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Abstract. The southeastern United States hosts extensive
forested wetlands, providing ecosystem services including
carbon sequestration, water quality improvement, ground-
water recharge, and wildlife habitat. However, these wet-
land ecosystems are dependent on local climate and hydrol-
ogy, and are therefore at risk due to climate and land use
change. This study develops site-specific empirical hydro-
logic models for five forested wetlands with different char-
acteristics by analyzing long-term observed meteorological
and hydrological data. These wetlands represent typical cy-
press ponds/swamps, Carolina bays, pine flatwoods, drained
pocosins, and natural bottomland hardwood ecosystems. The
validated empirical models are then applied at each wetland
to predict future water table changes using climate projec-
tions from 20 general circulation models (GCMs) participat-
ing in Coupled Model Inter-comparison Project 5 (CMIP5)
under the Representative Concentration Pathways (RCPs)
4.5 and 8.5 scenarios. We show that combined future changes
in precipitation and potential evapotranspiration would sig-
nificantly alter wetland hydrology including groundwater dy-
namics by the end of the 21st century. Compared to the his-
torical period, all five wetlands are predicted to become drier

over time. The mean water table depth is predicted to drop
by 4 to 22 cm in response to the decrease in water availabil-
ity (i.e., precipitation minus potential evapotranspiration) by
the year 2100. Among the five examined wetlands, the de-
pressional wetland in hot and humid Florida appears to be
most vulnerable to future climate change. This study pro-
vides quantitative information on the potential magnitude of
wetland hydrological response to future climate change in
typical forested wetlands in the southeastern US.

1 Introduction

Wetlands provide ecosystem services such as groundwater
recharge, water quality improvement, flood control, carbon
sequestration, wildlife habitat, and recreation (Hammack and
Brown, 2016; Richardson, 1994). The importance of water
table level in regulating ecosystem function has long been
recognized (Sun et al., 2000). Water table level controls
biogeochemical cycles and emissions of greenhouse gases
such as CH4, CO2, and NOx , and therefore has an influence
on regional and global climate (Paschalis et al., 2017). A
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small change (less than 10 cm) in wetland water table level
may have profound impacts on wetland structure and other
ecosystem functions (Webb and Leake, 2006).

The water table level of wetlands is strongly influenced
by the variation and change in climate (Brooks, 2009; Fos-
sey and Rousseau, 2016; Liu and Kumar, 2016), and contin-
ued regional wetland area losses are predicted in the United
States and globally (House et al., 2016; Nicholls, 2004).
The water table level of wetlands in the southeastern United
States (SE US) may be particularly dynamic (Li et al., 2013;
Sun et al., 2010). There are already indications of climate
change in the SE US (Li and Li, 2015), and climate models
project that temperature will increase by 2 to 10 ◦C by 2100
in this region (Diffenbaugh and Field, 2013). The severity
and patterns of storms are changing as well, with more heavy
downpours in many parts of the SE US, and more intense At-
lantic hurricanes (Wang et al., 2010; Wuebbles et al., 2014).

Various hydrological models, ranging from regression
models to complex distributed models, have been used to
study hydrological response to climate change. For exam-
ple, the MIKE SHE physically based distributed model has
been applied to forested wetlands in the SE US (Dai et al.,
2010; Lu et al., 2009; House et al., 2016). The hydrological
regime of wetland forests on the coastal plains of South Car-
olina was found to be highly sensitive to annual precipitation
and temperature changes (Dai et al., 2010). The water table
of pine flatwoods in Florida was predicted to be 20–40 cm
lower than that of a baseline scenario when precipitation de-
creased by 10 % or temperature increased by 2 ◦C (Lu et al.,
2009).

Integrated studies on the impacts of climate change on
multiple wetlands in the SE US are limited. Physically based
hydrological models provide a refined understanding of hy-
drologic processes (Yu et al., 2015; Chen et al., 2015) and
quantification of hydrologic states and fluxes (Qu and Duffy,
2007; Shen and Phanikumar, 2010). However, these models
are generally data (Bhatt et al., 2014) and computation inten-
sive (Vivoni et al., 2011), and their potential uses are often
undercut by equifinality of parameters (Beven, 1993; Kumar
et al., 2013; Pokhrel et al., 2008). Implementing distributed
hydrologic models across multiple wetlands that cover a
range of climatic, topographic, and management conditions
is challenging due to the computational expense, lack of fine-
scale input data, and difficulty in application for multiple
sites (Grayson et al., 1992). Conversely, in spite of the weak-
ness of assumption of static relationships between climate
and hydrological response patterns in the future, statistical
models have advantages of both high efficiency in computa-
tion and acceptable performance in modeling when applied
over multiple sites. The performance of empirical models in
climate change studies appears to be powerful when incorpo-
rating downscaled general circulation model (GCM) outputs
(Sachindra et al., 2013; Li et al., 2016). For example, Li et al.
(2016) used log-linear models for 21 rainfall stations and 7
hydrometric stations to predict hydrological drought. Green-

berg et al. (2015) developed an empirical model and demon-
strated its utility for climate-change planning by forecasting
the weekly hydrologic regimes from 2012 to 2060 and ex-
amining the indirect impacts of climate change on biological
diversity.

In this study, five forested wetlands across a range of cli-
matic/topographic gradients and different management con-
ditions in the SE US were used to investigate the impact of
future climate change on wetland hydrology (i.e., water table
level). Future climate data from 20 GCMs participating in
Coupled Model Inter-comparison Project 5 (CMIP5) under
both Representative Concentration Pathways (RCPs) 4.5 and
8.5 scenarios were used. We hypothesized that the wetlands
would become drier due to climatic warming and subse-
quent increases in evapotranspiration. We also hypothesized
that hydrological responses would vary due to differences in
baseline climate and wetland physical configurations.

The objectives of this study were to (1) construct and val-
idate empirical models of wetland groundwater dynamics
using long-term observational data in five typical southern
forested wetlands; (2) forecast water table changes in the five
wetlands under 40 climate change scenarios (i.e., 20 GCMs
and two CO2 emission pathways); and (3) investigate the key
mechanisms driving the impacts of climate change in south-
ern forested wetlands.

2 Methods

2.1 Study area

We selected five long-term research sites in the SE US rep-
resenting five types of wetlands with different combina-
tions of climate, topography, and anthropogenic management
disturbances. These research sites include (1) an Alligator
River National Wildlife Refuge bottomland hardwood wet-
land (designated as AR) on the coast of North Carolina, (2) a
drained pocosin wetland covered by pine plantation forest
(LP) on the lower coastal plain of North Carolina, (3) a cy-
press pond wetland (wetland FL–WET) in northern central
Florida, (4) an upland slash pine forest (wetland FL–UP) in
northern central Florida, and (5) a Carolina bay forest (SC)
on the coastal plain of South Carolina (Fig. 1). The wetland
characteristics (e.g., climate, soil, vegetation, wetland type
classification) have contrasting features (Table 1). These wet-
lands were selected with the following considerations. AR
(Miao, 2013) and LP (Noormets et al., 2010; Sun et al., 2010;
Tian et al., 2015) are located in the lower coastal plain area
of North Carolina within 100 km of one another, represent-
ing lower coastal plain forested wetlands with a similar cli-
mate and topography but different management conditions.
AR is a natural coastal bottomland hardwood wetland with
no tidal influence (Miao et al., 2013), while wetland LP is
intensively managed by the forest industry for timber pro-
duction (Manoli et al., 2016; Noormets et al., 2010; Sun et
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Figure 1. Study areas, where the star symbols mark the study site locations. Wetland AR: wetland of Alligator River National Wildlife
Refuge in North Carolina; wetland LP: wetland of a loblolly pine plantation in North Carolina; wetland SC: wetland in South Carolina;
wetlands in Florida: wetland FL–UP (upland in Florida) and FL–WET.

al., 2010). LP is located in the outer coastal plain mixed
forest province of North Carolina. The area has been arti-
ficially drained with a network of field ditches (90–100 cm
deep; spacing 80–100 m) and canals dividing the watershed
into a mosaic of regularly shaped fields and blocks of fields
(Sun et al., 2010). FL–WET and FL–UP (Lu, 2006; Lu et al.,
2009) represent two types of ecosystems found in the same
pine flatwood landscape with the same climate but slightly
different elevation and management. FL–UP is dominated
by slash pine (Pinus elliotii) plantation forests at a relatively
high elevation, while FL–WET is dominated by naturally re-
generated cypress (Taxodium distichum) in depressional ar-
eas in pine flatwoods. The FL research site is located 33 km
northeast of Gainesville in Alachua County of northern cen-
tral Florida. The SC wetland is located in Bamberg County,
South Carolina, representing a typical depressional wetland
in the region (Pyzoha et al., 2008; Sun et al., 2006). The
SC wetland was covered by naturally regenerated deciduous
trees (i.e., water oak, willow oak) and was surrounded by
deep, well-drained sand dominated by hardwood plantations
and agricultural crops (Pyzoha et al., 2008; Sun et al., 2006).

2.2 Databases

2.2.1 Observed water table and meteorological data

The data and the collection methods used in this study are
summarized in Table 2. The meteorological variables include
precipitation, air temperature, wind speed, net radiation, and
other canonical meteorological factors. The daylight dura-
tion data were from the United States Naval Observatory

(USNO). The dataset consists of 48 826 30 min time series
observations for each variable (i.e., water table and meteoro-
logical variable) for AR, 2922 daily time series observations
for LP, and 89 121 daily time series future climate data for
each variable from each GCM of all five sites. The 30 min air
temperature was averaged at the daily scale for estimating
the potential daily evapotranspiration using Hamon’s equa-
tion (Federer and Lash, 1978a; Hamon, 1963):

PETH = 29.8×D×
e∗a

AT+ 273.2
, (1)

where PETH is potential daily evapotranspiration
(mm day−1), D is day length (h), and e∗a is the satura-
tion vapor pressure (kPa) at the daily mean air temperature
(AT, ◦) calculated by the equation modified from Ding-
man (2015):

e∗a = 0.611× exp
(

17.3×AT
AT+ 237.3

)
. (2)

A correction coefficient (Sun et al., 2002) was used to adjust
PET calculated by Hamon’s equation to better represent the
forest PET for the study region. The correction coefficient
for North Carolina ranged from 1.0 to 1.2 (Federer and Lash,
1978b), and was 1.3 for the Florida site (Sun et al., 1998). To
be consistent and reduce uncertainty of PET estimates, 1.2
was used for all five wetlands in this study.
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2.2.2 Future climate change data

The daily mean climate data were derived from 20 GCMs,
a product of the Multivariate Adaptive Constructed Analog
(MACA) dataset (Supplement Table S1) for two future RCPs
scenarios (RCPs 4.5 and 8.5; 2006–2099). Future climate
data represent intermediate and high greenhouse gas (GHG)
emission scenarios considering a historical climate forcing
baseline (1950–2005) (Duan et al., 2016).

The GCM dataset was statistically downscaled from
the CMIP5 model resolutions to either 4 or 6 km (Abat-
zoglou and Brown, 2012) (http://maca.northwestknowledge.
net/index.php). The downscaled GCM climate dataset was
determined to be a proper selection (i.e., 90 % of the Perkins
PDF – probability density function – skill score between 0.8
and 0.95) across the SE US by observed means and the entire
distribution of observations (Keellings, 2016). We analyzed
the historical and future climate conditions key to water ta-
ble level, including the daily maximum near-surface (2 m)
temperature, daily minimum near-surface (2 m) temperature,
and daily precipitation from 1 January 1950 to 31 Decem-
ber 2099. Daily maximum and minimum air temperatures
were averaged to derive daily air temperature (Klein Tank et
al., 2002). Means from 20 GCM climate datasets were used.
To analyze the historical and future hydroclimatic changes
for the full timescale of the GCM simulations (i.e., 1950–
2099), we selected three representative 20-year time periods
according to IPCC Assessment Report 5 (2014). These time
periods included the end of the 20th century (1980–1999) as
a baseline, the future mid-21st century (2040–2059), and the
end of the 21st century (2080–2099). Thus both the histori-
cal run and the future run share the same bias from the same
GCM climate dataset. The five simulation scenarios include
the following:

i. Baseline: baseline period 1980–1999;

ii. F1: RCPs 4.5 for the future period 2040–2059;

iii. F2: RCPs 4.5 for the future period 2080–2099;

iv. F3: RCPs 8.5 for the future period 2040–2059; and

v. F4: RCPs 8.5 for the future period 2080–2099.

2.3 Model development

We used a general regression model for this study by includ-
ing climatic variables and water table depth 15 days prior
to the modeled date that has major controls of wetland wa-
ter balances. The fluctuations of the water table are a result
of the water balance between inputs (i.e., precipitation (P ),
groundwater and surface inflows) and outputs (i.e., outflow
and evapotranspiration, ET). Therefore, we hypothesized that
P and ET fluxes and associated meteorological variables
should largely control water table fluctuations. The lagged
15-day mean water table (i.e., the water table 15 days prior
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Table 2. Raw data summary.

Wetland
data types

AR LP SC FL–UP FL–WET

Observation
data

Meteorological
data

07/02/2009–
01/01/2011

01/01/2005–
12/31/2012

01/01/1997–
12/31/2002

01/01/1992–
12/31/1996

01/01/1992–
31/12/1996

Interval 30 min Daily, with some
data missing

Daily Daily Daily

Water table data 03/19/2009–
12/31/2011

01/01/2005–
12/31/2012

01/01/1997–
12/31/2002

01/01/1992–
12/31/1996

01/01/1992–
31/12/1996

Interval Daily Daily Daily Daily Daily

Validation data Model
development year

2009–2010 2009–2012 1997–2000 1993–1994 1993–1994

Validation year 2011 2005–2008 2001–2002 1992,
1995–1996

1992,
1995–1996

Interval 15 days 15 days 15 days 15 days 15 days

Prediction data Meteorological
data

01/01/1950–
12/31/2099

01/01/1950–
12/31/2099

01/01/1950–
12/31/2099

01/01/1950–
12/31/2099

01/01/1950–
12/31/2099

Interval 30 min 30 min 30 min 30 min 30 min

References Data collection
methods

Miao et al. (2013) Noormets et
al. (2010),
Sun et al. (2010),
Tian et al. (2015)

Sun et al. (2006) Lu et al. (2009),
Sun et al. (2000)

Lu et al. (2009),
Sun et al. (2000)

to the modeled date) was also considered as a potential ex-
planatory variable following similar studies for hydroregime
prediction (Greenberg et al., 2015; Webb et al., 2003), ur-
ban water demand prediction (Almendarez-Hernández et al.,
2016; Arbués et al., 2004, 2010; Lyman, 1992), and energy–
food–water interaction modeling (Liu et al., 2017; Ozturk,
2015). The adjustment’s significance of minimizing hetero-
geneity in the traditional ordinary least squares assumptions
was confirmed by including the first lagged dependent vari-
able (Lyman, 1992; Ozturk, 2015). Additionally, the variance
of the dependent variable does not change by introducing a
proven wide-sense stationary (|β|< 1) first-order autoregres-
sive process (Yt = α+βYt−1+ εt , where εt is a white noise
process with zero mean and constant variance σ 2

ε ) (Mills,
1990). Also, the selected explanatory variables are consid-
ered to be independent.

Actual water loss from wetlands (ET) is controlled by both
PET and precipitation (Sun et al., 2002). PET is mainly con-
trolled by net radiation, air temperature, wind speed, and
air humidity (Hargreaves and Samani, 1982). Due to data
availability, this study used the air temperature-based Ha-
mon equation to calculate PET (Hamon, 1963). Hamon’s
PET method has been widely used worldwide to estimate po-
tential forest water use (Sun et al., 2002). Also, PET instead
of air temperature was introduced into the model since PET
was affected by not only air temperature, but also day length,
which can better reflect variation in evaporative demand in
different locations compared to air temperature alone.

The temporal scale for this study is 15 days, in line with
criteria used by common wetland definitions. According to
the US wetland regulatory standards, an area would be qual-

ified as wetland when it is wet enough to be saturated within
1 ft (i.e., ∼ 30 cm) of the ground surface for 2 weeks or more
during the growing season in most years (Tiner, 2016). In
addition, it is suggested that the water of wetlands should be
held in impoundments for at least 2 weeks to provide weed
control and also to prolong wildlife use of habitat (Nelms,
2007). Thus, we set 15 days as the model time step, and all
time series data were transformed to 15-day intervals.

Once all possible controlling variables were examined, we
used correlation analysis and stepwise regression procedures
to develop a parsimonious model for predicting wetland wa-
ter table dynamics for each wetland. All explanatory vari-
ables were individually standardized first and introduced to
the stepwise regression procedures to select the explanatory
variables that were highly correlated with the modeled water
table depth. The correlation analysis between any two of the
selected explanatory variables was executed to distinguish
paired collinearity. To reduce the multicollinearity, each of
the paired collinear variables was removed by turns, and the
other selected explanatory variables were then individually
reintroduced to the stepwise regression procedures to seek a
balance between the best statistical performance of the model
and minimal multicollinearity of the explanatory variables
(Sachindra et al., 2013). The correlation analysis and the
stepwise regression model procedures were combined in this
study to obtain an optimized model with the least number of
variables and best statistical performance. Both the normal-
ity and the homoscedasticity for the five wetland sites were
tested before the models were used for prediction. Also, the
autocorrelation disturbance process was tested by Durbin’s
h statistic (Bhargava et al., 1982). After the above tests and
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correlation analysis, the final model was chosen based on the
coefficient of determination (R2) and probability (P ) value
at a confidence level of 95 %. Data were separated into two
groups that covered different periods for model development
and validation (Table 2).

Limited data availability can contribute to model defi-
ciency. Long-term, high-resolution observed wetland water
table data for multiple sites in the SE US are rare. For exam-
ple, the Alligator River National Wildlife Refuge bottomland
hardwood wetland (AR site) is located in a remote location
and water table data are the only measurements that char-
acterize the local hydrological condition. Fortunately, the
dataset covered both dry and wet years at the selected sites
and was available for model development and validation. At
the FL–UP and FL–WET wetlands, the time series includ-
ing wet and dry years (1993–1994) were used to develop the
model, and the remaining data (1992, 1995, and 1996) were
used for model validation (Fig. 3). Then the model was ap-
plied to predict water table depth based on the GCM dataset
(1950–2099), including the baseline period (1980–1999) and
the future periods (2040–2059, 2080–2099).

The modeled future water tables were presented at an-
nual and 15-day scales to better understand the variabilities
of long-term averages and short-term extremes in water ta-
ble dynamics. The modeled 15-day lowest water table data
were further analyzed in two ways: (1) the percentage of time
when the water table level is lower than 0 cm, representing
the likelihood of a wetland without surface water ponding,
and (2) the percentage of time when the water table level was
between 0 and −30 cm, representing the likelihood of satu-
rated soil. This 30 cm definition was based on previous stud-
ies that suggested wetland soils have a 30 cm saturated fringe
and that the average root depth is about 30 cm (Tiner, 2016).
The 30 cm depth was also observed as the boundary “switch”
for CH4 emission (Moore and Knowles, 1989), ammonifica-
tion, denitrification (water table depth< 30 cm), and nitrifi-
cation (water table depth> 30 cm) (Hefting et al., 2004).

3 Results

3.1 Selected models and model performance

The stepwise regression results suggest that the following
linear model form best fits the water dynamics at all five wet-
lands:

Yit = αi0+βi1X1t + γi1 Yit−1+ εit , (3)

where X1t is the P-PET in mm per 15 days, Y is the water
table depth of wetland i (i = 1, 2, 3, 4, 5) in cm at time t ,
and t and t − 1 are the current and previous time steps, re-
spectively. The residual plots and the normal probability plot
of residuals showed normality and homoscedasticity for all
five specific models. Durbin’s h statistic showed that all five
wetland regressions support the autocorrelation disturbance

Table 3. Results for regressions of the water table for five wetlands
in the SE United States.

Wetland αi0 βi1 γi1 R2 p

AR (i = 1) −1.24 0.1137 0.7698 0.81 < 0.001
LP (i = 2) −19.55 0.3750 0.8530 0.83 < 0.001
FL–UP (i = 3) −23.17 0.3963 0.7206 0.69 < 0.001
FL–WET (i = 4) −1.36 0.2360 0.8707 0.78 < 0.001
SC (i = 5) −3.79 0.1454 0.8164 0.72 < 0.001

Note: i is the number of the wetlands, i = 1, 2, 3, 4, 5, t denotes the time periods, αi0 is the
intercept estimate, βin is the coefficient estimate of the variable Xn of the i wetland, γi1 is
the coefficient estimate of the antecedent water table at t − 1 time step of the i wetland, R2

is the coefficient of determination, and p is the associated probability value.

process. The predicted water tables matched the observations
consistently for all five wetlands, with the determination co-
efficient (R2, the proportion of the variance in the predicted
water table depth) values ranging from 0.69 to 0.83 (Fig. 2).
The statistics and parameter values for the five wetlands var-
ied (Table 3). Among the five wetlands, βi1 and γi1 were
different but generally close, ranging from 0.11 to 0.40 and
from 0.77 to 0.87, respectively (Table 3). This suggests there
are some site-specific differences, but the influence of P-PET
and the antecedent water table at the t − 1 time step on the
modeled water table at the t time step was similar across the
study sites. However, the intercepts αi0 did vary significantly,
with a maximum of 23.2 (FL–UP) and a minimum of −1.2
(AR), indicating that there may be other site-specific factors
that could vary across different wetlands but that are not ex-
plicitly included in the model as explanatory variables.

The statistical models were then validated using indepen-
dent subsets of water table data during the validation pe-
riod (Table 2, Fig. 3). The average water table was over-
predicted by 1.4 cm for LP (−106.25 cm for observation,
−104.85 cm for prediction, with a root mean square er-
ror (RMSE) of 4.92 cm, similarly hereinafter), 0.95 cm for
FL–WET (19.02, 19.97 cm, with a RMSE of 9.23 cm), and
1.3 cm for SC (−19.1, −17.8 cm, with a RMSE of 5.16 cm).
Also, it was underpredicted by 2.11 cm for FL–UP (−48.97,
−51.08 cm, with a RMSE of 5.9 cm) and 0.38 cm for AR
(−4.19, −4.57 cm, with a RMSE of 3.71 cm). The models
captured the changing water table level even during an ex-
tremely dry year (e.g. 2007–2008 at LP). For the FL–WET,
the water table levels were overpredicted in the normal pe-
riod, while the observations and the predictions matched bet-
ter during the dry year in 1993. Overall, the results show that
the models performed reasonably well for all five wetlands,
and could be used to predict future changes in water table
level due to climate change.

3.2 Projected patterns of future air temperature, PET,
and precipitation

The increase in the future mean annual air temperature under
the RCPs 8.5 scenario, compared to the historic 1980 to 1999
baseline, is expected to be 3.9, 4.3, 4.0, and 4.4 ◦C in the fu-
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Figure 2. Comparison of observed and simulated mean water tables in five wetlands in the SE United States, where WT is the water table,
(a) is site AR (Alligator River National Wildlife Refuge in North Carolina), (b) is site LP (loblolly pine plantation in North Carolina), (c) is
site FL–UP (upland in Florida), (d) is site FL–WET (wetland in Florida), and (e) is site SC (wetland in South Carolina).

ture (2080 to 2099) for AR, LP, FL, and SC, respectively
(Table 4, Fig. S1 in the Supplement). The average increase
from the baseline under the RCPs 8.5 scenario in the five
wetlands would be approximately 4 ◦C, which is consistent
with the US climate assessment report (Pachauri et al., 2014).
Future annual total PET would increase by 23 % (221 mm),
25 % (238 mm), 23 % (267 mm), and 25 % (266 mm) for AR,
LP, FL, and SC, respectively, in the RCPs 8.5 scenario com-
pared with that of the historical baseline period (Table 4).
The increase in PET is expected to be smaller in the RCPs

4.5 scenario (Tables S2–S6, Fig. S2). For example, PET of
wetland AR would increase by 13 % (130 mm) in the RCPs
4.5 scenario (1107 mm), while the increase would be 23 %
(221 mm) in the RCPs 8.5 scenario (1198 mm, Table S2).

The baseline mean annual precipitation was 1266, 1275,
1318, and 1192 mm (Tables S2–S6, Fig. S3) for AR, LP, FL,
and SC, respectively. The annual total precipitation under the
RCPs 8.5 scenario would increase most in the wetland LP
(63 mm) and SC (60 mm) (Table 4), which is nearly 2 times
the increase in wetland AR (37 mm). In contrast, the annual
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Figure 3. Scatter plots of the observed and predicted mean water tables in five wetlands in the SE United States (unit: cm), where dashed
lines are the trend line, and R is the correlation coefficient between observed and predicted WT.

precipitation is projected to decrease at FL by 21 mm (Ta-
ble 4). Unlike air temperature and PET, the magnitudes of the
precipitation changes in the future RCPs 8.5 scenario were
smaller than that of the RCPs 4.5 scenario (Tables S5–S6).
Specifically, the precipitation would increase by 56, 68, and
70 mm (Tables S2–S4) under the RCPs 4.5 scenario for wet-
land AR, LP, and SC, respectively.

The predicted PET will increase more than precipitation,
causing a decrease in P-PET for all five wetlands. Specifi-
cally, the future annual mean P-PET under the RCPs 8.5 sce-
nario would decrease by 64 % (decrease by 184 mm from the
290 mm of the baseline), 56 % (decrease by 175 mm from
313 mm), 175 % (decrease by 289 mm from 165 mm), and
146 % (decrease by 207 mm from 142 mm) at AR, LP, FL,
and SC, respectively (Fig. 4, Supplement Tables S1–S6). The

decrease in P-PET is smaller under the RCPs 4.5 scenario.
For example, the annual P-PET at AR would decrease by ap-
proximately 75 mm (26 % of the baseline) under RCPs 4.5
and by 184 mm (64 % of the baseline) under RCPs 8.5 (Ta-
ble S2).

3.3 Future water table dynamics

3.3.1 Predicted annual water table

This modeling analysis suggests that future climate change
may considerably affect water table level. The annual aver-
age water table exhibits a decreasing trend in all five wetlands
predicted by 20 GCMs under both the RCPs 8.5 and RCPs
4.5 scenarios (Fig. 5). In AR, the mean water table will de-
crease by 4 cm from a long-term historical baseline period
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Table 4. Annual changes in variables from the baseline scenario to scenario RCPs 8.5 of five wetlands in the Se United States.

Wetland WT changes Baseline annual WT P PET P minus PET AT
(cm) (cm) (mm) (mm) (mm) (◦C)

AR −4 0 37 221 −184 3.9
LP −19 −100 63 238 −175 4.3
FL–UP −17 −73 −21 267 −289 4.0
FL–WET −22 2 −21 267 −289 4.0
SC −7 −16 60 266 −207 4.3

Note: WT is water table, P is precipitation, PET is potential evapotranspiration, and AT is air temperature.

Table 5. A summary of 15-day water table fluctuations in the growing season under the future RCPs 8.5 scenario of five wetlands in the SE
United States.

Wetlands Lowest WT PB of PR85 of PB of PR85 of
(cm) no surface water no surface water saturated soil saturated soil

AR −17 49 % 62 % 100 % 100 %
LP −164 100 % 100 % 0 % 0 %
FL–UP −124 100 % 100 % 0 % 0 %
FL–WET −46 40 % 93 % 100 % 63 %
SC −42 100 % 100 % 100 % 57 %

Note: WT is water table, PB is the probability in the baseline period, and PR85 is the probability during the RCPs 8.5 period
(2080–2099, future scenario F4). The wetlands’ ineffectiveness at storing surface water in this table was WT< 0 cm in 15 days,
and the soil was considered saturated still for water table>−30 cm in 15 days during the growing season.

mean of 0 cm depth (Table S2) compared to the future RCPs
8.5 scenario. The mean annual water table would decrease by
19 cm in LP (originally −100 cm, Table S3), by 7 cm in SC
(originally −16 cm, Table S4), by 17 cm (originally −73 cm,
Table S5) in FL–UP, and by 22 cm (originally 2 cm, Table S6)
in FL–WET.

3.3.2 Predicted future 15-day water table

At the 15-day and annual scale, the future water table would
decline at all sites under the RCPs 4.5 scenario and espe-
cially the RCPs 8.5 scenario (Fig. 6). For AR, the decrease in
the 15-day lowest water table would be 7 cm, from −10 cm
of the historical baseline period to −17 cm under the future
RCPs 8.5 scenario (Fig. 6). The decrease for LP, SC, FL–UP,
and FL–WET would be 28 cm (from −135 cm), 14 cm (from
−28 cm), 23 cm (from −101 cm), and 27 cm (from −19 cm),
respectively (Fig. 6).

Additionally, all the predicted 15-day water table levels
were negative (i.e., water table< 0 cm) at LP, FL–UP, and
SC, meaning there would be no surface water ponding in the
RCPs 8.5 scenario, as well as in the baseline scenario (Ta-
ble 5, Fig. 6). In contrast, the wetlands AR and FL–WET
show a lower probability (i.e., 40 % for FL–WET, 49 % for
AR) with no surface water ponding in the baseline, but a sig-
nificantly increasing probability of 62 and 93 %, respectively,
in the RCPs 8.5 scenario.

Despite the fact that LP, FL–UP, and SC were all predicted
to have no surface water (water table< 0 cm) over the study

period, the soil saturation status (water table depth still within
30 cm) varied by location (Table 5). Sites LP and FL–UP
would completely dry up by 2099 based on the RCPs 8.5 sce-
nario. Wetland SC was saturated 100 % of the time during the
baseline period, but the saturation period would decrease to
57 % by 2099. Wetland FL–WET would be the most sensitive
of the five sites. In FL–WET, the probability would increase
most in losing surface water ponding (increasing from 40 to
93 % from the baseline period to 2099) and decrease most in
saturated soil (decreasing from 100 to 63 %). Notably, wet-
land AR would be the only one that would remain 100 %
saturated under all future scenarios, including the RCPs 8.5
scenario (Table 5, Fig. 6).

4 Discussion

4.1 Difference and consistency of wetland hydrology
models

The lower R2 values (0.69) of the model in the FL–UP site
than in the FL–WET site (0.78) might be caused by other
impacts beyond the model considerations, e.g., the hydro-
logic interaction between the uplands and the wetlands in the
Florida site. Also, the temporal scale of 15 days may bet-
ter capture the hydrological changes in FL–UP rather than
FL–WET due to a faster drainage system in the FL–UP site.
Further, different regression coefficients of climatic and hy-
drologic parameters (P-PET and the antecedent water table at
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Figure 4. Total annual precipitation minus potential evapotranspiration of 20 GCMs in five wetlands in the SE United States (unit: mm),
where (a) is site AR (Alligator River National Wildlife Refuge in North Carolina), (b) is site LP (loblolly pine plantation in North Carolina),
(c) is site FL–UP (upland in Florida) and site FL–WET (wetland in Florida), and (d) is site SC (wetland in South Carolina). The baseline is
1980–1999, the historical run of GCMs; mid21 is 2040–2059, under the RCPs 4.5 and 8.5 scenarios; late21 is 2080–2099, under the RCPs
4.5 and 8.5 scenarios.

the t − 1 time step) and different intercepts (Table 3) among
the five wetlands indicate different major controls for each
of the wetland types. For example, the model shows much
lower (approximately 10 times) intercepts in wetland LP
(−19.55) and wetland FL–UP (−23.17) compared to wet-
land FL–WET (−1.36) and wetland SC (−3.79). This is
reasonable, given that both wetland FL–WET and wetland
SC are depression wetlands, or geographically isolated wet-
lands (Tiner et al., 2016) (i.e., ponds within flat landscape)
surrounded by uplands. Thus the wetlands would be wetter
and ponded more frequently than uplands. However, site FL–
UP has sandy soils and would drain faster with the artificial
ditching systems and higher elevation compared to FL–WET
on a flat landscape. Hence, the much lower intercepts of site
FL–UP and site LP may reflect the topographic and drainage
management controls for these two wetland types.

4.2 Differing controls on future water table level in
different wetlands

Although the statistical model follows a similar structure,
i.e., including the same two explanatory variables in all five

wetlands, and is proven to have good simulation performance
overall, a closer comparison of the modeled water table levels
among the five wetlands shows different climate influences.
For example, the future annual water table depths under the
RCPs 8.5 scenario decline the most in wetland FL. For the
other three sites (AR, LP, and SC), this may be due to a large
increase in PET. Moreover, the precipitation decreases in the
wetland FL, while it increases at other sites.

Future changes in precipitation and PET are predicted to
vary between AR and LP. In the RCPs 8.5 scenario, the in-
crement of PET in LP is 8 % higher than that in AR (Ta-
ble 5), and the increment of precipitation in LP is 170 %
higher than that of AR. However, the change in P-PET is gen-
erally similar between the two wetlands (i.e., −175 mm for
LP and −184 mm for AR, Supplement Table S2–S3). De-
spite the similar P-PET changes, the projected future water
table depth changes in AR and LP are different. The mean
water table depth of LP was predicted to decrease by 19 cm
compared to 4 cm, for AR from the period of 1980–1999 to
2080–2099. The differences are reflected by the different in-
tercepts of the models, and may be due to the different man-
agement conditions in AR and LP. Wetland AR is a natu-
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Figure 5. Mean predicted annual water table of 20 GCMs in five wetlands in the SE United States (unit: cm), where (a) is site AR (Alligator
River National Wildlife Refuge in North Carolina), (b) is site LP (loblolly pine plantation in North Carolina), (c) is site FL–UP (upland in
Florida), (d) is site FL–WET (wetland in Florida), and (e) is site SC (wetland in South Carolina). The baseline is 1980–1999, the historical
run of GCMs; mid21 is 2040–2059, under the RCPs 4.5 and 8.5 scenarios; late21 is 2080–2099, under the RCPs 4.5 and 8.5 scenarios.

ral undisturbed natural bottomland hardwood swamp, while
LP is highly managed pine plantation forest. LP has well-
established ditches for drainage, with a flowline below the
surface of the water table so that the hydraulic head of drains
is lower than the hydraulic head of field water table depths.
The drainage outflow of site LP from the watershed is closely
related to the water table depth (Amatya et al., 2006). Addi-
tionally, in reality at the AR wetland, other local hydrologic
drivers (not directly considered by the model, e.g., sea level

rise) may increasingly slow the predicted decreasing water
table depth. The sea level rise related hydrology may counter
the predicted future water table decline.

Wetland type also contributes to the different water ta-
ble dynamics. The water table changes differ from the base-
line to the future RCPs 8.5 scenario for FL–WET and FL–
UP with the different topography conditions. The more sig-
nificant change in FL–WET water table depth compared to
the other site differences suggests that depressional wetlands

www.hydrol-earth-syst-sci.net/21/6289/2017/ Hydrol. Earth Syst. Sci., 21, 6289–6305, 2017



6300 J. Zhu et al.: Modeling the Potential Impacts of Climate Change

Figure 6. Exceedance probability of the mean predicted water table in the growing season of 20 GCMs in five wetlands in the SE United
States (unit: cm), where the baseline is 1980–1999, the historical run of GCMs; mid21 is 2040–2059, under the RCPs 4.5 and 8.5 scenarios;
late21 is 2080–2099, under the RCPs 4.5 and 8.5 scenarios.

may be more sensitive to climate change compared to up-
lands, consistent with the results of Lu et al. (2009). Thus,
the different responses of future water table depth in the wet-
lands modeled here, with varying climatic and topographic
gradients and management practices, demonstrate the neces-
sity and importance of developing wetland-specific hydro-
logic models.

4.3 Implications

4.3.1 Efficient modeling of wetland water table
dynamics

Compared to a lumped (e.g., DRAINMOD–FOREST, Tian
et al., 2015) or distributed parameter model (e.g., MIKE
SHE, Lu et al., 2009), the empirical hydrological models

developed in this study are simple. However, according to
the model performance and results analysis in this study
(Table 2, Figs. 2 and 3), our models were proven to be
able to predict different water table dynamics well under a
range of climatic and management conditions across the SE
US region. Differences in wetland hydrological response to
climate change suggest that different wetland management
strategies should be developed according to individual site
characteristics. For example, the differences between FL–UP
and FL–WET suggest that depressional wetlands have higher
sensitivity to climate change. The differences between AR
and LP suggest the importance of integrating the mechanisms
of water table response into sea level rise and extreme storm
events.
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Overall, the empirical models developed from this study
performed well at the site level, and can be incorporated into
landscape and larger-scale biogeochemical models. For ex-
ample, the empirical hydrological models can be linked with
local soil respiration or regional methane emission models.
Such an empirical approach should be compared to process-
based hydrological models to effectively quantify the biogeo-
chemical change under future climate.

4.3.2 Biogeochemical cycles

Previous studies report that 3 to 5 ◦C increases in tempera-
ture and 146 to 192 mm yr−1 increases in precipitation would
lead to a 175 % increase in the methane emissions (Shin-
dell et al., 2004). The carbon (C) emissions in forested wet-
lands could be tightly linked (e.g., a logarithmic relationship)
to drought or flood periods (Moore and Knowles, 1989). In
the coastal wetland (AR) in this study, Miao et al. (2013)
found that 93 % of the annual average soil CO2 efflux of
960–1103 g C m−2 was released in non-flooded periods. Our
study suggests that the non-flooded period would increase
by 13 % (from 49 to 62 %, assuming no influence in sea level
rise) in the late 21st century. This translates into a 116 to
133 g C m−2 CO2 efflux increase by the end of the century for
this site. Other studies suggest that gross ecosystem produc-
tivity and the available carbohydrate substrates for soil respi-
ration would decrease with drought (Noormets et al., 2008).
Wetland trees may also alter the use and allocation of nutri-
ents (e.g., N cycling) in response to the changing availability
of water (Vose et al., 2016).

4.3.3 Droughts and wildfires

The projected warming and future drying trends indicate an
increasing threat of drought and wildfire in the study area
(Mitchell et al., 2014). Plant distributions may shift due to
drought (Desantis et al., 2007; Mulhouse et al., 2005), and
trees may become increasingly susceptible to attack by pests
and pathogens (Schlesinger et al., 2016). A warmer and
longer growing season corresponds to an increased possi-
bility of droughts and occurrence of wildland fires (Vose et
al., 2016). Furthermore, increasingly frequent wildfire would
release more carbon by biomass burning (Westerling et al.,
2006) and stimulate other greenhouse gas (GHG) emissions
(e.g., CH4 production) (Medvedeff et al., 2015). Thus, the
management challenges in restoring wetland forests and re-
ducing greenhouse gas emissions will substantially increase.

4.3.4 Wildlife and habitat

The predicted long-term drying of some sites (e.g., FL–
WET) may greatly affect the biological diversity and
metapopulations of wetlands by impacting the inter-wetland
movements, recruitment, recolonization, and genetic ex-
change of many species (Moor et al., 2015; Osland et al.,
2013). Long-term drying could reduce the dispersion among

wetlands, and increase the isolation of primarily aquatic
species such as cricket frogs (Acris gryllus sp.), pig frogs
(Lithobates grylio), swamp snakes (Seminatrix pygaea), and
waterfowl (Greenberg et al., 2017; Davis et al., 2017; Mur-
phy et al., 2016). The abundance of waterfowl was greater
on impoundments than on seasonally flooded wetlands (Con-
nor and Gabor, 2006). Changes in the water table depth of
even less than 10 cm (predicted to decline from 7 to 28 cm
among the studied wetlands) may have profound effects on
habitat choice and species composition, and provide condi-
tions which favor certain species or communities over those
currently dominant in a given wetland (Reddy and DeLaune,
2008). Brent geese switch habitats within a water level span
of 30 cm (Clausen, 2000). An equation linking the decay
coefficient for a specific habitat type and the water table
depth was illustrated in Bouma et al. (2014). A tempera-
ture increase of 2 ◦C (projected to be 4 ◦C in this study)
in Florida would influence co-occurring mangrove and salt
marsh plants (Coldren et al., 2016). This supports the hypoth-
esis that wildlife habitats are at risk due to changing water
table depth across the SE US.

4.4 Uncertainty

Although the models developed in this study are efficient for
simulating the historic and future water levels at multiple
wetlands, the models do not account for the full physical pro-
cesses that govern wetland hydrological cycles. For example,
an increase in atmospheric CO2 concentration is likely to in-
crease plant water use efficiency and thus the ET and wa-
ter balance of wetlands (Brummer et al., 2012). The empiri-
cal models do not explicitly simulate lateral water loss/gain
from net groundwater flow (Johnston et al., 2005) and thus
may cause simulation errors for certain wet periods. Thus,
there is uncertainty regarding the hydrological response to
extreme events such as extreme droughts or floods. In addi-
tion, wetlands are not isolated, and thus a landscape approach
is needed to accurately model water table changes. Although
water table dynamics are also affected by site-specific fac-
tors such as ditching/drainage, subsurface flow due to to-
pographic differences, and local landscape hydrology, they
were not considered explicitly as explanatory variables in
our model. For example, in the AR wetland, future water ta-
ble changes will also be impacted by the local hydrological
change due to sea level rise (Miao, 2013). Our main objective
was to evaluate the potential impacts of climate change on
water table changes as forced primarily by changes in P and
PET. We assume that the effects of other local site-specific
factors are nonetheless taken into account indirectly by the
coefficients (i.e., intercepts) of the models.

In addition to the uncertainty associated with hydrologi-
cal model structure, there are uncertainties associated with
future climate change data. The GCMs’ precipitation or tem-
perature projections are inherently inaccurate for small-scale
studies, in spite of model bias corrections that have been
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implemented, and multiple models are used in this applica-
tion. Compared to previous studies using hypothetical cli-
mate change data or climate data from a single GCM, our
approach of assembling climate data from 20 GCMs and ap-
plying separate models to multiple wetlands represents per-
haps a more robust way to project hydrological response.
Hypothetical or stochastically generated climate conditions
were used in most previous modeling studies (Chen et al.,
2016). Climate data from a single GCM (Greenberg et al.,
2015; Wang et al., 2015) have been used in wetland hydro-
logical response modeling, but using several GCMs (Chen et
al., 2012; Meinshausen et al., 2011) could provide a more re-
alistic assessment. However, different GCMs and future sce-
narios produce very different climate projections. The differ-
ences are even greater when applied to localized areas (Alo
and Wang, 2008). Multiple and overall GCM data may pro-
vide a better full-scale estimate of climate changes (Hessami
et al., 2008).

5 Conclusions

The empirical models developed in this study are able to sim-
ulate water table level dynamics for different types of wet-
lands across the SE US. With the antecedent water table, pre-
cipitation, and potential evapotranspiration as the main pre-
dictors of water table level, the developed models are sim-
ple but powerful tools to provide useful water table change
information under a range of climatic and management con-
ditions. Under future climate change scenarios, the decrease
in water availability is predicted to be a dominant factor for
all five wetlands, resulting in a drier future (e.g., 4–22 cm of
water table drops) in the study region, especially for isolated
wetlands (e.g., the site in Florida) in the late 21st century.
This study confirms the hypothesis that climate change may
have a significant but varying influence on water table levels
of different forested wetlands in the SE US.

Our study may serve as a basis for future regional stud-
ies to understand the interaction between water table level
and climate and to quantify the role of wetlands in regulating
regional water and energy balances. Also, the study results
have important implications not only for wetland hydrology,
but also wetland ecosystem management. The predicted hy-
drological changes have the potential to impact wetland bio-
geochemical cycles, fire regimes, and wildlife habitats. Fur-
ther studies are needed to explore the physical mechanisms
of how climate change affects wetland water table dynam-
ics and associated ecological processes. Process-based eco-
hydrological models are needed to fully account for the im-
pacts of climate change on vegetation dynamics and associ-
ated hydrological changes, and also to better understand the
wetland–upland interactions and wetland–sea level rise inter-
actions.
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