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Abstract. Despite an increasing availability of skilful long-
range streamflow forecasts, many water agencies still rely
on simple resampled historical inflow sequences (stochas-
tic scenarios) to plan operations over the coming year. We
assess a recently developed forecasting system called “fore-
cast guided stochastic scenarios” (FoGSS) as a skilful alter-
native to standard stochastic scenarios for the Australian con-
tinent. FoGSS uses climate forecasts from a coupled ocean–
land–atmosphere prediction system, post-processed with the
method of calibration, bridging and merging. Ensemble rain-
fall forecasts force a monthly rainfall–runoff model, while
a staged hydrological error model quantifies and propa-
gates hydrological forecast uncertainty through forecast lead
times. FoGSS is able to generate ensemble streamflow fore-
casts in the form of monthly time series to a 12-month fore-
cast horizon.

FoGSS is tested on 63 Australian catchments that cover
a wide range of climates, including 21 ephemeral rivers. In
all perennial and many ephemeral catchments, FoGSS pro-
vides an effective alternative to resampled historical inflow
sequences. FoGSS generally produces skilful forecasts at
shorter lead times (< 4 months), and transits to climatology-
like forecasts at longer lead times. Forecasts are generally
reliable and unbiased. However, FoGSS does not perform
well in very dry catchments (catchments that experience zero
flows more than half the time in some months), sometimes
producing strongly negative forecast skill and poor relia-
bility. We attempt to improve forecasts through the use of
(i) ESP rainfall forcings, (ii) different rainfall–runoff mod-

els, and (iii) a Bayesian prior to encourage the error model
to return climatology forecasts in months when the rainfall–
runoff model performs poorly. Of these, the use of the prior
offers the clearest benefit in very dry catchments, where it
moderates strongly negative forecast skill and reduces bias
in some instances. However, the prior does not remedy poor
reliability in very dry catchments.

Overall, FoGSS is an attractive alternative to historical in-
flow sequences in all but the driest catchments. We discuss
ways in which forecast reliability in very dry catchments
could be improved in future work.

1 Introduction

Recent years have seen a proliferation of experimental long-
range ensemble streamflow forecasting systems (examples
from this issue: Meißner et al., 2017; Beckers et al., 2016;
Candogan Yossef et al., 2017; Bell et al., 2017; Greuell et
al., 2016), and, to a lesser extent, the operationalization of
these systems as forecasting services that are available to
water agencies and the public. In Australia, the Bureau of
Meteorology (the “Bureau”) runs a freely available seasonal
streamflow forecasting service that predicts total streamflow
for the coming 3 months at more than 200 sites across Aus-
tralia (www.bom.gov.au/water/ssf/). While the Bureau’s ser-
vice has been well received by Australian water agencies, a
number of agencies still rely primarily on resampled histori-
cal inflow sequences, not forecasts, to plan operations for the
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coming year. Resampled historical inflow sequences (termed
stochastic scenarios in this paper) have some appeal for wa-
ter agencies: they are unbiased, they are available as time
series, they are easy to generate to long time horizons, and,
presuming a long observation record is available from which
to sample, the ensemble of inflows is inherently statistically
reliable (either taken at individual months or when individual
ensemble members are summed, e.g. to produce an ensemble
of 6 months’ total inflow). The Bureau’s service is based on a
statistical method, the Bayesian joint probability (BJP) mod-
elling approach (Wang and Robertson, 2011), which uses in-
formation from current streamflow conditions and climate
indices to produce skilful streamflow forecasts. The BJP is
able to produce skilful, unbiased forecasts with highly reli-
able ensembles, and can be used to generate monthly volume
forecasts to short (e.g. 3 months) forecast horizons (Zhao et
al., 2016). But the BJP is not well suited to generating time
series forecasts to long (e.g. 12 months) time horizons, be-
cause it has no mechanism for simulating the shape of hy-
drographs over long lead times. Other seasonal forecasting
systems generally have some combination of shortcomings
with respect to stochastic scenarios: they may not produce
reliable ensembles (e.g. Crochemore et al., 2016; Wood and
Schaake, 2008); the ensembles may be biased with respect
to climatology (e.g. Fundel et al., 2013; Wood and Schaake,
2008); and/or the forecasts may be less skilful than climatol-
ogy for certain months or lead times (Yuan et al., 2013). Any
of these can be a serious barrier to their use by water agencies
to plan operations.

Of course, stochastic scenarios have a major shortcom-
ing of their own: they take no account of information from
current catchment and climate conditions, and thus offer
no skill to water agencies. To combine the practical advan-
tages of stochastic scenarios with useful information con-
tained in forecasts, we recently proposed a new streamflow
forecasting system called “forecast guided stochastic scenar-
ios”, or FoGSS. FoGSS uses post-processed climate fore-
casts from a coupled climate forecasting system to force a
monthly rainfall–runoff model. A hydrological error model
is then used to update forecasts, correct biases, and propagate
forecast uncertainty through the lead times. FoGSS produces
time series forecasts to long time horizons (12 months). As
forecast skill declines with lead time, FoGSS is designed to
nudge forecasts towards climatology. Each ensemble mem-
ber in the forecast is a realistic 12-month hydrograph at a
monthly time step. In a previous paper (Bennett et al., 2016),
we described the theoretical underpinnings of FoGSS and
showed that it performed well for two high-rainfall Aus-
tralian catchments, producing skilful and reliable ensem-
ble forecasts. We noted that the viability of FoGSS as a
continent-wide forecasting system remained to be tested. In
particular, FoGSS needs to be tested for ephemeral rivers,
which are an important source of water (e.g. for agriculture)
in many Australian regions. (Note that catchments that cease
to flow are variously termed “intermittent” and “ephemeral”

in other studies; we will refer to all rivers that cease to flow
> 4 % of the time as “ephemeral” in this paper.)

The aim of this paper is to test FoGSS on a wide range
of Australian catchments that encompass different climatic
and hydrologic conditions. We then vary components of the
system – rainfall forcings, rainfall–runoff modelling, and the
hydrological error model – to assess to what extent, if any,
forecasts can be improved. The paper is structured as follows.
We give an overview of the FoGSS model in Sect. 2, describe
our set-up and data in Sect. 3, and describe our experiments
to vary elements of FoGSS in Sect. 4. We present and discuss
our results in Sect. 5, and we summarize and conclude our
findings in Sect. 6.

2 The FoGSS model

A schematic of the FoGSS model is shown in Fig. 1.

2.1 Ensemble rainfall forecasts

Rainfall and sea-surface temperature (SST) predictions are
taken from the POAMA M2.4 seasonal climate forecasting
system (Hudson et al., 2013; Marshall et al., 2014). POAMA
reforecasts are available as a 33-member ensemble com-
prised of 11 members each from three variants of the model;
each variant has slightly different model physics. We use
forecasts issued at the start of each calendar month (12 fore-
casts a year) from 1982 to 2010. These forecasts are then
post-processed with the method of calibration, bridging and
merging (CBaM; Schepen and Wang, 2014; Schepen et al.,
2014). While POAMA produces skilful rainfall forecasts in
some months and seasons in parts of Australia, it suffers from
deficiencies common to many dynamical climate forecasting
models: forecasts are often biased at the scale of catchments;
forecast ensembles tend to be overconfident; and forecasts
may be substantially less skilful than climatology in certain
months and seasons (Schepen et al., 2016).

We have shown elsewhere that it is only possible to cor-
rect all these deficiencies by calibration, rather than apply-
ing a simple bias-correction (Zhao et al., 2017). Accordingly,
POAMA rainfall reforecasts are calibrated to each catchment
with the BJP. This approach is effective at removing bias,
correcting ensemble spread, and ensuring forecasts are “co-
herent” – that is, never less skilful than climatology forecasts
(Hawthorne et al., 2013; Schepen et al., 2016; Peng et al.,
2014). To maximize the skill of rainfall forecasts, we use
“bridging” to build statistical relationships between POAMA
forecasts of SST indices (e.g. Niño3.4) and catchment rain-
fall, again with the BJP. Bridging allows us to generate fore-
casts to 12-month forecast horizons: POAMA produces fore-
casts only to 9 months in advance; we use bridging to es-
tablish lagged relationships between 9-month SST forecasts
and 10-, 11- and 12-month forecast horizons. To merge the
calibration and bridging forecasts we use Bayesian model av-
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Figure 1. Schematic of the FoGSS model.

eraging (Wang et al., 2012a) to produce a forecast ensemble
of 1000 members. Finally, realistic temporal patterns are in-
stilled in each forecast ensemble member with the Schaake
shuffle (Clark et al., 2004).

2.2 Hydrological model

Rainfall forecasts and climatology potential evaporation are
used to force an initialized monthly rainfall–runoff model.
In the original conception of FoGSS, we used the Wapaba
model (Wang et al., 2011). In this study we also test two other
rainfall–runoff models, GR2M and ABCD, and we describe
each rainfall–runoff model in Sect. 4.3.

2.3 Error model

Forcing a hydrological model with ensemble rainfall fore-
casts results in overconfident streamflow forecasts, as uncer-
tainty in the hydrological model is not incorporated into the
forecast. In addition, hydrological models, even when opti-
mized, are usually subject to errors and bias. To address these
issues, FoGSS employs a three-stage error model. The model
is broken up into stages to avoid undesirable interaction be-
tween the error model parameters when they are estimated.

2.3.1 Stage 1: data transformation

We use the log-sinh transformation (Wang et al., 2012b) to
normalize data and homogenize variance. The log-sinh trans-
formation (TF) is given by

z= TF(q)=
1
b

log(sinh(a+ bq)) (1)

where q is streamflow and a and b are parameters. For clarity,
we will refer to the domain in which q exists as the original
domain to differentiate it from the transform domain of z.

2.3.2 Stage 2: bias-correction

Transformed streamflow is bias-corrected at each month
i= 1, 2, . . . , 12=month(t) by

z2 (t)= d (i)z1 (t)+µ(i) , (2)

where z1 is the raw streamflow forecast after transformation
with Eq. (1), and d (i) and µ(i) are parameters.

An important feature of Eq. (2) is that d can go to zero.
That is, in months where the hydrological simulation per-
forms poorly, the error model can return z2 ≈ µ, a constant
akin to a climatology. As we shall see, this is a particularly
important property in ephemeral catchments. This property
is exploited in our experiments with the use of a prior, de-
scribed in Sect. 4.4.

We limit d to the range 0≤ d ≤ 2. Values less than zero
imply a negative correlation between simulations and obser-
vations, and in these cases it is more sensible to ignore the
simulation (i.e. to allow d = 0). The upper limit of 2 is arbi-
trary, and is imposed to avoid unrealistically large corrections
being applied under cross-validation.

2.3.3 Stage 3: autoregressive model

FoGSS applies a first-order autoregressive (AR1) model
(Li et al., 2015) to improve the accuracy of forecasts and
to propagate hydrological uncertainty through the forecast
lead times. The AR1 model is applied to transformed, bias-
corrected flows by

z3 (t)= z2 (t)+ ρ (i)(zo (t − 1)− z2 (t − 1)) , (3)
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where zo is the transformed observed streamflow and ρ (i)
is the autoregression parameter, varied by calendar month.
To avoid corrections that are too large, we apply the restric-
tion proposed by Li et al. (2015). This restriction corrects the
forecast by whichever is smaller: the correction proposed by
Eq. (3), or the error in the original domain at t − 1 given by
qo (t − 1)− q2 (t − 1) (where qo is observed streamflow and
q2 is the back-transformed value of z2).

2.3.4 Estimating parameters

Parameters for each stage are estimated sequentially using
maximum likelihood estimation (MLE), as detailed by Ben-
nett et al. (2016). The data transformation (Stage 1) allows us
to assume that residuals, ε, are normally distributed and ho-
moscedastic (i.e. the variance does not change). At Stage 3,
the residuals are given by

zo (t)= z3 (t)+ ε (i) ,

ε (i)∼N
(

0,σ 2 (i)
)
, (4)

where σ 2 (i) is the variance of ε at each calendar month.
To handle zero values in ephemeral catchments, we treat

observations of zero as censored values in the likelihood, a
technique established previously (Li et al., 2013).

A notable aspect of the estimation of hydrological and er-
ror model parameters is that we take no account of lead time
in the parameter estimation. Parameters are estimated only
from rainfall–runoff simulations (forced by observed rain-
fall and potential evaporation) and observed streamflow, as
with a conventional rainfall–runoff model calibration. This
is a key difference with approaches that post-process stream-
flow forecasts separately at each lead time (e.g. Yuan, 2016),
as it means that each FoGSS time series forecast is a contin-
uous hydrograph that can be summed to produce reliable en-
sembles of e.g. seasonal inflow totals. However, the FoGSS
error model will not correct problems associated with ensem-
ble rainfall forecasts (e.g. overconfident ensembles). FoGSS
requires ensemble rainfall forecasts that are unbiased and re-
liable in order to produce unbiased and reliable streamflow
forecasts.

2.3.5 Generating a forecast: stochastic updating

Hydrological uncertainty is propagated with stochastic up-
dating. At the first lead time, l = 0, this is straightforward:
we have an observation available when the forecast is issued,
and hence we can apply Eq. (3) directly, and then add noise
according to Eq. (4) to produce a forecast value zF. At longer
lead times l = 1, . . .,11, we substitute the forecast value, zF,
for the observation, zo, in Eq. (3), and forecasts are generated

by

zF (t + l)= z2 (t + l)+ ρ (i)(zF (t + l− 1)− z2 (t + l− 1))
+ ε (i) |l = 1, . . .,11,

ε (i)∼N
(

0,σ 2 (i)
)
. (5)

In this way hydrological uncertainty grows through the fore-
cast, as expected (i.e. forecasts become less certain at longer
lead times). As with Eq. (3), the restriction (see Sect. 2.3.3)
is applied to Eq. (5).

3 General set-up and data

3.1 Forecast cross-validation

Thorough validation of forecast systems requires a large pop-
ulation of reforecasts to allow testing over a variety of con-
ditions and to be able to calculate robust probabilistic veri-
fication scores. Reforecasts are often limited in number, in
our case because POAMA reforecasts are only available for
1982–2010 (see Sect. 2.1). Rigorous cross-validation is a vi-
tal element of robust forecast validation. We use the follow-
ing scheme.

1. The post-processing of rainfall forecasts is cross-
validated using leave-3-years-out cross-validation.

2. Hydrological and error models are cross-validated using
leave-5-years-out cross-validation.

A more stringent cross-validation is required for hydrolog-
ical models because catchment memory is more persistent
than memory in seasonal weather patterns or SST (i.e. cur-
rent catchment conditions can influence streamflow for 2 or
more years in some catchments).

To estimate parameters and to generate forecasts, the
hydrological model is initialized by running it from Jan-
uary 1970.

3.2 Verification scores

In accordance with most studies of ensemble forecasting sys-
tems, we are chiefly concerned with two aspects of fore-
cast performance: forecast skill and forecast reliability. To
measure forecast skill, we use the well-known continuous
ranked probability score (CRPS; see e.g. Gneiting and Katz-
fuss, 2014). Skill is measured against streamflow climatol-
ogy. Forecast skill is given by the continuous ranked proba-
bility skill score (CRPSS):

CRPSS=
CRPSRef−CRPSF

CRPSRef
× 100%, (6)

where CRPSF and CRPSRef are CRPS values for FoGSS and
climatology forecasts, respectively. To generate the climatol-
ogy forecasts, a log-sinh transformed (Eq. 1) normal distribu-
tion is fitted to the observed streamflow data for each month.
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When fitting the distribution, zero values are handled with
data censoring as described by Wang and Robertson (2011)
to ensure the climatology forecasts correctly replicate the ob-
served incidence of zero values. Once the distribution is fit-
ted, 1000 samples are drawn from it to produce the reference
forecasts (values below zero are set to zero). Climatology
is generated from observations from 1982 to 2009, apply-
ing the same leave-5-years-out cross-validation procedure as
described for the hydrological modelling (Sect. 3.1). In some
very dry catchments, some months recorded only zero flow,
and in these cases it is not possible to fit a distribution. Here,
we take a pragmatic approach: we simply assign a reference
forecast of zero. CRPSS ranges from −∞ (least skilful) to
100 % (perfectly skilful). FoGSS forecasts need not neces-
sarily outperform climatology to function as a viable alter-
native to stochastic scenarios, but they do need to be at least
similarly skilful to climatology. We term forecasts with skills
near zero neutrally skilful, defined as −5 %>CRPSS< 5 %.

As noted in the introduction, a key attribute of stochastic
scenarios is that they are inherently unbiased and thus can be
used directly in planning models by water agencies. To be
a viable alternative to stochastic scenarios, FoGSS forecasts
should be unbiased. Absolute relative bias (hereafter referred
to as “bias”) of forecasts is calculated at each lead time, l, by

Bias(l)=

∣∣∣∣∣qF (l)− qo

qo
× 100%

∣∣∣∣∣ , (7)

where qF (l) is the mean of all ensemble forecasts at each lead
time. Bias ranges from 0 (unbiased) to +∞ (worst bias).

The statistical reliability of ensemble forecasts is assessed
with probability integral transform (PIT) uniform probability
plots (shortened to PIT plots). Given the cumulative distribu-
tion function (CDF) of a forecast at time t , Ct , the PIT of the
accompanying observed value, qo (t), is given by

πt = Ct (qo (t)) . (8)

πt takes values from 0 to 1. When a set of forecasts is re-
liable, the set of πt values is uniformly distributed between
0 and 1, and the resulting PIT plot will follow the diago-
nal 1–1 line. In catchments with zero values, the CDF in
Eq. (8) will not be continuous (and therefore cannot be ex-
pected to follow a uniform distribution). In these catchments,
if qo (t)= 0, we generate a pseudo-PIT value, πt , randomly
sampled from a uniform distribution in the range [0,Ct (0)].

To compare reliability for many catchments we summarize
information from PIT plots with the alpha index (Renard et
al., 2010)

α = 1−
2
n

n∑
t=1

∣∣∣∣π∗t − t

n+ 1

∣∣∣∣ , (9)

where π∗t is the sorted πt in increasing order, and n the num-
ber of forecasts. The alpha index essentially reflects the di-
vergence of PIT values from the 1–1 line in PIT plots, rang-
ing from 1 (perfectly reliable) to 0 (worst reliability).

3.3 Catchments and data

We assess FoGSS forecasts on 63 Australian catchments
ranging in size from < 100 km2 to > 200 000 km2 (Ap-
pendix A). Catchments are distributed across the continent,
encompassing temperate, desert, subtropical and tropical cli-
mates. Rainfall and potential evaporation data are taken
from the gridded AWAP dataset (http://www.bom.gov.au/jsp/
awap), which interpolates gauged observations with a Barnes
successive correction analysis (Jones et al., 2009; Raupach
et al., 2008). Streamflow data are mainly from gauges, but
we have also included several “inflow sites”, which are not
directly gauged. The inflow site records give total inflow to
storages, and are calculated from a combination of stream-
flow gauge records, storage levels, and discharge from stor-
ages. We include these sites because they are of good qual-
ity, and often of central importance to water agencies. All
streamflow data records have been supplied and checked for
quality by the Bureau of Meteorology.

Of the rivers we assess, one-third – 21 catchments – are
ephemeral (defined as having zero flows in > 4 % of their
records), occurring in both temperate and tropical climates.
As ephemeral rivers tend to be very difficult to predict – they
can exhibit strongly non-linear responses of runoff to rainfall
and they often experience highly sporadic rainfall – we pay
particular attention to these catchments. To illustrate differ-
ent aspects of the performance of FoGSS, we choose a subset
of six catchments (Table 1). The streamflow characteristics
of these rivers are shown in Fig. 2. Brief descriptions of each
catchment are as follows.

– Fitzroy River (Western Australia): ephemeral river with
a large catchment area that ceases to flow only occa-
sionally (Fig. 2). Like all northern, tropical regions in
Australia, the Fitzroy receives most rainfall in the mon-
soon period (November–March), and very little rainfall
at other times of the year.

– Ranken River (Northern Territory): an extremely dry
catchment that ceases to flow for long periods, flowing
regularly only in March. The Ranken River can record
zero flows at any time of year, and is usually dry from
April to December. Over the period 1982–2009, the
river never flowed in September.

– Herbert River (Queensland): perennial river that re-
ceives the bulk of its rainfall in the monsoon period
(November–March).

– Lake Eppalock inflows (Victoria): Lake Eppalock re-
ceives inflow from the temperate and seasonally
ephemeral Campaspe River, largely during July–
November. This is a high-quality inflow series synthe-
sized from stream gauge and storage level records, and
often receives zero inflow in late summer to early au-
tumn (January–April).

www.hydrol-earth-syst-sci.net/21/6007/2017/ Hydrol. Earth Syst. Sci., 21, 6007–6030, 2017
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Table 1. Case study catchments.

Gauge name Gauge number Statea Perennial/ Catchment Longitude Latitude Missing
ephemeral area (km2) data (%)

Goobarragandra River above Lacmalac 410057 NSW Perennial 668 148.35 −35.33 0.3
Ranken River at Soudan Homestead G0010005 NT Ephemeral 4360 137.02 −20.05 8.3
Herbert River above Abergowrie 116006B QLD Perennial 7486 145.92 −18.49 0.0
Ringarooma River at Moorina Bridge 30 TAS Perennial 517 147.87 −41.13 8.0
Lake Eppalock inflows (Campaspe River) Inflows site VIC Ephemeral 1749 144.56 −36.88 0.0
Fitzroy River at Fitzroy Crossing Bridge 802055 WA Ephemeral 46 133 125.58 −18.21 0.3

a Abbreviations of Australian state names: NSW: New South Wales; NT: Northern Territory; QLD: Queensland; TAS: Tasmania; VIC: Victoria; WA: Western Australia.
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Figure 2. Catchment characteristics of six case study catchments. Ephemeral catchments are denoted by (e). The left axis shows monthly
streamflow (q) and rainfall (p) characteristics, with bars showing the interquartile range and median flows for the period 1982–2009. The
right axis shows the proportion of zero flows (orange points) in each month for the period 1982–2009.

– Goobarragandra River (New South Wales): perennial
river that receives most rainfall in winter and spring
(June–November). This catchment generally exhibits
strong catchment memory.

– Ringarooma River (Tasmania): alpine, temperate river
that receives regular, winter dominant rainfall (June–
August), but has little catchment memory.
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4 Experiments

4.1 Base case: continent-wide performance assessment
of FoGSS

To establish whether FoGSS is a system capable of being de-
ployed across the Australian continent, we test FoGSS as it
was described by Bennett et al. (2016): that is, as described
in Sect. 2, using the Wapaba rainfall–runoff model. This con-
stitutes the base case, against which the following variations
will be tested. The performance of the base case is assessed
by skill, reliability and bias (Sect. 3.2).

4.2 Experiment 1: contribution of rainfall forecasts
to skill

To assess the contribution of rainfall forecasts to overall
streamflow forecast skill, we compare our base case to ESP-
like forecasts (extended streamflow predictions). Traditional
ESP methods use resampled historical rainfall to force an
initialized hydrological model (Day, 1985). An ensemble of
historical rainfall forcings is reliable and unbiased but com-
pletely uninformative, so any forecast skill remaining will be
due to catchment memory (Wood and Lettenmaier, 2008).
We use a similar approach, except that we also apply the
FoGSS hydrological error model. By comparing streamflow
forecasts generated with ESP-like historical rainfall forcings
to those generated with the full FoGSS system, we can de-
termine the relative contribution of post-processed POAMA
forecasts to overall forecast skill. Historical rainfall forcings
are sampled from observations from 1982 to 2009, using
a leave-4-years-out cross-validation scheme. (The leave-4-
years-out scheme was chosen in part for computational con-
venience: it results in a forcing ensemble of 25 members,
which divides evenly into 1000, the size of the FoGSS en-
semble.) To produce a 1000-member ensemble, we run each
historical rainfall sequence through the FoGSS hydrological
and error models 40 times, using a different random seed at
the start of each run. To keep the distinction clear, we refer to
the post-processed POAMA forcings as forecast rainfall to
distinguish them from the ESP-like historical rainfall forc-
ings.

4.3 Experiment 2: hydrological modelling

As already noted, the original conception of FoGSS made
use of the Wapaba rainfall–runoff model (Wang et al., 2011).
Wapaba is a five-parameter conceptual hydrological model
based on the Budyko curve, which casts the water balance
as a competition between available water and available en-
ergy. Its parameters and a schematic of its structure are
given in Appendix B. Wapaba performed well in a study
that compared it to other rainfall–runoff models for simu-
lating 331 (largely) perennial Australian rivers (Wang et al.,
2011). However, as we will see, Wapaba’s performance is
more equivocal for forecasts of ephemeral rivers.

To test whether performance can be improved using al-
ternative rainfall–runoff models, we substitute two alterna-
tive monthly rainfall–runoff models, ABCD and GR2M, into
the FoGSS system. ABCD (Thomas, 1981; Alley, 1984) is
a four-parameter monthly water balance model and GR2M
(Mouelhi et al., 2006) is a simpler model with two parame-
ters. Parameters and structures of the two models are shown
in Appendix B. In general, ABCD and Wapaba are more sim-
ilar to each other than to GR2M. ABCD and Wapaba each
have two parameters to control the apportionment of wa-
ter between the surface water store and groundwater/direct
runoff, while GR2M simply relies on an empirical equation
for this apportionment. All three models have two conceptual
soil moisture stores, but they function slightly differently in
each case. The surface stores in ABCD and Wapaba can lose
water only to evaporation or when the storage spills. GR2M’s
production store loses water to evaporation and spill, but also
drains to the routing store at a non-linear rate in relation to
the level of the production store. ABCD and Wapaba both
have groundwater stores of unlimited capacity and both have
parameters to control the (linear) rate of discharge from the
groundwater store. GR2M has a finite (and fixed) groundwa-
ter storage capacity, and uses a fixed (non-linear) relation-
ship to govern discharge from its routing store. In both Wa-
paba and ABCD, catchment losses are entirely controlled by
evaporation. In GR2M water can be lost to, or gained from,
an unlimited conceptual groundwater store outside the catch-
ment. Wapaba and ABCD differ in the way that they appor-
tion water between soil moisture stores and groundwater and
direct runoff, and have different methods to calculate actual
evaporation from the surface store.

Rainfall–runoff model parameters are estimated using
maximum likelihood. Parameters of the subsequent stages of
the error model (stages 2 and 3) are then estimated, as de-
scribed in Sect. 2.3.4. That is, only the rainfall–runoff mod-
els and Stage 2 and Stage 3 error model parameters change
in this experiment: all other elements of FoGSS remain the
same.

4.4 Experiment 3: encouraging the error model to
return climatology forecasts

As we shall see, the FoGSS system is outperformed by cli-
matology in some very dry catchments. One way to achieve
“coherent” forecasts (i.e. where forecasts are at least neu-
trally skilful) is to encourage the error model to return clima-
tology forecasts in instances where there are few non-zero
streamflows. We do this by pushing the d parameter in the
bias-correction (Eq. 2) towards zero. That is, we encourage
the error model to discount information from the forecast and
to return a climatology (z2 ≈ µ). This is achieved by placing
an informative Bayesian prior on the d parameter:

d ∼N
(

0,σ 2
d

)
, (10)
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Figure 3. Forecast skill (CRPSS) for 63 catchments by lead time for the FoGSS base case. For each lead time, forecast skill is summarized
for all months and catchments with box and whisker plots. Boxes show the interquartile range with the median; whiskers give the 10th and
90th percentiles. (a) shows all catchments, (b) shows perennial catchments, and (c) shows ephemeral catchments.

where the standard deviation, σd , controls the strength of the
prior: smaller values encourage d to take values closer to
zero. We test the values σd = 0.25, 0.5, 1.0, 2.0, and 4.0. Be-
cause of the use of the prior, this estimation approach is no
longer formally MLE, but a maximum a posteriori (MAP)
estimation. The posterior density used to estimate the param-
eters is given in Appendix C (Eq. C3).

5 Results and discussion

5.1 Continent-wide performance of the base
FoGSS model

Forecast skill for all catchments is summarized in Fig. 3.
At very short lead times (e.g. lead-0), FoGSS forecasts are
very often skilful. Skill at lead-0 is overwhelmingly pos-
itive in perennial catchments, and is generally also posi-
tive in ephemeral catchments. Skill subsides with lead time,
with forecast skill in ephemeral catchments declining more
rapidly. By lead-6, forecasts are generally neutrally skil-
ful for all catchments. Instances of strongly negative skill
(<−15 %) are rare in perennial catchments, and also absent
in a substantial number of ephemeral catchments. Strongly
negative skills do occur in a few very dry ephemeral catch-
ments, as described for the Ranken catchment below. Anal-

ysis of reliability and bias for all 63 catchments will be de-
scribed in the results of the three experiments (Sect. 5.2–5.4).

To illustrate the overall performance of the FoGSS base
case, we review skill and reliability for the six case study
catchments. The strong performance of FoGSS in perennial
catchments is reflected in the Herbert, Goobarragandra and
Ringarooma rivers, shown in Fig. 4. Forecasts are generally
skilful at shorter lead times (typically< 3 months), and there-
after become neutrally skilful. There is, however, consider-
able variation in performance: forecasts can be strongly skil-
ful to long lead times (e.g. 6 months or more in the Goobarra-
gandra River), while catchments with little catchment mem-
ory (e.g. the Ringarooma River) may only be skilful to lead-
0 (i.e. in the first month). Some moderately negative skills
do occur in the Herbert catchment, in low-flow months at
longer lead times (e.g. August). These are caused by slight
mispredictions of flow issued in wetter months (e.g. Febru-
ary), which result in proportionally larger errors in drier
months at longer lead times. FoGSS also performs well in
the ephemeral Fitzroy catchment, returning largely positive
or neutral skill, with only a few isolated instances of slightly
negative skill.

In more strongly ephemeral catchments, performance can
be poor. In the seasonally ephemeral Eppalock catchment,
forecast skill is strongly negative in the dry months from Jan-
uary to April, although the forecasts perform well at other
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Figure 4. Skill (CRPSS) for FoGSS forecasts (base case). Ephemeral catchments are denoted with (e). Target months are shown on the
vertical axes, and target lead times on the horizontal axes. Centre map gives catchment locations.

times of the year. In the Ranken catchment, which experi-
ences high incidences of zero flows year-round, performance
is poor for the majority of months and lead times.

The cause of the poor forecast skill in the Ranken and Ep-
palock catchments is evident when we consider PIT plots
(Fig. 5). Forecasts are highly reliable for the perennial Her-
bert, Ringarooma and Goobarragandra catchments, as well
as the Fitzroy catchment, for all months and lead times.
Forecasts are not reliable for the dry months of the Ep-
palock catchment (see February in Fig. 4), and are partic-
ularly unreliable for drier months in the Ranken catchment
(e.g. September). The bowed shape of the PIT plots in Ep-
palock is evidence of a persistent bias – a tendency to over-
estimate flows – in the drier months, driven by an underes-
timation of the incidence of zero flows. The same problem
exists in the Ranken catchment, but to a stronger degree. We
have established in earlier work that post-processing rainfall

forecasts with CBaM is able to produce highly reliable fore-
cast rainfall ensembles (e.g. Peng et al., 2014; Schepen et al.,
2012), meaning the problem lies with the hydrological error
model. In catchments where more than half of streamflow
observations are zero, FoGSS will always underestimate the
incidence of zero flows. This is because the error model is
assumed to follow a symmetrical distribution (Gaussian after
transformation) about the value of the forecast. Even if the
forecast is zero before the error model is applied, randomly
drawing from a symmetrical distribution will yield ∼ 50 %
of values greater than zero. We will see in the following ex-
periments that this can have a particularly strong influence
on bias.

www.hydrol-earth-syst-sci.net/21/6007/2017/ Hydrol. Earth Syst. Sci., 21, 6007–6030, 2017



6016 J. C. Bennett et al.: Assessment of an ensemble seasonal streamflow forecasting system for Australia

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Pr
ob

ab
ilit

y 
in

te
gr

al
 tr

an
sf

or
m

Fitzroy

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
Ranken

Feb - lead 2

Feb - lead 6

Sep - lead 2

Sep - lead 6

K-S significance

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
Herbert

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Pr
ob

ab
ilit

y 
in

te
gr

al
 tr

an
sf

or
m

Eppalock

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
Ringarooma

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
Goobarragandra

90 100 110 120 130 140 150 160 170
-45

-40

-35

-30

-25

-20

-15

-10

-5

Goobarragandra

Ranken
Herbert

Ringarooma

Eppalock

Fitzroy

Standard uniform variate

Standard uniform variate

Figure 5. PIT plots for selected months and lead times for FoGSS forecasts (base case). Points are PIT values; crosses are pseudo-PIT values.
Centre map gives catchment locations. Dashed lines give Kolmogorov–Smirnoff significance tests at 5 %.

5.2 Experiment 1: contribution of rainfall forecasts
to skill

Figure 6 summarizes how forecast skill varies with lead
time for all 63 catchments with both forecast and histori-
cal rainfall forcings. Skill at individual lead times is gener-
ally not strongly influenced by changing the rainfall forc-
ing to ESP. This highlights the predominant role catchment
memory plays in generating skilful forecasts. Forecast rain-
fall tends to produce slightly more skilful forecasts at lead-
3 and lead-6 in perennial catchments but more instances of
negative skill at longer lead times (e.g. lead-9). Conversely,
in ephemeral catchments historical rainfall forcings tend to
produce slightly more skilful streamflow forecasts than fore-
cast rainfall forcings at all lead times.

Forecast rainfall shows slightly more evident benefits,
however, when we consider forecasts of accumulated vol-

umes. Figure 7 shows forecast skill calculated for forecasts
of total streamflow volume accumulated over 1-, 3-, 6-, 9-
and 12-month periods. In ephemeral catchments, ESP fore-
casts are slightly better, with fewer instances of strongly neg-
ative skill, particularly for shorter accumulation volumes.
In perennial catchments, however, forecast rainfall produces
slightly, but noticeably, more skilful streamflow forecasts
for accumulation periods of 6 months or more. We note
that FoGSS forecasts for perennial catchments generally ex-
hibit positive skill for accumulation periods up to 6 months,
whichever rainfall forcing is used. This is clear evidence that
FoGSS forecasts hold more useful information than stochas-
tic scenarios.

Historical rainfall forcings do, however, have a clear ad-
vantage in reducing bias, particularly in ephemeral catch-
ments (Fig. 8). Bias is calculated using the mean of the
forecast ensemble. Because the BJP models used to post-
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Figure 6. Skill (CRPSS) for 63 catchments by lead time for FoGSS forecasts forced by forecast (POAMA-CBaM) and historical (ESP) rain-
fall. For each lead time, forecast skill is summarized for all months and catchments with box and whisker plots. Boxes show the interquartile
range with the median; whiskers give the 10th and 90th percentiles. (a) shows all catchments, (b) shows perennial catchments, and (c) shows
ephemeral catchments.

process POAMA make use of data transformation, the fore-
casts are unbiased in the transform domain. However, the
back-transformation causes the mean of the forecast ensem-
ble to become separated from (and larger than) the ensemble
median, resulting in positive biases. These positive biases are
often slight (∼ 5 %), but can be amplified by the rainfall–
runoff model. This amplification is particularly prevalent in
ephemeral catchments, where the responses of runoff to rain-
fall can be highly non-linear. We note, however, that even
with historical rainfall forcings, streamflow forecasts can be
heavily biased. In very dry catchments this is partly due to
the underestimation of the incidence of zero flows by the er-
ror model, as described in Sect. 5.1 above.

Streamflow forecasts generated from historical rainfall
forcings show similar reliability to those generated with fore-
cast rainfall forcings (not shown for brevity).

5.3 Experiment 2: hydrological modelling

Figures 9 and 10 show how forecast skill and bias vary with
the choice of rainfall–runoff model. In general, the skill is
similar for all three models, but both GR2M and Wapaba
are noticeably less biased than ABCD. Wapaba and GR2M
are similarly skilful and exhibit similar biases in peren-

nial catchments. GR2M moderates some of the very neg-
ative skill scores and high catchment biases produced by
Wapaba in very dry ephemeral catchments, which suggests
that Wapaba’s infinite groundwater store is not well suited
to ephemeral rivers. Like many models, Wapaba can under-
estimate flows in wet seasons by pushing too much water
into groundwater stores and diverting too little through direct
runoff. These underestimations have little impact on forecast
skill in high-flow months. However, the excess water that
is pushed into the infinite groundwater store cannot be lost,
so it eventually drains out in dry seasons. This can result in
substantial overestimation of streamflow in very dry seasons,
which causes high proportional errors and biases. While we
apply a bias-correction in the error model, Wapaba’s over-
estimation in dry months is caused by isolated (i.e. rare)
events, which are difficult to capture under cross-validation.
GR2M’s ability to destroy water held in its groundwater store
appears to be important for accounting for the high losses that
can occur in drylands. GR2M requires the error model to do
less work, making the system less prone to errors/bias under
cross-validation in ephemeral rivers.

A noteworthy finding of this experiment is that the choice
of rainfall–runoff model did not have a major impact on
forecast skill in perennial catchments. While a considerable
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Figure 7. Skill (CRPSS) for 63 catchments by the forecast accumulation period for FoGSS forecasts forced by forecast (POAMA-CBaM) and
historical (ESP) rainfall. For each lead time, forecast skill is summarized for all months and catchments with box and whisker plots. Boxes
show the interquartile range with the median; whiskers give the 10th and 90th percentiles. (a) shows all catchments, (b) shows perennial
catchments, and (c) shows ephemeral catchments.
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Figure 8. Absolute bias in 63 catchments by lead time for FoGSS forecasts forced by forecast (POAMA-CBaM) and historical (ESP) rainfall.
For each lead time, absolute bias is calculated for all months, and then summarized for all catchments with box and whisker plots. Boxes
show the interquartile range with the median; whiskers give the 10th and 90th percentiles. (a) shows all catchments, (b) shows perennial
catchments, and (c) shows ephemeral catchments. Note the differently scaled vertical axis of (b).
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Figure 9. Skill (CRPSS) in 63 catchments by lead time for FoGSS forecasts with different rainfall–runoff models. For each lead time, forecast
skill is summarized for all months with box and whisker plots. Boxes show the interquartile range with the median; whiskers give the 10th
and 90th percentiles. (a) shows all catchments, (b) shows perennial catchments, and (c) shows ephemeral catchments.
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Figure 10. Absolute bias in 63 catchments by lead time for FoGSS forecasts with different rainfall–runoff models. For each lead time
absolute bias is summarized for all months with box and whisker plots. Boxes show the interquartile range with the median; whiskers give
the 10th and 90th percentiles. (a) shows all catchments, (b) shows perennial catchments, and (c) shows ephemeral catchments.
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Figure 11. Skill (CRPSS) in 63 catchments by lead time for FoGSS forecasts with different strength priors on the d parameter (smaller values
of σd result in a stronger prior). For each lead time, forecast skill is summarized for all months with box and whisker plots. Boxes show
the interquartile range with the median; whiskers give the 10th and 90th percentiles. (a) shows results for all catchments, (b) for perennial
catchments only, and (c) for ephemeral catchments.
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Figure 12. Absolute bias in 63 catchments by lead time for FoGSS forecasts with different strength priors on the d parameter (smaller values
of σd result in a stronger prior). For each lead time, absolute bias is summarized for all months with box and whisker plots. Boxes show
the interquartile range with the median; whiskers give the 10th and 90th percentiles. (a) shows results for all catchments, (b) for perennial
catchments only, and (c) for ephemeral catchments. Note the differently scaled vertical axis of (b).
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Figure 13. Reliability (alpha index) in 63 catchments by lead time for FoGSS forecasts with different strength priors on the d parameter
(smaller values of σd result in a stronger prior). For each lead time, reliability is summarized for all months with box and whisker plots. Boxes
show the interquartile range with the median; whiskers give the 10th and 90th percentiles. (a) shows all catchments, (b) shows perennial
catchments, and (c) shows ephemeral catchments.

amount of effort is often expended on selecting rainfall–
runoff models for particular purposes, our results suggest
that, at least at the monthly time step, a well-designed er-
ror model can mitigate various deficiencies in rainfall–runoff
models for wide-scale application to perennial rivers.

5.4 Experiment 3: encouraging the error model to
return climatology forecasts

As we expect, the application of a prior on the d parame-
ter has negligible effect on the skill of forecasts in perennial
rivers at all lead times (Fig. 11). However, applying the prior
did reduce some of the strongly negative skills experienced
in ephemeral catchments at all lead times. The stronger the
prior (i.e. the smaller the value of σd), the greater the re-
moval of negative skills, with the effect of the prior becoming
negligible for σd ≥ 2.0. Similarly, bias is greatly reduced by
applying a strong prior to ephemeral rivers (Fig. 12), as the
forecasts have a reduced tendency to overestimate flows in
very dry months. Interestingly, applying a strong prior also
reduced biases in perennial catchments. This indicates that
the prior is guarding against overfitting of the bias-correction
in these instances, with virtually no reduction in positive
forecast skill. The reduction in bias has a slight positive im-
pact on reliability in ephemeral rivers at longer lead times,
as shown by the alpha index in Fig. 13. However, the prior
is unable to address the fundamental inability of FoGSS to
generate a sufficient number of zero flows in months where

more than half of the observed flows are zero, as discussed
in Sect. 5.1.

In summary, the prior encourages FoGSS to behave sensi-
bly. As already noted, strongly negative skills generally only
occur in very dry months, where there may be only a few
non-zero observations on which to optimize the hydrologi-
cal and error models. In these cases, it is sensible to encour-
age FoGSS to return a climatology-like forecast. Conversely,
when there are sufficient data to inform the estimation of
model parameters and the models perform well, the system
should use the models. Using a prior in a MAP optimization
enforces this sensible behaviour in the FoGSS system.

5.5 Synthesis

In each experiment, variations on the base case resulted in
changes in forecast performance, although these changes
were sometimes very slight. The use of historical rainfall
forcings (Experiment 1) is the least beneficial of the changes.
Historical rainfall forcings can reduce bias, and this leads to
fewer strongly negative skills, largely in very dry months and
catchments. We note, however, that the use of a strong prior
has a stronger ability to remove bias in dry months than his-
torical forcings (not shown), thus nullifying the benefits of
the historical forcing. The use of historical forcings comes at
the cost of removing information available from climate fore-
casts. We have shown that skill from climate forecasts can
accumulate to produce skilful long-range total inflow fore-
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Figure 14. Skill (CRPSS) of FoGSS forecasts generated with the GR2M hydrological model and with a strong prior on the d parameter of
σd = 0.25. Ephemeral catchments are denoted by (e). Target months are shown on the vertical axes, and target lead times on the horizontal
axes. Centre map gives catchment locations.

casts. In addition, the POAMA model is being upgraded to
a much higher-resolution climate forecasting system by the
Bureau of Meteorology (ACCESS-S), and this should result
in stronger skill. On balance, the inclusion of climate fore-
casts is beneficial, not only for the additional skill available in
some months/catchments with post-processed POAMA fore-
casts, but also for the prospect of including better climate
forecasts in future.

To show the effects of the other variations (experiments 2
and 3), we combine forecast rainfall forcings with the GR2M
model and a strong prior on d (σd = 0.25), and show fore-
cast skill for our six example catchments in Fig. 14. There
are some key differences between Fig. 14 and forecast skill
of the base case (Fig. 4). In the very dry Ranken catchment,
negative skill in wetter months (January–April) is largely re-
moved, in favour of climatology-like forecasts. Conversely,

skill in July, August and December has changed from neu-
tral/positive in the base case to be substantially negative. All
3 of these months are very dry in the Ranken catchment (most
flows are zero), but feature a single very large event in the
record (> 10× larger than the next largest measured flow). In
these cases, the prior on d has a deleterious effect: allowing d
to take a larger range of values better corrects the extremely
non-linear biases in these months. When the prior is applied,
the bias-correction is not as effective, forcing the error model
to take larger values of σ 2. This leads to persistent overesti-
mations of streamflow in the other (very dry) years, leading
to negative skill. In the Eppalock catchment, the variations
on the base case have an unequivocal benefit: negative skill
in the dry months of January–April is completely removed.
In the other five catchments, the changes generally either im-
prove or have little impact on base case forecasts. There is
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little change to skill in the Fitzroy catchment (slight reduc-
tions in skill in July–September at long lead times), negative
skill in the Herbert catchment in August is largely eliminated,
and there are no discernible differences in skill in the Ringa-
rooma and Goobarragandra catchments.

As already noted, the GR2M model’s main benefit is in
ephemeral catchments. In our example catchments in Fig. 14,
GR2M acts mainly to reduce negative skills in the Eppalock
catchment in February and March by reducing bias, with lit-
tle differences in other catchments. As with the benefits of
historical rainfall forcings, however, the ability of GR2M to
reduce bias is largely subsumed by the use of a strong prior
on the d parameter: similar reductions in negative skill in
Eppalock are achieved when a prior on d is applied with the
Wapaba model (not shown).

The use of a strong prior on d results in neutral to pos-
itive impacts on skill in most cases shown in Fig. 14. The
exception is the very dry Ranken catchment, where the ben-
efits of the prior are equivocal. The prior removes the base
case’s negative skills in the Ranken catchment in January–
March, but also introduces negative skill in the drier months
of June, August and December. We note that, on balance, this
may have practical benefits: in another study (Turner et al.,
2017) we show that FoGSS forecasts can benefit reservoir
operations in cases where forecasts are not skilful in very dry
months but positively or neutrally skilful at other times of the
year. This is because the dry months contribute little to the
annual inflow volume, so small positive bias in dry months
(the cause of negative skill) does not have a strong influence
on the value of forecasts. Conversely, a strong prior is respon-
sible for removing negative skill in August in the Herbert
catchment, and also removes the strongly negative skills in
the Eppalock catchment in January–April. At the same time,
the prior has little effect on the good performance of the base
case in the Fitzroy, Ringarooma and Goobarragandra catch-
ments.

We reiterate that the prior does not correct reliability prob-
lems in dry catchments, with PIT plots giving almost identi-
cal results to the base case (not shown for brevity). To miti-
gate the inherent tendency of the FoGSS error model to un-
derestimate the occurrence of zero flows, we need to change
its fundamental function. One approach for doing this would
be to censor both simulations and observations in the MLE,
and carry this approach through to generating forecasts. This
would effectively change the assumption of a symmetrical
error distribution about forecasts of zero, and offset the er-
ror distribution to increase the incidence of zeros. We will
explore this approach in future research.

6 Summary

We assess a new seasonal streamflow forecasting sys-
tem called forecast guided stochastic scenarios (FoGSS)
for continent-wide application in Australia. FoGSS uses

post-processed climate model forecasts to force a monthly
rainfall–runoff model, and applies a staged error model
to quantify and propagate hydrological model uncertainty.
FoGSS is intended to provide a skilful alternative to resam-
pled inflows for water agencies to use in operational plan-
ning: it is designed to extract skill from climate and catch-
ment conditions, to produce unbiased and reliable ensemble
predictions to 12-month forecast horizons, and to produce
“coherent” forecasts when skill is not available – that is, fore-
casts that are similarly skilful to climatology.

FoGSS is assessed on 63 Australian catchments, of which
21 are ephemeral rivers. FoGSS performs well in all but the
driest catchments. Skill is generally positive at shorter lead
times in both perennial and ephemeral catchments, and tran-
sitions to neutral (near-zero) skill with respect to climatol-
ogy at longer lead times. Forecast ensembles are generally
reliable. However, in very dry catchments forecasts can be
strongly negatively skilful and biased, in many cases because
the ensembles are not reliable.

We conduct three experiments to establish whether com-
ponents of the FoGSS system can be improved.

1. We use historical rainfall forcings – similar to ESP fore-
casts – to assess the contribution of forecast rainfall
forcings to forecast skill.

2. We assess three monthly rainfall–runoff models (Wa-
paba, GR2M, and ABCD).

3. We use a Bayesian prior in our parameter estimation
procedure to encourage the FoGSS error model to return
climatology forecasts in months where the hydrological
model performs poorly.

Historical rainfall forcings sometimes improve forecasts
(largely in very dry catchments) by reducing bias. However,
this comes at the cost of including useful information in rain-
fall forecasts, information that we show can accumulate over
multiple lead times. On balance we believe the inclusion of
seasonal rainfall forecasts in the FoGSS system is beneficial.

Wapaba and GR2M clearly outperform the ABCD
rainfall–runoff model, and GR2M performs slightly better
than Wapaba in ephemeral catchments. However, the advan-
tages of the GR2M model are overshadowed by the use of the
Bayesian prior. The prior reduces the instances of negative
forecast skill and reduces bias in ephemeral catchments, and
has little effect on performance in perennial catchments. The
use of the prior does not, however, result in reliable forecast
ensembles in catchments where zero flows occur more than
half the time. We point to future research that could improve
reliability in these very dry catchments.

Data availability. Rainfall data in this study are taken from the
Australian Water Availability Project (AWAP), and are available
at http://www.bom.gov.au/jsp/awap/. Potential evaporation data are
also taken from AWAP: http://www.csiro.au/awap/. Streamflow
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gauge data used in this study are available through http://www.bom.
gov.au/waterdata/.
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Appendix A

Table A1. List of catchments.

Gauge mame Gauge number Statea Perennial/ Zero Area Lon Lat Missing
ephemeral flows (%) (km2) data (%)

Cotter River above Gingera 410730 ACT Perennial 0.0 130 148.82 −35.59 1.2
Abercrombie River above Hadley No. 2 412066 NSW Perennial 1.8 1631 149.6 −34.11 2.7
Burrinjuck Dam inflows Inflows site NSW Perennial 0.0 10 310 148.58 −35.00 0.0
Corang River at Hockeys 215004 NSW Perennial 0.9 166 150.03 −35.15 4.2
Goobarragandra River above Lacmalac 410057 NSW Perennial 0.0 668 148.35 −35.33 0.3
Goodradigbee River above Wee Jasper (Kashmir) 410024 NSW Perennial 0.0 990 148.69 −35.17 10.1
Murray River above Biggara 401012 NSW Perennial 0.0 1257 148.05 −36.32 3.9
Nowendoc River above Rocks Crossing 208005 NSW Perennial 0.0 1893 152.08 −31.78 1.8
Paroo River at Willarra Crossing 424002 NSW Ephemeral 19.9 35 239 144.46 −29.24 0.0
Wollomombi River above Coninside 206014 NSW Perennial 0.0 377 152.03 −30.48 3.0
Daly River at Mount Nancar G8140040 NT Perennial 0.0 47 100 130.74 −13.83 4.8
Hugh River at South Road Crossing G0050115 NT Ephemeral 32.3 3140 133.43 −24.35 4.2
Katherine River at Railway Bridge G8140001 NT Perennial 0.0 8640 132.26 −14.46 3.3
Ranken River at Soudan Homestead G0010005 NT Ephemeral 72.4 4360 137.02 −20.05 8.3
Roper River at Red Rock G9030250 NT Perennial 0.0 47 400 134.42 −14.70 14.6
South Alligator River at El Sherana G8200045 NT Perennial 0.0 1300 132.52 −13.53 7.7
West Alligator River at Upstream Arnhem Highway G8190001 NT Perennial 0.0 316 132.17 −12.79 3.9
Barron River above Picnic Crossing 110003A QLD Perennial 0.0 239 145.54 −17.26 0.0
Burdekin River above Sellheim 120002 QLD Perennial 0.6 36 230 146.43 −20.01 7.1
Coen River above Coen Racecourse 922101B QLD Ephemeral 5.1 170 143.2 −13.94 6.0
Diamantina River at Birdsville A0020101 QLD Ephemeral 26.8 119 034 139.37 −25.91 3.3
Dulhunty River at Dougs Pad 926002A QLD Perennial 2.3 332 142.42 −11.83 8.0
Herbert River above Abergowrie 116006B QLD Perennial 0.0 7486 145.92 −18.49 0.0
Namoi River above North Cuerindi 419005 QLD Perennial 0.0 2532 150.78 −30.68 1.5
Nogoa River at Craigmore 130209A QLD Ephemeral 21.3 13 876 147.76 −23.88 13.4
Richmond River above Wiangaree 203005 QLD Perennial 0.0 712 152.97 −28.51 0.6
Stuart River at Proston Rifle Range 136304A QLD Ephemeral 16.7 1546 151.55 −26.18 41.1
Stanley River above Peachester 143303A QLD Perennial 0.0 102 152.84 −26.84 0.6
Cooper Creek at Cullyamurra Water Hole A0030501 SA Ephemeral 20.2 232 846 140.84 −27.7 0.0
Myponga US Dam and Road Bridge A5020502 SA Perennial 0.3 71 138.48 −35.38 4.5
North Para River at Penrice A5050517 SA Ephemeral 11.1 121 139.06 −34.46 3.3
Davey River above D/S Crossing Rv 473 TAS Perennial 0.0 698 145.95 −43.14 0.9
Florentine above Derwent 304040 TAS Perennial 0.0 445 146.5 −42.44 0.0
Hellyer River above Guilford Junction 61 TAS Perennial 0.0 101 145.67 −41.42 0.3
Leven River at Bannons Bridge 314207 TAS Perennial 0.0 499 146.09 −41.25 1.8
North Esk River at Ballroom 318076 TAS Perennial 0.0 363 147.38 −41.49 0.9
Ringarooma River at Moorina Bridge 30 TAS Perennial 0.0 517 147.87 −41.13 8.0
Swan River at the Grange 302200 TAS Perennial 0.0 448 148.08 −42.05 7.4
Avoca River at Amphitheatre 408202 VIC Ephemeral 9.5 83 143.4 −37.18 0.0
Lake Eildon Inflows site VIC Perennial 0.0 3877 145.97 −37.16 0.0
Lake Eppalock Inflows site VIC Ephemeral 25.6 1749 144.56 −36.88 0.0
Goulburn River above Dohertys 405219 VIC Perennial 0.0 700 146.13 −37.33 4.5
Grace Burn Creek Inflows site VIC Perennial 0.0 25 145.55 −37.64 0.0
Lake Hume Inflows site VIC Perennial 1.5 11 754 147.15 −36.08 0.0
Mosquito Creek above Struan A2390519 VIC Ephemeral 10.7 1249 140.77 −37.09 0.0
Mitta Mitta River above Hinnomunjie 401203 VIC Perennial 0.0 1518 147.61 −36.95 4.5
O’Shannassy Reservoir Inflows site VIC Perennial 0.0 127 145.81 −37.68 0.0
Ovens inflows Inflows site VIC Perennial 0.0 7515 146.33 −36.36 0.0
Tanjil Junction inflows 85266 VIC Perennial 0.0 289 146.19 −37.98 0.0
Thomson Reservoir Inflows site VIC Perennial 0.0 487 146.37 −37.79 0.0
Tambo River above Swifts Creek 223202 VIC Perennial 0.0 899 147.72 −37.26 3.9
Upper Yarra Reservoir Inflows site VIC Perennial 0.0 337 145.92 −37.68 0.0
Watts River inflows Inflows Site VIC Perennial 0.0 104 145.55 −37.64 0.0
Darkin River at Pine Plantation 616002 WA Ephemeral 50.8 665 116.29 −32.07 0.9
Denmark River at Mt. Lindesay 603136 WA Perennial 5.1 502 117.31 −34.87 0.0
Deep River above Teds Pool 606001 WA Ephemeral 17.0 468 116.62 −34.77 0.0
Fitzroy River at Fitzroy Crossing Br 802055 WA Ephemeral 4.2 46 133 125.58 −18.21 0.3
Gascoyne River at Nine Mile Bridge 704139 WA Ephemeral 60.1 74 432 113.77 −24.83 0.0
Harvey River above Dingo Road 613002 WA Perennial 0.6 148 116.04 −33.09 2.4
Marillana Creek at Flat Rocks 708001 WA Ephemeral 29.8 1370 118.97 −22.72 0.0
Ord River at Old Ord Homestead 809316 WA Ephemeral 26.2 19 513 128.85 −17.37 3.3
Serpentine Reservoir Inflows site WA Ephemeral 7.1 664 116.10 −32.4 0.0
Young River at Neds Corner 601001 WA Ephemeral 42.6 1893 121.14 −33.71 0.0

a Abbreviations of Australian state names: ACT: Australian Capital Territory; NSW: New South Wales; NT: Northern Territory; QLD: Queensland; SA: South Australia; TAS: Tasmania; VIC:
Victoria; WA: Western Australia. Locations of states are shown in Fig. A1.
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Figure A1. Distribution of gauge/inflow sites showing ephemeral/perennial streams.
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Appendix B

Figure B1. Hydrological model structures and parameters.
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Appendix C: Posterior density used for estimation of
Stage 2 parameters

We assume that residuals are normally distributed. Be-
cause parameters in Eq. (2) vary by month, i = 1, 2, . . . ,
12=month(t), it follows that the residual distribution also
varies by month:

zo (t)= z2 (t)+ ε2 (i) ,

ε2 (i)∼N
(

0,σ 2
2 (i)

)
. (C1)

The Stage 2 parameters to be estimated (from Eqs. 2 and C1)
are denoted as

θ2 (i)= {d (i) ,µ(i) ,σ2 (i)} . (C2)

We maximize the posterior density

p(qo (t) |θ2 (i) ,q1 (t) )∝ p(d)
∏
t∈Ti

Jq→zN (zo (t) |z2(t),σ2 (i) ) ,

(C3)

where q1 is the simulation produced with Stage 1, the Jaco-
bian (from the log-sinh transformation), Jz→q , is given by

Jz→q =
1

tanh(a+ bqo (t))
(C4)

and p(d) is the prior on the d parameter (Sect. 4.4),

p(d)= d ∼N
(

0,σ 2
d

)
. (C5)

If qo (t)= 0, then the likelihood term
Jq→zN (zo (t) |z2 (t) ,σ2 (i) ) in Eq. (C3) is substituted

with the normal cumulative probability 8
(
zc−z2(t)
σ2(i)

)
, where

zc = TF(0) is the log-sinh transformed value of zero (see
Eq. 1).
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