over the five selected macro-regions. Values in red and yellow are negatively correlated or not significant at p = 0.05,
respectively.

viation) for each model, as detailed by Eq. (3). The blank ar-
eas in those maps correspond to the cells where no significant
linear correlation was observed between all three datasets.
The results for LIS (Fig. 5) show that the highest errors are
observed over the western US, the Northern Cape in South
Africa and Western or Southern Australia, whereas the low-
est errors are observed over the eastern US. On the opposite
end, the LST dataset displays the highest errors over the lat-
ter area (Fig. 6), whereas the lowest errors are observed over
Queensland in Australia, the Eastern Cape in South Africa

and Lesotho. The maps in Fig. 7 show that the CCI dataset
has consistent patterns of low error variance values over most
of Australia, western India and the central US.

Overall, on the one hand, it seems evident that CCI tends
to outperform the other two methods over dry areas such as
Australia and southern Africa, but on the other hand, a re-
gion like the US is almost equally subdivided among the
three datasets, where LIS performs better in the east, LST
in the west and CCI in the center. Differences among prod-
ucts can be partially explained by the differences in the
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Figure 4. Spatial distribution of the Pearson correlation coefficient (R) between ESA Climate Change Initiative soil moisture anomalies
(CCI) and land surface temperature anomalies (LST) over the five selected macro-regions. Values in red and yellow are negatively correlated
or not significant at p= 0.05, respectively.

Figure 5. Spatial distribution of the error variance for the Lisflood (LIS) dataset over the five selected macro-regions.

soil layer monitored by each dataset; i.e., the microwave
system captures the skin soil moisture, and Lisflood mod-
els the full root zone; indeed, even if the use of monthly
anomalies allows minimization of some of the discrepan-
cies, skin soil moisture remains more reliable for dry/bare
areas (Das et al., 2015). Even if these considerations partially
explain the agreement/disagreement of the three datasets, it
is not straightforward to pinpoint in detail climate- and/or
vegetation-derived patterns in the spatial distribution of the
TC outputs.

These findings are summarized in the data reported in Ta-
ble 2, where the average error variance for each model and
macro-area is reported beside its spatial standard deviation.
The data in Table 2 confirm that CCI has an overall better
performance (lower errors) than LIS and LST, which perform
quite closely, mainly thanks to the very low error variance ob-
served over Australia and, to a minor extent, southern Africa.
The LIS model performs better over the NA and EU regions,
likely due to the better meteorological forcing datasets avail-
able over those regions compared to the other macro-areas
(due to denser ground networks). The LST dataset seems to
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Figure 6. Spatial distribution of the error variance for the land surface temperature (LST) dataset over the five selected macro-regions.

Figure 7. Spatial distribution of the error variance for the ESA Climate Change Initiative (CCI) dataset over the five selected macro-regions.

perform moderately well over all five macro-regions, with the
only notable exception of EU; however, it rarely outperforms
the other two datasets, constituting a “second-best” option
in most of the cases. It is also worth pointing out that the
CCI dataset is often masked out over those regions where the
error of microwave techniques are likely high, whereas the
data of the other two datasets are mostly produced globally;
hence, a possible explanation of the better performance of
CCI compared to LIS and LST may be linked to this prelim-
inary screening of the data.

The outcome that LIS slightly outperforms the other two
datasets over NA is in agreement with the results reported
by Hain et al. (2011), where the Noah land-surface model

slightly outperforms (on average) the microwave and ther-
mal datasets over the contiguous US. However, it should be
pointed out how the spatial distribution of the error estimates
for LIS differs from the ones reported for Noah, likely due to
the differences in both meteorological forcing and modeling
approaches. Some qualitative analogies can also be observed
with the results reported in Pierdicca et al. (2015), which
show smaller average errors at a daily timescale over Eu-
rope for the ERA-LAND modeled datasets compared to two
microwave-based datasets, even if both the temporal scale
and the adopted methodology of the latter differ from the
ones used in our study. These previous studies seem to con-
firm that land modeling approaches are more reliable, on av-
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Table 2. Summary of the TC error variance analysis, reporting the spatial average (± standard deviation) values observed over each macro-
region.

Model ALL NA EU SA IN AU

LIS 0.48± 0.13 0.42± 0.14 0.44± 0.12 0.54± 0.11 0.49± 0.10 0.54± 0.14
LST 0.44± 0.13 0.46± 0.15 0.56± 0.10 0.37± 0.10 0.48± 0.09 0.38± 0.11
CCI 0.36± 0.18 0.46± 0.16 0.54± 0.12 0.30± 0.14 0.38± 0.16 0.17± 0.10

erage, over these regions, likely due to the reliability of mete-
orological forcing and model parameterizations, even if there
can be significant differences among the performances of dif-
ferent land-surface models.

Over the AU sub-region, the spatial distributions of the er-
rors in CCI are quite in agreement with the results reported
in Su et al. (2014) for two microwave datasets, with larger er-
rors along the southeastern Australian coast. This result sup-
ports the assumption that microwave data are more reliable
over dry bare soil areas, which is further highlighted by the
results obtained in the SA and IN sub-regions. The subdi-
vision of the NA domain into three main regions is similar
to the one observed by Gruber et al. (2016) in comparing
ASCAT and AMSR-E microwave datasets, suggesting key
differences in the soil moisture behavior over these three
sub-regions. Overall, the spatial patterns of microwave and
land model errors show similarities to the ones observed by
Dorigo et al. (2010), even if no thermal data were included
in their analysis.

The error variance values can also be interpreted as the
correlation coefficient of each dataset with the underlying
true signal, following the definition of McColl et al. (2014).
In fact, for the special case of anomalies with unitary vari-
ance (σ 2

x = 1), the TC-derived Rx of each dataset is simply

equal to
√

1σ 2
εx

, which ranges on average over all five regions
(not shown) between 0.91 (for CCI in AU) and 0.66 (for LST
over EU); these values show a good capability of the datasets
to capture, on average, temporal variations in soil moisture
anomalies.

4.3 Insights for a weighted-average ensemble
procedure

In order to provide a simple synthetic representation of the
likely best model for each area, the maps in Fig. 8 depict for
each cell the dataset with the lowest error variance by associ-
ating different colors with the three datasets (red for LIS, blue
for LST and green for CCI). Even if this approach is rather
simplistic, as it cannot account for two products performing
really closely over some areas, the major relevant features,
like the predominance of the CCI model over Australia, are
made evident by these maps.

The maps in Fig. 8 confirm CCI as the dataset with the
lowest error variance values over most of AU, SA and IN,
whereas the three datasets almost equally split the other two

Table 3. Fraction of each macro-area (as a percentage) where one
model outperforms the other two.

Model ALL NA EU SA IN AU

LIS 25.5 39.2 50.0 10.6 28.2 4.3
LST 25.7 28.8 23.1 36.0 20.3 18.6
CCI 48.8 32.0 26.9 53.4 51.5 77.1

macro-areas; this is even more evident in the data reported
in Table 3, where the percentage of sub-areas where each
model is the best is reported. These data confirm the good
performance of CCI over the AU, SA and IN macro-regions,
whereas the NA territory is almost equally divided among the
three datasets and LIS outperforms both LST and CCI over
50 % of the EU domain. In the latter, the areas where the
LIS dataset outperforms the other two datasets partially re-
semble the results obtained by Pierdicca et al. (2011) for the
ERA-LAND model; however, the present study also includes
remote sensing thermal data and not only microwave-derived
datasets. Overall, the CCI dataset outperforms the other two
datasets in about 50 % of the cells, with the remainder almost
equally split between LIS and LST.

Finally, the spatial distribution of the weighting factor of
each dataset, computed according to the least square theory
(Yilmaz et al., 2012), is represented in Figs. 9 to 11. The
color scale of the figures was designed to represent in a neu-
tral color the cells that have a weighting factor close to the
one for a simple average (1/3), in green scale the weights
greater than a simple average (larger contribution) and in or-
ange the weights lower than the simple average (smaller con-
tribution). The visual intercomparison of these three maps
further emphasizes the good performance of the CCI prod-
uct over AU and SA, the best performance of LIS over the
eastern US and EU, and the good results obtained for LST
in the western US and northern AU. It is worth noting that
the use of a weighted average based on the TC error analy-
sis does not seem to bring advantages over large areas of the
central US, EU and eastern IN, where the weighting factors
are close to the ones for a simple arithmetic average. The
behavior of the weighting factors over the five macro-areas
can be synthetized by the frequency diagram in Fig. 12. This
plot shows the high fraction of weighting factors> 0.4 for
the CCI dataset, representing a predominant contribution on
the ensemble mean of this product over the others, whereas
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Figure 8. Maps representing the best performing (lowest error variance) dataset for each cell according to the TC analysis.

Figure 9. Maps representing the ensemble mean weighting factor for the LIS dataset according to the error maps derived from the TC
analysis.

LST has a peak of frequency center around 1/3 (arithmetic
average) and LIS has a hint of a bi-modal distribution. These
data, together with the maps in Fig. 8, confirm the fact that
CCI outperforms the other two datasets in 50 % of the do-
main, whereas LST is often the second-best option behind
either CCI or LIS.

5 Summary and conclusions

Three datasets have been compared as a proxy of the un-
known true status of soil moisture anomalies in the context
of a global drought monitoring system under development

by the JRC of the European Commission. The key assump-
tion of the study is the inability of a single dataset to accu-
rately capture the soil moisture dynamic over the large range
of variability of conditions that can be observed at continen-
tal to global scale.

The inter-comparison between the three datasets, namely
the outputs of the Lisflood hydrological model (LIS),
MODIS-based land-surface temperature (LST) and the com-
bined active/passive satellite microwave (CCI) data, confirms
some inconsistencies between the three datasets over cer-
tain areas, as well as the difficulties in comparing the three
datasets over specific areas (e.g., Sahara, Amazon rainfor-
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Figure 10. Maps representing the ensemble mean weighting factor for the LST dataset according to the error maps derived from the TC
analysis.

Figure 11. Maps representing the ensemble mean weighting factor for the CCI dataset according to the error maps derived from the TC
analysis.

est) that are characterized by a lack of coverage from one or
more datasets. Generally, the three datasets seem comparable
over most of the globe, thanks to the use of time-aggregation
and standardization procedures that remove temporal incon-
sistencies and biases among the series. Focusing the analysis
only on the areas where the three datasets are substantially
in agreement (following a linear regression analysis), five
macro-regions were detected as suitable for further investi-
gations according to the triple collocation (TC) technique.
Under the hypothesis that certain criteria are met, the TC
analysis allows quantification of the likely random error as-

sociated with each model (with regard to the true status) even
in the absence of an observation of the “truth”.

The main outcome of the TC analysis further confirms the
need for a multi-source approach for a reliable assessment
of soil moisture anomalies over those five regions, given that
no model outperforms the others (in terms of expected error
variance) for the entire study domain. Emblematic are the re-
sults over North America, where each model outperforms the
others in one sub-region, like the LIS approach in the eastern
US, LST in the southwestern domain and CCI in the cen-
tral US. Even if no clear insight into the general patterns of
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Figure 12. Frequency distribution of the ensemble mean weight-
ing factor for each dataset computed according to the TC analysis.
The black dotted line represents the value corresponding to a simple
arithmetic average (1/3).

the errors can be provided as an outcome of the study, over-
all, the obtained results seem to suggest that remote sensing
datasets perform better over dry areas and sparsely monitored
areas (e.g., Australia and southern Africa), whereas the LIS
dataset seems more reliable over NA and EU, where dense
networks of meteorological ground stations are deployed.

It has been highlighted how some differences among the
datasets can also be related to the depth of the soil layer
monitored by each dataset, i.e., the microwave system cap-
turing the skin soil moisture, whereas Lisflood models the
full root zone; indeed, even if the use of monthly anomalies
allows minimization of some of the discrepancies and biases,
our results confirm that skin soil moisture remains more re-
liable for areas where the effects of vegetation coverage are
minimal (Das et al., 2015), whereas hydrological models are
more suited for agricultural and densely vegetated regions.
However, the three datasets seem to be overall comparable
in terms of average performances, supporting the success of
the adopted homogenization procedures. Some analogies be-
tween the obtained results and the ones already available in
the literature have been found, but the inclusion of thermal
data in the analysis enlarges the understanding of the mutual
relationship between the different datasets.

The results of this study represent a robust starting point
for the development of a global drought monitoring system
based on such anomaly datasets, which can exploit the main
findings of the TC analysis in order to develop a suitable
ensemble product over the investigated regions. The error
characterization derived from TC was used to estimate the
weighing factors of an ensemble mean procedure, based on
the least squares framework reported in Yilmaz et al. (2012).
Currently, an operational implementation of such an ensem-

ble product is foreseen for the GDO system as soon as the
CCI product becomes available in near-real time.

Further analyses are required to be able to extend the test
to the areas currently not included in this study, especially
the ones where the three datasets are available but provide
inconsistent or contrasting results. In this context, the analy-
sis of further global datasets may help to unveil the reasons
behind such discrepancies.

Data availability. The MARS meteorological dataset can be ac-
cessed at http://agri4cast.jrc.ec.europa.eu (European Commission
JRC, 2017). NASA MODIS LST data can be accessed at https:
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data can be accessed at http://www.esa-soilmoisture-cci.org (ESA,
2017).
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