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Abstract. Ecohydrological modeling studies in developing
countries, such as sub-Saharan Africa, often face the problem
of extensive parametrical requirements and limited available
data. Satellite remote sensing data may be able to fill this
gap, but require novel methodologies to exploit their spatio-
temporal information that could potentially be incorporated
into model calibration and validation frameworks.

The present study tackles this problem by suggesting
an automatic calibration procedure, based on the empirical
orthogonal function, for distributed ecohydrological daily
models. The procedure is tested with the support of re-
mote sensing data in a data-scarce environment – the up-
per Ewaso Ngiro river basin in Kenya. In the present ap-
plication, the TETIS-VEG model is calibrated using only
NDVI (Normalized Difference Vegetation Index) data de-
rived from MODIS. The results demonstrate that (1) satellite
data of vegetation dynamics can be used to calibrate and val-
idate ecohydrological models in water-controlled and data-
scarce regions, (2) the model calibrated using only satellite
data is able to reproduce both the spatio-temporal vegeta-
tion dynamics and the observed discharge at the outlet and
(3) the proposed automatic calibration methodology works
satisfactorily and it allows for a straightforward incorpora-
tion of spatio-temporal data into the calibration and valida-
tion framework of a model.

1 Introduction

Drylands cover 30 % of the Earth’s land surface and 50 % of
Africa (Franz et al., 2010). Projections of the IPCC (Inter-
governmental Panel on Climate Change, 2007) indicate that
the extent of these regions will likely increase in the coming
decades. Dryland expansion would have a considerable addi-
tional impact on water resources, which should be taken into
account by water management plans (Franz et al., 2010).

In water-controlled ecosystems, the vegetation assumes a
critical role influencing all components of the hydrological
cycle (Rodriguez-Iturbe et al., 2001; Manfreda and Caylor,
2013). For instance, actual evapotranspiration (aET) may ac-
count for more than 90 % of the annual precipitation in water-
controlled areas (Zhang et al., 2016; Jasechko et al., 2013).
Montaldo et al. (2005) affirmed that the use of constant LAI
(leaf area index) values, commonly used in hydrological ap-
plications, produces large errors in land surface flux predic-
tions. Given the strong control exerted on aET by the veg-
etation, reliable estimates of spatio-temporal variations of
vegetation patterns are vital to obtain trustworthy predictions
of available water resources (Andersen, 2008). In this sense,
ecohydrological modeling becomes essential in order to in-
clude the vegetation dynamics as an additional state variable
(Rodriguez-Iturbe et al., 2001).
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Evidence of aET being a prevalent driver of hydrological
records of streamflow and water table depth, i.e., available
water resources, has been observed in many studies (Bond
et al., 2002; Nyholm et al., 2003; Gribovszki et al., 2008;
Conradt et al., 2013). Recently, Tsang et al. (2014) showed
that adding a better evapotranspiration scheme in a widely
used runoff model improves streamflow predictions. Conradt
et al. (2013), who compared three different strategies for de-
riving sub-basin aET, affirmed that incorporating spatial vari-
ation of aET in a semi-distributed model increases its robust-
ness. Conversely, Stisen et al. (2011) and others stressed that
those improvements are not necessarily seen in the outlet hy-
drograph. However, it could also be interpreted in the inverse
sense; good performances in terms of the outlet hydrograph
do not necessarily mean more reliable estimates of aET.

The streamflow record is traditionally the only observa-
tion used for the calibration of hydrological models, but sev-
eral studies demonstrated the limited capabilities of such
an approach when models are validated at interior points
of a river basin. Discharge represents an integrated catch-
ment response, and hence provides only limited insight on
the lumped behavior of a catchment (Stisen et al., 2011;
Koch et al., 2016a; Michaud and Sorooshian, 1994; Reed
et al., 2004; Smith et al., 2013). In that sense, Conradt et
al. (2013) provided several examples for large simulation er-
rors within the model domain and they mentioned, among
others, the outcomes given by Feyen et al. (2008), Merz et
al. (2009) and Smith et al. (2012). Moreover, Wi et al. (2015)
also pointed out that caution is needed when using an out-
let calibration approach for streamflow predictions under fu-
ture climate conditions. This leads to the idea of using spatial
state variables, and the new era of distributed (temporal and
spatial) models emerges in order to balance the conceptual
distributed nature of this kind of model (Stisen et al., 2011).

Traditional observation, which generally consists of point
data with little spatial support, is effectively strengthened by
remote sensing data, which offer the capacity to provide de-
tailed spatial coverage and pattern information (Franssen et
al., 2008; McCabe et al., 2008; Stisen et al., 2011). Addi-
tionally, satellite data have the great advantage of also being
available in data-scarce areas. In this sense, the application
of remotely sensed data represents an excellent source that
provides information with a fairly good spatial and temporal
resolution (Yang et al., 2012). In modeling, remote sensing
data have been utilized in three different ways: (1) as forc-
ing data (Xiao et al., 2004; Yuan et al., 2010; Samaniego et
al., 2011; Stisen et al., 2011), (2) as a priori information of
particular parameters (Winsemnius et al., 2008; Stisen et al.,
2011) and (3) for model calibration and validation (see next
section for an in-depth discussion of this point).

Satellite imagery provides not only temporal information
but also valuable information on spatial patterns, which can
facilitate a spatial-pattern-orientated model evaluation. As
highlighted by Koch et al. (2015), spatial model evaluation
is an active field of research not only in hydrology but also

in other disciplines such as atmospheric sciences (Brown et
al., 2011; Gilleland et al., 2010). However, up to now, there
exists no formal guideline on how to assess the goodness
of fit of the simulated spatial patterns and little information
can be found about how to effectively utilize spatio-temporal
data. Some authors, such as Conradt et al. (2013), Graf et
al. (2014) and Koch et al. (2015, 2016b), focused on develop-
ing and testing metrics to be employed when spatio-temporal
data are involved. For example, Koch et al. (2015) com-
pared kappa statistics, fuzzy theory and empirical orthogonal
function (EOF) analysis in an attempt towards a true spatial
model evaluation of distributed models. But, besides these
efforts, there are only a limited number of spatial validation
studies that fully embrace the availability of satellite remote
sensing data by means of true spatial performance metrics
(Koch et al., 2016b). EOF analysis is a versatile methodol-
ogy to investigate the spatio-temporal patterns of fluxes and
states in the soil–vegetation–atmosphere continuum (Fang et
al., 2015). As mentioned previously, Koch et al. (2015) car-
ried out a validation of a distributed model using satellite-
based land surface temperature data by means of an EOF
analysis. With other statistical purposes, the EOF analysis
was used by Graf et al. (2014), Kim and Barros (2002) and
Liu (2003). A fine-scale study was carried out by Drewry and
Albertson (2006) who used EOF analysis to associate spa-
tial pattern in the errors of a canopy-atmosphere model with
errors in the parameters. However, to our knowledge, EOF
analysis has not been applied in model calibration yet.

In summary, the main objectives of this research are the
following: (1) to incorporate spatio-temporal data into the
calibration process by applying the EOF methodology as an
objective function and (2) to exploit satellite data as a proxy
of reliable estimates of vegetation dynamics for both the cal-
ibration and validation of an ecohydrological model. To ad-
dress these key challenges, a distributed parsimonious eco-
hydrological model was applied in a water-controlled basin
located in Kenya.

2 Satellite data and model calibration and validation

The applicability of remote sensing to calibrate and/or val-
idate a model by exploiting information on spatial patterns
still remains a challenging task. In order to better under-
stand this issue in more detail, a bibliographic survey of
the ISI Web of Knowledge science citation index was un-
dertaken using the following word combinations in the topic
search: (1) satellite calibration, (2) satellite implementation,
(3) satellite ecohydrological modeling and (4) remote sens-
ing ecohydrology. From the total number of publications ob-
tained by this search, only those that incorporated satellite
data to specifically model calibration were selected.

On the plot scale, Quevedo and Francés (2008) and
Pasquato et al. (2015) calibrated and validated a parsi-
monious ecohydrological model using satellite information.
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Figure 1. Map showing the general location of the upper Ewaso Ngiro river basin within the boundaries of the east sub-Saharan Africa
region. The study sub-catchment (study basin) was selected because of the density of rainfall stations (points in dark red).

More recently, Ruiz-Pérez et al. (2016) discussed the appli-
cability of satellite data during the calibration process com-
paring the results obtained by a parsimonious model cali-
brated using only satellite data against the results obtained
by a complex model calibrated using field measurements on
the pixel scale. Similarly, Quevedo and Francés (2008) and
Pasquato et al. (2015) used time series of NDVI to validate
a parsimonious ecohydrological model named HORAS. On
the catchment scale, Immerzeel and Droogers (2008) used
satellite-based evapotranspiration in combination with ob-
served streamflow to calibrate the semi-distributed SWAT
model. Zhang et al. (2009) concluded that multi-objective
calibration of the SIMHYD model against streamflow and
satellite-based aET produced better daily and monthly runoff
compared to calibration with streamflow alone. More re-
cently, Rientjes et al. (2013) calibrated a semi-distributed hy-
drological model using streamflow data and satellite-based
aET. Regarding other satellite products, GRACE data, which
can be used to detect variations in terrestrial moisture stor-
age (e.g., Lettenmaier and Famiglietti, 2006), have been used
to calibrate both global and regional-scale surface hydrology
models, in combination with stream discharge data (e.g., Lo
et al., 2010). Zhang et al. (2011) calibrated the AWRA-L
model with streamflow, NOAA-AVHRR LAI and TRMM-
MI (Tropical Rainfall Measuring Mission’s, TRMM, Mi-
crowave Imager, TMI) soil moisture using a multi-objective
calibration framework. Only few studies carried out the cali-
bration exclusively against remote sensing data. For instance,
Gutmann et al. (2010) calibrated landscape hydraulic proper-
ties in the Noah land surface model using only MODIS sur-
face temperatures from 14 different sites and using observed
flux data for model verification. Also, Velpuri et al. (2012)
modeled Lake Turkana water levels using only satellite in-
formation. All the above-mentioned studies shared the same

conclusion: including remote sensing data into the model cal-
ibration and/or validation improves the overall performance.

In general, from the total of reviewed publications, cali-
bration using only satellite data was performed in the 47 %
of cases, while a combination of satellite data and field mea-
surements (especially streamflow at the outlet) was used in
the remaining contributions. Similar results were obtained re-
garding the validation: 35.3 % of publications only adopted
field measurements (especially historical streamflow), em-
ploying satellite data exclusively for the model calibration;
47 % used a combination of field measurements and satel-
lite data; 11.8 % only used satellite data; and one publica-
tion without any specification. However, more interesting is
how the different calibrations were carried out. In most of the
cited examples, a sort of multi-objective calibration was used
adopting only some points or pixels to calibrate the entire
catchment. In other cases, lumped or semi-distributed models
were implemented instead of fully distributed ones, consider-
ing aggregated values of the satellite data. In other words, the
spatial heterogeneity of the basin is neglected and the full po-
tential of satellite imagery, namely the information on spatial
patterns, is not fully exploited. Therefore, a method able to
make use of the potential of the spatio-temporal information
contained in remote sensed data is highly desirable and a cal-
ibration scheme which relies solely on remote sensing data
will be greatly beneficial in modeling of data-scarce catch-
ments (Kunnath-Poovakka et al., 2016).

3 Study area and data

The upper Ewaso Ngiro basin is located in the Laikipia re-
gion of Kenya (Fig. 1). The basin is part of the Laikipia
plateau, which lies between Mount Kenya (south east) and
the Aberdare mountains (south west). The basin has a
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drainage area of 15 200 km2, with the largest river being the
Ewaso Ngiro. This region is characterized by distinct rainy
and dry seasons. The first rainy season occurs from March
to May, while the second rainy season occurs from Octo-
ber to December. Both air temperature and precipitation pat-
terns are heavily influenced by elevation. A full description
of the precipitation patterns in the region can be found in
Franz (2007).

Soil texture ranges from sandy clay to clay soils (accord-
ing to the 1980 UNESCO soil map). Although the most char-
acteristic landscape is savanna, higher elevations are dom-
inated by forests and a large piece of land has been con-
verted to cropland (Franz, 2007). The remaining surfaces of
the study region are classified as grassland, shrubland and
wooded grassland (savanna ecosystems).

As meteorological data, we used the weather stations
of the natural resource monitoring, modeling and manage-
ment project (NRM3) of Nanyuki, Kenya (illustrated in
Fig. 1). Daily precipitation and temperature from 1959 to
2003 were validated by Franz et al. (2010). Considering
the available hydrological information, we selected a sub-
basin with an area of about 4600 km2 for the present study
(Fig. 1). The selected catchment is equipped with a stream-
flow gauge at the outlet (operational from 1980 to 2002).
The reference evapotranspiration (ET0) was calculated us-
ing the Penman–Monteith equation with the simplifications
proposed by Allen et al. (2006). This approach is extremely
useful to describe the spatial distribution of solar radiation
and to derive the ET0 maps during any day of the year (Man-
freda et al., 2013).

Regarding the satellite data, we adopted the Normal-
ized Difference Vegetation Index (NDVI) included in the
MOD13Q1 and MYD13Q1 products provided by NASA
(NASA Land Processes Distributed Active Archive Center,
LP DAAC). This satellite product is available from 2000 to
present. The MOD13Q1 and MYD13Q1 data are provided
every 16 days at 250 m of spatial resolution. The used NDVI
products (MOD13Q1 and MYD13Q1) are in level 3, which
means that they are not raw satellite data. NDVI indices are
retrieved from daily, atmosphere-corrected, bidirectional sur-
face reflectance.

Finally, based on previous experiences (Ruiz-Pérez et al.,
2016; Pasquato et al., 2015) and in similar climatic con-
ditions, we declined to use other products such as LAI or
ET derived from MODIS because these kinds of products
are produced by models. And, for example, Ruiz-Pérez et
al. (2016) found large discrepancies between the LAI pro-
vided by satellite and the LAI measured in field. At this point,
we had no information to determine the accuracy of these
particular models and the spatial information used to imple-
ment them. In contrast, NDVI values are calculated by direct
differences of spectrum bands, i.e., no models are involved
and we therefore decided to use this latter product instead of
satellite LAI and/or ET.

4 Model description: TETIS-VEG

The proposed model, called TETIS-VEG, is based on a dis-
tributed hydrological model called TETIS (Francés et al.,
2007) coupled with a dynamic vegetation model. Both mod-
els have simplicity of model structure in common. The used
equations are as simple as possible in order to reduce the
number of parameters (Table 1). The sub-models are inter-
connected. The transpiration calculated in the hydrological
sub-model depends on the LAI simulated by the dynamic
vegetation model. At the same time, the simulated LAI de-
pends on the water stress, which is calculated using the hy-
drological sub-model. The hydrological sub-model can be
used on different timescales (from a few minutes up to daily
time steps), while the vegetation dynamic sub-model has to
be applied on a daily scale. Hence, the TETIS-VEG model
must be used on a daily scale. Both sub-models can be used
on a broad range of spatial scales. In this research, the reso-
lution of the implemented model was 90 m × 90 m.

4.1 The hydrological sub-model: TETIS

TETIS’s conceptual scheme consists of a series of connected
reservoirs, each one representing different water storages in
the soil column: (i) vegetation interception, (ii) first static
soil layer (retained water by upper soil capillary forces, i.e.,
below field capacity plus water detention in surface pud-
dles; evaporation and transpiration can occur), (iii) second
static soil layer (retained water in deeper soil by capillary
forces; only transpiration can occur), (iv) surface (for over-
land runoff), (v) gravitational soil layer (upper soil water
content above field capacity for interflow) and (vi) aquifer
(for river baseflow). Vertical connections between reser-
voirs describe the precipitation, evapotranspiration, infiltra-
tion and percolation processes. The horizontal flows describe
the three different hydrological responses that give the dis-
charge at the catchment outlet: overland runoff, interflow and
baseflow. A more detailed description of the TETIS model
can be found in Francés et al. (2007) and GIMHA (2014).

The TETIS model uses a split structure for the effective pa-
rameter value at each cell (Francés and Benito, 1995; Francés
et al., 2007). The effective parameter is calculated using a
correction factor multiplied by the estimated value of the pa-
rameter in each cell using all the available information (land
cover map, soil type map, DEM, depth of roots and soil layer,
etc.) and expert’s knowledge. Hence, the effective parameter
in each grid cell is computed as the product of two terms:
(1) a common correction factor for each type of parameter
that takes into account the model, information and input er-
rors and the temporal and spatial scale effects; and (2) the a
priori estimated value at each cell. For a given parameter, the
a priori and effective values are different from cell to cell,
while the correction factor is common for all cells (and dif-
ferent from map to map).
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Table 1. Summary of the initial values, the search range and the final value of the parameters or correction factors of both sub-models
(hydrological and dynamic vegetation sub-models) as well as the units and the reviewed references.

Model Correction factor or parametera Units Initial value Search range Final value References

H
yd

ro
lo

gi
ca

ls
ub

-m
od

el FC1-Maximum static storage [–] 1.00 [0.5,2.5] 1.80 [1]
FC2-Evapotranspiration [–] 0.70 [0.7, 1.2] 1.05 [1]
FC3-Infiltration [–] 0.20 [0.01, 2] 0.12 [1]
FC4-Slope velocity [–] 1.00 [0.1, 1.2] 1.00 [1]
FC5-Percolation [–] 0.08 [0.001, 2] 0.05 [1]
FC6-Interflow [–] 140.00 [0.001, 100000] 150.12 [1]
FC7-Deep percolation [–] 0.06 [0.001, 2] 0.04 [1]
FC8-Connected aquifer [–] 20.00 [0.001, 100000] 16.82 [1]
FC9-Flow velocity [–] 1.00 [0.2, 1.2] 1.00 [1]

V
eg

et
at

io
n

su
b-

m
od

el

Specific Leaf Storages mm Tree 0.50 [0.5, 3] 0.43 [2], [3], [4]
Shrub 2.00 [0.5, 3] 2.00
Grass 2.00 [0.5, 3] 2.00

Light use efficiency (LUE) kg m−2 MJ Tree 1.50 [1.2, 2.5] 1.14 [5], [6]
Shrub 1.50 [1.2, 2.5] 1.14
Grass 1.50 [1.2, 2.5] 1.71

Coverage factor [–] b 0.80 [0.1, 1.0] 0.90 [3], [4]

Distribution of roots [–] Tree 0.30 [0.0, 1.0] 0.10 [3], [4], [7]
Shrub 0.5 [0.0, 1.0] 0.20
Grass 0.7 [0.0,1.0] 0.34

Maximum LAI m2 m−2 Tree 2.50 [0.5, 3.5] 3.10 [5], [8], [9], [10]
Shrub 2.00 [0.5, 3.5] 2.00
Grass 1.00 [0.5, 3.5] 1.50

Light extinction coefficient [–] All 0.50 [0.4, 0.6] 0.52 [11]

Specific leaf area (SLA) m2 kg−1 Tree 4.00 [2.0, 5.0] 4.00
Shrub 6.00 [4.0, 20.0] 10.00 [5], [12]
Grass 6.00 [6.0, 50.0] 30.00

Optimal temperature ◦C All 16 [10, 30] 18 [11]
a Regarding the hydrological sub-model, the table shows the value of the correction factors while for the vegetation sub-model, the table shows the parameter values.b The
coverage factor depends on the location. The value in the table is the mean value. We used the reported information by Franz et al. (2007) and Caylor et al. (2006). References:
[1] GIMHA Team (2014); [2] Van Dijk et al. (2011); [3] Franz et al. (2007); [4] Caylor et al. (2006); [5] TRY Database (www.try-db.org); [6] Yuan et al. (2007); [7] Le Roux et
al. (1995); [8] Pasquato et al. (2015); [9] Ceballos and Ruiz de la Torre (1979); [10] López-Serrano et al. (2000); [11] Ruiz-Pérez et al. (2016); [12] Castro de Costa et al. (2014).

With the split-parameter structure, only nine correction
factors are calibrated. Each one related to one of these es-
timated parameter maps: maximum static storage, reference
evapotranspiration, infiltration capacity, hillslope velocity,
percolation capacity, horizontal saturated conductivity for
interflow, horizontal saturated conductivity for aquifer and
river channel velocity.

4.2 The dynamic vegetation sub-model: LUE model

The proposed dynamic vegetation sub-model is based on the
concept of light use efficiency (LUE; Medlyn, 1998) and cal-
culates the leaf biomass (Bl) according to the Eq. (1). The
LUE is the proportionality between plant biomass produc-
tion by terrestrial vegetation and absorbed photosynthetically
active radiation (APAR) in optimal conditions. However, the
LUE can be strongly affected by stress conditions. The key
factors contributing to the variation of this efficiency are: soil

moisture content, air temperature (Landsberg and Waring,
1997; Sims et al., 2006) and nutrient levels (Gamon et al.,
1997; Ollinger et al., 2008). Since this model is designed to
be used in water-controlled areas, the nutrient levels are not
considered.

dBl

dt
= (LUE× ε×PAR× fPAR−Re)×ϕl (Bl)− kl×Bl,

(1)

where Bl is the leaf biomass, LUE is the above-mentioned
light use efficiency, ε is the water stress factor, PAR is the
photosynthetically active radiation, fPAR is the fraction of
photosynthetically active radiation, Re is the respiration, ϕl
(Bl) is the fractional leaf allocation and kl is the leaf natural
decay factor to reproduce the senescence. The water stress
factor depends on the amount of water contained in the two
static reservoirs and it is calculated according to Porporato
et al. (2001). Basically, the stress factor is equal to 1 (maxi-
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mum stress) if the water storage is less than the water storage
at wilting point; it is equal to 0 (minimum stress) if the wa-
ter storage is higher than the water storage at critical point
(plants start the stomatal closure); and, it varies from 0 to
1 using a potential function which depends on the wilting
point, the critical point and an exponent set to equal 2. Then,
this stress multiplies the LUE index, reducing the efficiency
when its value is lower than 1 (non-optimal conditions).

The LAI is simulated through the product between the leaf
biomass, the specific leaf area (SLA) and the vegetation frac-
tional cover. Later, the LAI is used to calculate the transpira-
tion in the hydrological sub-model according to Eq. (2).

Ti = (ET0−EI)×min(1,LAI)× ζ ×Zi × fc, (2)

where Ti is the transpiration from the i soil layer, ET0 is the
reference evapotranspiration, EI is the evaporation of the in-
tercepted water, LAI is simulated by the model, Zi is the
percentage of roots in the i soil layer and fc is the coverage
factor.

Therefore, the LUE model has eight parameters to be cal-
ibrated: (1) Specific leaf storage (the maximum interception
storage is calculated as the product between the specific leaf
storage and the LAI simulated by the model), (2) the LUE
index (explained above), (3) the coverage factor, (4) the dis-
tribution of roots between the first and the second static stor-
age layers, (5) the maximum LAI sustainable by the system
(the simulated LAI is limited by a maximum), (6) the light
extinction coefficient k, (7) the SLA and (8) the optimal tem-
perature (the stress factor also depends on the temperature).

5 Methodology

One of the main objectives of this research was to explore the
potential of satellite remotely sensed data for model calibra-
tion. The TETIS-VEG model was calibrated purely against
MODIS NDVI according to the following three steps: (1) a
manual calibration in order to obtain a first approximation
of model parameters, (2) an automatic calibration based on
the combined use of EOFs and a genetic algorithm in order
to refine model parameterization and (3) a model validation
carried out with both remote sensed data and traditional data
(such as streamflow measurements). Since the meteorologi-
cal data (precipitation and temperature) were available from
1960 to 2003 and the MODIS NDVI was available from 2000
to present, we decided to use the year 2003 as the calibration
period and the period from 2000 to 2002 for validation. In
order to avoid the effect of the initial conditions, we used
one year as warming-up period (the year 2002 and 1999 for
model calibration and validation, respectively).

For these purposes, we adopted the NDVI as a descriptor
of the state of the vegetation assuming that LAI and NDVI
are intimately related. Studies on various vegetation types,
e.g., agroecosystems (Cohen et al., 2003), grasslands (Friedl
et al., 1994), shrublands (Law and Waring, 1994), conifer

forests (Chen and Cihlar, 1996) and broadleaf forests (Frass-
nacht et al., 1997) have led to the general conclusion that
the spectral vegetation indices such as NDVI have consider-
able sensitivities to LAI. The relationship between LAI and
NDVI can be considered linear for low values, while it be-
comes nonlinear for the higher values of NDVI due to the
greenness saturation (e.g., Turner et al., 1999). In this case
study, the maximum LAI values are around 2.0–2.5, accord-
ing to Franz (2007), and are lower than the greenness satu-
ration threshold. Therefore, the relationship between the ob-
served NDVI and the simulated LAI is expected to be linear.

5.1 Empirical orthogonal function method (EOF)

The EOF method is generally used to analyze the spatio-
temporal variability of a single variable, but a comparison
between different variables can also be performed using cou-
pled EOF techniques (Björnssson and Venegas, 1997). The
method decomposes a dataset in a time series and spatial pat-
terns. Furthermore, the method allows for estimating a mea-
sure of the “importance” of each spatial pattern. We refer to
the spatial patterns as the EOFs (in literature, they are also re-
ferred to as principal components), and to the time variation
as loadings (in literature, there are several terms: expansion
coefficient time series, expansion coefficients, EOF time se-
ries, principal component time series, etc.).

The EOF method is essentially a linear algebra methodol-
ogy based on matrix transformation. The first step is thus the
conversion of the spatio-temporal data to be analyzed into a
matrix. Basically, we construct a matrix (F) in which each
column is the temporal variation of the data in a particular
cell while each row represents the cells values during a par-
ticular time step. Usually, the second step is to compute the
anomalies of the analyzed data, which was not needed in this
study because we used normalized data (for reasons that will
be explained below).

The next step of the applied EOF method consists of the
calculation of the spatial F covariance matrix (R) according
to Eq. (3). Then, the eigenvalue problem is solved by Eq. (4).

R= FT ×F, (3)
R×C= C×3. (4)

3 is a diagonal matrix containing the eigenvalues λi of R.
The ci column vectors of C are the eigenvectors of R cor-
responding to the i-respective eigenvalues. Each of these
eigenvectors can be regarded as a map which denote the
EOFs (or principal spatial patterns). In what follows, we al-
ways assume that the eigenvectors are ordered according to
the value of the eigenvalues. Thus, EOF1 is the eigenvector
associated with the biggest eigenvalue. The fraction of the
total variance in R explained by EOFi is found by dividing
the λi by the sum of all the other eigenvalues. The time evo-
lution of an EOFi (ai) is calculated according to Eq. (5). The
components of these time vectors are referred to as loadings
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in this paper.

ai = F×EOFi (5)

Using the spatial covariance calculated according to Eq. (3),
the EOF technique provides three different results: the main
patterns or EOFs, their time evolution whose components are
called loadings and the portion of spatial variance explained
by each EOF, which is calculated by dividing each λ by the
trace of 3.

5.2 Manual calibration

The manual calibration was done with a dual purpose. First,
we wanted to test the applicability of the proposed TETIS-
VEG model in the study basin. Second, we wanted to obtain a
first approximation for the parameters and, at the same time,
constrain the automatic calibration. This manual calibration
consisted of the usual ad hoc method (manual adjustment of
parameter values) considering the Pearson correlation coeffi-
cient between the simulated LAI and the observed NDVI in a
total of 32 different points inside the basin. These points were
selected within homogeneous areas defined according to the
main spatial patterns of the observed NDVI (EOFs) and the
available maps of land cover, soil texture, DEM, slope and
soil depth.

In this case, the EOF analysis was used to identify the main
spatial patterns of the observed NDVI. Once the main spatial
patterns were identified, we combined our own human per-
ception with the confusion matrices between the main spa-
tial patterns and the spatial maps of model parameterization.
Confusion matrices are widely applied for map comparison
in distributed modeling comparing actual to predicted values
for each specific category defined previously (García-Arias et
al., 2016; Bennett et al., 2013; Van Vliet et al., 2013 among
many others). Generally, the rows in the matrix represent the
values predicted by the model, whereas the columns repre-
sent the actual values. By its nature, the confusion matrix is
an overall measure for similarity between two categorized
maps. However, the comparison of numerical maps is fea-
sible if they are categorized previously. While most of the
spatial maps of the basin characteristics (land use, soil type,
etc.) were categorical, the main patterns obtained by the EOF
analysis were numerical. To build the confusion matrices,
the main patterns were therefore discretized according to the
number of river basin features (such as land cover map, soil
type map, etc.) and based on the similitude between the cor-
responding histograms. Once the discretization was done, by
a cell-by-cell comparison of the discretized NDVI main pat-
tern maps obtained after the EOF analysis and the available
spatial maps, the confusion matrices were built.

These confusion matrices allowed the calculation of the
weighted kappa (κ) coefficient (Cohen, 1968). This coeffi-
cient, whose maximum value of 1 represents a perfect agree-
ment, was employed to identify which spatial maps (land
cover map, soil type map, DEM, etc.) were linked with the

main patterns of the observed NDVI. Then, they were used
in order to select the most appropriate points for the manual
calibration.

5.3 Automatic calibration

The most innovative aspect of the proposed procedure was
the direct use of the EOF analysis in the automatic calibra-
tion. As proposed by Koch et al. (2015), we decided to build
one integral matrix by concatenating both the observed and
predicted data: the matrix contained the normalized values of
the NDVI provided by MODIS and the normalized values of
the LAI simulated by the model. In this way, the upper part
of this matrix contained the temporal variation of the normal-
ized observed NDVI in all cells as columns, while the lower
part contained the temporal variation of the normalized sim-
ulated LAI in all cells as columns. We decided to use the
normalized values of the NDVI and LAI because, although
they are correlated, they differ in range.

However, normalization implies that some spatial informa-
tion is lost. In order to avoid these losses, we added two rows
in the matrix F: the first containing the difference between
the temporal mean of the observed NDVI at a particular cell
and the general mean using the complete NDVI dataset, and
the second with the same content but referred to the simu-
lated LAI. In this way, we included the spatial gradient of
the observed NDVI and the spatial gradient of the simulated
LAI. These two rows represent two additional maps included
in the evaluation of the model performance. If they were sim-
ilar, it would mean that the spatial gradient remains and is
properly reproduced.

The number of pixels was 1 034 706. For the calibration
period (year 2003), there were 44 NDVI maps (one every 8
days more or less). Hence, the built integral matrix’s size was
90 rows (44+ 44+ 2 additional rows)× 1 034 706 columns.
After the construction of this matrix, the EOF analysis was
applied obtaining the following: the EOF maps for the matrix
containing both NDVI and LAI, the portion of variance ex-
plained by each EOF map and the loadings of each EOF map.
The combined EOF analysis yielded orthogonal EOF maps
that explained the combined intervariability and intravari-
ability of both datasets. For each time step, the loadings ex-
press how much the respective LAI and NDVI maps con-
tribute to the direction of the corresponding EOF. Hence, if
the observed NDVI and the simulated LAI were completely
correlated, the temporal evolution of the EOF maps for both,
NDVI and LAI, would be essentially equal.

The automatic model calibration was carried out by try-
ing to minimize the differences between the loadings of sim-
ulated and observed data. The used objective function was
based on that idea and it also took into account the por-
tion of variance explained by each EOF in order to consider
that the variance contribution decreases consecutively for the
EOFs. The adopted error measure is described in the follow-
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ing equation:

Error=
k∑
i=1

wi ×

t∑
i=1

∣∣load_simi,j − load_obsi,j
∣∣ , (6)

where Error is the objective function to minimize, wi is the
portion of variance explained by the EOFi , load_simi,j is the
loading of the EOFi at time step j for the simulated data (in
this particular case, the normalized LAI) and load_obsi,j is
the loading of the EOFi at time step j for the observed data
(in this particular case, the observed NDVI).

The calibration was performed using a genetic algorithm
called Pyevolve (see http://pyevolve.sourceforge.net/). This
algorithm needs a seed (initial values of the parameters) and
a searching boundary of the parameters to be calibrated.
We used the results obtained after the manual calibration
explained above as seed and made sure that the searching
boundaries were wide enough (Table 1).

In order to explore the outcomes of the proposed calibra-
tion framework, we additionally calculated both the temporal
Pearson correlation coefficient between the NDVI provided
by MODIS and the LAI simulated by the TETIS-VEG model
in each cell and the spatial Pearson correlation at each time
step. For the spatial and temporal correlation coefficients, we
used the original values of both datasets (NDVI and LAI),
not the normalized values as used by the EOF analysis. It is
important to mention that the Pearson correlation coefficient
between two datasets X and Y is positive if X and Y tend to
be simultaneously greater than, or simultaneously less than,
their respective means. Hence, the mean should be represen-
tative. For this reason, in the case of the spatial correlation
coefficient, we distinguished between the main land covers
whose means can be significantly different: tree, shrubs and
grass.

5.4 Validation

The period selected for the model validation was the three
years from 2000 to 2002. As during the calibration period
(year 2003), there were data of precipitation, temperature
and, also, NDVI provided by MODIS. To validate the model,
we used the same performance indexes applied during the
automatic calibration process. Keeping the parameter values
obtained by the automatic calibration, we built the matrix
concatenating the normalized value of the observed NDVI
and the normalized value of the simulated LAI with two
additional rows used to incorporate the spatial gradient of
both datasets as explained above. We also plotted these two
maps and compared them as we did during the model calibra-
tion. Using EOF techniques, we obtained the coupled EOF
maps and their associated loadings and portion of variance
explained by them. As during the calibration, we compared
the deviation of the loadings for each EOF map and we calcu-
lated the Error function defined in Eq. (6). We also calculated
the temporal and spatial Pearson correlation coefficients.

In addition to this, we explored the reliability of the cali-
brated model in reproducing streamflow. In fact, during the
validation period, the observed discharge at the outlet point
was available unlike during the calibration period. The re-
liability of the hydrological sub-model in reproducing the
streamflow was an extremely challenging task considering
that the entire modeling structure had been calibrated using
only vegetation data from remote sensing along with physi-
cal information about the basin.

Furthermore, we included the Nash and Sutcliffe effi-
ciency index (NS, Nash and Sutcliffe, 1970) and the bias
(or volume) error (E) value between the observed and sim-
ulated discharges at the basin outlet in the model validation.
We also decided to strengthen our discharge analysis by us-
ing the concept of flow duration curves (FDCs). FDCs are
simple and powerful tools, commonly used in hydrology, to
describe the runoff regime in a river basin that can be rep-
resentative of the model’s ability to reproduce the different
components of the streamflow (e.g., Manfreda et al., 2005).
In fact, FDCs represent the relationship between magnitude
and frequency of streamflows, thus providing an important
synthesis of the relevant hydrological processes occurring on
the basin scale (Pumo et al., 2013). Actually, the shape of a
flow-duration curve in its upper and lower regions is partic-
ularly significant in evaluating the stream and basin charac-
teristics (Coopersmith et al., 2012). The shape of the curve
in the high-flow region indicates the type of flood regime the
basin is likely to have, whereas the shape of the low-flow
region characterizes the ability of the basin to sustain low
flows during dry seasons (Cheng et al., 2012). Hence, the
FDC represents the full spectrum of variability in terms of
their magnitudes (Wagener et al., 2013).

6 Results

6.1 Manual calibration

The main objective of this a priori manual calibration was the
identification of the most appropriate points where the model
could be tested. To accomplish that, we identified the main
spatial patterns of the observed NDVI and then we compared
the EOFs with the spatial features of the river basin (such as
land cover map, DEM, soil type map, etc.).

Using our own perception, we identified a certain relation-
ship between EOF1 (which explained the 61.5 % of the ob-
served NDVI spatial variance) and the land-use map. This
potential relationship was supported by the κ coefficient (de-
scribed in Sect. 5) that assumed a value of 0.34. This is not
a high value but it showed the existence of a relationship be-
tween the two maps. Regarding EOF2 (which explained the
10.5 % of the observed NDVI spatial variance), no connec-
tions with the basin physical characteristics were found. It
might contain a mix of several drivers and, therefore, it can’t
be directly linked to a single one. Conversely, EOF3 showed
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Figure 2. Location of the points where the manual calibration was
carried out. The value of the Pearson correlation coefficient between
the satellite NDVI and the simulated LAI appears together with the
point used for the manual calibration of the model.

a good agreement with the soil texture map (the κ coefficient
was 0.32). Therefore, we can state that the observed patterns
of NDVI are strongly influenced by the spatial distribution
of land cover and soil texture. In the following, we combined
these two maps, extracted all possible combinations and ran-
domly selected two points of each of these combinations ob-
taining 32 points covering all of the catchment area.

After conducting the manual calibration, the Pearson cor-
relation coefficient between the observed NDVI and the sim-
ulated LAI was positive in 25 points of the 32 considered
points. All points with negative correlations had in common
the fact that they were located near to the Mount Kenya or
Aberdare mountains (Fig. 2).

Finally, Table 1 shows the obtained set of parameters. This
set was used as seed during the automatic calibration. It must
be underlined that all parameters had values consistent with
the reviewed literature (references embedded in Table 1).

6.2 Automatic calibration

The proposed automatic calibration is based on the assump-
tion that the closer the loadings of the simulated values are to
the loadings of the observed values, the higher the similarity
between the spatial patterns is. Calibration produced a good
agreement between the observed and simulated loadings of
EOF1 (Fig. 3; upper left panel) but small deviation between
the observed and simulated loadings related to EOF2 and
EOF3. The loadings of the remaining EOFs were completely
scattered mainly due to their corresponding low contribution
(low weight) in the objective function of the automatic cali-
bration process (Eq. 6). It is needed to remark that EOF1 ex-
plained more than 60 % of the dataset spatial variance, while
EOF2 and EOF3 explained around 10 % each. The remain-
ing EOFs explained less than 3 % each, but in any case they
were considered during the calibration process (weighted by
the portion of variance explained by each one).

We also used three additional metrics to evaluate the
model performance: (1) the temporal Pearson correlation co-
efficient evaluated in each cell, (2) the spatial Pearson corre-
lation distinguishing between trees, shrubs and grasses com-
puted at any time and (3) comparison of the spatial gradient
maps. First, the temporal Pearson correlation coefficient be-
tween the observed NDVI and the simulated LAI was higher
than 0.4 (Fig. 4; left panel) in most of the catchment. The
weakest correlations were obtained in the two highest areas
of the basin near to the Mount Kenya and Aberdare moun-
tains with zero to negative values.

The spatial Pearson correlation coefficients were calcu-
lated excluding the regions with negative temporal Pear-
son correlation coefficient. Although slightly worse than the
results in terms of temporal correlation, the mean spatial
correlations were higher than 0.45 for all main land cov-
ers: trees (mean= 0.58), shrubs (mean= 0.49) and grasses
(mean= 0.55) (Fig. 5; upper panel). The best scores were
obtained in cells classified as trees. In fact, the median was
almost 0.60 and the variance was not high (standard devi-
ation= 0.16). Conversely, the cells classified as grasses ob-
tained the worst results with the lowest median and the high-
est variance (standard deviation= 0.18).

Figure 6 (upper panels) shows the comparison between
the maps which represent, in each cell, the difference be-
tween the temporal mean and the general mean of the ob-
served NDVI and the simulated LAI, respectively. No great
differences were found by comparing both maps indicating
the good spatial performance of the ecohydrological model,
at least from the vegetation point of view.

6.3 Validation

Similarly to the calibration process, EOF1 explained more
than 60 % of the spatial variance, while EOF2 and EOF3 ex-
plained around 10 % and 5 %, respectively, for the validation
period. The remaining EOF maps are not presented because
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Figure 3. The three first EOFs during the calibration (a) and during the validation (b) are represented. The y axes reflect the unitless loadings
of each EOF. The x axes reflect the time step.

Figure 4. Temporal Pearson correlation coefficient between the NDVI provided by MODIS and the LAI simulated by the model during the
calibration and validation periods. The two areas with negative values correspond to the Mount Kenya and Aberdare mountains.

none of them explained more than 3 %. The simulated and
observed loadings of EOF1 were almost equal, while the ob-
tained results in relation to EOF2 and EOF3 were slightly
worse (Fig. 3; lower row of panels). However, it is important
to stress that both showed the same clear temporal dynamics.
Indeed, the resulting “Error” for the validation period was
4.03, just slightly worse than the Error for the calibration pe-
riod. It must be considered that the Error value was calculated
considering all EOFs (Eq. 6).

The temporal Pearson correlation map between simulated
LAI and NDVI showed the same pattern observed in the cal-

ibration period: the two areas located near Mount Kenya and
the Aberdare mountains had a temporal correlation coeffi-
cient equal to zero or negative. However, in more than 80 %
of the catchment, this coefficient was between 0.3 and 0.9
(Fig. 4; right panel).

Regarding the spatial Pearson correlation coefficient be-
tween simulated LAI and NDVI in the three main land cov-
ers, the results were not as good as the results obtained in
terms of temporal correlation. Nevertheless, there were no
negative spatial correlation coefficients at any time step. In
the case of shrubs and grasses, both the mean and median
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Figure 5. Spatial Pearson correlation coefficient during the calibra-
tion (a) and during the validation (b) distinguishing between the
main land covers: tree, shrubs and grass. The whiskers were calcu-
lated according to the 98th percentile and the outliers were plotted
as× symbol. The median is the line inside the boxplot and the mean
is the square tile symbol.

were almost 0.4, while the corresponding value for the trees
was around 0.35 (Fig. 5; lower panel). The variance obtained
during the validation period was narrower than that obtained
during the calibration period for the three land covers. The
spatial pattern of LAI was, as for the calibration period, well
captured by the model (Fig. 6; see the lower panels). The
cells with high differences between their own temporal mean
and the general mean were consistent in both maps.

Finally, since there was observed discharge at the basin
outlet during the years 2000, 2001 and 2002, it was possi-
ble to compare the discharge simulated by the model with
the observations. The volume error (E) was equal to −0.40,
while the NS index was equal to 0.32. E is strongly affected
by the results obtained at the beginning of the validation pe-
riod, probably due to the absence of information regarding
the initial conditions. Although we used a year as warming-
up period, the simulations improved only after 2001. In fact,
having calculated the performance indexes in each year, E
decreased in magnitude from −0.88 in 2000 to only −0.17
during the year 2002 (Fig. 7). Regarding the NS index, the
worst result was also obtained in the first year and it im-
proved from a negative value in 2000 to 0.35 during the year

2002, as one should expect considering the visual compar-
ison in Fig. 7. This trend is emphasized in the plot of the
FDCs (Fig. 8), where the underestimation in the first 2 years
is clearly highlighted. The upper panel (Fig. 8a) compares
the FDC of observations and simulations within the whole
period, while the lower panels (Fig. 8 b–d) compare the cor-
responding FDCs within the 2000, 2001 and 2002. In these
plots, the simulation seems to closely interpret hydrological
response in the year 2002.

7 Discussion

From the a priori manual calibration step to the model vali-
dation step, it was possible to identify a behavioral pattern
which would also be observed during the following auto-
matic calibration and validation steps: EOF1 explains more
than 60 % of the spatial variance, EOF2 around 10 % and
EOF3 around 5 %, while the remaining EOFs could be con-
sidered negligible. The fact that EOF1 and EOF3 of the ob-
served NDVI were related to the land cover and soil type
maps, respectively, was consistent with our expectations that
NDVI is a suitable proxy of vegetation dynamics.

After the automatic calibration, the model matched the ob-
served loadings of EOF1 and its accuracy was slightly poorer
for EOF2 and EOF3. Thus EOF1 captured the predominant
pattern that was found in both the observed NDVI and the
simulated LAI data. On one hand, the temporal variation of
EOF1 loadings seemed to be related to the two typical grow-
ing seasons in the catchment: the first one during March–
May and the second one during October–December (Franz
et al., 2010; Fig. 3). On the other hand, the loadings of EOF2
and EOF3 were not strongly connected with any feature. The
loadings of the remaining EOFs were scattered, which im-
plies that mainly measurement and model noise were covered
by these EOFs.

The weakness of the proposed calibration methodology is
that, although the associated weights to the loading deviation
in Eq. (6) are needed, they are also misleading some spatial
information. New ways to weigh the loading deviations must
emerge in future research as proposed by Koch et al. (2015).
In fact, due to the portion of variance explained by EOF1, this
first main pattern controlled the calibration process. In future
applications, the proposed error index may be improved by
focusing or excluding specific EOFs. A popular method for
deciding which EOF to keep and which to discard is to use
“selection rules”. Basically, there are three classes of selec-
tion rules depending on whether they focus on the amount
of variance explained by each EOF, the loadings or the EOF
maps (Preisendorfer, 1988). Another option could be to ro-
tate the EOFs as proposed by Bonaccorso et al. (2003). As
each rotated EOF will not explain the same variance of the
unrotated one, this approach would be an option to use differ-
ent combinations of EOFs, which explain different amounts
of variance in order to reduce the influence of EOF1.
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Figure 6. Comparison between the maps where each pixel color represents the difference between the temporal mean calculated in this
particular pixel and the general mean calculated using all datasets of the simulated LAI (a, c) and observed NDVI (b, d) in both periods:
calibration (a, b) and validation (c, d). This difference is a measure of the spatial gradient of both variables (LAI and NDVI).

Figure 7. Time series of rainfall and observed and simulated daily discharge (m3 s−1) during the validation period (2000, 2001 and 2002).
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Figure 8. Observed (in black) and simulated (in red) flow duration
curves (FDCs) for the whole validation period (a) and for the corre-
sponding 3 years in isolation (b, c and d) for the years 2000, 2001
and 2002, respectively.

The automatic calibration process worked satisfactorily as
shown by the additional metrics: temporal Pearson correla-
tion coefficient, spatial Pearson correlation coefficient in the
main land covers and the comparison between the gradient
maps. In terms of spatial Pearson correlation coefficient, the
weakest values were obtained in the higher portion of the
basin near Mount Kenya and the Aberdare mountains, while
the remaining cells within the study area showed a good
agreement between observed NDVI and simulated LAI. This
same behavior was also observed when calibrating manually.
Two reasons could explain such results. First, the observed
NDVI in some cells of those areas had a really bad qual-
ity as testified by the unrealistic oscillations of the NDVI
from 0.8 to 0.1 (even zero) in just one week. These unrealis-
tic oscillations could be produced by the presence of clouds
over the area near to the mountains. The second reason is
related to the conceptual limitation of the proposed model.
The TETIS-VEG was designed to be used only in water-
controlled areas. Franz (2007) analyzed the correlation be-
tween the fractional woody cover and the mean annual pre-
cipitation within the catchment and they were strongly cor-
related. However, two different slopes were observed. The
transition point, which indicates when water availability had
a smaller influence on the fractional woody cover, occurred
approximately around 800 mm year−1. Physically, the tran-
sition point is believed to be a good approximation of the
transition from a water-controlled ecosystem to a nutrient-
controlled ecosystem. This approach allowed us to define
the higher areas within the study catchment (where Mount
Kenya and the Aberdare mountains are included) as nitrogen
limited ecosystems instead of water-controlled.

With the exemption of these two areas, a strong correla-
tion between NDVI and LAI existed, i.e., the model cap-
tured the temporal dynamic of LAI. However, this did not
necessarily mean that the magnitude of LAI was reasonable.
This last point was proven by calculating the good perfor-
mance in terms of spatial Pearson correlation and the com-
parison between the gradient maps. No differences and good
agreements were observed along the main land covers: trees,
shrubs and grasses.

Finally, there were four parameters in the automated cal-
ibration which changed substantially (in relative terms) in
comparison to the values obtained during the manual cali-
bration: the correction factor of the maximum static storage,
the correction factor of the reference evapotranspiration, the
factor related to the distribution of roots between the first and
second static storage layers and the maximum LAI sustain-
able by the system (Table 1). These parameters directly affect
the transpiration process and the amount of available water to
be consumed by the plants. In any case, all obtained values
were consistent with the reviewed literature (embedded in
Table 1). All of them are completely included in the search-
ing boundary used during the automatic calibration.

The validation process confirmed (1) the model was able
to capture completely EOF1 while the model performance
worsened in EOF2 and EOF3, (2) the simulated LAI and the
observed NDVI were temporally correlated in most of the
catchment and (3) the spatial distribution of LAI was consis-
tent as shown by the comparison between the gradient maps
and the value of the spatial Pearson correlation coefficient at
any time.

An additional interesting outcome provided by the vali-
dation was the comparison between simulated and observed
hydrograph data at the outlet. The simulated stream flow was
promising, but not completely convincing. This limitation is
obvious since the model parameters were calibrated on NDVI
data, i.e., the model was calibrated on vegetation dynamics.
Therefore, a direct comparison between hydrographs should
not be too exigent when no information about the parameters
involved in the river flow routing or aquifer discharge was
included in the calibration.

We strengthened our discharge analysis by using the con-
cept of FDCs. By graphical comparison (Fig. 8), it could
be observed that the model is able to reproduce the shape
of the observed FDC, while some discrepancies were found
in terms of magnitude. However, its performance improved
considerably year by year. Since the FDC shape is an impor-
tant indicator of the relevant hydrological processes occur-
ring on the basin scale, this result pointed out the capability
of the proposed model calibration methodology to reproduce
the main hydrological behavior of the study basin.
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8 Conclusions

The main two objectives of this research were (1) to explore
if it is possible to calibrate and validate an ecohydrological
model using only satellite information and (2) to incorpo-
rate spatio-temporal data about a model state variable into the
automatic calibration process. In order to tackle these chal-
lenges, a parsimonious distributed ecohydrological model
was calibrated by exclusively using NDVI data provided by
MODIS. A methodology based on EOF analysis was pro-
posed to carry out manual and automatic calibration of the
model. Finally, the results were validated using satellite data
referring to different periods and the observed discharge at
the basin outlet, which was not used for calibration.

In general, the proposed model was able to properly re-
produce the vegetation dynamics and the observed stream
flow. The results highlight the usefulness of satellite data. It
was possible to implement the hydrological and the vegeta-
tion components of the TETIS-VEG daily model using only
NDVI data and also to validate the model with satisfactory
results. Such outcomes are promising because they demon-
strate that satellite data could be exploited in order to predict
river discharge in ungauged basins. More specifically, we ex-
pect this result given the key role played by vegetation in
water-controlled areas such as the upper Ewaso Ngiro river
basin in Kenya, where having an appropriate description of
vegetation and transpiration is critical for a correct descrip-
tion of the water balance on the local and basin scale.

The proposed automatic calibration was completely de-
signed to incorporate spatio-temporal data in order to take
maximum advantage of the available satellite data. After
calibrating, the simulated vegetation patterns display good
agreement with measured NDVI in most of the basin except
for some portions at higher altitudes. This non-satisfactory
result may be due to the bad quality of the NDVI data and/or
the limitation of the vegetation sub-model (that was specifi-
cally designed for semiarid regions).

Model limitations along with poor data quality and resolu-
tion negatively affected the overall model performance, but
the proposed procedure allowed us to exploit the amount of
information available addressing the critical issue of identi-
fying a procedure for the calibration of a distributed model.
This allowed us to obtain a correct description of vegetation
dynamics in space and time also providing, as a marginal
benefit, a fairly good streamflow prediction. In this context,
it was mandatory to adopt a daily time step in order to have
a coherence with satellite NDVI data and also removing the
need for a runoff propagation module in our model.

Finally, we should consider that the potential of the present
study is due to the large availability of remote sensing infor-
mation (not only satellite) concerning spatial state variables
and more information will be available in the future. Many
efforts are being made to improve the quality and quantity
of remote sensing data (drones, better devices, etc.). Addi-
tionally, the scientific community must also be ready to ex-

ploit the enormous amount of information contained in this
data (temporal, spatial and spatio-temporal). Therefore, we
should identify the best way to use all of this new available
information, not only for data assimilation but also for model
calibration and validation.
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