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Abstract. Rainfall–runoff modelling has long been a special
subject in hydrological sciences, but identifying behavioural
parameters in ungauged catchments is still challenging. In
this study, we comparatively evaluated the performance of
the local calibration of a rainfall–runoff model against re-
gional flow duration curves (FDCs), which is a seemingly
alternative method of classical parameter regionalisation for
ungauged catchments. We used a parsimonious rainfall–
runoff model over 45 South Korean catchments under semi-
humid climate. The calibration against regional FDCs was
compared with the simple proximity-based parameter region-
alisation. Results show that transferring behavioural param-
eters from gauged to ungauged catchments significantly out-
performed the local calibration against regional FDCs due
to the absence of flow timing information in the regional
FDCs. The behavioural parameters gained from observed hy-
drographs were likely to contain intangible flow timing infor-
mation affecting predictability in ungauged catchments. Ad-
ditional constraining with the rising limb density appreciably
improved the FDC calibrations, implying that flow signatures
in temporal dimensions would supplement the FDCs. As an
alternative approach in data-rich regions, we suggest cali-
brating a rainfall–runoff model against regionalised hydro-
graphs to preserve flow timing information. We also suggest
use of flow signatures that can supplement hydrographs for
calibrating rainfall–runoff models in gauged and ungauged
catchments.

1 Introduction

A standard method to predict daily streamflow is to employ
a rainfall–runoff model that conceptualises catchment func-
tional behaviours, and simulate synthetic hydrographs from
atmospheric drivers (Wagener and Wheater, 2006; Blöschl
et al., 2013). A prerequisite of this conceptual modelling
approach is parameter identification to enable the rainfall–
runoff model to imitate actual catchment behaviours. Con-
ventionally, behavioural parameters are estimated via model
calibration against observed hydrographs (referred to as the
“hydrograph calibration” hereafter). The hydrograph calibra-
tion provides convenience to attain reproducibility of the
predictand (i.e. streamflow time series), which is commonly
used as a performance measure in rainfall–runoff modelling
studies. Because the degree of belief in hydrological models
is normally measured by how they can reproduce observa-
tions (Westerberg et al., 2011), use of the hydrograph cali-
bration has a long tradition in runoff modelling (Hrachowitz
et al., 2013).

The hydrograph calibration, however, can be challenged
by epistemic errors in input and output data, sensitivity to cal-
ibration criteria, and inability under no or poor data availabil-
ity (Westerberg et al., 2011; Zhang et al., 2008). Importantly,
it is difficult to know whether the parameters optimised to-
ward maximising hydrograph reproducibility are unique to
represent actual catchment behaviours, since multiple pa-
rameter sets possibly show similar predictive performance
(Beven, 2006, 1993). This low uniqueness of the optimal pa-
rameter set, namely the equifinality problem in conceptual
hydrological modelling, can become a significant uncertainty
source particularly when extrapolating the optimal parame-
ters to ungauged catchments (Oudin et al., 2008).
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To overcome or circumvent those disadvantages, distinc-
tive flow signatures (i.e. metrics or auxiliary data represent-
ing catchment behaviours) in lieu of observed hydrographs
can be used to identify model parameters (e.g. Yilmaz et
al., 2008; Shafii and Tolson, 2015). The flow duration curve
(FDC) has received particular attention in the signature-
based model calibrations as a single criterion (e.g. Wester-
berg et al., 2014, 2011; Yu and Yang, 2000; Sugawara, 1979)
or one of calibration constraints (e.g. Pfannerstill et al., 2014;
Kavetski et al., 2011; Hingray et al., 2010; Blazkova and
Beven, 2009; Yadav et al., 2007). The FDC, the relationship
between flow magnitude and its frequency, provides a sum-
mary of temporal streamflow variations in a probabilistic do-
main (Vogel and Fennessey, 1994). Many FDC-related stud-
ies have found that climatological and geophysical charac-
teristics within a catchment determine the shape of the FDC
(e.g. Cheng et al., 2012; Ye et al., 2012; Yokoo and Sivaplan,
2011; Botter et al., 2007). With only few physical parame-
ters, the shape of the period-of-record FDC could be analyt-
ically expressed (Botter et al., 2008). Based on this strong
relationship between catchment physical properties and the
FDC, one may hypothesise that model calibration against
the FDC (referred to as the “FDC calibration” hereafter) can
provide parameters that can sufficiently capture actual catch-
ment behaviours. Sugawara (1979) is the first attempt at the
FDC calibration, emphasising its advantage to reduce nega-
tive effects of epistemic errors in rainfall–runoff data. West-
erberg et al. (2011) also showed that the FDC calibration may
provide robust predictions to moderate disinformation such
as the presence of event flows under inconsistency between
inputs and outputs.

If it allows rainfall–runoff models to sufficiently capture
functional behaviours of catchments, the FDC calibration
would have an especial value in comparison to the param-
eter regionalisation for prediction in ungauged catchment.
The parameter regionalisation, which transfers or extrapo-
lates behavioural parameters from gauged to ungauged catch-
ments (e.g. Kim and Kaluarachchi, 2008; Oudin et al., 2008;
Parajka et al., 2007; Wagener and Wheater, 2006; Dunn and
Lilly, 2011), conveniently provides a priori estimates of be-
havioural parameters and thus became a popular approach to
parameter identification in ungauged catchments (see a com-
prehensive review in Parajka et al., 2013). However, it has a
critical concern that regionalised parameters are highly de-
pendent on model calibrations at gauged sites that may have
substantial equifinality problems. Under no flow information
in ungauged catchments, it is impossible to know whether
regionalised parameters are behavioural. Thus, regionalised
parameters might be insufficiently reliable and highly uncer-
tain (Bárdossy, 2007; Oudin et al., 2008; Zhang et al., 2008).

On the other hand, the calibration against regional FDC
(referred to as “RFDC_cal” hereafter) may reduce the pri-
mary concern in the classical parameter regionalisation
scheme. The regional models predicting FDC at ungauged
sites have showed strong performance – for instance, via

regression analyses between quantile flows and catchment
properties (e.g. Shu and Ouarda, 2012; Mohamoud, 2008;
Smakhtin et al., 1997), geostatistical interpolation of quantile
flows (e.g. Pugliese et al., 2014; Westerberg et al., 2014), and
regionalisation of theoretical probability distributions (e.g.
Atieh et al., 2017; Sadegh et al., 2016) among many varia-
tions. The parameters obtained from RFDC_cal are deemed
behavioural, because a distinctive flow signature of the tar-
get ungauged catchment directly identifies them; however,
predicted FDC should be reliable in this case. An FDC is a
compact representation of runoff variability at all timescales
from inter-annual to event scale, embedding various aspects
of multiple flow signatures (Blöschl et al., 2013). Based on
this strength, several studies have already showed promising
predictive performance using RFDC_cal for ungauged catch-
ments (e.g. Westerberg et al., 2014; Yu and Yang, 2000).

Nevertheless, practical questions arise when using
RFDC_cal for ungauged catchments. First, the FDC is sim-
plified information with flow magnitudes only; hence, the
FDC calibration could worsen the equifinality problem rel-
ative to the hydrograph calibration. Due to no flow timing
information in regional FDC, one may cast a concern that
parameters obtained from RFDC_cal may provide poorer
predictive performance than regionalised parameters gained
from the hydrograph calibration. Indeed, there is additional
uncertainty in predicted FDC possibly introduced by the
regionalisation models (Westerberg et al., 2011; Yu et al.,
2002). RFDC_cal may be undesirable when a simple pa-
rameter regionalisation can provide better performance, be-
cause regionalising observed FDC may require expensive
efforts. Several comparative studies on parameter regional-
isation (e.g. Parajka et al., 2013; Oudin et al., 2008) have
suggested that the simple proximity-based parameter trans-
fer can be competitive in many regions. Second, there may
be additional flow signatures to improve predictive perfor-
mance of the FDC calibration. Additional constraining can
lead to better predictive performance of the RFDC (Wester-
berg et al., 2014); however, it is still an open question which
flow signatures can supplement the FDC calibration.

As discussed, RFDC_cal seems promising for predic-
tion in ungauged catchments. However, to our knowledge,
RFDC_cal has never been evaluated in a comparative man-
ner with classical parameter regionalisation except by Zhang
et al. (2015), who assessed its performance in part. There-
fore, this study aimed to evaluate predictive performance of
RFDC_cal in comparison with a conventional parameter re-
gionalisation. We focused on the absence of flow timing in
the FDC and its impacts on rainfall–runoff modelling. In
this work, a parsimonious four-parameter conceptual model
was used to simulate daily hydrographs for 45 catchments
in South Korea. To predict FDC in ungauged catchments, a
geostatistical regional model was adopted here. The Monte
Carlo sampling was used to identify model parameters and
measure equifinality in the hydrograph and the FDC calibra-
tions.

Hydrol. Earth Syst. Sci., 21, 5647–5661, 2017 www.hydrol-earth-syst-sci.net/21/5647/2017/



D. Kim et al.: Performance of hydrological modelling against the FDCs 5649

2 Description of the study area and data

For this study, we selected 45 catchments located across
South Korea with no or negligible human-made influences
on flow variations (Fig. 1). South Korea is characterised
as a temperate and semi-humid climate with rainy summer
seasons. North Pacific high pressure brings monsoon rain-
fall with high temperatures during summer seasons, while
dry and cold weathers prevail in winter seasons due to
Siberian high pressure. Typical ranges of annual precipita-
tion are 1200–1500 and 1000–1800 mm in the northern and
the southern areas respectively (Rhee and Cho, 2016). An-
nual mean temperatures in South Korea range between 10
and 15 ◦C (Korea Meteorological Administration, 2011). Ap-
proximately 60–70 % of precipitation falls in summer sea-
sons between June and September (Bae et al., 2008). Stream-
flow usually peaks in the middle of summer seasons be-
cause of heavy rainfall or typhoons, and hence information
of catchment behaviours is largely concentrated on summer-
season hydrographs. Snow accumulation and ablation occur-
ring at high elevations have minor influences on flow varia-
tions due to the relatively small amount of winter precipita-
tion (Bae et al., 2008).

The study catchments were selected based on availabil-
ity of streamflow data. High-quality daily streamflow data
across South Korea have been produced since the establish-
ment of the Hydrological Survey Centre in 2007 (Jung et al.,
2010), though river stages have been monitored for an ex-
tensive length at a few gauging stations. Thus, we collected
streamflow data at 29 river gauging stations from 2007 to
2015 together with inflow data of 16 multi-purpose dams
for the same data period from the Water Resources Manage-
ment Information System operated by the Ministry of Land,
Infrastructure, and Transport of the South Korean govern-
ment (available at http://www.wamis.go.kr/). The mean an-
nual flow of the study catchments was 739 mm yr−1 with a
standard deviation of 185 mm yr−1 during 2007–2015.

In addition, as atmospheric forcing inputs, we collected
daily precipitation and maximum and minimum tempera-
tures for 2005–2015 at 3 km grid resolution produced by
spatial interpolations between 60 stations of the automated
surface observing system (ASOS) maintained by the Korea
Meteorological Administration (2011). The ASOS data were
interpolated by the Parameter-elevation Regression on Inde-
pendent Slope Model (PRISM; Daly et al., 2008), and over-
estimated pixels of the PRISM grid data were smoothed by
the inverse distance method. Jung and Eum (2015) found that
this combined method improved the spatial interpolation of
precipitation and the temperatures in South Korea. The an-
nual mean precipitation and temperature of the study catch-
ments vary within ranges of 1145–1997 mm yr−1 and 8.0–
13.8 ◦C during 2007–2015. Hydro-climatological features of
the 45 catchments are summarised in Table 1.

Figure 1. Locations of the study catchments in South Korea. The
numbers are labelled at the outlet of each catchment.

3 Methodology

3.1 Hydrological model (GR4J)

A parsimonious rainfall–runoff model, GR4J (Perrin et al.,
2003), was adopted to simulate daily hydrographs of the 45
catchments for 2007–2015. GR4J conceptualises functional
catchment response to rainfall with four free parameters that
regulate the water balance and water transfer functions. Fig-
ure 2 schematises the structure of GR4J. The four parameters
(X1 to X4) conceptualise soil water storage, groundwater ex-
change, routing storage, and the base time of unit hydrograph
respectively. Since its parsimonious and efficient structure
allows robust calibration and reliable regionalisation of the
parameters, GR4J has been frequently used for modelling
daily hydrographs with various purposes under diverse cli-
matic conditions (Zhang et al., 2015). The computation de-
tails and discussion are found in Perrin et al. (2003). The po-
tential evapotranspiration (PE in Fig. 2) was estimated by the
temperature-based model proposed by Oudin et al. (2005) for
lumped rainfall–runoff modelling.
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Table 1. Summary of hydrological features of the study catchments.

Average CV Minimum 25 % Median 75 % Maximum

Area (km2) 890 1.39 57 208 495 1013 6705
Elevation (m a.s.l.) 339 0.63 39 193 255 495 996
Mean annual prcp. (mm yr−1) 1359 0.14 1145 1247 1286 1388 1997
Mean annual temp. (◦C) 11.9 0.13 7.9 11.3 12.3 13.0 13.8
Aridity indexa (–) 0.66 0.11 0.44 0.61 0.68 0.71 0.76
Psnow

b 35 0.66 6 23 28 50 141
Mean annual flow (mm yr−1) 739 0.25 232 624 740 838 1159
RPQ (–) 0.55 0.27 0.18 0.45 0.54 0.63 0.91
IBF (–) 0.49 0.16 0.27 0.44 0.49 0.56 0.62
DRL (day−1) 0.63 0.10 0.50 0.60 0.63 0.66 0.77

a Ratio of potential ET to total precipitation. b Percentage of snowfall to total precipitation. Climatological features were calculated using
spatial averages of the grid data, while the flow metrics were from the daily hydrographs for 2007–2015 as explained in Sect. 3.6.

Figure 2. The schematised structure of GR4J (X1–X4: model pa-
rameters; PE: potential evapotranspiration; P : precipitation; Q:
runoff; other letters indicate variables conceptualising internal
catchment processes).

3.2 Preliminary data processing

Before rainfall–runoff modelling, we preliminarily processed
the grid climatic data to convert precipitation data to liq-
uid water forcing (i.e. rainfall and snowmelt depths) us-
ing a physics-based snowmelt model proposed by Walter et
al. (2005). The preliminary snowmelt modelling was mainly
for reducing systematic errors from no snow component in
GR4J, which may affect model performance in catchments
at relatively high elevations. We chose this preliminary pro-
cessing to avoid adding more parameters (e.g. the tempera-
ture index) to the existing structure of GR4J. In the case of

GR4J, one additional parameter implies 25 % complexity in-
crease in terms of the number of parameters. The snowmelt
model uses the same inputs of GR4J to simulate point-scale
snow accumulation and ablation processes (i.e. no additional
inputs are required). The snowmelt model is a physics-based
model but uses empirical methods to estimate its parameters
for the energy balance simulation. As outputs, it produces
the liquid water depths and the snow water equivalent. For
lumped inputs to GR4J, we took spatially averaged pixel val-
ues of the liquid water depths and the maximum and mini-
mum temperatures within the boundary of each catchment.

After the snowmelt modelling, consistency between the
liquid water depths and the observed flows (i.e. input–output
consistency) was checked using the current precipitation in-
dex (CPI; Smakhtin and Masse, 2000) defined as

It = It−1 ·K +Rt , (1)

where It is the CPI (mm) at day t , K is a decay coeffi-
cient (0.85 d−1), andRt is the liquid water depth (mm d−1) at
day t . CPI mimics temporal variations of typical streamflow
data by converting intermittent precipitation data to a contin-
uous time series with an assumption of the linear reservoir.
The input–output consistency can be evaluated using correla-
tion between CPI and observed streamflow as in Westerberg
et al. (2014) and Kim and Kaluarachchi (2014). The Pearson
correlation coefficients between CPI and streamflow data of
the 45 catchments had an average of 0.67 with a range of
0.43–0.79, and no outliers were found in the box plot of the
correlation coefficients. Hence, we assumed that consistency
between climatic forcing and observed hydrographs was ac-
ceptable.

3.3 The hydrograph calibration in gauged catchments

To search behavioural parameter sets of GR4J against the
streamflow observations (i.e. the hydrograph calibration), we
used the objective function of Zhang et al. (2015) as the cal-
ibration criterion to consider the Nash–Sutcliffe efficiency
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Table 2. Ranges of GR4J parameters used for parameter calibration
(Demirel et al., 2013).

Parameter Range

X1 (mm) 10 to 2000
X2 (mm) −8 to +6
X3 (mm) 10 to 500
X4 (days) 0.5 to 4.0

(NSE) and the water balance error (WBE) together:

OBJ= (1−NSE)+ 5|ln(1+WBE)|2.5, (2)

NSE= 1−

∑N
i=1
(
Qobs,i −Qsim,i

)2∑N
i=1
(
Qobs,i −Qobs

)2 , (3)

WBE=

∑N
i=1

(
Qobs,i −Qsim,i

)∑N
i=1Qobs,i

, (4)

where Qobs and Qsim are the observed and simulated flows
respectively, Qobs is the arithmetic mean of Qobs, and N is
the total number of flow observations. The best parameter set
for each study catchment was obtained from minimisation of
the OBJ using the Monte Carlo simulations described below.

To determine sufficient runs for the random simulations,
we calibrated GR4J parameters using the shuffled complex
evolution (SCE) algorithm (Duan et al., 1992) for one catch-
ment with moderate input–output consistency with the pa-
rameter range given in Table 2 by Demirel et al. (2013).
Then, the total number of random simulations was iteratively
determined by adjusting the number of runs until the min-
imum OBJ of the random simulations became adequately
close to the OBJ value from the SCE algorithm. We found
that approximately 20 000 runs could provide the minimum
OBJ value equivalent to that from the SCE algorithm. Sub-
sequently, GR4J was calibrated by 20 000 runs of the Monte
Carlo simulations for all 45 catchments, and the parameter
sets with the minimum OBJ values were taken for runoff pre-
dictions. In addition, we sorted the 20 000 parameter sets in
terms of corresponding OBJ values in ascending order, and
the first 50 sets (0.25 % of the total samples) were taken to
measure the degree of equifinality. We measured the equifi-
nality simply by the prediction area between 2.5 and 97.5 %
boundaries of runoff simulations given by the collected 50
parameter sets. This prediction area was later compared to
that from the FDC calibration under the same Monte Carlo
framework. Note that we estimated the prediction area to
comparatively evaluate the degree of equifinality between the
hydrograph and the FDC calibrations under the same sam-
pling size and the same acceptance rate for all the catch-
ments. For more sophisticated and reliable uncertainty es-
timation other methods are available, such as the gener-
alised likelihood uncertainty estimation (GLUE; Beven and
Bingley, 1992), the Bayesian total error analysis (BATEA;

Kavetski et al., 2006), and the differential evolution adaptive
Metropolis (DREAM; Vrugt and Ter Braak, 2011).

For the hydrograph calibration, the 9-year streamflow data
were divided into two parts for calibration (2011–2015) and
for validity check (2007–2010), respectively. A 2-year warm-
up period was used for initialising all runoff simulations in
this study.

3.4 Model calibration against the regional FDC for
ungauged catchments

Each catchment was treated ungauged for the compara-
tive evaluation of RFDC_cal in the leave-one-out cross-
validation (LOOCV) mode. For regionalising empirical
FDC, the geostatistical method recently proposed by
Pugliese et al. (2014) was used. Pugliese et al. (2014) em-
ployed the top-kriging method (Skøien et al., 2006) to spa-
tially interpolate the total negative deviation (TND), which is
defined as the area between the mean annual flow and below-
average flows in a normalised FDC. The top-kriging weights
that interpolate TND values were taken as weights to esti-
mate flow quantiles of ungauged catchments from empirical
FDC of surrounding gauged catchments. The FDC of an un-
gauged catchment in Pugliese et al. (2014) is estimated from
normalised FDC of surrounding gauged catchments as

8̂(w0,p)= φ̂ (w0,p) ·Q(w0) , (5)

φ̂ (w0,p)=

n∑
i=1

λi ·φi (wi,p) pε(0,1), (6)

where 8̂(w0,p) is the estimated quantile flow (m3 s−1)

at an exceedance probability p (unitless) for an ungauged
catchment w0, φ̂ (w0,p) is the estimated normalised quan-
tile flow (unitless), Q(w0) is the annual mean streamflow
(m3 s−1) of the ungauged catchment, and φi (wi,p) and λi
are normalised quantile flows (unitless) and corresponding
top-kriging weights (unitless) of gauged catchment wi , re-
spectively. The unknown mean annual flow of an ungauged
catchment, Q(w0), can be estimated with a rescaled mean
annual precipitation defined as

MAP∗ = 3.171× 10−5
·MAP ·A, (7)

where MAP∗ is the rescaled mean annual precipitation
(m3 s−1), MAP is mean annual precipitation (mm yr−1), and
A is the area (km2) of the ungauged catchment, and the
constant 3.171× 10−5 converts the units of MAP∗ from
mm yr−1 km2 to m3 s−1.

A distinct advantage of the geostatistical method is its abil-
ity to estimate the entire flow quantiles in an FDC with a sin-
gle set of top-kriging weights. Since a parametric regional
FDC (e.g. Yu et al., 2002; Mohamoud, 2008) is obtained
from independent models for each flow quantile in many
cases – for instance, by multiple regressions between se-
lected quantile flows and catchment properties – fundamen-
tal characteristics in an FDC continuum would be entirely
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or partly lost. The geostatistical method, on the other hand,
treats all flow quantiles as a single object; thereby, features
in an FDC continuum can be preserved. It showed promising
performance to reproduce empirical FDC only using topo-
logical proximity between catchments. More details on the
geostatistical method can be found in Pugliese et al. (2014).

For regionalising empirical FDC of the 45 catchments, we
followed the same procedure of Pugliese et al. (2014). We
obtained top-kriging weights (λi) by the geostatistical in-
terpolation of TND values from observed FDC for the cal-
ibration period (2011–2015). Then, the top-kriging weights
were used to interpolate empirical flow quantiles. The num-
ber of neighbours for the TND interpolation was iteratively
determined as five, at which level additional neighbouring
TND are unlikely to bring better agreement between the es-
timated and observed TND. In other words, normalised flow
quantiles of five catchments surrounding the target ungauged
catchment were interpolated with the top-kriging weights.
Then, MAP∗ of the target ungauged catchment was multi-
plied. We predicted flow quantiles at 103 exceedance proba-
bilities (p of 0.001, 0.005, 99 points between 0.01 and 0.99
at an interval of 0.01, 0.995, and 0.999) for rainfall–runoff
modelling against regional FDC (i.e. RFDC_cal).

For runoff prediction in ungauged catchments, the GR4J
parameters were identified by the same Monte Carlo sam-
pling but towards minimisation of OBJ value between the re-
gional and the modelled flow quantiles at the 103 exceedance
probabilities. The best parameter set, which provided the
minimum OBJ value, was taken as the best behavioural set
of RFDC_cal for each catchment.

3.5 Proximity-based parameter regionalisation for
ungauged catchments

We selected the proximity-based parameter transfer (referred
to as “PROX_reg” hereafter) to comparatively evaluate pre-
dictive performance of RFDC_cal. The parameter regionali-
sation has three classical categories: (a) proximity-based pa-
rameter transfer (i.e. PROX_reg; e.g. Oudin et al., 2008);
(b) similarity-based parameter transfer (e.g. McIntyre et al.,
2005); and (c) regression between parameters and physi-
cal properties of gauged catchments (e.g. Kim and Kalu-
arachchi, 2008). A comprehensive review on the param-
eter regionalisation in Parajka et al. (2013) reported that
PROX_reg has competitive performance under humid cli-
mate with low-complexity models relative to the other cat-
egories. Based on modelling conditions in this study (semi-
humid climate and four parameters), we chose PROX_reg to
evaluate RFDC_cal.

To predict runoff at the 45 catchments in the LOOCV
mode, we transferred the behavioural parameter sets obtained
from the hydrograph calibration of the five donor catch-
ments used for the FDC regionalisation. In other words,
we used the same donor catchments for FDC regionalisa-
tion and PROX_reg. This allowed us to have consistency

in transferring hydrological information from gauged to un-
gauged catchments between RFDC_cal and PROX_reg. Us-
ing the best behavioural parameter sets of the five donor
catchments, we generated five runoff time series and took
the arithmetic averages of them to represent runoff predic-
tions by PROX_reg.

3.6 Performance evaluation

We used multiple performance metrics to evaluate predic-
tive performance of all modelling approaches applied in this
study. Predictive performance of each modelling approach
was graphically evaluated using box plots of the performance
metrics of the 45 catchments. In addition, we performed
several paired t tests to check the statistical significance of
performance differences between the modelling approaches.
What follows is the description of the performance metrics.

To measure high- and low-flow reproducibility, we chose
two traditional performance metrics: (1) the NSE between
observed and predicted flows (Eq. 2b) and (2) the NSE of log-
transformed flows (LNSE) respectively. LNSE is calculated
as

LNSE= 1−

∑N
i=1
(
ln
(
Qobs,i

)
− ln

(
Qsim,i

))2∑N
i=1
(
ln
(
Qobs,i

)
− ln(Qobs)

)2 . (8)

Although NSE and LNSE are frequently used for perfor-
mance evaluation, they may be sensitive to errors in flow
observations (Westerberg et al., 2011). Hence, we addition-
ally selected three typical flow metrics that embed dynamic
flow variation in a compact manner: the runoff ratio (RQP),
the baseflow index (IBF), and the rising limb density (DRL).
RQP, IBF, and DRL are proxies of aridity and water-holding
capacity, contribution of the baseflow to flow variations, and
flashiness of catchment behaviours, respectively. They are
defined as the ratio of runoff to precipitation, the ratio of
baseflow to total runoff, and the inverse of average time to
peak (d−1) as

RQP =
Q

P
, (9)

IBF =
∑T

t=1

QB,t

Qt

, (10)

DRL =
NRL

TR
, (11)

whereQ and P are average flow and precipitation for a given
period (mm d−1), Qt and QB,t (m d−1) are the streamflow
and the base flow at time t respectively, NRL is the number
of rising limb, and TR is the total amount of time when the
hydrograph is rising (days). QB,t can be calculated by sub-
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Figure 3. (a) Box plots of high flow (NSE) and low flow (LNSE) reproducibility of the behavioural parameters obtained from the hydrograph
calibration at the 45 catchments. (b) The relationship between the input–output consistency and the model performance. The straight lines in
the box plots connect the performance metrics for the calibration (2011–2015) and the validation periods (2007–2010) in each catchment.

tracting direct flow QD,t from Qt as

QD,t = c ·QD,t−1+ 0.5 · (1+ c) · (Qt −Qt−1) , (12)
QB,t =Qt −QD,t , (13)

where c is the filter parameter, which was set to 0.925
(Brooks et al., 2011; Eckhardt, 2007).

Flow signature reproducibility of RFDC_cal and
PROX_reg were evaluated by the relative absolute bias
between modelled and observed signatures as

DFS =
|FSsim−FSobs|

FSobs
, (14)

whereDFS is the relative absolute bias, FSsim is a flow signa-
ture of the modelled flows, and FSobs is that of the observed
flows.

4 Results

4.1 Hydrograph calibration and FDC regionalisation
in gauged catchments

Figure 3a displays results of the parameter identification
against the observed hydrographs (i.e. the hydrograph cali-
bration). The 45 catchments had mean NSE and LNSE of
0.66 and 0.65 between the simulated and observed flows for
the calibration period, respectively. The average NSE reduc-
tion from the calibration to the validation periods was 0.06
with a standard deviation of 0.10. The temporal transfer of
the calibrated parameters did not decrease the mean LNSE
value, while a wider LNSE range indicates that uncertainty
of low-flow predictions may increase when temporally trans-
ferring the calibrated parameters.

The predictive performance was closely related to the
input–output consistency (Fig. 3b), which was measured by

the Pearson correlation coefficient between the CPI and the
observed flows. A low input–output consistency implies that
the rainfall–runoff data may include significant epistemic er-
rors such as minimal flow responses to heavy rainfall or
excessive response to tiny rainfall. If the model calibration
compensates disinformation from such errors, the parameters
would be forced to have biases. Figure 3b shows that consis-
tency in input–output data is a critical factor affecting param-
eter identification and thus performance. Perhaps screening
catchments with low input–output consistency would provide
better predictions in ungauged catchments. However, we did
not consider it in the LOOCV for RFDC_cal and PROX_reg,
since variation in input–output consistency would be a com-
mon situation. Rather, reducing the number of gauged catch-
ments lowers spatial proximity, and thus can cause biases
for ungauged catchments too. Overall, 27 catchments and 33
catchments showed NSE and LNSE values greater than 0.6.
We assumed that the hydrograph calibration under the Monte
Carlo framework, which was assisted by the SCE optimisa-
tion, was able to acceptably identify the behavioural param-
eters under given data quality.

Figure 4 illustrates the 1 : 1 scatter plot between the ob-
served and predicted flow quantiles of all the catchments,
indicating high applicability of the top-kriging FDC region-
alisation. The overall NSE and LNSE values between the
observed and regionalised flow quantiles show good appli-
cability of the geostatistical method. The NSE and LNSE
values for individual catchments have averages of 0.83 and
0.91 with standard deviations of 0.25 and 0.11, respectively,
implying that low-flow predictions were slightly better. The
performance of the geostatistical method was relatively poor
at locations where gauging density is low. Catchments 4, 10,
35, and 36, which recorded 0.6 or less NSE, are limitedly
hatched with or adjacent to the other catchments; nonethe-
less, LNSE values of those catchments were still greater than
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Figure 4. 1 : 1 scatter plot between the empirical flow quantiles and
the flow quantiles predicted by the top-kriging FDC regionalisation
method.

0.7. This result is consistent with a finding of Pugliese et
al. (2016) that performance of the geostatistical method was
sensitive to river gauging density. Transferring flow quantiles
from remote catchments may not sufficiently capture func-
tional similarity between donor and receiver catchments. In
spite of the minor shortcomings, the geostatistical FDC re-
gionalisation was deemed acceptable based on the high NSE
and LNSE of flow quantiles. Topological proximity was gen-
erally a good predictor of flow quantiles for the study catch-
ments.

4.2 Comparing hydrograph predictability between
RFDC_cal and PROX_reg

Figure 5 compares the box plots of NSE and LNSE val-
ues between RFDC_cal and PROX_reg. PROX_reg gener-
ally outperforms RFDC_cal in predicting both high and low
flows, suggesting that transferring parameters identified by
observed hydrographs would be a better choice than a local
calibration against predicted FDC. The differences between
NSE values of PROX_reg and RFDC_cal have an average of
0.22 with a standard deviation of 0.34. Only eight catchments
showed higher NSE with RFDC_cal. These higher NSE val-
ues of PROX_reg imply that PROX_reg is preferable when
high-flow predictability is needed such as for flood analyses.
In the case of LNSE, PROX_reg still had a higher median
than RFDC_cal (0.53 and 0.62 for RFDC_cal and PROX_reg
respectively). In 25 catchments, PROX_reg provided LNSE
values greater than those of RFDC_cal.

The low performance of RFDC_cal was also found in the
comparative assessment of Zhang et al. (2015), which eval-
uated RFDC_cal for 228 Australian catchments using the
same GR4J model. Zhang et al. (2015) found that RFDC_cal
was inferior to PROX_reg in the Australian catchments, be-
cause the FDC calibration poorly reproduced temporal flow
variations relative to the hydrograph calibration. This study

Figure 5. Box plots of NSE and LNSE values between the observed
and the predicted hydrographs by RFDC_cal and PROX_reg for the
45 catchments under the cross-validation mode.

confirms the difficulty of capturing dynamic catchment be-
haviours with FDC containing no flow timing information.

A major weakness of RFDC_cal is the absence of flow
timing information in the parameter calibration process. Un-
like RFDC_cal, PROX_reg did not discard the flow timing
information. The regionalised parameters may be able to im-
plicitly transfer the flow timing information from gauged to
ungauged catchments (this hypothesis will be discussed in
Sect. 4.4). Figure 6 illustrates how the absence of flow tim-
ing negatively influences predictive performance. For this
comparison, the parameters were recalibrated against the ob-
served FDC (not regional FDC) under the same Monte Carlo
method to discard errors introduced by the FDC regionali-
sation (i.e. equivalent to calibration against perfectly region-
alised FDC). The parameters identified by the observed hy-
drograph (Fig. 6a) brought a good predictability in both high
and low flows, resulting in an excellent performance to repro-
duce the FDC. On the other hand, an excellent FDC repro-
ducibility does not guarantee a good predictability in high
flows (Fig. 6b). This indicates that reproducing FDC with
rainfall–runoff models would be less able than the hydro-
graph calibration to capture functional catchment responses.

In addition, Fig. 6 shows that the prediction area of the
50 behavioural parameters from the Monte Carlo simulations
(indicated by the grey areas and the blue arrows) became
much larger when using the FDC calibration instead of the
hydrograph calibration. We calculated the ratio of the pre-
diction area of the FDC calibration to that of the hydrograph
calibration, and refer to this as the equifinality ratio. It quan-
tifies the degree of equifinality augmented by replacing the
hydrograph calibration with the FDC calibration. Figure 7
displays the scatter plot between the equifinality ratio and
the input–output consistency. The equifinality augmented by
the loss of flow timing is likely to increase as the input–
output consistency decreases. The average of the equifinality
ratios was 1.96, implying that potential equifinality inherent
in RFDC_cal could be substantial. This may suggest that the
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Figure 6. The observed and predicted hydrographs, the prediction areas, and the observed and predicted FDC given by (a) the hydrograph
calibration and (b) the FDC calibration for Namgang Dam (Catchment 2 in Fig. 1).

Figure 7. The input–output consistency vs. equifinality increased
by replacing the hydrograph calibration with the FDC calibration.
The equifinality ratio is defined as the ratio between the prediction
areas of the 50 behavioural parameters gained from the FDC cali-
bration and the hydrograph calibration.

equifinality problem embedded in RFDC_cal could be more
significant than that in PROX_reg.

4.3 Comparing flow signature predictability between
RFDC_cal and PROX_reg

Figure 8 summarises the performance of RFDC_cal and
PROX_reg to regenerate the three flow signatures of RQP,
IBF, and DRL. RFDC_cal is competitive in reproducing the
averaged-based signatures RQP and IBF, while it showed
relatively weak ability to regenerate the event-based sig-
nature DRL. RQP and IBF are flow metrics based on av-
erages of long-term flow and precipitation in which no
flow timing information is involved. In particular, RFDC_cal
showed strong performance in reproducing IBF relative to
PROX_reg. This result can be explained by considering that
baseflow has fewer temporal variations than direct runoff in
the South Korean catchments under typical monsoonal cli-
mate. High seasonality of monsoonal precipitation causes
high temporal variations in direct runoff during June to
September, while relatively steady baseflow is dominant dur-
ing dry seasons (October to May). In Namgang Dam (whose
flow variation is displayed in Fig. 6), for example, the coef-
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Figure 8. Flow signature reproducibility comparison between
RFDC_cal and PROX_reg in terms of RQP (a), IBF (b), and
DRL (c).

ficient of variance (CV) of direct runoff was 5.86 for 2007–
2015, which is approximately 3.5 times as high as the CV of
the baseflow.

On the other hand, RFDC_cal was less able to repro-
duce DRL than PROX_reg. This highlights the weakness of
RFDC_cal in which only flow magnitudes were used for
identifying model parameters. PROX_reg showed better per-
formance in predicting DRL than did RFDC_cal. Flow tim-
ing information gained from the observed hydrographs could
be preserved, even after behavioural parameters were trans-
ferred to ungauged catchments. Overall, PROX_reg seems to
be better than RFDC_cal to predict the three flow signatures
together.

The box plots in Fig. 9 provide an indication that DRL is
likely to supplement the FDC calibration and thus improve
RFDC_cal. From the collection of 50 behavioural parameter
sets given by the FDC calibration, we chose the parameter set
providing the lowest bias for each flow signature as the best
behavioural sets, and simulated runoff again for all catch-
ments. The high-flow predictability was fairly improved by
additional constraining with DRL, suggesting that flow met-
rics associated with flow timing make up for the weakness of
the FDC calibration. Additional constraining with RQP and
IBF did not bring appreciable improvement in the FDC cal-
ibration. However, PROX_reg was still better than the addi-
tional constraining with DRL, indicating that a further study
is needed for better constraining rainfall–runoff models using
FDC together with additional flow metrics.

4.4 Paired t tests between the modelling approaches

For comparative evaluation in this study, we produced sev-
eral runoff prediction sets using multiple rainfall modelling
approaches. First, we calibrated GR4J against the observed
hydrographs (referred to as Q_cal), and transferred the be-
havioural parameters to ungauged catchments in the LOOCV
mode (PROX_reg). We constrained GR4J with the regional

FDC (RFDC_cal). To evaluate equifinality, we recalibrated
the GR4J parameters against the observed FDC (referred
to as FDC_cal). Additionally, we constrained the model
with observed FDC plus the flow signatures, and signifi-
cant performance improvement was found with DRL (re-
ferred to as FDC+DRL_cal). A paired t test using the
performance metrics (NSE, LNSE, or DFS) between these
modelling approaches can answer various questions be-
yond the graphical evaluations with box plots. For paired
t tests, we added one more case of transferring parameters
gained from FDC_cal to ungauged catchments (referred to as
FPROX_reg). FPROX_reg transfers behavioural parameters
with no flow timing information from gauged to ungauged
catchments. The mean NSE of FPROX_reg was 0.44 with a
standard deviation of 0.49.

A primary hypothesis of this study was that RFDC_cal
could outperform PROX_reg. This question can be addressed
by looking at the NSE differences between RFDC_cal and
PROX_reg. The mean NSE difference between them was
−0.22 and the standard error was 0.051, providing an evalu-
ation that the NSE differences were less than zero at a 95 %
confidence level. The paired t test did not lend support to the
hypothesis (i.e. PROX_reg outperformed RFDC_cal signifi-
cantly). However, we can assume that DRL can improve the
predictive performance of FDC_cal. The mean NSE differ-
ence between FDC+DRL_cal and FDC_cal was 0.12 and
the standard error was 0.025, confirming the significance at a
95 % confidence level.

Likewise, we tested several questions relevant to rainfall–
runoff modelling in ungauged catchments using different
combinations. In Table 3, we summarise the results of paired
t tests for scientific questions that may arise from this study.
One interesting question is, “Did the behavioural parameters
from Q_cal contain flow timing information for ungauged
catchments?” We addressed this question by comparing be-
tween PROX_reg and FPROX_reg with a hypothesis that
predictability in ungauged catchments would decrease if the
regionalised parameters were gained only from flow magni-
tudes. FPROX_reg uses FDC_cal for searching behavioural
parameters at gauged catchments; thus, it cannot transfer
flow timing information to ungauged catchments through the
behavioural parameters. The mean NSE difference between
PROX_reg and FPROX_reg was 0.10, and the standard er-
ror was 0.031. The NSE differences were greater than zero
significantly. The behavioural parameters from Q_cal were
likely to have flow timing information affecting predictabil-
ity in ungauged catchments.
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Table 3. Results of the paired t tests for potential questions on rainfall–runoff modelling in ungauged catchments.

Questions Corresponding pair aPM b1PM cSE Answer

Q1. Did RFDC_cal outperform PROX_reg? RFDC_cal–PROX_reg NSE −0.22 0.051 No∗

Q2. Did DRL improve FDC_cal? FDC+DRL_cal–FDC_cal NSE 0.12 0.025 Yes∗

Q3. Did parameters from Q_cal contain flow timing information PROX_reg–FPROX_reg NSE 0.10 0.031 Yes∗

for ungauged catchments?
Q4. Did absence of flow timing affect model efficiency? Q_cal–FDC_cal NSE 0.23 0.026 Yes∗

Q5. Did PROX_reg outperform RFDC_cal in predicting low flows? PROX_reg–RFDC_cal LNSE 0.09 0.031 Yes∗

Q6. Did PROX_reg outperform RFDC_cal in reproducing IBF? PROX_reg–RFDC_cal DFS(IBF) 0.06 0.028 Unlikely
Q7. Did errors in regional FDC affect RFDC_cal significantly? RFDC_cal–FDC_cal NSE −0.09 0.069 Unlikely

a Performance metric used for t test. b Mean PM difference between the corresponding pair. c Standard error of 1PM. ∗ 1PM is significantly different from zero. The significance was
evaluated at 95 % confidence levels.

5 Discussion and conclusions

5.1 RFDC_cal for rainfall–runoff modelling in
ungauged catchments

The use of regional FDC as a single calibration criterion ap-
pears to be a good choice for searching behavioural param-
eters in ungauged sites. As discussed earlier, the FDC is a
compact representation of runoff variability at all timescales,
and thus able to embed multiple hydrological features in
catchment dynamics (Blöschl et al., 2013). A pilot study of
Yokoo and Sivapalan (2011) discovered that the upper part
of an FDC is controlled by interaction between extreme rain-
fall and fast runoff, while the lower part is governed by base-
flow recession behaviour during dry periods. The middle part
connecting the upper and the lower parts is related to the
mean within-year flow variations, which is controlled by in-
teractions between water availability, energy, and water stor-
age (Yaeger et al., 2012; Yokoo and Sivapalan, 2011). It is
well documented that hydro-climatological processes within
a catchment are reflected in the FDC (e.g. Cheng et al., 2012;
Ye et al., 2012; Coopersmith et al., 2012; Yaeger et al., 2012;
Botter et al., 2008), and therefore the model parameters iden-
tified solely by a regional FDC are expected to provide reli-
able predictions in ungauged catchments (e.g. Westerberg et
al., 2014; Yu and Yang, 2000).

The comparative evaluation in this study provides another
expected result, that the FDC calibration is able to repro-
duce the FDC itself, but it insufficiently captures functional
responses of catchments due to the absence of flow timing in-
formation. A hydrograph is the most complete flow signature
embedding numerous processes interacting within a catch-
ment (Blöschl et al., 2013), being more informative than an
FDC. Since any simplification of a hydrograph, including the
FDC, loses some amount of flow information, it is no surprise
that the FDC calibration worsens the equifinality. This study
emphasises that the absence of flow timing in RFDC_cal
may cause larger prediction errors than regionalised param-
eters gained from observed hydrographs. The paired t test
between PROX_reg and FPROX_reg highlights that region-
alised parameters gained from observed hydrographs were

likely to contain intangible flow timing information even for
ungauged catchments. The flow timing information implic-
itly transferred to ungauged catchments is a major difference
between PROX_reg and RFDC_cal. The errors introduced by
the FDC regionalisation were not significant due to the high
performance of the geostatistical method in this study.

Because the hydrograph calibration can compensate for
the errors in input–output data, one may convert the hy-
drograph into the FDC to avoid effects of disinformation
on rainfall–runoff modelling. However, in this case, valu-
able flow timing information should be balanced in trade-
off. For RFDC_cal in this study, we began with converting
the observed hydrographs into the flow quantiles to region-
alise them; thus, the flow timing information was initially
lost. As shown, the performance of RFDC_cal was gener-
ally lower than that of PROX_reg. Therefore, when condens-
ing observed hydrographs into flow signatures, preserving
all available flow information in the hydrograph would be
key for a successful rainfall–runoff modelling. This study
shows that using only regionalised FDC could lead to less
reliable rainfall–runoff modelling in ungauged catchments
than regionalised parameters. An FDC is unlikely to preserve
all flow information in a hydrograph necessary for rainfall–
runoff modelling.

5.2 Suggestions for improving RFDC_cal

Westerberg et al. (2014) suggested the necessity of further
constraining to reduce predictive uncertainty in RFDC_cal.
This study found that RFDC_cal could provide comparable
performance to regenerate the flow signatures within which
only flow magnitudes are involved (i.e. RQP and IBF). To
supplement regional FDC, flow signatures associated with
flow timing seem to be essential. Figure 9 shows the po-
tential of additional constraining with DRL, and Q2 in Ta-
ble 3 confirms it. Other flow signatures in temporal dimen-
sions, such as the high- and the low-flow event durations in
Westerberg and McMillan (2015), can be candidates to im-
prove RFDC_cal. However, uncertainty in those flow signa-
tures will be a challenge when it comes to building regional
models for ungauged catchments (Westerberg et al., 2016).
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Figure 9. Predictive performance of the FDC calibrations ad-
ditionally conditioned by RQP (FDC+RQP), IBF (FDC+ IBF),
and DRL (FDC+DRL) in comparison to the other modelling ap-
proaches. Q_cal and FDC_cal refer to the hydrograph and the FDC
calibration in gauged catchments respectively. Thirty-eight catch-
ments with positive NSE for all the modelling approaches were used
in the box plots.

An alternative method of RFDC_cal is to directly region-
alise hydrographs to ungauged catchments (e.g. Viglione et
al., 2013). In data-rich regions, topological proximity could
better capture spatial variation of daily flows than rainfall–
runoff modelling with regionalised parameters (Viglione et
al., 2013). Although a dynamic model may be required for
regionalising observed daily flows at an expensive computa-
tional cost, flow timing information would be contained in re-
gionalised hydrographs. The parameter identification against
the regional hydrographs may become a better approach than
RFDC_cal and/or other signature-based calibrations.

5.3 Limitations and future research directions

There are caveats in our comparative evaluation. First, un-
certainty in input–output data was not considered in our as-
sessment. McMillan et al. (2012) reported typical ranges of
relative errors in discharge data as 10–20 % for medium to
high flow and 50–100 % for low flows. We assumed that
quality of the discharge data was adequate. However, other
methods objectively considering uncertainty could better es-
timate model performance and the equifinality (e.g. Wester-
berg et al., 2011, 2014). Second, we used a conceptual runoff
model with a fixed structure for all the catchments. Uncer-
tainty from the model structure would vary across the study
catchments; nevertheless, the structural uncertainty was not
measured here. Our comparative assessment was based on
the basic premise that modelling conditions should be fixed
for all study catchments. Third, we compared RFDC_cal and
PROX_reg in a region with sufficient data lengths and qual-
ity at gauged catchments. The lessons from this study may
not be expandable to ungauged catchments under poor data
availability. Finally, though the proximity-based parameter
regionalisation was good for the South Korean catchments,
comparison between RFDC_cal and other regionalisation

methods, such as the regional calibration and the similarity-
based parameter transfer, may provide beneficial information
for rainfall–runoff modelling in ungauged catchments. Com-
parative assessment between RFDC_cal and other parameter
regionalisation using more sample catchments under diverse
climates will provide more meaningful lessons.

We can no longer hypothesise that the parameters gained
against regionalised FDC would perform sufficiently, be-
cause an FDC contains less information than a hydrograph
(i.e. the absence of flow timing). For improving RFDC_cal,
we suggest supplementing RFDC_cal with flow signatures
in temporal dimensions. Then, the question of how to make
flow signatures more informative than (or equally informa-
tive to) hydrographs should be addressed. This may be im-
possible only using flow signatures originating from hydro-
graphs (e.g. mean annual flow, baseflow index, recession
rates, FDC). Combinations of those signatures are unlikely
to be more informative than their origins (i.e. hydrographs),
though it depends on how much disinformation is present in
the observed flows. Future research topics could include find-
ing new signatures that supplement hydrographs, and how
to combine them with existing flow signatures for rainfall–
runoff modelling in ungauged catchments.

5.4 Conclusions

While rainfall–runoff modelling against regional FDC ap-
peared a good approach for prediction in ungauged catch-
ments, this study highlights its weakness in the absence of
flow timing information, which may cause poorer predictive
performance than the simple proximity-based parameter re-
gionalisation. The following conclusions are worth empha-
sising.

For ungauged catchments in South Korea, where spa-
tial proximity well captured functional similarity between
gauged catchments, the model calibration against regional
FDC is unlikely to outperform the conventional proximity-
based parameter transfer for daily runoff prediction. The ab-
sence of flow timing information in regional FDC seems
to cause a substantial equifinality problem in the parameter
identification process and thus lower predictability.

The model parameters gained from observed hydrographs
contain flow timing information even for ungauged catch-
ments. This intangible flow timing information should be dis-
carded if one calibrates a rainfall–runoff model against re-
gional FDC. This information loss may reduce predictability
in ungauged catchments significantly.

To improve the calibration against regional FDC, flow
metrics in temporal dimensions, such as the rising limb den-
sity, need to be included as additional constraints. As an alter-
native approach, if river gauging density is high, regionalised
hydrographs preserving flow timing information can be used
for local calibrations at ungauged catchments.

For better prediction in ungauged catchments, it is nec-
essary to find new flow signatures that can supplement the
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observed hydrographs. How to combine them with existing
information will be a future research topic for rainfall–runoff
modelling in ungauged catchments.
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