
Hydrol. Earth Syst. Sci., 21, 6219–6234, 2017
https://doi.org/10.5194/hess-21-6219-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Moment-based metrics for global sensitivity analysis
of hydrological systems
Aronne Dell’Oca1, Monica Riva1,2, and Alberto Guadagnini1,2

1Dipartimento di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, Piazza L. Da Vinci, 32, 20133 Milan, Italy
2Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA

Correspondence to: Aronne Dell’Oca (aronne.delloca@polimi.it)

Received: 15 February 2017 – Discussion started: 6 March 2017
Revised: 23 August 2017 – Accepted: 10 October 2017 – Published: 8 December 2017

Abstract. We propose new metrics to assist global sensitiv-
ity analysis, GSA, of hydrological and Earth systems. Our
approach allows assessing the impact of uncertain param-
eters on main features of the probability density function,
pdf, of a target model output, y. These include the expected
value of y, the spread around the mean and the degree of
symmetry and tailedness of the pdf of y. Since reliable as-
sessment of higher-order statistical moments can be compu-
tationally demanding, we couple our GSA approach with a
surrogate model, approximating the full model response at
a reduced computational cost. Here, we consider the gen-
eralized polynomial chaos expansion (gPCE), other model
reduction techniques being fully compatible with our the-
oretical framework. We demonstrate our approach through
three test cases, including an analytical benchmark, a simpli-
fied scenario mimicking pumping in a coastal aquifer and a
laboratory-scale conservative transport experiment. Our re-
sults allow ascertaining which parameters can impact some
moments of the model output pdf while being uninfluential
to others. We also investigate the error associated with the
evaluation of our sensitivity metrics by replacing the origi-
nal system model through a gPCE. Our results indicate that
the construction of a surrogate model with increasing level of
accuracy might be required depending on the statistical mo-
ment considered in the GSA. The approach is fully compat-
ible with (and can assist the development of) analysis tech-
niques employed in the context of reduction of model com-
plexity, model calibration, design of experiment, uncertainty
quantification and risk assessment.

1 Introduction

Our improved understanding of physical–chemical mecha-
nisms governing hydrological processes on multiple scales
of space and time and the ever increasing power of modern
computational resources are at the heart of the formulation
of conceptual models which are frequently characterized by
marked levels of sophistication and complexity. This is evi-
dent when one considers the spectrum of mathematical for-
mulations and ensuing level of model parametrization ren-
dering our conceptual understanding of given environmen-
tal scenarios (Willmann et al., 2006; Grauso et al., 2008;
Koutsoyiannis, 2010; Wagener et al., 2010; Elshorbagy et
al., 2010a, b; Wagener and Montanari, 2011; Hartmann et
al., 2013; Herman et al., 2013; Förster et al., 2014; Paniconi
and Putti, 2015). Model complexity can in turn exacerbate
challenges associated with the need to quantify the way un-
certainties associated with parameters of a given model prop-
agate to target state variables.

In this context, approaches based on rigorous sensitivity
analysis are valuable tools to improve our ability to (i) quan-
tify uncertainty, (ii) enhance our understanding of the rela-
tionships between model input and outputs and (iii) tackle
the challenges of model- and data-driven design of exper-
iments. These also offer insights to guide model simplifi-
cation, for example, by identifying model input parameters
that have negligible effects on a target output. The variety
of available sensitivity methodologies can be roughly sub-
divided into two broad categories, i.e., local and global ap-
proaches. Local sensitivity analyses consider the variation of
a model output against variations of model input solely in
the neighborhood of a given set of parameter values. Other-
wise, global sensitivity analysis (GSA) quantifies model sen-
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sitivity across the complete support within which model pa-
rameters can vary. Error measurements and/or lack of knowl-
edge about parameters can be naturally accommodated in a
GSA by specifying appropriate parameter intervals and eval-
uating sensitivity over the complete parameter space. Recent
studies and reviews on available sensitivity analysis and ap-
proaches are offered by, e.g., Pianosi et al. (2016), Sarrazin
et al. (2016) and Razavi and Gupta (2015).

Our study is framed in the context of GSA methods. A
broadly recognized strategy to quantify global sensitivity of
uncertain model parameters to model outputs relies on the
evaluation of the Sobol’ indices (Sobol, 1993). These are typ-
ically referred to as variance-based sensitivity measures be-
cause the output variance is taken as the metric upon which
sensitivity is quantified. A key limitation of a variance-based
GSA is that the uncertainty of the output is implicitly con-
sidered to be fully characterized by its variance. Relying
solely on this criterion can provide an incomplete picture of
a system response to model parameters, also considering that
probability densities of typical hydrological quantities can
be characterized by highly skewed and tailed distributions
(e.g., Borgonovo et al., 2011). Recent studies (e.g., Krykacz-
Hausmann, 2001; Borgonovo, 2007; Borgonovo et al., 2011)
introduced a sensitivity metric grounded on the complete
probability density function, pdf, of the model output. These
so-called moment-independent analyses may suffer from op-
erational constraints because a robust evaluation of the com-
plete pdf may require a number of model runs which is com-
putationally unaffordable. The PAWN method developed by
Pianosi and Wagener (2015) attempts to overcome this lim-
itation introducing a sensitivity metric based on the cumu-
lative density function, which can potentially be estimated
more robustly than its associated pdf for a given sample size.

It is clear that while a variance-based GSA can be fa-
vored for its conceptual simplicity and ease of implemen-
tation, and variance can be considered in some cases as an
adequate proxy of the spread around the mean, it does not
yield a forthright quantification of the way variations of a pa-
rameter can affect the structure of the pdf of a target model
output. Otherwise, moment-independent methodologies con-
dense sensitivity of the entire pdf in only one index, some-
how shadowing our understanding of how the structure of the
pdf is affected by variations of each uncertain model param-
eter. Here, our distinctive objective is to contribute to bridge
the gap between these two types of GSA. We do so by intro-
ducing theoretical elements and an implementation strategy
which enable us to appraise parameter sensitivity through the
joint use of sensitivity indices based on four (statistical) mo-
ments of the pdf of the model output: expected value, vari-
ance, skewness and kurtosis. The key idea at the basis of this
strategy is that linking parameter sensitivity to multiple sta-
tistical moments leads to improved understanding of the way
a given uncertain parameter can govern key features of the
shape of the pdf of desired model outputs, which is of interest
in modern applications of hydrological and Earth sciences.

Variance-based GSA has also been applied (a) to guide
reduction of model complexity, e.g., by setting the value of
a parameter which is deemed as uninfluential to the vari-
ance of a target model output (e.g., Fu et al., 2012; Chu et
al., 2015; Punzo et al., 2015) and (b) in the context of un-
certainty quantification (Saltelli et al., 2008; Pianosi et al.,
2016; Colombo et al., 2016). Only limited attention has been
devoted to assessing the relative effects of uncertain model
parameters to the first four statistical moments of the target
model output. This information would complement a model
complexity analysis by introducing a quantification of the
impact that conditioning the process on prescribed parame-
ter values would have on the first four statistical moments of
the output. Our approach is based on the joint use of multiple
(statistical) moments for GSA. It enables us to address the
following critical questions: when can the variance be con-
sidered as a reliable proxy for characterizing model output
uncertainty? Which model parameter most affects asymme-
try and/or the tailing behavior of a model output pdf? Does
a given model parameter have a marked role in controlling
some of the first four statistical moments of the model output,
while being uninfluential to others? Addressing these ques-
tions would contribute to prioritizing our efforts to charac-
terize model parameters that are most relevant in affecting
important aspects of model prediction uncertainty.

Even as the richness of information content that a GSA
grounded on the first four statistical moments might carry
can be a significant added value to our system understanding,
it may sometimes be challenging to obtain robust and sta-
ble evaluation of the proposed metrics for complex and com-
putationally demanding models. This can be especially true
when considering higher-order moments such as skewness
and kurtosis. To overcome this difficulty, we cast the problem
within a computationally tractable framework and rely on the
use of surrogate models that mimic the full model response
with a reduced computational burden. Amongst the diverse
available techniques to construct a surrogate model (see, e.g.,
Razavi et al., 2012a, b), we exemplify our approach by con-
sidering the generalized polynomial chaos expansion (gPCE)
that has been successfully applied to a variety of complex
environmental problems (Sudret, 2008; Ciriello et al., 2013;
Formaggia et al., 2013; Riva et al., 2015; Gläser et al., 2016),
other model reduction techniques being fully compatible
with our GSA framework. In this context, we also investi-
gate the error associated with the evaluation of the sensitiv-
ity metrics we propose by replacing the original (full) sys-
tem model with the selected surrogate model. We consider
three test cases in our analysis. These include a widely em-
ployed analytical benchmark, a pumping scenario in a coastal
aquifers and a laboratory-scale transport setting. The remain-
der of the work is organized as follows. Section 2 presents
our theoretical framework and developments. Section 3 il-
lustrates our results for the three test cases indicated above,
and conclusions are drawn in Sect. 4.

Hydrol. Earth Syst. Sci., 21, 6219–6234, 2017 www.hydrol-earth-syst-sci.net/21/6219/2017/



A. Dell’Oca et al.: Global sensitivity analysis of hydrological systems 6221

2 Theoretical framework

We start by recalling the widely used variance-based GSA
metrics in Sect. 2.1. These allow quantifying the contribu-
tion of each uncertain parameter to the total variance of a
state variable of interest. We also provide a brief overview of
the gPCE technique, which we use to construct a surrogate of
the full system model. We then illustrate in Sect. 2.2 the theo-
retical developments underlying our approach and introduce
novel GSA indices.

2.1 Sobol’ indices for variance-based GSA and
generalized polynomial chaos expansion

We consider a target system state variable, y, which de-
pends on N random parameters. These are collected in vec-
tor x = (x1, x2, . . ., xN ) and defined in the parameter space
0 = 0x1×0x2×. . .0xN , 0x i = [xi,min,xi,max] being the sup-
port of the ith random variable xi . Variance-based GSA ap-
proaches consider variance as the sole metric to quantify the
contribution of each uncertain parameter to the uncertainty
of y. Iman and Hora (1990) introduce the following index

HIxi = V [y] −E
[
V [y|xi]

]
= V

[
E[y|xi]

]
, (1)

where E[-] and V [-], respectively, denote expectation and
variance operators. Index HIxi quantifies the expected reduc-
tion of variance due to knowledge of xi (the notation |xi
in Eq. (1) indicates conditioning on xi). A similar measure
is offered by the widely used Sobol’ indices (Sobol, 1993).
These have been defined starting from the Hoeffding–Sobol’
decomposition (see, e.g., Sobol, 1993; Le Maître and Knio,
2010) of y(x) when x is a collection of independent random
variables such as

y (x)=y0+

N∑
xi=1

yxi (xi)+
∑
xi<xj

yxi ,xj (xi,xj )

+ . . .+ yx1,x2,...,xN (x1,x2, . . .,xN ), (2)

where

y0 =

∫
0

y(x)ρ0x dx, (3)

yxi (xi)=

∫
0∼xi

y(x)ρ0∼xidx∼xi − y0,

yxi ,xj (xi,xj )=

=

∫
0∼xi ,xj

y(x)ρ0∼xi ,xj dx∼xi ,xj − yxi (xi)− yxj (xj )− y0,

and so on, ρ0x being the pdf of x. The integral∫
0∼xi

y(x)ρ0∼xidx∼xi in Eq. (3) represents integration of y(x)

over the space of all entries of vector x excluding xi , ρ0∼xi

being the corresponding pdf. The Sobol’ index Sxi1 ,xi2 ,...,xis
is associated with the mixed effect of xi1 , . . .,xis on the vari-
ance of y(x), V [y], and can be computed as

Sxi1 ,...,xis
= (4)

=
1

V
[
y
] ∫
0xi1

,...,xis

yxi1
, . . .,xis (xi1 , . . .,xis )ρ0xi1 ,...xis

dxi1 . . .dxis .

The principal and total Sobol’ indices are, respectively, de-
fined as

Sxi =
1

V
[
y
] ∫
0xi

[
yxi (xi)

]2
ρ0xidxi, (5)

STxi = Sxi +
∑
xj

Sxi ,xj
+

∑
xj ,xk

Sxi ,xj ,xk + . . .. (6)

Note that Sxi describes the relative contribution to V
[
y
]

due
to variability of only xi . Otherwise, STxi quantifies the total
contribution of xi to V

[
y
]
, including all terms where xi ap-

pears. In other words, STxi also includes interactions between
xi and the remaining uncertain parameters, collected in vec-
tor x∼xi . Note that according to Eqs. (1), (2) and (5)

Sxi =
V
[
E[y|xi]

]
V
[
y
] =

HIxi
V
[
y
] , (7)

i.e., the principal Sobol’ index represents the relative ex-
pected reduction of process variance due to knowledge of (or
conditioning on) a parameter. Sobol’ indices are commonly
evaluated via Monte Carlo quadrature schemes that can be
markedly demanding in terms of computational time, espe-
cially for complex and highly nonlinear settings. Relying on
a gPCE as a surrogate of the full mathematical model of the
system (Ghanem and Spanos, 1991; Xiu and Karniadakis,
2002; Le Maitre and Knio, 2010; Formaggia et al., 2013;
Ciriello et al., 2013; Riva et al., 2015) allows for reducing
the computational burden associated with GSA techniques.
The process y(x) is represented as a linear combination of
multivariate polynomials, ψp(x), i.e.,

y(x)∼= β0+

N∑
i=1

∑
p∈=i

βpψp(x)

+

N∑
i=1

N∑
j=1

∑
p∈=i,j

βpψp(x)+ . . .,

ψp(x)=

N∏
i=1
ψi,pi (xi),

βp =

∫
0

y(x)ψp(x)ρ0x dx, (8)

where p = {p1, . . .,pN } ∈N
N is a multi-index expressing

the degree of each univariate polynomial, ψi,pi (xi); βp are
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the gPCE coefficients; =i contains all indices such that only
the ith component does not vanish; =i,j contains all indices
such that only the ith and j th components are not zero, and
so on. Note that β0 ≡ y0; i.e., β0 is the unconditional mean
of y(x). Finally, the Sobol’ indices Eqs. (4)–(5) and the vari-
ance of y(x) can be computed from Eq. (8) as

Sxi1 ,...,xis
=

1
V
[
y
] ∑

p∈=i1,...,is

β2
p ,

Sxi =
1

V
[
y
]∑

p∈=i

β2
p ,

V
[
y
]
=

∑
p∈NN

β2
p −β

2
0 . (9)

2.2 New metrics for multiple-moment GSA

We introduce new metrics to quantify the expected relative
change of main features of the pdf of y due to variability of
model input parameters. In contrast with traditional variance-
based GSA techniques of the kind described in Sect. 2.1, we
quantify changes in the pdf of y through its first four statis-
tical moments, i.e., mean, E[y], variance, V [y], skewness,
γ [y], and kurtosis, k[y]. The latter is an indicator of the be-
havior of the tails of the pdf of y and is particularly useful in
the context of risk analysis, while γ [y] quantifies the asym-
metry of the pdf of y.

The effect of changes of x on the mean of y cannot be
systematically analyzed by the metrics currently available in
the literature. We therefore introduce the following quantity

AMAExi =

=



1
|y0|

∫
0xi

|y0−E[y|xi]|ρ0xidxi

=
1
|y0|

E
[
|y0−E[y|xi]|

]
if y0 6= 0

∫
0xi

|E[y|xi]|ρ0xidxi = E
[
|E[y|xi]|

]
if y0 = 0,

(10)

y0 being defined in Eq. (3). Extension of Eq. (10) to consider
the joint effect of xi1 ,xi2 , . . .,xis on the mean of y is straight-
forward, leading to the following index

AMAExi1 , . . .,xis = (11)

=



1
|y0|

∫
0xi1

,...,xis

∣∣y0−E[y|xi1 , . . .,xis ]
∣∣ρ0xi1 ,...,xis dxi1 . . .dxis

=
1
|y0|

E
[∣∣y0−E[y|xi1 , . . .,xis ]

∣∣] if y0 6= 0.

∫
0xi1

,...,xis

∣∣E[y|xi1 , . . .,xis ]∣∣ρ0xi1 ,...,xis dxi1 . . .dxis

= E
[∣∣E[y|xi1 , . . .,xis ]∣∣] if y0 = 0.

Note that index AMAExi quantifies the expected relative
variation of the mean of y due to variations of only xi , while

AMAExi1 , . . .,xis also includes all interactions amongst pa-
rameters xi1 ,xi2 , . . .,xis .

Along the same lines, we introduce the following index

AMAVxi =
1

V
[
y
] ∫
0xi

∣∣V [y]−V [y|xi]∣∣ρ0xidxi =
=
E
[∣∣V [y]−V [y|xi]∣∣]

V
[
y
] , (12)

quantifying the relative expected discrepancy between un-
conditional and conditional (on xi) process variance. Note
that Eq. (12) does not generally coincide with the principal
Sobol’ index Sxi in Eq. (2) that quantifies the expected rel-
ative reduction of the variance due to knowledge of xi (or,
in other words, the relative contribution to the variance aris-
ing from uncertainty in xi). Index AMAVxi reduces to Sxi
only if the conditional variance, V [y|xi], is always (i.e., for
each value of xi) smaller than (or equal to) its unconditional
counterpart V

[
y
]
. The difference between AMAVxi and Sxi ,

as well as advantages of using AMAVxi , will be elucidated
through the numerical examples illustrated in Sect. 3. Exten-
sion of Eq. (12) to consider the joint effect of xi1 ,xi2 , . . .,xis
reads

AMAVxi1 . . .,xis =

=
1

V
[
y
] ∫
0xi1

...,xis

∣∣V [y]−V [y|xi1 , . . .,xis ]∣∣ρ0xi1 ,...,xis dxi1 . . .dxis

=
1

V
[
y
]E [∣∣V [y]−V [y|xi1 , . . .,xis]∣∣] . (13)

Index AMAVxi1 , . . .,xis quantifies the expected relative dis-
crepancy between V

[
y
]

and the variance of the process con-
ditional to joint knowledge of xi1 ,xi2 , . . .,xis .

We then quantify the relative expected discrepancy be-
tween unconditional, γ [y], and conditional, γ [y|xi], skew-
ness through the index

AMAγxi =

=



1∣∣γ [y]∣∣
∫
0xi

∣∣γ [y]− γ [y|xi]∣∣ρ0xidxi
=

1∣∣γ [y]∣∣E [∣∣γy − γ [y|xi]∣∣] if γy 6= 0

∫
0xi

|γ [y|xi]|ρ0xidxi = E
[
|γ [y|xi]|

]
if γy = 0.

(14)

Extension of Eq. (14) to consider the joint effect of
xi1 ,xi2 , . . .,xis gives

AMAγxi1 , . . .,xis = (15)
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=



1∣∣γ [y]∣∣
∫

0xi1
,...,xis

∣∣γ [y]− γ [y|xi1 , . . .,xis ]∣∣ρ0xi1 ,...,xis dxi1 . . .dxis =

=
1∣∣γ [y]∣∣E [∣∣γ [y]− γ [y|xi1 , . . .,xis ]∣∣] if γ

[
y
]
6= 0

∫
0xi1

,...,xis

∣∣γ [y|xi1 , . . .,xis ]∣∣ρ0xi1 ,...,xis dxi1 . . .dxis

= E
[∣∣E[y|xi1 , . . .,xis ]∣∣] if γ

[
y
]
= 0.

The relative variation of the kurtosis of y due to variations of
a parameter xi or of the parameter set xi1 ,xi2 , . . .,xis can be,
respectively, quantified through

AMAkxi =
1

k
[
y
] ∫
0xi

∣∣k [y]− k[y|xi]∣∣ρ0xidxi =
=

1
k
[
y
]E [∣∣k [y]− k [y|xi]∣∣] , (16)

AMAkxi1 . . .,xis =

=
1

k
[
y
] ∫
0xi 1 ,...,x is

∣∣k [y]− k[y|xi1 , . . .,xis ]∣∣ρ0xi1 ,...,xis dxi1 . . .dxis =

=
1

k
[
y
]E [∣∣k [y]− k [y|xi1 , . . .,xis]∣∣] . (17)

Relying jointly on Eqs. (10)–(17) enables one to perform a
comprehensive GSA of the target process y(x) quantifying
the impact of x on the first four (statistical) moments of the
pdf of y(x). This strategy yields information about the way
important elements of the distribution of y(x), such as mean,
spread around the mean, symmetry and tailedness, are af-
fected by uncertain model parameters collected in the param-
eter vector x. This analysis is not feasible through a classical
variance-based GSA.

Calculation of the indices we propose entails evaluation
of conditional moments of y(x). This step can be computa-
tionally very demanding. Along the lines of our discussion
about Sobol’ indices in Sect. 2.1, the new metrics Eqs. (10)–
(17) can be evaluated via a surrogate model, as we illustrate
through our examples in Sect. 3.

3 Illustrative examples

The theoretical framework introduced in Sect. 2 is here ap-
plied to three diverse test beds: (a) the Ishigami function,
which constitutes an analytical benchmark typically em-
ployed in GSA studies; (b) a pumping scenario in a coastal
aquifer, where the state variable of interest is the critical
pumping rate, i.e., the largest admissible pumping rate to en-
sure that the extraction well is still not contaminated by sea-
water; and (c) a laboratory-scale setting associated with non-
reactive transport in porous media. In the first two examples
the relatively low computational costs associated with the
complete mathematical description of the target outputs en-
ables us to assess the error associated with the evaluation of

indices Eqs. (10), (12), (14) and (16) through a gPCE repre-
sentation of the output. In the third case, due to the complex-
ity of the problem and the associated computational costs,
we rely on the gPCE representation for the target quantity
of interest. We emphasize that the use of a gPCE as a sur-
rogate model is here considered only as an example, as our
GSA approach is fully compatible with any full model and/or
model order reduction technique. A critical limiting factor to
our and any GSA approach could be the associated compu-
tational burden. This is expected to increase according to the
following two features, which are mainly associated with the
conceptual and mathematical model used to describe the tar-
get variables of interest: (a) the complexity of the hydrologi-
cal system (in terms of, e.g., hydrogeological heterogeneity,
nonlinearity and/or transient effects) and/or (b) the number
of uncertain model input parameters considered. According
to the relative weight of these features, some computational
constraints might arise limiting our ability to (i) perform the
analysis by relying exclusively on the full system model or
(ii) construct a sufficiently accurate surrogate model through
a number of full model runs that can be affordable in terms of
available computational resources. Application of our GSA
methodology to scenarios of increased level of complexity
will be the subject of a future study.

In all of the above scenarios, uncertain parameters xi col-
lected in x are considered as independent and identically dis-
tributed, i.i.d., random variables, each characterized by a uni-
form distribution within the interval 0xi =

[
xi,min,xi,max

]
.

Note that varying the pdf of the uncertain model input pa-
rameters does not impact the definition of the GSA indices
proposed in Sect. 2. Otherwise, it may affect the actual re-
sults, depending on the test case considered. All results are
grounded on 5×105 Monte Carlo realizations, enabling con-
vergence of all statistical moments analyzed. Series appear-
ing in the gPCE Eq. (8) are evaluated up to a given order
of truncation in all three examples. Here, we apply the total-
degree rule and construct a polynomial of order w through a
sparse grid technique (see, e.g., Formaggia et al., 2013, and
references therein). We then analyze the way the selected or-
der w influences the results. Note that the optimal choice of
the polynomial ψp(x) in Eq. (8) depends on the pdf of the
random variables collected in x (Xiu and Karniadakis, 2002).
In our exemplary settings we use the multidimensional Leg-
endre polynomials which are orthonormal with respect to the
uniform pdf.

3.1 Ishigami function

The nonlinear and non-monotonic Ishigami function

y (x)=ISH(x)= sin(2πx1−π)+ asin2(2πx2−π)

+ b(2πx3−π)
4 sin(2πx1−π) (18)

is widely used in the literature (e.g., Homma and Saltelli,
1996; Chun et al., 2000; Borgonovo, 2007; Sudret, 2008;
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Crestaux et al., 2009; Borgonovo et al. 2011) to benchmark
GSA methods. Here, xi (i = 1, 2, 3) are i.i.d. random vari-
ables uniformly distributed within the interval [0, 1]. Uncon-
ditional meanE [ISH], variance, V [ISH], skewness, γ [ISH],
and kurtosis, k [ISH], of Eq. (18) can be evaluated analyti-
cally as

E [ISH]=
a

2
,

V [ISH]=
1
2
+
a2

8
+ bπ4

(
1
5
+
bπ4

18

)
,

γ [ISH]= 0, (19a)

k [ISH]=
1

2V 2 [ISH]

{
3
4
+ bπ4

[
3
5
+ bπ4

(
1
2
+ 3bπ4

(
1

13
+
π4b

68

))]
+

3
2
a2
[

1
2
+
a2

32
+π4b

(
1
5
+
π4b

18

)]}
. (19b)

Equation (19) reveals that the unconditional pdf of ISH is
symmetric with tails that increase with |b| and decrease
with |a|, as quantified by k [ISH]. The conditional mean
E [ISH|xi], variance V [ISH|xi], skewness γ [ISH|xi] and
kurtosis k [ISH|xi] can be evaluated analytically as

E [ISH|x1]=
a

2
−

1
5

(
5+ bπ4

)
sin(2πx1) ,

E [ISH|x2]= asin2 (2πx2) ,

E [ISH|x3]=
a

2
, (20)

V [ISH|x1]=
a2

8
+

8b2π8

225
(1− cos(4πx1)) ,

V [ISH|x2]=
1
2
+ bπ4

(
1
5
+
b

18
π4
)
,

V [ISH|x3]=
a2

8
+

1
2

(
1+ bπ4(1− 2x3)

4
)2
,

γ [ISH|x1]=−
128b3π12sin3 (2πx1)

4875 (V [ISH|x1])3/2
,

γ [ISH|x2]= 0,
ISH

[
y|x3

]
= 0, (21)

k [ISH|x1]=
1

V 2 [ISH|x1]

{
3

128
a4
+

4
75
b2π8sin2 (2πx1)[

a2
+

1849
5525

b2π8sin2 (2πx1)

]}
,

k [ISH|x2]=
1

2V 2 [ISH|x2]{
3
4
+ bπ4

[
3
5
+ bπ4

(
1
2
+ 3bπ4

(
1

13
+

1
68
bπ4

))]}
,

k [ISH|x3]=
3

128V 2 [ISH|x3]{
a4
+ 16

(
1+ bπ4(1− 2x3)

4
)2
[
a2
+

(
1+ bπ4(1− 2x3)

4
)2
]}
. (22)

For the sole purpose of illustrating our approach, here and in
the following we set a = 5 and b = 0.1, which corresponds
toE [ISH]= 2.50, V [ISH]= 10.84 and k [ISH]= 4.18. Fig-
ure 1 depicts the first four moments of ISH conditional to val-
ues of x1 (blue curves), x2 (red curves) and x3 (green curves)
within the parameter space. The corresponding unconditional
moments (black curves) are also depicted for completeness.

Comparing Eqs. (19a) and (20), it is seen that E [ISH|x3]
coincides with its unconditional counterpart E [ISH], indi-
cating that conditioning on any value of x3 does not impact
the mean of ISH. Otherwise, setting x1 or x2 to a given value
clearly affects the mean of ISH in a way which is governed
by Eq. (20) and shown in Fig. 1a. It is clear from Eq. (20) that
E [ISH|x2] has a higher frequency of oscillation within 0x2

than E [ISH|x1] has within 0x1 . The global index in Eq. (10)
can be evaluated analytically as

AMAEx1 =
4
aπ

∣∣∣∣1+ b5π4
∣∣∣∣ ,

AMAEx2 =
2
π

|a|

a
,

AMAEx3 = 0. (23)

Note that AMAEx2 does not depend on specific values of a
and b.

Equation (21) shows that all random model parameters in-
fluence the variance of ISH, albeit to different extents, as
also illustrated in Fig. 1b. Note that V [ISH|x2] is always
smaller than V [ISH] (compare Eqs. 19a and 21) and does
not depend on x2; i.e., conditioning ISH on x2 reduces the
process variance regardless the conditioning value. Other-
wise, V [ISH|x3] can be significantly larger or smaller than
its unconditional counterpart. Table 1 lists values of AMAVxi
(xi = x1, x2, x3) computed via Eq. (12) with the a and b val-
ues selected for our demonstration. The principal Sobol’ in-
dices (Sudret, 2008)

Sx1 =

(
5+ bπ4)2

50V [ISH]
,Sx2 =

a2

8V [ISH]
,Sx3 = 0, (24)

are also listed for completeness. As expected, values of
AMAVxi listed in Table 1 suggest that conditioning on x3 has
the strongest impact on the variance of ISH, followed by x1
and x2. Note that Sx3 = 0, a result which might be interpreted
as a symptom that ISH is insensitive to x3. The apparent in-
consistency between the conclusions which could be drawn
by analyzing AMAVx3 and Sx3 is reconciled by the observa-
tion that the function V [ISH]−V [ISH|x3] can be positive
and negative in a way that its integration over 0x3 vanishes
(see also Fig. 1b). Therefore, the mean reduction of the vari-
ance of ISH due to knowledge of (or conditioning on) x3 is
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Figure 1. Variation of the first four moments of ISH Eq. (18) conditional to values of x1 (blue curves), x2 (red curves) and x3 (green curves)
within the parameter space: (a) expected value, E

[
ISH|xi

]
, (b) variance, V

[
ISH|xi

]
, (c) skewness, γ

[
ISH|xi

]
, and (d) kurtosis, k

[
ISH|xi

]
,

(i = 1, 2, 3). The corresponding unconditional moments (black curves) are also depicted.

Table 1. Global sensitivity index AMAExi Eq. (10), AMAVxi
Eq. (12), AMAγxi Eq. (14) and AMAkxi Eq. (16) associated with
the Ishigami function Eq. (18). Principal Sobol’ indices, Sxi Eq. (7),
are also listed; xi = x1, x2, x3.

AMAExi AMAVxi Sxi AMAγxi AMAkxi

x1 0.75 0.40 0.40 0.45 0.37
x2 0.64 0.29 0.29 0.00 0.33
x3 0.00 0.84 0.00 0.00 0.53

zero. We note that this observation does not imply that the
variance of ISH does not vary with x3, as clearly highlighted
by Fig. 1b and quantified by AMAVx3 .

The symmetry of the pdf of ISH is not affected by condi-
tioning on x2 or x3, as demonstrated by Eq. (22). Otherwise,
γ [ISH|x1] is left (or right) skewed when x1 is smaller (or
larger) than 0.5, as dictated by Eq. (22) and shown in Fig. 1c.

The conditional kurtosis k [ISH|x2] does not depend on the
conditioning value x2 (see Eq. 23). We then note that this
conditional moment is always larger than (or equal to) its un-
conditional counterpart k [ISH], regardless of the particular
values assigned to a and b, as we verified through extensive
numerical tests. This result implies that the pdf of ISH con-
ditional on x2 is characterized by tails which are heavier than
those of its unconditional counterpart. Figure 1d reveals that
k [ISH|x1] and k [ISH|x3] are smaller than k [ISH] for the val-
ues of a and b implemented in this example. Table 1 lists the

resulting values of AMAkxi (xi = x1, x2, x3) for the selected
a and b values.

We close this part of the study by investigating the error
which would arise when one evaluates our GSA indices by
replacing ISH through a gPCE surrogate model. We do so on
the basis of the absolute relative error

ej =


∣∣∣∣jgPCE− jfull model

jfull model

∣∣∣∣ if jfull model 6= 0∣∣jgPCE− jfull model
∣∣ if jfull model = 0

, (25)

where j = AMAExi , AMAVxi , AMAγx i or AMAkxi (xi =
x1, x2, x3); the subscripts full model and gPCE, respectively,
indicate that quantity j is evaluated via Eq. (18) or through a
gPCE surrogate model, constructed as outlined in Sect. 2.1.
Figure 2 depicts Eq. (26) versus the total degree w of the
gPCE. Note that the lower limit of the vertical axis of Fig. 2
is set to 0.001 % for convenience of graphical representation.
Approximation errors associated with GSA indices related
to the mean, AMAExi , rapidly approach zero as w increases.
Note that eAMAEx3

is smaller than 0.001 % for all tested val-
ues of w and it is therefore not included in Fig. 2a. Values
of ej linked to AMAVxi , AMAγxi and AMAkxi do not show
a consistently decreasing trend until w≥ 5. Values of ej as-
sociated with the variance, skewness and kurtosis decrease
with approximately the same average linear rate (in log–log
scale) for the largest w considered (Fig. 2b, c and d). This
example reinforces the need for reliably testing the accuracy
of a gPCE-based model approximation as a function of the
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Figure 2. Error ej Eq. (26) versus the total degree w of the gPCE representation of ISH for j = (a) AMAExi , (b) AMAVxi , (c) AMAγxi
and (d) AMAkxi , with xi = x1 (blue curves), x2 (red curves), x3 (green curves). Note that AMAEx3 is always smaller than 0.001 %. Average
slopes of the rate of decrease of ej for the largest w values considered are indicated as a reference in (b–d).

Table 2. Intervals of variations of PeT , J , xw .

0n = [xn,min− xn,max]

0PeT [0.01–0.1]
0J [8× 10−4

− 2.5× 10−3
]

0xw [10–33]

total degree desired, depending on the statistical moment of
interest. Note that a generalization of our findings about the
error (Eq. 26) is outside the scope of the current study. This
would require the derivation of (a) the analytical format of
the pdf of a target model output through its gPCE-based ap-
proximation at a given order w (see, e.g., Riva et al., 2015)
and (b) the corresponding pdf resulting from the full system
model (e.g., by formulating and solving exact equations for
the target pdf, or its moments, typically invoking problem-
specific assumptions).

3.2 Critical pumping rate in coastal aquifers

The example we consider here is taken from the study of
Pool and Carrera (2011) related to the analysis of salt water
contamination of a pumping well operating in a homogenous
confined coastal aquifer of uniform thickness b′. The setting
is sketched in Fig. 3. A constant discharge, Qw

′ [L3 T−1],
is pumped from a fully penetrating well located at a distance
xw
′ [L] from the coastline, and a constant freshwater flux,

qf
′ [L T−1], flowing from the inland to the coastline, is set.

Figure 3. Sketch of the critical pumping scenario taking place
within a coastal aquifer of thickness b′. A constant freshwater (in
blue) flux, qf ′, flows from the inland to the coastline (saltwater in
red). A constant discharge, Qw ′, is pumped from a fully penetrat-
ing well located at a distance xw ′ from the coastline. Color scale
indicating variable concentration of salt is only qualitative for illus-
tration purposes.

Pool and Carrera (2011) introduced a dimensionless well dis-
chargeQw =Qw

′/(b′xw
′qf
′) and defined the critical pump-

ing rate Qc as the value of Qw at which a normalized solute
concentration monitored at the well exceeds 0.1 %. A key re-
sult of the study of Pool and Carrera (2011) is thatQc can be
approximated through the following implicit equation:

λD =2
[

1−
Qc

π

]1/2

+
Qc

π
ln

1− (1−Qc/π)
1/2

1+ (1−Qc/π)
1/2

with λD =
1ρ′

ρf ′

1− (P eT )−1/6

xwJ
. (26)
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Figure 4. First four moments of Qc Eq. (27) conditional to values of PeT (blue curves), J (green curves) and xw (red curves) within the
parameter space: (a) expected value, E

[
Qc|xi

]
, (b) variance, V

[
Qc|xi

]
, (c) skewness, γ

[
Qc|xi

]
, and (d) kurtosis, k

[
Qc|xi

]
, (xi = PeT , J ,

xw). The corresponding unconditional moments (black curves) are also depicted. Intervals of variation of PeT , J and xw have been rescaled
between 0 and 1 for graphical representation purposes.

Here, xw = xw ′/b′; J = qf ′/K; PeT = b′/αT ′; K [L T−1]
is the uniform hydraulic conductivity; αT ′ [L] is transverse
dispersivity; 1ρ′ = ρs ′− ρf ′; ρf ′ and ρs ′ are fresh and salt-
water densities, respectively. The quantity PeT is a measure
of the intensity of dispersive effects, J is the natural head
gradient of the incoming freshwater and xw is the dimen-
sionless distance of the well from the coastline. Pool and
Carrera (2011) demonstrated the accuracy of Eq. (27) in pre-
dicting the critical pumping rate when λD ∈ [0− 10]. Addi-
tional details about the problem setting, boundary and initial
conditions, as well as geometrical configuration of the sys-
tem, can be found in Pool and Carrera (2011). Here, we focus
on the main result of Eq. (27) which represents the complete
mathematical description of the problem we analyze. We per-
form a sensitivity analysis of Qc with respect to PeT , J and
xw. While the first two quantities are difficult to assess ex-
perimentally in practical applications, the well location can
be considered as an operational/design variable. Table 2 lists
the intervals of variation we consider for PeT , J and xw.
These are designed to (a) resemble realistic field values and
(b) obey the above-mentioned constraint about λD .

Numerical evaluation of the first four unconditional statis-
tical moment ofQc yields a mean value E [Qc]= 1.65, vari-
ance V [Qc]= 0.17, skewness γ [Qc]=−0.30 (which indi-
cates a light asymmetry in the pdf) and kurtosis k [Qc]=
2.51 (i.e., pdf tails decrease faster than those of a Gaussian
distribution). Figure 4 depicts the first four moments of Qc
conditional to values of PeT (blue curves), J (green curves)

Table 3. Global sensitivity index AMAExi Eq. (10), AMAVxi
Eq. (12), AMAγxi Eq. (14) and AMAkxi Eq. (16) associated with
the critical pumping rate Qc Eq. (27). Principal Sobol’ indices, Sxi
Eq. (7), are also listed; xi = PeT , J , xw .

AMAExi AMAVxi Sxi AMAγxi AMAkxi

PeT 0.07 0.14 0.09 0.35 0.09
J 0.14 0.41 0.41 0.88 0.12
xw 0.15 0.48 0.48 0.78 0.11

and xw (red curves) within the parameter space. The cor-
responding unconditional moments (black curves) are also
depicted for completeness. Note that each parameter inter-
val of variation has been normalized to span the range [0, 1]
for graphical representation purposes. Table 3 lists the val-
ues of indices AMAExi AMAVxi , Sxi , AMAγxi and AMAkxi
(xi = PeT , J , xw) associated with Qc. As in our first exam-
ple, it is clear that sensitivity of Qcwith respect to PeT , J ,
xw depends on the statistical moment of interest.

Inspection of Fig. 4a reveals that the mean of Qc is more
sensitive to conditioning on J or xw than to conditioning on
PeT . Note that increasing PeT , i.e., considering advection-
dominated scenarios, leads to an increase of the mean value
ofQc. This is so because the dispersion of the intruding salt-
water wedge is diminished and the travel time of solutes to
the well tends to increase. High values of the natural head
gradient of the incoming freshwater, J , are associated with
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Figure 5. Error ej Eq. (26) versus total degree w of the gPCE representation of Qc, for j = (a) AMAExi , (b) AMAVx i , (c) AMAγxi and
(d) AMAkxi ; xi = PeT (blue curves), J (red curves), xw (green curves).

high mean values of Qc. This is consistent with the obser-
vation that the inland penetration of the wedge is contrasted
by the effect of freshwater which flows in the opposite direc-
tion. As expected, decreasing xw (moving the pumping well
towards the coast) leads to a reduction of the mean value of
Qc. Figure 4a shows that mean Qc varies with xw and J in a
similar way. This outcome is consistent with Eq. (27) where
Qc depends on the product xwJ , i.e., increasing xw or J has
the same effect on Qc.

It can be noted (see Table 3) that AMAEPeT is smaller
than AMAEJ and AMAExw , consistent with Fig. 4a. Fig-
ure 4b shows that the variance of Qc decreases as PeT , J or
xw increase. This trend suggests that the uncertainty of Qc,
as quantified by the variance, decreases as (i) the intruding
wedge sharpens or is pushed toward the seaside boundary
by the incoming freshwater or (ii) the well is placed at in-
creasing distance from the coastline. Inspection of Fig. 4c–d
shows that conditioning on PeT , J or xw causes the pdf of
Qc to become less asymmetric and less tailed than its un-
conditional counterpart. This behavior suggests that the rela-
tive frequency of occurrence of (high or low) extreme values
of Qc tends to decrease as additional information about the
model parameters become available.

Figure 5 depicts error, ej (Eq. (26)), versus total degree,
w, of the gPCE representation of Qc, for j = (a) AMAExi ,
(b) AMAVxi , (c) AMAγxi and (d) AMAkx i (xi = PeT , blue
curves; J , red curves; xw, green curves). These results indi-
cate that (i) ej associated with AMAExi is negligible (≈ 1 %)
even for low w; (ii) eAMAVPeT ≈ 10 % for w = 2 and rapidly
decreases to values below 1 % for increasing w; (iii) eAMAVJ

and eAMAVxw are always smaller than 1 %; and (iv) the trend
of eAMAγxi is similar to that of eAMAkxi for all xi , with values
of the order of 10 % or higher for w = 2 and displaying a de-
crease with increasing w which then stabilizes around values
smaller than 1 % when w ≈ 4 or 5. We note that the abso-
lute relative error (Eq. 26) for AMAExi with a given value
of w is always lower than errors associated with higher-order
moments. Similar to our results in Sect. 3.1, it is clear from
Fig. 5 that attaining a given level of accuracy for the gPCE-
based indices for Qc requires considering a diverse total or-
der w of the gPCE depending on the order of the statistical
moment considered. As such, following the typical practice
of assessing the reliability of a gPCE surrogate model solely
on the basis of the variance or of a few random model real-
izations does not guarantee satisfactory accuracy of the un-
certainty analysis of a target model output, which requires
considering higher-order statistical moments.

3.3 Solute transport in a laboratory-scale porous
medium with zoned heterogeneity

As a last exemplary showcase, we consider the laboratory-
scale experimental analysis of nonreactive chemical trans-
port illustrated by Esfandiar et al. (2015). These authors con-
sider tracer transport within a rectangular flow cell filled with
two types of uniform sands. These were characterized by
diverse porosity and permeability values, which were mea-
sured through separate, standard laboratory tests. A sketch
of the experimental setup displaying the geometry of the two
uniform zones, respectively, formed by coarse and fine sand
is illustrated in Fig. 6.
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Figure 6. Sketch of the solute transport setting considered by Es-
fandiar et al. (2015).

After establishing fully saturated steady-state flow, a solu-
tion containing a constant tracer concentration is injected as
a step input at the cell inlet. The tracer breakthrough curve
is then defined in terms of the temporal variation of the spa-
tial mean of the concentration detected along the flow cell
outlet. Esfandiar et al. (2015) modeled the temporal evo-
lution of normalized (with respect to the solute concentra-
tion of the injected fluid) concentration at the outlet, C(t)
(t denoting time), by numerically solving within the flow
domain the classical advection–dispersion equation imple-
menting an original and accurate space–time grid adapta-
tion technique. Unknown longitudinal dispersivities of the
two sands (aL,i , i = 1, 2, respectively, denoting the coarse
and fine sand) were considered as uncertain system parame-
ters to be estimated against the available experimental solute
breakthrough data. To minimize the computational costs in
the model calibration process, Esfandiar et al. (2015) relied
on a gPCE approximation of C(t). The authors constructed
a gPCE of total degree w = 3 by considering log10

(
aL,i

)
to

be two i.i.d. random variables uniformly distributed within
0log10(aL,i)

= [−6, −2], aL,i being expressed in [m]. Further
details about the problem setup, numerical discretization and
grid adaptation technique as well of the construction of the
gPCE representation can be found in Esfandiar et al. (2015).
Here, we ground the application of our new GSA metrics on
the gPCE surrogate model already constructed by Esfandiar
et al. (2015) to approximate C(t).

Figure 7 depicts the temporal evolution of the uncondi-
tional expected value, E

[
C (t)

]
, variance, V

[
C (t)

]
, skew-

ness, γ
[
C (t)

]
, and kurtosis, k

[
C(t)

]
, of normalized C(t).

Time steps t0.02, t0.4, and t0.96, i.e., the times at which
E
[
C (t)

]
= 0.02, 0.4 and 0.96, respectively, are highlighted

in Fig. 7a. Figure 7a reveals a pronounced tailing ofE
[
C (t)

]
at late times, the short time mean breakthrough being associ-
ated with a rapid temporal increase ofE

[
C (t)

]
. A local min-

imum at t0.4 and two local peaks are recognized in V
[
C (t)

]
(Fig. 7b). The variance peaks at times approximately cor-
responding to the largest values of ∂2E

[
C (t)

]
/∂t2. This

outcome is consistent with the results of numerical Monte
Carlo (MC) simulations depicted in Fig. 8 of Esfandiar et
al. (2015) where the largest spread of the MC results is ob-

served around these locations. The local minimum displayed
by V

[
C (t)

]
suggests that C(t) at observation times close to

t0.4 is mainly driven by advection, consistent with the ob-
servation that advective transport components are the main
driver of the displacement of the center of mass of a so-
lute plume. The late time variance V

[
C (t)

]
tends to vanish

because the normalized breakthrough curve is always very
close to unity irrespective of the values of aL,1 and aL,2. Joint
inspection of Fig. 7c and d reveals that the pdf of C(t) tends
to be symmetric around the mean (Fig. 7c) and character-
ized by light tails (Fig. 7d) at about t0.4. Otherwise, the pdfs
of C(t) tend to display heavy right or left tails, respectively,
for observation times shorter or longer than t0.4. These ob-
servations suggest that the relative frequency of rare events
(i.e., very low or high solute concentrations, which can be
of some concern in the context of risk assessment) is lowest
at intermediate observation times across the duration of the
experiment.

Figure 8 depicts the temporal evolution of (a) AMAExi ,
(b) AMAVxi , (c) AMAγxi and (d) AMAkxi (xi =
log10(aL,1), log10(aL,2)) of C(t). Results shown in Fig. 8
demonstrate that statistical moments of C(t) are more sen-
sitive to log10(aL,1) than to log10(aL,2) at early times. The
opposite occurs when t > t0.4. Our set of results suggests
that the overall early time pattern of solute breakthrough is
mainly dictated by the value of aL,1; the late time behavior is
chiefly influenced by aL,2. These conclusions are supported
by the results of Figs. 9–11, where we depict the expected
value, variance, skewness and kurtosis of C(t) conditional
to log10(aL,1) (blue curves) and log10(aL,2) (red curves),
at times t = t0.02 (Fig. 9), t0.4 (Fig. 10) and t0.96 (Fig. 11).
The corresponding unconditional moments are also depicted
(black curves) for ease of comparison. Figure 9 shows that
the first four statistical moments of C (t0.02) are practically
insensitive to the value of the fine sand dispersivity, aL,2. As
one could expect by considering the relative size and geo-
metrical pattern of the two sand zones, Fig. 9a shows that
the average amount of solute reaching the cell outlet at early
times increases with aL,1, because dispersion of solute in-
creases through the coarse sand which resides in the largest
portion of the domain. Figure 9b shows that V

[
C(t0.02)

]
is

negligible when aL,1 is known. Consistent with this result,
Fig. 9c and d, respectively, show a reduction in the asymme-
try and in the tailing behavior of the pdf of C (t0.02) when
aL,1 is fixed. These results are a symptom of a reduced pro-
cess uncertainty, which is in line with the observation that the
bulk of the domain is filled with the coarse sand whose dis-
persive properties become deterministic when aL,1 is known.

Inspection of the first four unconditional statistical mo-
ments of C (t0.4) (black curves in Fig. 10) indicates that
the unconditional pdf of C at this intermediate time closely
resembles a Gaussian distribution. Conditioning C (t0.4) on
dispersivity causes a variance reduction, an increase of the
tailing and the appearance of a negative (left) or positive
(right) skewness, respectively, when conditioning is per-
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Figure 7. Temporal evolution of the unconditional (a) expected value, E
[
C (t)

]
, (b) variance, V

[
C (t)

]
, (c) skewness, γ

[
C(t)

]
, and (d) kur-

tosis, k
[
C(t)

]
, of normalized C(t). Vertical lines in (a) correspond to time steps t0.4, t0.02 and t0.96, i.e., the times at which E

[
C (t)

]
= 0.02,

0.4 and 0.96, respectively.

Figure 8. Time evolution of the global sensitivity index (a) AMAEx i , (b) AMAVxi and Sxi (dashed curves), (c) AMAγxi and (d) AMAkxi
of C(t) (xi = log10(aL,1) (blue) or log10(aL,2) (red)).

formed on aL,1 or aL,2. This behavior suggests that in the
type of experimental setting analyzed the variability of aL,1
promotes the appearance of values of C (t0.4) larger than the
mean, the opposite of what occurs when solely aL,2 is con-
sidered as uncertain.

Figure 11 shows that all four statistical moment ofC (t0.96)

are chiefly sensitive to the dispersivity of the fine sand box,

which is placed near the cell outlet. One can note that knowl-
edge of aL,2 yields a diminished variance of C (t0.96), which
drops almost to zero, an increased degree of symmetry and a
reduce tailing of the pdf of C (t0.96), all symptoms of uncer-
tainty reduction.

Results depicted in Figs. 9–11 and our earlier observations
about Fig. 7 are consistent with the expected behavior of
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Figure 9. First four moments of C(t = t0.02) conditional on log10(aL,1) (blue curves) and log10(aL,2) (red curves), at time t = t0.02: (a) ex-
pected value, E

[
C(t0.02)

∣∣ log10
(
aL,i

)]
, (b) variance, V

[
C(t0.02)

∣∣ log10
(
aL,i

)]
, (c) skewness, γ

[
C(t0.02)

∣∣ log10
(
aL,i

)]
, and (d) kurtosis,

k
[
C(t0.02)

∣∣ log10
(
aL,i

)]
(i = 1, 2). The corresponding unconditional moments are also depicted (black curves).

Figure 10. First four moments of C(t = t0.4) conditional on log10(aL,1) (blue curves) and log10(aL,2) (red curves), at time t = t0.4: (a) ex-
pected value, E

[
C(t0.4)

∣∣ log10
(
aL,i

)]
, (b) variance, V

[
C(t0.4)

∣∣ log10
(
aL,i

)]
, (c) skewness, γ

[
C(t0.4)

∣∣ log10
(
aL,i

)]
, and (d) kurtosis,

k
[
C(t0.4)

∣∣ log10
(
aL,i

)]
(i = 1, 2). The corresponding unconditional moments are also depicted (black curves).

transport in the system and the relative role of the disper-
sivities of the two sand regions. The high level of sensitivity
of C(t) to aL,1 at the early times of solute breakthrough is

in line with the observation that solute particles are mainly
advected and dispersed through the coarse sand. Both dis-
persivities affect the behavior of C(t) at intermediate times,

www.hydrol-earth-syst-sci.net/21/6219/2017/ Hydrol. Earth Syst. Sci., 21, 6219–6234, 2017



6232 A. Dell’Oca et al.: Global sensitivity analysis of hydrological systems

Figure 11. First four moments ofC(t = t0.96) conditional on log10(aL,1) (blue curves) and log10(aL,2) (red curves), at time t = t0.96: (a) ex-
pected value, E

[
C(t0.96)

∣∣ log10
(
aL,i

)]
, (b) variance, V

[
C(t0.96)

∣∣ log10
(
aL,i

)]
, (c) skewness, γ

[
C(t0.96)

∣∣ log10
(
aL,i

)]
, and (d) kurtosis,

k
[
C(t0.96)

∣∣ log10
(
aL,i

)]
(i = 1, 2). The corresponding unconditional moments are also depicted (black curves).

when solute is traveling through both sands. The dispersivity
of the coarse sand plays a minor role at late times because
virtually no concentration gradients arise in this portion of
the domain. Otherwise, concentration gradients persist in the
fine sand zone close to the outlet, and the solute breakthrough
is clearly controlled by the dispersive properties of the fine
sand.

4 Conclusions

We introduce a set of new indices to be employed in the con-
text of global sensitivity analysis, GSA, of hydrological and
Earth systems. These indices consider the first four (statis-
tical) moments of the probability density function, pdf, of
a desired model output, y. As such, they quantify the ex-
pected relative variation due to the variability in one (or
more) model input parameter(s), of the expected value, vari-
ance, skewness and kurtosis of y. When viewed in the current
research trend, our work is intended to bridge the gap be-
tween variance-based and pdf-based GSA approaches since
it embeds the simplicity of the former while allowing for
a higher-order description of how the structure of the pdf
of y is affected by variations of uncertain model param-
eters. We cope with computational costs, which might be
high when evaluating higher-order moments, by coupling our
GSA approach with techniques approximating the full model
response through a surrogate model. For the sake of our
study, we consider the generalized polynomial chaos expan-
sion (gPCE), other model reduction techniques being fully

compatible with our approach. Our new indices can be of in-
terest for application in the context of current practices and
evolving trends in factor fixing procedures (i.e., assessment
of the possibility of fixing a parameter value on the basis of
the associated output sensitivity), experiment design, uncer-
tainty quantification and environmental risk assessment due
to the role of the key features of a model output pdf in such
analyses.

We exemplify our methodology on three test beds: (a) the
Ishigami function, which is widely employed to test sensi-
tivity analysis techniques, (b) the evaluation of the critical
pumping rate to avoid salinization of a pumping well in a
coastal aquifer and (c) a laboratory-scale nonreactive trans-
port experiment. Our theoretical analyses and application ex-
amples lead to the following major conclusions.

The calculated sensitivity of a model output, y, with re-
spect to a parameter depends on the selected global sensitiv-
ity index, i.e., variability of a model parameter affects statisti-
cal moments of y in different ways and with different relative
importance depending on the statistical moment considered.
Relying on the indices we propose allows us to enhance our
ability to quantify how model parameters affect features of
the model output pdf, such as mean, degree of spread, sym-
metry and tailedness, in a straightforward and easily trans-
ferrable way.

Joint inspection of our moment-based global sensitivity in-
dices and of the first four statistical conditional and uncondi-
tional moments of y increases our ability to understand the
way the structure of the model output pdf is controlled by
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model parameters. As demonstrated in our examples, clas-
sical variance-based GSA methods cannot be used for this
purpose, leading, in some cases, to the unwarranted conclu-
sion that a given parameter has a limited impact on a target
output.

Analysis of the errors associated with the use of a surro-
gate model for the evaluation of our moment-based sensi-
tivity indices suggests that (a) attaining a given level of ac-
curacy for the gPCE-based indices associated with a target
variable, y, might require considering a diverse total order
w of the gPCE, depending on the target statistical moment
considered in the GSA of y; and (b) in our examples, the ab-
solute relative error (Eq. 26) for AMAExi based on a given
total degree w of the gPCE approximation is always lower
than its counterpart associated with higher-order moments
(see Figs. 2 and 5).
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