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Abstract. Load estimates are more informative than con-
stituent concentrations alone, as they allow quantification of
on- and off-site impacts of environmental processes concern-
ing pollutants, nutrients and sediment, such as soil fertility
loss, reservoir sedimentation and irrigation channel siltation.
While statistical models used to predict constituent concen-
trations have been developed considerably over the last few
years, measures of uncertainty on constituent loads are rarely
reported. Loads are the product of two predictions, con-
stituent concentration and discharge, integrated over a time
period, which does not make it straightforward to produce
a standard error or a confidence interval. In this paper, a lin-
ear mixed model is used to estimate sediment concentrations.
A bootstrap method is then developed that accounts for the
uncertainty in the concentration and discharge predictions,
allowing temporal correlation in the constituent data, and can
be used when data transformations are required. The method
was tested for a small watershed in Northwest Vietnam for
the period 2010-2011. The results showed that confidence
intervals were asymmetric, with the highest uncertainty in
the upper limit, and that a load of 6262 Mg year—! had a 95 %
confidence interval of (4331, 12267) in 2010 and a load of
5543 Mg an interval of (3593, 8975) in 2011. Additionally,
the approach demonstrated that direct estimates from the data
were biased downwards compared to bootstrap median esti-
mates. These results imply that constituent loads predicted
from regression-type water quality models could frequently

be underestimating sediment yields and their environmental
impact.

1 Introduction

The environmental impact of processes such as erosion, sed-
imentation, eutrophication or degradation of aquatic ecosys-
tems can only be quantified through reliable estimates of sed-
iment, nutrient or pollutant loads (Walling and Webb, 1996).
Monitoring constituent concentrations alone does not suffice
as these provide information on in-stream quality but offer no
means to evaluate outcomes such as reservoir siltation, ero-
sion, soil fertility loss and pollution at the watershed scale —
both on- and off-site. Despite abundant literature developing
appropriate procedures for load estimates, most studies do
not report a measure of uncertainty on the load (Kulasova et
al., 2012).

In this paper, we will use the example of one of the most
commonly measured constituents, suspended sediment, but
the methodology developed is applicable to any constituent
load. For suspended sediment, the most frequently used
method to estimate loads is the so-called rating curve method
(Gao, 2008; Horowitz, 2008). In this approach, the sus-
pended sediment concentration (SSC) is predicted by some
form of least squares regression with (often log-transformed)
discharge as the explanatory variable. This approach intro-
duces two sources of uncertainty into the load equation: the
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uncertainty in the sediment concentration equation (the so-
called sediment rating curve), and the uncertainty in the dis-
charge, as discharge is usually not measured directly, but
rather is predicted from a stage—discharge rating curve, with
water level as the predictor variable. Any measure of uncer-
tainty on the constituent load must take into account the un-
certainty in both the constituent concentration and the dis-
charge.

Uncertainty of the sediment concentration prediction has
been extensively discussed and, depending on the catchment
characteristics, generally good concentration predictions are
obtained with errors smaller than 15 % (Horowitz, 2008). In
some studies, however, the uncertainty is stated to be con-
siderable. Smith and Croke (2005) for example reported that
discharge only explained a quarter of the variability in the
concentration data. Walling and Webb (1988) suggested that
seasonal differences of the relationship between discharge
(Q) and constituent concentration, non-simultaneity of Q
and concentration peaks during storms, hysteresis and ex-
haustion effects are the most important causes of inaccuracy
in concentration predictions. Few studies to date have taken
this error on the discharge rating curve into account explicitly
when calculating uncertainty on load estimates (Vigiak and
Bende-Michl, 2013; Rustomji and Wilkinson, 2008). Uncer-
tainties of discharge, however, depend on several factors:
the method chosen to estimate the discharge, site conditions
and the time interval over which water levels are measured
(Harmel et al., 2009; Hamilton and Moore, 2012; McMillan
et al., 2012; Tomkins, 2014). In general, discharge is esti-
mated more accurately than constituent concentration. Dis-
charge, however, enters the load equation twice — once as
predictor variable for the concentration, and once multiplied
with the concentration to get the instantaneous load. There-
fore, it deserves further investigation whether or not the error
on the discharge estimate can safely be ignored, and in which
circumstances. Finally, as discharge is frequently used as a
predictor for constituent concentration, the two variables are
correlated and their errors cannot be assumed to be indepen-
dent. As a result, there is no textbook formula to estimate the
variance of a constituent load.

Therefore, authors that do report a measure of uncertainty
often select a method that is specifically geared towards the
application of load estimation at hand and not necessarily
applicable to other sites, making it hard to compare results
throughout the literature. Harmel et al. (2009), for exam-
ple, developed a software tool to assess the errors introduced
from estimating discharge, sample collection, preservation
and storage, and lab analysis. In this tool, each of these
sources is considered to be the result of random variability
following a normal distribution. The sources of error are as-
sumed to be independent of each other, and it is assumed that
the errors follow an additive law, but these assumptions will
not apply in all situations.

Moatar and Meybeck (2005) assessed uncertainty on nu-
trient loads by comparing loads based on a random subsam-
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ple of measurement times, with a high-resolution load that
is considered the “true” load. This approach is suitable for
testing different methods and different temporal measure-
ment resolutions of load estimation, but it does not assess
the uncertainty of the “true” load, as it is assumed that, with
sufficiently high sampling frequency (in their case, daily),
the measured load is equivalent to the actual load. More re-
cently, two new candidate approaches have emerged to calcu-
late confidence intervals on loads that have the potential to be
generally applicable, regardless of the method used to calcu-
late the load and the distributional assumptions made: boot-
strap methods (Mailhot et al., 2008; Rustomji and Wilkinson,
2008; Vigiak and Bende-Michl, 2013) and Bayesian methods
that result in credibility intervals (Pagendam et al., 2014; Vi-
giak and Bende-Michl, 2013).

The bootstrap is a Monte Carlo-type method, where a large
number (B) of datasets are simulated — either by sampling
with replacement from the original data in the case of the
non-parametric bootstrap or by sampling from a fitted dis-
tribution in the case of the parametric bootstrap (Efron and
Tibshirani, 1993). Bootstrap methods, however, were origi-
nally developed for independent, identically distributed ran-
dom variables. In the context of sediment monitoring the as-
sumption is that the observations used to build the regression
model are independent in time. This can be realistic in fixed-
interval sampling schemes where the sampling time inter-
val is large, or in the case of discharge where measurements
to build the stage—discharge relationship are typically taken
far apart in time. For sediment concentration, however, flow-
proportional sampling is often performed to obtain samples
at the highest concentrations. Those observations are usually
taken closely together during storms and thus most likely are
not independent in time (Slaets et al., 2014). Linear mixed
models that model the serial correlation provide an alterna-
tive to least squares regression to establish a sediment rating
curve for this type of data. Lessels and Bishop (2013) sim-
ilarly found that the inclusion of a temporal autocorrelation
component improved the accuracy and decreased the bias in
predictions of total phosphorus and nitrogen river loads. If
there is serial correlation in the sediment data, it is neces-
sary to use an adjusted version of the bootstrap that retains
the serial correlation in the data intact (Lahiri, 2003). Such
methods have already been explored in hydrology in relation
to the discharge rating curve: Ebtehaj et al. (2010) and Selle
and Hannah (2010) use block bootstrap methods to assess
uncertainty in and improve robustness of model parameter
estimates for discharge prediction.

To assess uncertainty in constituent loads estimated from
continuous concentration and discharge predictions where
serial correlation is present, we propose a bootstrap-based
method to assess uncertainty in constituent loads that can be
used with transformed data, that accounts for the uncertainty
in both the sediment rating curve and the stage—discharge rat-
ing curve, and that allows for serial correlation in the time se-
ries data. We checked whether any of these requirements can
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safely be neglected in certain circumstances, and how they
affect the resulting confidence intervals. The corresponding
code in SAS was created and is available online to accommo-
date these different scenarios (https://www.uni-hohenheim.
de/bioinformatik/beratung/index.htm).

Our specific aims were: (i) to establish a generally appli-
cable method to calculate confidence intervals on constituent
loads, using bootstrap methods, (ii) to account for serial cor-
relation in the data, (iii) to assess whether or not the effect
of the uncertainty on discharge is negligible, (iv) to evaluate
how data transformations affect the calculations, and (v) to
determine the number of bootstrap replicates required to ob-
tain reliable confidence intervals. Combining these aspects,
the proposed method provides a means to assess uncertainty
on any type of constituent load which was calculated from
continuous constituent concentration and discharge predic-
tions estimated with regression-type methods. The approach
thus allows load estimates to be reported with an uncertainty
assessment, rather than as a point estimate alone, making
them informative to end users and decision makers.

2 Material and methods
2.1 Discharge and sediment concentration

Discharge and suspended sediment concentrations were con-
tinuously monitored for a period of 2 years (1 January 2010—
31 December 2011) in a small agricultural catchment in
mountainous Northwest Vietnam. The catchment is located
in the Chieng Khoi commune (21°760” N, 105°40'0" E,
350 ma.s.l), Yen Chau district, in the tropical monsoon belt
where the rainy season begins in April and ends in Octo-
ber. Average annual precipitation is around 1200 mm; aver-
age annual temperature is 21 °C. The occurrence of typhoons
is not uncommon especially at the end of the rainy season,
and daily rainfall amounts can rise to 200 mm. The largest
storm during the 2 years of this study was on 12 July 2011
and consisted of 73 mm of rainfall in 3 h. The dominant soils
are Alisols and Luvisols (Clemens et al., 2010). The land-
scape has an altitudinal range between 320 and 1600 ma.s.1.
with slopes ranging from 0.05 to 65 %. The measurement lo-
cation is in a river at the outlet of a small watershed with a
contributing area of 2 km?, of which 0.6 km? consist of paddy
fields. A 26.3 ha surface reservoir with a buffering capac-
ity of 10°m?> provides irrigation water for rice production
via concrete irrigation channels, and the paddies drain into
the monitored river. As the reservoir fills up with the pro-
gression of the rainy season, excess water is removed via a
spillover which drains into the river, typically from July till
October. During this period, discharge in the river is an or-
der of magnitude larger than during times when the spillover
is not active: mean daily discharge in the dry season equaled
0.08 m? s~ ! (with a standard deviation of 0.13 m? s~ 1), while
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mean daily discharge with the spillover active amounted to
1.22 m? s~! (with a standard deviation of 0.66 m3 s~ !).

For the discharge monitoring, water levels were mea-
sured every 2 min for the river station using pressure sensors
(EcoTech, Germany). The stage—discharge relationship was
established with the velocity-area method (Herschy, 1995),
where the velocity is measured with a propeller-type current
meter (OTT, Germany) at one or more points in each vertical,
depending on the water depth. The discharge is subsequently
derived from the sum of the product of mean velocity, depth
and width between verticals. Discharge measurements were
never taken on the same day, and the closest time interval
between two measurements was 1 week. The estimated dis-
charge Q in m?s~! at time i was then predicted from

logQ; = logé + 7 log (h; — B), (1)

where h; is the water level (in m) at time i, & and y the esti-
mated rating curve constants and 8 the measured sensor off-
set, with @ and y estimated using the method of least squares
on the log-transformed scale. This transformation was done
to stabilize the variance.

As the irrigation management disturbed the natural rela-
tionship between Q and SSC, a turbidity-based method was
used to monitor SSC. Turbidity was measured every 2 min
with NEP395 sensors (McVan, Australia); 228 water sam-
ples were collected using a storm-based approach, by taking
around 20 grab samples per sampled rainfall event in order
to accomplish the best possible coverage of all concentra-
tion ranges; 188 storm-flow samples were collected during
24 rainfall events over the 2-year duration of the study. Ad-
ditionally, every 2 weeks a base-flow sample was taken. The
sediment concentration was determined gravimetrically on a
sample of 500mL by letting it settle overnight in refriger-
ated conditions, prior to siphoning off the supernatant and
drying the remaining sediment at 35 °C, as is recommended
for samples with very high sediment concentrations (ASTM,
2013).

Rainfall was quantified with a tipping-bucket rain gauge
on a weather station (Campbell Scientific, USA). Events
were defined based on rainfall data (no pause in precipita-
tion for longer than 30 min) and lag times were added based
on cross-correlation analysis as described in Schmitter et
al. (2012). A total of 420 rainfall events took place and were
monitored during the 2-year study period.

Continuous sediment concentrations were then obtained
from a mixed model described in Slaets et al. (2014). The
response variable, sediment concentration, was Box—Cox-
transformed to stabilize the variance using the SAS macro
described in Piepho (2009). The optimal value of the trans-
formation parameter was estimated by the maximum likeli-
hood method, and the selected value was the log transforma-
tion. Other transformations, such as the square root, were in-
spected using residual plots and were found to be unsuitable
for meeting the assumptions of normality and homoscedas-
ticity. Predictor variables were chosen with forward selection
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based on the Akaike information criterion (AIC). The model
uses turbidity and discharge as quantitative predictor vari-
ables, and accounts for serial correlation. As surface reser-
voir irrigation management was present in the watershed,
classic variables related to catchment characteristics such as
hysteresis patterns and exhaustion effects were not suitable
predictors of sediment concentration. The predictor variables
turbidity and discharge were also log transformed. All sam-
ples from the 2-year study period were used to build the con-
centration prediction model, and load estimates from both
years are thus predicted from the same model with the same
parameter estimates. All statistical analyses were performed
using the MIXED procedure of SAS 9.4, which can fit linear
models with more than one random effect. The covariance
structure used to model serial correlation in the present study
was a first-order autoregressive (AR(1)) model, which was
selected based on the AIC. Assumptions of normality and
homogeneity of variance were checked visually using diag-
nostic plots.

Conceptually, the concentration prediction error can also
be separated into an underlying latent autoregressive process
generating the true concentrations, and an independently dis-
tributed measurement error corresponding to white noise in
time series data. The white noise is equal to the error that
would remain if two measurements were conducted at al-
most coinciding time points. This variability is typically at-
tributable to measurement error and in spatial statistics, this
is what is known as a nugget effect. In the MIXED proce-
dure, this effect was fitted by using the local option in the
repeated statement.

Validation was performed using 5-fold cross validation,
in which the dataset is split randomly into five parts, and
each part is used four times to calibrate the model, and one
time for validation, so that each observation in the dataset is
used for validation once. Pearson’s correlation coefficient (r)
was calculated between the observed and predicted values
resulting from the validation. A SAS macro that performs
k-fold cross validation (k = 5 in our case) for linear mixed
models using the MIXED procedure is described in Slaets et
al. (2014). Additionally, event-based 5-fold cross validation
was performed, where all samples belonging to single events
were resampled jointly, rather than individual observations.

2.2 Bootstrap resampling procedure

In the non-parametric bootstrap, a large number (B) of ran-
dom samples, of the same size as the original dataset, is
drawn by sampling observations with replacement from that
original dataset. For each of the B bootstrap samples, the
sample statistic of interest (in this case, the sediment load)
is calculated and from the resulting empirical distribution,
measures of uncertainty can be obtained. As this empirical
distribution is only a good approximation of the true distri-
bution when the bootstrap resampling mechanism is able to
recreate the original sampling process (Efron and Tibshirani,
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1993), we need to understand the sampling processes result-
ing in the annual sediment load. Since neither discharge nor
constituent concentration are measured continuously, annual
loads are normally estimated by calculating the sum of in-
stantaneous loads, measured at equally spaced discrete points
in time. The load at a time i is then generated from

A

L= Q,’ X é,‘, (2

where ii is the estimated instantaneous load at time i in
gs~ !, Q,- is the estimated discharge at time i in m>s~! and
C; is the estimated concentration at time i in gm™3. These in-
stantaneous loads are multiplied by a time factor accounting
for the monitoring interval. In the present study, for exam-
ple, the factor was 120 s, as measurements were done every
2 min. Monthly or annual loads in Mg can then be calcu-
lated by simply summing up the instantaneous loads for the
whole time interval and multiplying by a factor 107° to con-
vert from mg to Mg:

Liw: = Zizl(ii x 120 x 107°). 3)

Looking at Eq. (2) for the load estimate at a time i, there
are really two separate sampling processes from two distinct
populations at work in the load estimation: firstly the sam-
pling for the discharge rating curve (pairs of Q and A from
the full time series of Q and % pairs), and secondly, the sam-
ples used to build the sediment rating curve (observations of
C and hydrological predictor variables from the full time se-
ries of C, Q and turbidity). In order to assess the uncertainty
of the discharge equation, the bootstrap replicates can be cre-
ated by simply sampling (Q, &) pairs at random with replace-
ment from the original dataset. Simple random resampling
assumes independence, which is dependent on the monitor-
ing scheme: in the case of our dataset, discharge measure-
ments were never taken on the same day, and the smallest
interval between two measurements was 1 week. In order to
test this assumption, an AR(1) variance—covariance structure
was fitted to the discharge data. As the AIC showed an in-
crease of two points compared to an independent structure,
no serial correlation was present in the (Q, h) pairs. Using
Eq. (1), bootstrap discharges Qf can be generated according
to

logQ} = logd* + 7 *log(h; — ), (4)

where h; is the water level at time i, 8 is the measured sen-
sor offset, and &* and y* are the bootstrap estimates of the
discharge rating curve parameters. These B predictions of
0, B being the number of bootstrap repetitions, must subse-
quently be fed into the bootstrapped sediment rating curve,
as discharge typically is one of the predictor variables for
SSC. But the previously described resampling mechanism
cannot be applied to the observations used to build the sedi-
ment rating curve, as the simple random sampling assumes
that the observations are independent. Water samples are
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often collected in a storm-based approach, as was done in
this study, where they were collected sometimes only min-
utes apart during rainfall events. For these types of hydro-
logical datasets where temporal autocorrelation is present,
Ebtehaj et al. (2010) recommended the use of specialized
sampling procedures that keep the serial correlation intact,
such as the moving block bootstrap, the circular block boot-
strap or the stationary block bootstrap, described in detail by
Lahiri (2003) and applied to constituent concentrations by
Hirsch et al. (2015).

Among these specialized methods, no preferred method
has emerged from the literature. Furthermore, many of these
methods require a vast set of decisions such as for exam-
ple the block size for which no general recommendation ex-
ists. As a consequence, results from different methods are not
straightforward to compare. As the goal of the bootstrap is to
mimic the original sampling process, however, there is an in-
tuitive choice in the case of event-based sampling: the rainfall
events form natural “blocks” or sampling units, which is why
water quality models used to predict continuous time series
and thus new events should be validated on an event basis,
rather than on a sample basis (Lessels and Bishop, 2013).
So rather than sampling with replacement from the individ-
ual observations (water samples representing a single time
point), all samples belonging to one event can be resampled
with replacement, thus keeping all observations within one
event together and maintaining the serial correlation intact.

On the other hand, base-flow samples are typically taken
at fixed time intervals far apart in time (here every 2 weeks).
They can therefore be considered to be independent and
can be resampled by simple random sampling with replace-
ment, thus bootstrapping individual water samples from sin-
gle time points. In a previous model published in Slaets
et al. (2014), we explored the use of several alternative
variance—covariance structures to model the serial correla-
tion. The selected spatial power model unfortunately caused
non-convergence for a large number of the bootstrap repli-
cates when using it for bootstrap load estimates, and there-
fore the AR(1) structure was implemented as it did not
have convergence issues. The difference in AIC between the
AR(1) and spatial power models was four points. Therefore
the spatial power model is most likely the best performing
model, but there is still considerable support for the AR(1)
model (Burnham and Anderson, 2002). The spatial power
structure with time as the coordinate showed that the auto-
correlation becomes nearly zero for samples taken more than
80 min apart — which coincides with the average duration of
rainfall events. Therefore the base-flow samples were consid-
ered to be independent. An increase in AIC of one point when
fitting a first-order autoregressive covariance structure con-
firmed the lack of serial correlation in the base-flow samples.
By resampling events with replacement for the storm-flow
samples and observations with replacement for the base-flow
samples, B time series of predicted sediment concentration
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6'1* are generated from
Cr=5+0M"x,, 5)

with 8* and D* the bootstrap estimates of the intercept and
the regression coefficients, respectively, (0*)7 the transpose
of vector 1* and X; the design vector of the fixed effects. This
is a generalized equation applicable to any linear model, re-
gardless of the number of predictor variables. If the sediment
concentration was predicted using turbidity and discharge,
for example, the bootstrap time series of predicted sediment
concentration would be generated from

Cr =8 +7*0f +#*T;, (6)

where 7* is the bootstrap parameter estimate of the regres-
sion coefficient for Q;“, the bootstrap discharge at time i gen-
erated from Eq. (4), and £* the bootstrap parameter estimate
of the regression coefficient for 7;, the turbidity at time i,
respectively.

This resampling process accounts for the uncertainty that
arises from estimating the parameters of the sediment rating
curve from a dataset with a limited number of observations.
If there were an unlimited number of water samples avail-
able, the uncertainty of these parameter estimates would de-
crease to zero. But it is more realistic to assume that, even
if there were a very large number of samples available, there
would still remain scatter in the real constituent concentra-
tions around the equation, as the equation simply does not
fully explain all the variation in sediment concentration. Sed-
iment loads vary not only with discharge, but also with up-
stream sediment supply, which in turn depends additionally
on geology, soil types, land cover and land use change or
management, all influencing sediment quantity and quality
(Walling, 1977). Therefore, there is a fundamental reason for
the scatter in the data: sediment loads are inherently non-
capacity loads. Even if there were an unlimited number of
samples available, this would not result in a perfect equation
to predict sediment concentration. Therefore this additional
uncertainty needs to be taken into account. For the discharge
rating curve, if the river bed is stable and the stream bank
vegetation does not change, the stage—discharge equation has
a high accuracy and it is reasonable to assume the only error
in the equation is measurement error; therefore, this addi-
tional uncertainty is not a concern.

To introduce this second source of error on the sediment
rating curve, Rustomji and Wilkinson (2008) and Vigiak and
Bende-Michl (2013) added an additional step to the boot-
strap process: a randomly drawn residual from the original
regression equation was added to the expected value of the
constituent concentration, so that the predicted concentration
included both the uncertainty of the parameters of the rat-
ing curve due to having a finite sample, and the uncertainty
that arises from the fact that sediment concentrations simply
cannot be perfectly predicted by any equation, regardless of
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Figure 1. Flowchart showing the three-step bootstrap mechanism.

how large the observed dataset would be. However, by ran-
domly resampling from the residuals, it is assumed that these
residuals are independent.

When this assumption does not hold because samples are
taken very closely together in time, as was the case for our
dataset, the method can be modified so that the added errors
reflect the temporal autocorrelation. To this end, the covari-
ance parameter estimates from the original sample can be
used as plug-in estimates. In the present dataset, an AR(1)
structure was fitted to the data (Verbeke and Molenberghs,
2009), resulting in two covariance parameter estimates: one
for the autocorrelation parameter (0) and one for the resid-
ual error variance (662). The restricted maximum likelihood
algorithm was used to simultaneously estimate the fixed ef-
fects and the covariance structure (Patterson and Thompson,
1971). The use of the covariance parameter estimates ob-
tained assuming a normal distribution of errors implies that
the method is partly parametric. This is necessary in order to
take the serial correlation in the data into account. The boot-
strap error term e* at time i was then generated according to
the following equation:

N Ak A A2
& = ety /(- (07 x £,

where o* is the bootstrap estimate of the autocorrelation pa-
rameter, and the error fl* was randomly drawn from a normal
distribution with mean zero and a bootstrap variance (6:)2.
The bootstrap prediction of a sediment concentration at time

(N
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i, including the error expected due to residual scatter in the
data, is then given by

Crer =8+ 0N Xi+p%e  +/ (1= (5)) x £ 8)

In summary, the complete bootstrap process that accounts for
uncertainty in the parameter estimates of both the discharge
and sediment rating curves and uncertainty due to residual
scatter in the sediment concentrations consists of three steps
(Fig. 1):

1. resampling with replacement from the (Q, h) pairs B
times, in order to get B bootstrap stage—discharge equa-
tions; applying these equations to the continuous water
level data to obtain B bootstrap time series (Q*) for dis-
charge;

2. block-bootstrapping the (C, turbidity, Q*, rainfall)
dataset by drawing whole events and base-flow sam-
ples with replacement, in each replicate plugging in the
corresponding bootstrap Q* from Step 1, in order to
get B bootstrap sediment rating curves; then applying
these bootstrap sediment rating curves to the continuous
turbidity, Q*, and rainfall data to obtain B time series
for the continuous suspended sediment concentration;
and

3. adding an error term to the concentration predictions to
account for the residual scatter that is inherent to the
sediment concentration.
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In order to obtain a bootstrap estimate of the instantaneous
load L at time i, the equation is

L= QF x (Cr+&). 9)

The residual scatter on the discharge is not added, as the
stage—discharge rating curve has a much higher accuracy on
the one hand, and on the other hand, velocity measurements
are typically taken quite far apart in time, which would not
allow modeling of the serial correlation of the time series for
discharge, but this would be needed because of the shortness
of the time intervals considered here (2 min).

Finally, these bootstrap instantaneous load estimates can
be summed up for the whole time interval, resulting in B
estimates of monthly or annual loads:

Lt e =D (LF x 120 107°). (10)
2.3 Data transformations

If the data are not normally distributed, it can be necessary to
transform variables, as was done for this dataset with a Box—
Cox transformation. In this case, the variables in question
can simply be transformed before starting the bootstrap, and
all the bootstrap estimates are obtained on the transformed
scale. The back-transformation is then performed in Eq. (9)
to obtain load estimates on the original scale. For example,
in a typical case where both discharge and sediment concen-
tration need to be log-transformed, the bootstrap predictions
of discharge in Eq. (4) and of concentration in Eq. (8) will
be on the log scale. These predictors then need to be back-
transformed to the original scale using the inverse of the log-
arithm.

This approach is applicable to any type of data transforma-
tion, and thus offers a flexible framework that can accommo-
date different methods of estimating the constituent concen-
tration. However, if a modeled residual error term é;.k is not
included, care must be taken with the back-transformation.
With nonlinear data transformations (the log-transformation
and the Box—Cox transformation being prime examples),
predicted means cannot be naively back-transformed and in-
terpreted as means on the original scale. Correction factors
can be applied that compensate for the underestimation of
SSC that arises from doing the predictions on the trans-
formed scale. A commonly used non-parametric correction
factor is Duan’s smearing estimator (Duan, 1983), where
the sample average of the exponentiated residuals from the
model is used as the correction factor. Duan’s smearing es-
timator assumes independent and identically distributed er-
rors, however, and is therefore also not a suitable alternative
when serial correlation in the data is present. Alternatively,
as pointed out by Rustomji and Wilkinson (2008), adding
the modeled residual error removes the need to apply a cor-
rection factor and is therefore the recommended approach.
Regardless of the chosen correction factor, it is important
that homoscedasticity after the transformation is confirmed
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by visually inspecting the diagnostic plots, as was done in
the case of this dataset. While discharge is also typically
predicted on the log-transformed scale, in our dataset the
variance was much smaller than that of the concentration
data. With a small variance, the log-normal distribution is
nearly normal and, therefore, the naive back-transformation
of log(Qi) should approximate the mean well.

2.4 Alternative option to simulate errors

If a data transformation is required and one does not want
to explicitly simulate the residual scatter, then a correc-
tion factor must be applied to the back-transformed concen-
tration. This correction is needed because the naive back-
transformation (for example, taking the exponent of the pre-
dictions if the predictions are on the log scale) does not yield
a predicted mean, but rather a predicted median. While me-
dians can be informative measures of a central tendency to
skewed datasets, they are not appropriate when the objective
is to calculate a constituent load: loads are sums over equally
spaced time points, and in order to obtain an unbiased es-
timate of this sum over time intervals, we need to sum up
estimates of the expected values, rather than the medians, for
each interval.

The required correction factor is specific to the type of
data transformation. For a logarithmic transformation, the
expected value can be obtained by adding on half of the
residual error variance to the predicted concentration on the
log scale before back-transforming. For other cases of the
Box—Cox transformation, the correction depends on the se-
lected transformation parameter. Solutions for specific exam-
ples of the transformation parameter can be found in Free-
man and Modarres (2006). As the selected transformation
in this dataset was the logarithm, the correction of adding
half the residual error variance before back-transforming was
compared to the approach where the error is simulated, in or-
der to see how this affects sediment load estimates and the
resulting confidence intervals.

2.5 Bootstrap confidence intervals

A straightforward way to calculate a confidence interval (CI)
on a parameter after bootstrapping is the bootstrap percentile
method (Efron and Tibshirani, 1993). If a 95 % CI is re-
quired, the confidence interval would simply be calculated
by ordering the bootstrap load estimates from small to large
and taking the 2.5th and 97.5th percentiles as the lower and
upper limits.

This method was used by Rustomji and Wilkinson (2008)
on sediment loads and is transformation-respecting, also
when the sample statistic is not normally distributed (Efron
and Tibshirani, 1993). This property is important in the case
of loads, because data are typically log-transformed. As a
confidence interval depends on the tail of the empirical boot-
strap distribution where fewer samples occur, a relatively
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large number of bootstrap replicates (upward of 500) are
usually required to achieve acceptable accuracy (Efron and
Tibshirani, 1993). How many exactly depends on the statis-
tic in question, and should be empirically tested for each
case: when the process is repeated, the resulting CI should
not greatly differ, otherwise the number is too small. In the
present dataset, a choice of 2000 bootstrap replicates yielded
replicable results.

Improving upon the bootstrap percentile method, Efron
and Tibshirani (1993) proposed bias-corrected and acceler-
ated intervals, used by Vigiak and Bende-Michl (2013). Un-
fortunately, this approach requires an even larger number
of bootstrap replicates than the percentile method to suffi-
ciently reduce the Monte Carlo sampling error. This is a dis-
advantage when working with hydrological time series, as
the datasets typically contain a large number of records al-
ready. This method then quickly becomes time consuming,
and therefore in this paper, preference was given to the more
intuitive and less computationally intensive bootstrap per-
centile method.

2.6 Identifying hydrological drivers of uncertainty

The proposed three-step bootstrap process offers an opportu-
nity to assess the importance of different aspects of the load
calculation for the accuracy of the estimate. By leaving out
step 1 (bootstrapping the Q —h pairs) and just using Q as pre-
dicted by the discharge rating curve from all observed data
points, confidence intervals can be obtained that only take
into account the uncertainty on the sediment rating curve. If
the resulting confidence intervals closely resemble the confi-
dence intervals calculated with the full approach, this would
mean that the uncertainty in the sediment concentration is
what drives the uncertainty in the loads, thus supporting the
finding that the error in the discharge is negligible compared
with other sources of uncertainty (e.g., Némery et al., 2013,
Vigiak and Bende-Michl, 2013).

As the accuracy of the stage—discharge relationship de-
pends on the type of streambed, the method chosen and the
number of measurements taken, this assumption might also
hold true for some watersheds such as the one in this study,
where the relationship had a high RZ, but not for others. To
determine at which point the uncertainty in Q must be taken
into account for the load confidence interval, datasets of (Q,
h) pairs were simulated with decreasing R? (0.95,0.90, 0.85
and 0.80), and were each used as an input dataset for boot-
strapping the stage—discharge relationship (Step 1 in Fig. 1)
in order to test the sensitivity of the confidence intervals to
the accuracy of the discharge rating curve. The datasets with
a fixed realized R? were simulated by a rescaling of errors
which is described in Appendix A, and SAS code to perform
the simulation can be found in the Supplement.
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Figure 2. Discharge rating curve plotted on the log-transformed
scale showing the 95 % confidence interval for the regression line
(dark grey) and for new predictions (light grey). Stage—discharge
rating curve: log(discharge) =(9.0819 - log(water level)) — 2.6423
(n=15, R? = 0.98).

3 Results
3.1 Rating curves and load estimates

The coefficient of determination of the stage—discharge rela-
tionship was 0.98 (n = 15, Fig. 2). Homoscedasticity was ob-
served on the log-transformed scale (Fig. 3). For the sediment
rating curve, Pearson’s r between observed and predicted
values on the log-transformed scale was r = 0.75 after 5-fold
cross validation (n =228, Fig. 4). Event-based cross valida-
tion yielded very similar results, demonstrating the robust-
ness of the model (r = 0.77). The sediment rating curve tends
to overpredict low concentrations and underpredict high con-
centrations for new data, as is visible in Fig. 4. This tendency
of regression towards the mean is typically seen when mod-
els are fitted to very noisy data, and is also well documented
in erosion studies (Nearing, 1998). Thus, in the case of our
dataset, the discharge rating curve explained a higher pro-
portion of the variance than the sediment rating curve, as is
typical. Again, homoscedasticity was observed on the log-
transformed scale (Fig. 5). The bootstrap parameter estimates
for p of the AR(1) process varied from 0.56 to 0.93 with a
mean of 0.77, showing the block bootstrap kept the serial
correlation intact as required.

The size of the estimated load depended on the method
chosen for estimation. First, the load was calculated directly
from the model estimates based on the full datasets, with-
out bootstrapping (Direct estimate in Table 1). The sediment
concentrations in this case were back-transformed by ap-
plying the correction appropriate for log-transformed data,
which is to add half the residual error variance before back-
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Table 1. Annual sediment load estimates (in Mg per year) for the 2 years of the study directly estimated without bootstrapping, and load
estimates with 95 % confidence interval limits and interval widths (difference between the upper and lower limits) for the three different boot-
strap methods: the full method shown in Fig. 1, the method without modeled error (i.e., leaving out Step 3 in Fig. 1) and the method without
bootstrapping discharge (i.e., leaving out Step 1 in Fig. 1) (n/a: not applicable).

Error source ‘ 2010 ‘ 2011
Method Autocorrelation ~ Q-equation ‘ Estimate Lower Upper  Width ‘ Estimate Lower Upper Width
‘ Mga™ 1 ‘ Mg a~!
Direct estimate 5607 n/a n/a n/a 4997 n/a n/a n/a
Full bootstrap method v v 6262 4331 12267 7936 5543 3593 8975 5383
Bootstrap without modeled error v 6575 4372 14586 10214 5839 3713 10410 6697
Bootstrap without discharge v 5944 4203 11649 7446 5413 3521 8394 4876
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Figure 3. Residual plot for the discharge rating curve, showing
studentized residuals versus the predicted discharge (on the log-
transformed scale).

transformation. Second, the median of the bootstrap esti-
mates of the sediment load was taken, where, identically to
the first case, the concentrations were corrected by adding
half the residual error variance before back-transforming
(Bootstrap without modeled error in Table 1). Third, the me-
dian of the bootstrap estimates was taken for the bootstrap
process that included a modeled, autoregressive error term
(Full bootstrap method in Table 1).

For this last estimation method, the annual sediment load
was estimated to be 6262 Mg in 2010 and 5543 Mg in 2011
(Table 1). When the median from the bootstrap sediment load
estimates was taken without modeled error, but rather apply-
ing the back-transformation correction, the load was approx-
imately 5 % higher for both annual and monthly load esti-
mates (Table 1 and Fig. 6). The annual loads thus amounted
to 6575Mg in 2010 and 5839 Mg in 2011. Finally, if sedi-
ment loads were estimated not by bootstrapping, but directly
from the data, then the results were around 10 % lower com-
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Figure 4. Observed versus predicted values of the sediment rat-
ing curve. Predictions are from the linear mixed model with tur-
bidity and discharge as quantitative predictor variables, and after
5-fold cross validation (n =228, r2 =0.56). Axes are on the log-
transformed scale, while tick labels show values on the original
scale.

pared to the first estimates, at 5607 and 4997 Mg, respec-
tively, in 2010 and 2011.

In all three approaches the difference between the 2 years
remained consistent and all estimates were within the bounds
of the confidence intervals, both for those calculated by mod-
eling error and those calculated by adding half the variance
before back-transformation.

In this particular 2 km? catchment, the annual sediment ex-
port of 6262 and 5543 Mg cannot be interpreted as resulting
in average erosion rates of approximately 30 Mgha™! due
to the irrigation management in the catchment. A large part
of the sediments are not eroded within the watershed but re-
leased from the irrigation reservoir, which has a contributing
area of 490 ha, either via the irrigation channels or through
a spillover mechanism which releases excess water when the
reservoirs maximum capacity is reached. In 2011, the for-
mer mechanism introduced around 800 Mg of sediments to
the catchment, and the latter resulted in a load of 1556 Mg

Hydrol. Earth Syst. Sci., 21, 571-588, 2017



580 J. L. E. Slaets et al.: Quantifying uncertainty on sediment loads using bootstrap confidence intervals

.
2 *. -
L] . .
. * e, P
. ® .
1 ..: w Qe " ° .
Lﬂ: . \..‘.' I -
E . 3 » .
2 . - . io.: . . *
] . . .ty . LI
@ _-.t 5 * e &8
B0 L NN, L Y
£ o, *
5 et .
] }'“‘l. * e "
o . c‘uh . .
1 s ‘.
. .« ®
. Pt w .
L -
. ? .
2 .
.
. © .
-3
3 4 5 6 7 8 9 10

Predicted log {sediment concentration)

Figure 5. Residual plot of the sediment concentration prediction
model; studentized residuals versus the predicted sediment concen-
tration (on the log-transformed scale).

(Slaets et al., 2015). True upland area erosion rates were es-
timated at 7.5 Mgha~! a~! (Slaets et al., 2015).

3.2 Width of confidence intervals for sediment loads

Before looking at the bootstrap confidence intervals, the
histograms of the bootstrap load estimates were evaluated
(Fig. 7). The histogram of the 2000 bootstrap estimates
looked reasonably smooth, so we concluded that sample size
was adequate for the percentile bootstrap. When reducing
the number of bootstrap replicates (Fig. 8), the change in
smoothness, especially in the right tail, becomes visible. Tail
smoothness of the empirical distribution is a requirement
when using the percentile method to obtain confidence in-
tervals (Efron and Tibshirani, 1993). At 500 bootstrap repli-
cates, the center of the distribution displays a lack of smooth-
ness as well, thus not only affecting the confidence interval
estimates, but the load estimates as well. For both years and
both for the full method and the method without modeled
error, the histograms were found to be skewed to the right,
even when the loads were log-transformed. This skewedness
means that, in the case of our dataset, the assumption of nor-
mality would not hold for estimated annual loads.

As a result of the distribution of the loads, the confidence
intervals were always asymmetric, with the difference be-
tween the upper limit and the estimate around 80 % larger
than the difference between the estimate and the lower limit.
The width of the intervals — the difference between the up-
per and lower limits of the interval — varied between years
and between methods, while remaining on the same order of
magnitude (Table 1). In 2010, the interval was always wider,
regardless of which method was chosen, for the annual as
well as the monthly loads (Table 1 and Fig. 6). The year
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Figure 6. Monthly sediment load estimates (in Mg per year) for
the 2 years of the study with 95 % confidence interval limits for
the three different bootstrap methods: (a) the full method shown in
Fig. 1, (b) the method without modeled error (i.e., leaving out Step 3
in Fig. 1) and (c) the method without bootstrapping discharge (i.e.,
leaving out Step 1 in Fig. 1). In January 2011, discharge was zero;
therefore, no sediment load was transported during this month.

2010 contained a smaller proportion of the samples (73 out
of 228), and this could be a cause of the difference. For the
monthly loads (Fig. 6), confidence intervals were widest dur-
ing months with the highest sediment loads (July till Octo-
ber), when excess reservoir water gets exported via the river.
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Figure 7. Histograms of bootstrap load estimates on the original scale (left) and the log scale (right) for 2 study years and for two bootstrap
methods: the full method with modeling of the autocorrelated error (“full method”, top), and without modeling of the error (“no md. err.”,
bottom).
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Figure 8. Effect of the number of bootstrap replicates (1500, 1000 and 500) on the smoothness of the resulting empirical distribution for the

estimated annual sediment load in 2011.

The bootstrap method affected the width of the confidence tently wider than those resulting from the bootstrap process
interval as well. The monthly and annual intervals resulting that modeled the autocorrelated error: not modeling the er-
from applying a back-transformation correction were consis- ror changed the interval (limits in Mg) from (4331, 12267)
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Figure 9. Change in the median and 95 % confidence intervals for
the sediment load estimate of 2010 (in Mg) when decreasing the
coefficient of determination of the discharge rating curve. The bold
line indicates the CI width of the real (discharge, level) dataset. The
letter “a” corresponds to not bootstrapping the (discharge, level)
pairs.

to (4372, 14586) in 2010 and from (3593, 8975) to (3713,
10410) in 2011 — in both cases an increase in width of about
20 %. The change was due to an increase in the upper bound
of the interval, while the lower limits remained very similar.
These results show that performing the back-transformation
correction is only a very rough method of adjusting the pre-
dicted concentrations on the original scale, as this approach
does not take the serial correlation in the data into account.
For the monthly load estimates, the largest differences in
confidence interval width between the full method and the
back-transformation without simulated error were in July and
August 2010, the months with the highest estimated loads
(Fig. 6).

3.3 Hydrological drivers of uncertainty

When, rather than applying the full bootstrap method, we did
not bootstrap the discharge rating curve (meaning, we left out
Step 1 of the process in Fig. 1), the width of the confidence
interval decreased, as one less source of error is taken into
account. In 2010, this changed the CI from (4203, 11 649)
without accounting for uncertainty in the discharge rating
curve to (4331, 12267) when accounting for this uncertainty
on discharge; and from (3521, 8397) to (3593, 8975) in 2011
— including discharge therefore resulted in a respective in-
crease in width of 6 and 9 %. Similarly, in the monthly load
estimates, not bootstrapping the discharge resulted in confi-
dence interval widths up to 37 % smaller than those calcu-
lated with the full method (Fig. 6). Months with low flow
showed equally compressed confidence intervals as months
with high discharge, during which the reservoir spillover was
feeding the river (July till October).
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The accuracy in the (Q, h) relationship in this particu-
lar dataset was very high, with an R? of 0.98. As not all
monitoring programs can establish accurate discharge rat-
ing curves, the (Q, k) dataset was replaced with a simulated
dataset with an increasingly lower coefficient of determina-
tion to test how this further affects the uncertainty in the load
estimate (Fig. 9). While the width of the confidence interval
keeps increasing with decreasing R?, including the discharge
also affects the confidence interval for a high R”. In fact,
changing from not bootstrapping the discharge (R* = 100 %
in Fig. 9) to bootstrapping the real discharge dataset, which
has an R? of 0.98, resulted in a 7 % increase in width. On the
other hand, the confidence intervals show little differences at
an R? of 0.95, where the width was 9003 Mg, and at 0.90,
when it reached up to 8795 Mg, equivalent to an 11 % in-
crease in width. At a coefficient of determination of 0.85, the
CI was 17 % wider than the original CI, whereas at 0.80 the
width increase reached 20 %. As can be seen from Fig. 9,
the change in width was mainly due to an increase in the up-
per limit of the confidence interval. Hence, the lower limit
decreased only slightly.

The bootstrap approach where the concentration predic-
tion error was separated into an underlying latent autoregres-
sive process generating the true concentrations, and an in-
dependently distributed measurement error corresponding to
white noise in time series data, did not converge for 906 out
of 2000 runs. Convergence problems are very common when
trying to fit nugget models as these models tend to be diffi-
cult to fit. Particularly AR(1) type error structures are prone
to these issues, as there is an inherent confounding between
parameters of the independent white noise component and
the autocorrelated component (Piepho et al., 2015). In a boot-
strap setting where convergence was already an issue, adding
such an effect was not feasible in the case of our dataset. For
exploratory purposes, the nugget can be fitted to the original
dataset without bootstrapping, in order to examine the con-
tributions of the respective error components. Results of this
exercise showed that indeed, the measurement error (0.67)
was large compared to the latent process variance (0.09), the
former being due to sensor error, both from the turbidity sen-
sors and the pressure sensors for discharge, the manual grab
sample process which may not accurately represent the mean
concentration across the cross section, and laboratory error in
determining the sediment concentrations. The error separa-
tion thus indicates that focusing on these factors could yield
substantial improvement in the sediment rating curve.

4 Discussion
4.1 Load estimates, data transformations and bias
As was shown in Table 1, the annual sediment load estimates

differ depending on the method selected. While it is encour-
aging that all estimates are within the 95 % confidence in-
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terval limits, choosing a different method can lead to any-
thing from an underestimation of 10 % to an overestimation
of 20 % compared to the median of the full bootstrap pro-
cess. Two issues play a role in these differences: the back-
transformation of the sediment concentrations, and bias in
the estimate of the annual load.

The effect of back-transforming the concentration predic-
tions is visible when comparing the medians of the bootstrap
estimates with and without modeled autocorrelated error.
‘When the error was not modeled, the estimate itself increased
by around 5 % in both years, corresponding to an absolute
increase of around 300 Mg of sediment, and the CI became
wider. Essentially, adding half the variance before back-
transformation is a very rough way of estimating expected
values of concentrations at observed time points — as shown
by the larger CI — because it does not take the serial correla-
tion in the data into account. If the naive back-transformation
would be applied, without any variance correction, the re-
sulting estimates would be even lower than those where we
add half the variance before back-transformation: around
4200Mg in 2010 and 3700 Mg in 2011, or an underestima-
tion of approximately 2000 Mg.

While the latter is a relatively common approach to im-
plement the back-transformation of constituent concentration
predictions which are typically predicted on the log-scale, it
may not be the most appropriate solution when the concen-
trations are used to calculate loads. The crucial issue with
load calculations is that a load is a sum over time points,
which is essentially the same as computing an arithmetic av-
erage, and for that we need to estimate the expected values
for the individual time intervals. If the predicted value on
the log-scale is simply back-transformed, we are estimating
medians of the concentrations, and while this may be appro-
priate if one is only interested in the concentrations, these
medians cannot be multiplied with discharge and summed
up to accurately predict a load.

When the bootstrap process includes a simulated, autocor-
related error, the result of that process is not a mean or a me-
dian concentration, but rather a simulated realization of an
observed process. When it is not desired to simulate the error
in the bootstrap process, then applying a back-transformation
correction is an alternative, but the confidence intervals
should be expected to be wider, as adding on half the resid-
ual error variance before back-transformation ignores the se-
rial correlation. An alternative back-transformation correc-
tion often used in the literature, Duan’s smearing correction,
similarly assumes independent and identically distributed er-
rors and is therefore not suitable for datasets where serial cor-
relation is present (Duan, 1983). Duan’s is a non-parametric
correction, in contrast to the two parametric approaches we
used.

The back-transformation method of the concentration pre-
dictions, however, is not the only force at work: the direct es-
timate from the data and the bootstrap median without mod-
eled error are quite far apart, even though they both use the
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same back-transformation correction. Statistics, unless they
are very simple (for example a sample mean), will typically
have some bias. Bootstrapping can in fact be used to identify
and correct bias even when the true underlying distribution
is unknown; therefore, in most cases the bootstrap estimate
will typically be different, as it removes this bias (Efron and
Tibshirani, 1993). There are alternative methods in the litera-
ture intended to remove the bias on load estimates (Ferguson,
1986), but as the correction will depend on the variance of
the data, numerical corrections are not generally applicable.
However, as one would need to bootstrap in any case in order
to produce a CI of the load, taking the median of the boot-
strap estimates is a straightforward way to obtain constituent
load estimates.

The most common data transformations in load estimation
are typically other variations of the Box—Cox power family,
such as 1/Y, square root, cube root, and fourth root. Trans-
formations in this family are usually required where the orig-
inal data exhibit pronounced skewness and heteroscedastic-
ity, which is generally the case in load studies. Therefore
for all transformations in the Box—Cox family, naive back-
transformation of estimates would similarly result in biased
estimates of means on the original scale, as was illustrated
with the log-transformation in our dataset.

Regarding the data transformation, while the sedi-
ment concentration was log-normally distributed, the log-
transformed load estimates were not normally distributed
(Fig. 7, right panel). This non-log-normality of our loads
does not affect the viability of the bootstrap approach, as
regression-type methods do not require (log-) normality of
the observed concentration or load data but rather normality
of the residuals of the fitted linear regression models. It does,
however, limit the applicability of methods that use the log-
normality assumption of the load to estimate a variance for
the load. This assumption was made, for example, by Wang
et al. (2011) in using the delta method as an alternative way
to assess uncertainty on annual sediment load estimates.

4.2 Confidence interval width and model selection

The results showed that the ClIs are relatively wide and asym-
metrical with a much larger uncertainty in the upper limit.
And comparing the 2 years, when the estimated load was
higher, the uncertainty in it was larger as well (i.e., in 2010).
This is a trend consistent with other studies (Kuhnert et al.,
2012; Rustomji and Wilkinson, 2008). Although it is diffi-
cult to compare uncertainty calculated with other methods
in different catchments, our confidence intervals are on the
same order of magnitude as the CIs in those two studies. For
example, Kuhnert et al. (2012) calculated 80 % confidence
intervals on an annual load of 5232 Mg (n = 122), and the
resulting limits were (3512, 7775). In comparison, 80 % con-
fidence limits for our dataset were (4186, 7403) for a load of
5543 Mg in 2011.
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The factors governing the width of a confidence interval
are essentially the sample size and the accuracy of the two
rating curve estimates. The accuracy of the sediment rating
curve in this study (Pearson’s 7> =0.56 after cross valida-
tion) is reasonable for catchments with large heterogeneity
in relief, land use, soil types and rainfall event characteris-
tics. In more homogeneous settings, however, much more
accurate sediment rating curves have been obtained, which
can be expected to result in narrower confidence intervals
on their resulting load estimates. Furthermore, if the sam-
ple size and the variation explained by the rating curves are
large, but the confidence intervals are very wide, one pos-
sible cause is that the concentration prediction model was
over-fitted, resulting in a very high apparent percentage of
variance explained by the model but a poor predictive power
when the model is interpolated to the whole time series. This
can be shown by just adding additional predictor variables to
our selected model. If we add the variables “water height in
the reservoir”, “discharge irrigated to the paddy fields” and
“Julian day-of-year” (the last one both linear and quadratic)
to the model, the percentage of variance explained increases
from 58 to 71 %. When this extended model was used to es-
timate the annual sediment load, however, the confidence in-
terval was inflated by 2 orders of magnitude, resulting in a
width of 5564 076 Mg.

These effects on the CI indicate that, indeed, overfitting
is a concern even when interpolating within the time series.
The risk of overfitting is particularly high with more com-
plex models (Burnham and Anderson, 2002), as was demon-
strated as well with the example above, and it is not uncom-
mon in load estimations to fit models that are very flexible
(e.g., spline functions, sigmoid functions) and/or have used
a large number of predictor variables to a relatively small
dataset. In such cases, bootstrap uncertainty assessment can
be an additional tool both for model selection and for evalu-
ating model fit. The change in percentage variance explained
is less pronounced after cross validation, and ranges from
56 to 64 %, implying that the cross validation penalizes at
least partially for any overfitting. Water quality models, how-
ever, are often not validated, and only the R? resulting from
calibration is reported, leaving readers no means of assess-
ing over-parameterization of the model. Studies with smaller
datasets where more variables are included in the model
should be particularly encouraged to report measures of un-
certainty in load estimates. In the case of large datasets where
a simple model such as linear regression with one or two pre-
dictor variables is used, the variability in the data explained
by the model resulting from calibration only is less likely to
deviate strongly from the result of a validation.

4.3 Bootstrapping discharge and error propagation
One would expect that, as the sediment rating curve has much

more uncertainty than the discharge rating curve, excluding
the latter would not affect the confidence intervals much, but
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for our dataset, this assumption did not hold: even with a
discharge rating curve with high accuracy (R? of 0.98), its
uncertainty had a considerable effect on the load estimate,
which increased from 6389 Mg when not bootstrapping the
discharge to 6781 Mg when bootstrapping the discharge.

This result underscores the importance of error propaga-
tion in uncertainty assessments. Even though the discharge
rating curve has a high accuracy, an estimate of Q is used as
a predictor variable for concentration, and the concentration
then gets multiplied by the estimate of Q, and so the effect is
not as small as one would expect based on the R? of both rat-
ing curves. It is possible that the sample size of the discharge
rating curve, which is relatively small (n = 15), plays a role
here, as a bootstrap iteration that does not contain the largest
discharge values would result in a wider confidence interval
for the estimated load. Krueger et al. (2009) similarly found
discharge to contribute to uncertainty of sediment transfer.
If we assume that most discharge rating curves have around
95 % of the explained variance, this could imply that most
measures of uncertainty in the literature are too conservative
by about 10 % in terms of the width of the CI and that this
increase would be mostly on the upper limit of the interval
— implying that minimum impact estimates would not be af-
fected much, but that the literature to date would underesti-
mate worst case scenarios of sediment yield, nutrient loss or
erosion by about 10 %.

5 Conclusions

The approach developed in this paper provides a means to
assess uncertainty in any type of constituent load, which was
calculated from continuous constituent concentration and
discharge predictions estimated with regression-type meth-
ods. Compared to ordinary least squares regression methods
to obtain load estimates, bootstrap estimates resulted in bias-
corrected estimates that can take serial correlation into ac-
count when present as well as provide a measure of uncer-
tainty in the load estimate.

The results show that, even when the uncertainty of the
discharge rating curve is small, it is important to take into
account that the errors propagate by using discharge both as
a predictor variable for constituent concentration and in the
instantaneous load equation. Application of the method in
different watersheds, at different spatial and temporal scales,
could elucidate whether discharge is an important driver of
uncertainty in those settings as well.

The confidence intervals resulting from our proposed
method showed that the uncertainty in the loads is quite large
and is mostly on the upper limit of the estimate, as the in-
tervals were strongly right-skewed. This asymmetry implies
that, wherever load estimates are used to assess environmen-
tal impact, without reporting an uncertainty assessment, the
maximum impact could be severely underestimated.
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Additionally, the bootstrap process demonstrated that load
estimates are biased downwards if calculated directly from
data with increasing variance that has been transformed.
While some alternative bias corrections are available, these
are not consistently used, and this is another factor contribut-
ing to the underestimation of constituent loads thus far re-
ported in the literature. Taking the median of the bootstrap
estimates is an easy and generally applicable way to obtain
unbiased estimates.

Reporting uncertainty is especially important when wa-
ter quality models are complex. There has been a great in-
crease in the use of more complex predictive methods for
water quality, for example, the use of artificial neural net-
works, random forests or generalized additive models (Berk,
2008). The advent of these methods makes the consistent re-
porting of measures of uncertainty even more essential: the
more complex a model is, the more prone it is to overfit-
ting (Burnham and Anderson, 2002), as was demonstrated by
the inflated confidence intervals when adding predictor vari-
ables to the sediment concentration model. Some measure of
uncertainty should systematically be shown for any load es-
timate, and the method developed in this paper provides a
flexible framework to do so.

www.hydrol-earth-syst-sci.net/21/571/2017/

6 Data availability

The source code for the bootstrap analysis with the SAS soft-
ware that was used for the load estimates and correspond-
ing confidence intervals is freely available at https://www.
uni-hohenheim.de/bioinformatik/beratung/index.htm (Slaets
etal., 2016) together with the necessary input files for testing.
The full dataset is available from the authors upon request
(hanna.slaets @ gmail.com).

The SAS code used to simulate a dataset with a fixed real-
ized R? can be found in the Supplement.
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Appendix A

In order to obtain (log(Q), log(h)) pairs with a certain R?
(e.g., 0.95), we started by simulating a dataset of the same
number of observations of the original dataset. We thus ob-
tained pairs of y; = log(Q;) and x; = log(k;) using the orig-
inal discharge rating curve, which is a regression model
yi = n;i+e;, where n; = o+ Bx; and the errors were randomly
drawn from a normal distribution which can have any vari-
ance, as the errors will be rescaled later.

Next, we computed the total sum of squares, SSy, and the
residual sum of squares, SS,, for this simulated dataset. We
subsequently replaced the simulated errors e; by re-scaled er-
rors ef = ce; and used these to compute re-scaled simulated
data y* = n; + €. A scaling constant ¢ was chosen in such a
way that the desired coefficient of determination results:

R*=1-8S,/SSy and R* =1 — SS}/SS}. (A1)

The residual error sum of squares is a quadratic form of er-
rors only. It follows that

SS¥ = ¢SS, (A2)

n n
S =>"(y; =5’ =D (i +cei — 7. —ce)’
i=1 i=1
n

= [ =7) +ctei —e)]
i=1

=> (i —7) 42> (i —7) (e —2)
i=1

i=1

n
+ D (e —e) =z + e+, (A3)

i=1

where z1, z» and z3 are computable constants for given sim-
ulated (n;, ¢;).

R™ =1-SS}/SS} <
0=SS}/SS; —1+R* &
0=58;+ (K> —1)sS;
=88+ (R = 1) (a1 + 2+ 2a¢?)
=Ac*+Bc+C (Ad)

This is a quadratic equation in ¢, which can be solved for ¢
by standard procedures. There are two distinct solutions, but
they result in errors that only differ in the sign, and so either
solution can be chosen.

SAS code to perform this simulation can be found in the
Supplement of this paper.
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The Supplement related to this article is available online
at doi:10.5194/hess-21-571-2017-supplement.
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