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Abstract. In this paper, we present a unique 9.5 m palaeo-
lacustrine record of 771 palaeofloods which occurred over
a period of 9.3 kyr in the Piànico–Sèllere Basin (southern
Alps) during an interglacial period in the Pleistocene (some-
time from 780 to 393 ka) and analyse its correlation, clus-
tering, and cyclicity properties. We first examine correla-
tions, by applying power-spectral analysis and detrended
fluctuation analysis (DFA) to a time series of the num-
ber of floods per decade, and find weak long-range persis-
tence: a power-spectral exponent βPS≈ 0.39 and an equiv-
alent power-spectral exponent from DFA, βDFA ≈ 0.25. We
then examine clustering using the one-point probability dis-
tribution of the inter-flood intervals and find that the palae-
ofloods cluster in time as they are Weibull distributed with
a shape parameter kW = 0.78. We then examine cyclicity in
the time series of number of palaeofloods per year, and find
a period of about 2030 years. Using these characterizations
of the correlation, clustering, and cyclicity in the original
palaeoflood time series, we create a model consisting of the
superposition of a fractional Gaussian noise (FGN) with a
2030-year periodic component and then peaks over thresh-
old (POT) applied. We use this POTFGN+Period model to cre-
ate 2 600 000 synthetic realizations of the same length as our
original palaeoflood time series, but with varying intensity
of periodicity and persistence, and find optimized model pa-
rameters that are congruent with our original palaeoflood se-
ries. We create long realizations of our optimized palaeoflood
model, and find a high temporal variability of the flood fre-
quency, which can take values of between 0 and > 30 floods
century−1. Finally, we show the practical utility of our opti-

mized model realizations to calculate the uncertainty of the
forecasted number of floods per century with the number of
floods in the preceding century. A key finding of our paper
is that neither fractional noise behaviour nor cyclicity is suf-
ficient to model frequency fluctuations of our large and con-
tinuous palaeoflood record, but rather a model based on both
fractional noise superimposed with a long-range periodicity
is necessary.

1 Introduction

Risk estimates of floods are often based on instrumental
records that cover a comparable small time period (e.g. a
maximum of 150 years) and might be influenced by anthro-
pogenic activities. Therefore, palaeoflood sequences repre-
sent a promising source for understanding the long-term haz-
ard dynamics of the unperturbed climate system (e.g. Kochel
and Baker, 1982; Stedinger and Cohn, 1986; Baker, 1987,
2006; Ely et al., 1993; O’Connor et al., 1994; Knox, 2000;
Yang et al., 2000; Greenbaum et al., 2000; Redmond et al.,
2002; Benito et al., 2004; Czymzik et al., 2010; Huang et al.,
2013; Swierczynski et al., 2013; Wirth et al., 2013). One im-
portant aspect of these dynamics is to understand to what
extent flood frequencies can be considered constant over
time, and more specifically, whether floods in a given ge-
ographic region have any correlations with themselves and
whether the floods are clustered in time. Here we examine
correlations, clustering, and cycles in a 9336-year record of
palaeofloods using varved (annual) sediments from palaeo-
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lake Piànico–Sèllere (northern Italy), and construct a model
to take into account the observed behaviour. In this introduc-
tion, we present the idea of correlations and clustering in
time series, and then summarize the overall organization of
this paper.

We first consider correlations in a time series. Consider
an uncorrelated time series (e.g. a white noise), where val-
ues are independent of one another, i.e. it is equally likely
at each time step to have values above or below the median
value. To illustrate correlations, take a flood intensity time
series, with flood intensity the number of floods per year;
a “flood” here might be defined in many different ways. If
the flood intensity time series is uncorrelated, when there is
a year with a large intensity (a large number of floods oc-
curring, above the median number of floods), it is equally
probable to have the next year a number of floods that is
above or below the median, i.e. a flood intensity value that
is “large” (more floods) or “small” (zero or few floods). In
contrast, for a flood intensity time series that exhibits posi-
tive correlations, adjacent values will have flood intensities
that are on average closer to each other (in intensity) than for
an uncorrelated time series; large values tend to follow large
ones, and small follow small. Temporal correlations are also
referred to as persistence or memory (see Witt and Malamud,
2013, and references therein). Two examples of positive cor-
relations in time series are given in Fig. 1a and b, using a tree
ring standardized growth index for Bristlecone pine, White
Mountain, California, USA, for the years AD 0–1962 and
cosmic ray neutron counts per hour, Beijing, China, 1 Jan-
uary to 11 March 2008. In these two Fig. 1 panels, succes-
sive values in both series are positively correlated with one
another, and are examples of persistent time series.

Correlations can be both short-range (where only values
in a time series close to each other are correlated) or long-
range (where all values in the time series are correlated with
one another). We will find that the unequally spaced palae-
oflood time series used in this paper exhibit both long-range
correlations and long period cyclical behaviour, and will fo-
cus on long-range (vs. short-range) persistent models in this
paper. Long-range correlations have been discussed and doc-
umented for many processes in the environmental and Earth
Sciences (see Box et al., 2013; Witt and Malamud, 2013,
and references therein), with examples including river run-
off and precipitation (Hurst, 1951; Mandelbrot and van Ness,
1968; Montanari et al., 1996; Koscielny–Bunde et al., 2006;
Mudelsee, 2007; Khaliq et al., 2009; Ghil et al., 2011), at-
mospheric variability (Govindan et al., 2004) and tempera-
tures over short- to very-long timescales (Pelletier and Tur-
cotte, 1997; Fraedrich and Blender, 2003). The idea of long-
range correlations is commonly used to characterize obser-
vational and experimental measurement data across many
other scientific disciplines: For instance Peng et al. (1993b,
1994) found long-range persistence in the nucleotide organi-
zation of DNA sequences, Kurths et al. (1995) detected long-
range correlations in time series from radio astronomy, Peng
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Figure 1. Example of correlations, clustering, and cyclicity (a and
b following Witt et al., 2010). (a) Tree ring standardized growth
index for Bristlecone pine, White Mountain, California, USA, for
the years AD 0–1962 (Ferguson et al., 1994). (b) Cosmic ray neu-
tron counts per hour, Beijing, China, 1 January to 11 March 2008
(NGDC, 2008). In (a) and (b) successive values in each both se-
ries are positively correlated with one another, and are examples of
persistent time series. (c) Maximum daily discharge, Q, for station
05474500 on the Mississippi River at Keokuk, Iowa, for 116 water
years, 1878–1993 with data from Slack and Landwehr (1992) and
USGS (2017) and described in Malamud et al. (1996). (d) Partial-
duration flood series, where floods are the largest 116 maximum
daily discharge from (c) over the 116-year period, with daily dis-
charges separated by at least 30 days to be considered a flood.
In our partial duration series, 48 of the 116 years have 0 floods,
33 years have 1 flood, 26 years have 2 floods, and 6/2/1 years have
3/4/5 floods. The value of these maximum daily discharges for each
flood event is projected to the x-axis (daily discharge= 0 m3 s−1).
Below this is shown (green dots) all events along one line, an ex-
ample of a data series that is strongly clustered in time. Clustering
is due to (i) seasonal effects (cyclicity) and (ii) longer-term cycles.

et al. (1993a) and Penzel et al. (2003) analysed long-term
recordings of heart rate variability.

The palaeoflood time series we will examine in this paper
is unequally spaced in time. Some examples given above in-
clude unequally spaced time series, such as Ghil et al. (2011),
who studied long-range persistence of the unequally spaced
Nile River time series. The palaeoflood time series we ex-
amine is also integer valued, i.e. is not a continuous one-
point probability distribution. Some long-range persistence
research has investigated integer-valued time series. For ex-
ample, the example given above for Peng et al. (1993b, 1994)
research on long-range persistence of DNA’s nucleotide or-
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Figure 2. Site, sediment outcrop, and data. (a) Location of palaeolake Piànico–Sèllere, Italy. Underlying image © 2017 DigitalGlobe. (b)
Detail of the 9.5 m sediment outcrop containing a winter layer and parts of two summer layers with, shown here, a detrital layer that is
interpreted as a flood event. (c) Graphical representation of the sediment outcrop with the grey horizontal lines indicating detrital layers,
brown horizontal bars indicating the number of detrital layers per decade and the striped bar showing a 65-year gap (see Fig. 3 for more
detailed time series). The relative age represents years before the top of the stratigraphic section examined, with actual age estimated to be
anywhere from 780 to 393 ka (see text). These data, the number of detrital layers per year, have been lodged online at the World Data Centre
PANGEA (Mangili et al., 2017).

ganization represented the DNA as sequences with four dif-
ferent types of symbols. In another two examples, Altmann
et al. (2012) studied correlations in texts as represented by
binary sequences and Schaigorodsky et al. (2014) investigate
long-range memory in the opening moves of chess games.

An alternative to examining the temporal correlations of
flood intensities (here taken as the number of floods per
year) is to examine whether the flood intensities over a given
threshold cluster in time. Clustering is the grouping of val-
ues in time more than one would expect if the process that
created them were random. An example of clustering, in un-
equally spaced flood magnitudes over a given threshold, is
given in Fig. 1c and d. Here we observe the clustering on
an annual cycle. Correlation and clustering (or lack thereof)
have been studied for different extreme natural events, in-
cluding earthquakes (e.g. Livina et al., 2005; Hainzl et al.,
2006; Lennartz et al., 2008; Davidsen and Kwiatek, 2013),
volcanic eruptions (e.g. Nathenson, 2001), floods (e.g. Pel-
letier and Turcotte, 1997; Milly and Wetherald, 2002), and
tropical temperatures (e.g. Blender et al., 2008).

In this paper, we use a record of 771 detrital layers of the
laminated sediments of palaeolake Piànico–Sèllere (northern
Italy) covering a time span of 9336 years. These 771 layers

are interpreted as indictors of flood events which occurred
somewhere during the period of 780 to 393 ka (thousands
of years ago). In Sect. 2 we give a detailed description of
the palaeoflood sequence. In Sect. 3 we explain key defini-
tions and methods used in this paper. Then in Sect. 4 we
analyse the distribution of the palaeoflood frequencies per
year, decade, and century compared to a Poisson (station-
ary) model, the one-point probability distribution of the inter-
flood intervals as a potential indicator of clustering, the tem-
poral correlations among the flood events, and cyclicity. In
Sect. 5 we model the record of palaeoflood timings as ele-
ments of a long-range correlated synthetic time series that
exceed a threshold. For this model type, scaling relationships
for the distribution of the interevent intervals and the tem-
poral correlations are derived in dependence on correlation
properties of the time series and on the applied threshold.
In Sect. 5 we also construct a model that consists of mul-
tiple realizations of synthetic time series that captures the
same clustering and correlation properties that we find in our
palaeoflood record. Finally, in Sect. 6 we provide a summary
of the paper.
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Figure 3. Temporal succession, histograms, and autocorrelation of the detrital layers of the 9336-year Piànico–Sèllere, Italy, palaeoflood
record (data available at Mangili et al., 2017). The number of observed detrital (flood) layers per year (blue dots, 0≤ nyear ≤ 3 floods yr−1),
decade (orange dots, 0≤ ndecade ≤ 8 floods decade−1), and century (green dots, 0≤ ncentury ≤ 31 floods century−1) are presented over the
9336 years of the record examined. The x-axis represents relative age, with t = 1 year the most recent varve and increasing values indicating
further back in time. The grey bar represents a sediment gap of 65 years (leaving 9271 years of the record examined over the 9336 years). In
addition, for each time resolution is given (upper right) the coefficient of variation cv = σ/µ, where σ is the standard deviation and µ is the
mean of the given time series. Shown to the right of each palaeoflood time series is the respective histogram of the number of floods per year
(blue bars), decade (orange bars), and century (green bars).

2 Data

As discussed in the introduction, this paper focuses on the
correlation, clustering, and cyclicity of palaeofloods. We
present here for the first time and use a very comprehen-
sive flood record at sub-annual resolution, obtained from the
varved sediments of the Piànico–Sèllere Basin, located in
the Borlezza Valley (Province of Bergamo, Italy; Fig. 2a).
These data have been lodged online at the World Data Centre
PANGEA (Mangili et al., 2017). This palaeolake sequence
was first described in the mid 1800s (e.g. Stoppani, 1857),
mainly for its fossil content. A detailed stratigraphic study
was published by Moscariello et al. (2000).

Palaeolake Piànico–Sèllere is located at the foothills of
the southern Alps in Italy. Its sediments (45◦48′ N, 10◦2′ E,
280–350 m a.s.l.) are visible in outcrops (Fig. 2b). The sedi-
ment formation is more than 48 m thick and extends for about
600 m laterally. It includes four fine-grained laminated strati-
graphic units (described more fully below). The size of the
palaeolake has been reconstructed to about 3 km in length
and 500–800 m in width (Casati, 1968). The palaeocatch-
ment area of Piànico–Sèllere Lake has been estimated to be
less than 13 km2 (Moscariello et al., 2000).

The lacustrine sequence that forms the Piànico Formation
(Moscariello et al., 2000) is a 48 m thick stratigraphic in-
terval that includes four units. For the palaeoflood data set
created here, only the 9.5 m unit called BVC (Banco Var-
vato Carbonatico or carbonate varved bed) will be consid-
ered (described more fully below). The age of the sediment
is still debated. Tephrochronological dating of the sequence
gives 393± 12 ka (Brauer et al., 2007), which corresponds
to the interglacial period at about 400 ka, i.e. Marine Iso-
tope Stage (MIS) 11. This interglacial period is considered
the best analogue to the Holocene because of similar orbital
parameters (e.g. Loutre and Berger, 2003). However, Pinti et
al. (2001) dated a tephra layer in the varved BVC sequence
at 779± 13 ka, assigning the sequence to the interglacial at
about 780 ka (MIS 19). For the purposes of the paper here,
we will be less concerned with the actual age and more con-
cerned with the period of overall time that has elapsed, based
on interpreting the BVC alternating layers (rhythmites) as
varves.

The BVC 9.5 m unit constitutes an almost continuous suc-
cession of about 15 500 rhythmites (alternating layers of dark
and light sediment), 0.2–0.8 mm thick (Moscariello et al.,
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2000). These endogenic calcite rhythmites have been inter-
preted to be varves (annual cycles) as they have a structure
very similar to Holocene Alpine lake varves, in which cal-
cite precipitation takes place in spring and summer (Kelts
and Hsü, 1978; Moscariello et al., 2000). The Piànico–
Sèllere varved sequence formed under interglacial condi-
tions, as testified by the flora remains included in the sedi-
ments (e.g. Amsler, 1900; Maffei, 1924; Rossi, 2003; Mar-
tinetto, 2009) and the oxygen stable isotope values of this
interval (Mangili et al., 2007). The calcite varves consist
of two layers (Fig. 2b): a lightly coloured and ∼ 0.5 mm
thick spring/summer layer formed by up to 96 % of endo-
genic calcite, and a dark and thin winter layer constituted
of organic remains, diatom frustules, and occasional detri-
tal grains (Moscariello et al., 2000; Mangili et al., 2005).
Using wavelet analysis, Brauer et al. (2008) found that the
varve thickness is partially modulated by solar activity (88
and 208-year cycles), and probably also by the thermohaline
ocean circulation (512-year cycle). In the BVC stratigraphic
interval, the upper 60 % (9271 out of 15 500 varves) were
examined here in detail using the same methodology and lo-
cation as described in Mangili et al. (2005), but extending
the vertical profile from 896 varves (Mangili et al., 2005) to
9271 varves (here). Note that at varve 4019 of 9271, there
was found to be a “gap” of time, consisting of 65 missing
varves, bringing the total sequence to 9336 varves (with 65
varves missing); this gap is described below in much more
detail.

We briefly describe our microfacies sampling methodol-
ogy (see Mangili et al., 2005 for further details). Continu-
ous vertical profiles of sediment samples were collected from
two outcrops stratigraphically similar, 150 m apart: (i) the
Main Section, for which data are presented in this paper,
and (ii) the Wall Section, a control section which we used
to evaluate uncertainties in the Main Section results. Both
sections had more than 30 key marker layers so the two out-
crops could be correlated with each other. For each vertical
section, the outcrops were cleaned with a sharp knife until a
smooth and vertical surface was obtained. Then a block of
sediment was carved out in situ to enable easy pushing of
a special stainless box (33 cm× 5 cm) with removable side
walls onto the sample. Samples were taken with at least a
5 cm vertical overlap, ensuring that a marker layer, allowing
correlation, was present in both samples. The samples were
then slowly dried at room temperature to avoid shrinkage and
cracking and covered with a transparent epoxy resin, result-
ing in resin impregnation of the surface layer (1–2 mm) of
the sediments. Samples were cut into two halves with the
fresh surface again carefully dried and impregnated. From
one half, 10 cm thick samples with a 4 cm overlap for fi-
nal thin-section (120 mm× 35 mm) preparation were cut out.
The thin sections were analysed with a petrographic micro-
scope. For measurement of varve and detrital layer thickness,
100× magnification was chosen.

Approximately 8 % of the varve couplets contain also one
or two detrital layers (Fig. 2b), which we describe in more
detail below. The detritus is mainly constituted of fine, silt-
size Triassic dolomite from the catchment (Mangili et al.,
2005). Only in the thickest described layers are found fine-
sand sized particles in minor amounts. No detrital layers con-
tain gravel. Due to their composition and grain size, these de-
trital layers can easily be distinguished from the background
endogenic sedimentation of the lake. These detrital layers
are considered to be the result of channelized streamflow
that originated in the hills surrounding the Piànico–Sèllere
Basin and triggered by extreme precipitation events (Mangili
et al., 2005). The site of the outcrops from which the sam-
ples have been taken have been explicitly selected to avoid
gravel sediments which could cause hiatuses through ero-
sion. We interpret the site to be a low-energy sedimentary
environment in a distal position of the inflowing water. The
position of a detrital layer within a varve allows the iden-
tification of the season in which the extreme precipitation
event/flood took place: a “spring” detrital layer settled be-
fore the beginning of endogenic calcite precipitation, a “sum-
mer” detrital layer is within the varve summer layer and a
“fall/winter” detrital layer is at the top of the calcite layer or
included in the winter layer (Mangili et al., 2005). Due to the
reduced thickness of the varve winter layer (0.06 mm mean),
fall and winter detrital layers are not distinguished here. An-
other layer type (called matrix-supported) has also been ob-
served in the varved sediments (Mangili et al., 2005); these
layers are thought to result from reworking processes within
the lake, are not linked to extreme precipitation events and
will, therefore, not be taken into consideration in this paper.

In our analysis, we will focus on the temporal succession
of detrital layers (flood events), the series of events that is
graphically presented in Fig. 2c, and which consists of 771
single palaeoflood events occurring during a time interval of
T = 9336 years. There are 9271 varves present, each taken to
represent 1 year, in addition to a “gap” of 65 years (varve in-
dex 4019–4083) which is due to a slump at the Main Section.
The varve structure there was not recognizable. To ascertain
the temporal period of the gap, we correlated three marker
layers between the Main Section’s disturbed interval with an
undisturbed sequence at the Wall Section, where we counted
the number of varves, and were able to conclude that the gap
in the Main Section is 65 years. The flood events have each
been given a specific varve index (relative age) in the time
series. In this paper, we will use the following notation (see
also Table 1 for a list of all abbreviations and notations used
in this paper) for the observed data with respect to varves
and detrital (flood) layers: nyear(t), t = 1, . . . , Nvarves is the
number of detrital layers per varve (flood events per year)
where the index t is the varve index (starting from the top
varve) and represents relative age in years (see above), and
Nvarves = 9336 years is the length of the observational pe-
riod, i.e. the total number of varves including the “gap” of
65 years.

www.hydrol-earth-syst-sci.net/21/5547/2017/ Hydrol. Earth Syst. Sci., 21, 5547–5581, 2017
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Table 1. Abbreviations and notation.

Abbreviation Description

BVC Banco Varvato Carbonatico (carbonated varved bed)
DFA Detrended fluctuation analysis
FGN Fractional Gaussian noise
MIS Marine isotope stage
MLE Maximum likelihood estimation
IEOT Interevent occurrence time
POT Peaks over threshold
PS Power spectrum or power-spectral analysis

Symbol Description Units

α Power-law exponent of the fluctuation function, with βDFA = 2α− 1. (unitless)
βDFA Strength of long-range persistence (based on the power-law exponent α

of the fluctuation function)
(unitless)

βmodel Strength of long-range persistence (model parameter) (unitless)
βPS Strength of long-range persistence (based on the power-law exponent

of the power-spectral density)
(unitless)

γ Power-law exponent of the autocorrelation function (unitless)
1,1j Interevent occurrence time plotted on the x-axis in real time (1) and in

natural time (1j )
(years)

1, 1j Mean interevent occurrence time 1=1j (years)
θ , θ12 Threshold (no subscript: general; subscript 12: separates one and two

floods per time unit)
(unitless)

3(t) Time-dependent flood rate (floods yr−1)
3model(t) Time-dependent flood rate of model realizations (floods yr−1)
3model(t) Mean of time-dependent flood rate taken over many model realizations (floods yr−1)
λ Rate parameter of the Poisson distribution (unitless)
λyear, λdecade, λcentury Flood rate per year, per decade, per century (floods yr−1,

floods decade−1,
floods century−1)

λW Scale parameter of the Weibull distribution (unitless)
µ Mean of the values considered (variable dependent)
σ , σ 2 Standard deviation, variance (variable dependent)
τ Time lag in real time (years, decades, cen-

turies)
τ1 Time lag in natural time (of the interevent occurrence time series 1j ,

j = 1, 2, . . . , N )
(unitless)

Amodel Amplitude of the periodic component (model parameter) (unitless)
Arate Amplitude of the periodic component of the time-dependent flood rate

fit to the palaeoflood time series.
(unitless)

a1, a2, a3 Parameters for the modelling the cyclicity of the annual flood series (floods yr−1)
C(τ), C(τ1) Autocorrelation function, depends on the lags τ and τ1 (variable dependent)
cv Coefficient of variation (cv = σ/µ) (unitless)
F Fluctuation function (unitless)
j Index of natural time, 1≤ j ≤N1 (unitless)
k Integer-valued variable (unitless)
kyear, kdecade, kcentury Number of occurrences of nyear, ndecade, ncentury with a specific value

during a given period of time considered. For example, if there are
80 times that nyear = 3 floods yr−1 over 9.3 kyr, then kyear = 80 years
(at nyear = 3 floods yr−1).

(years, decades, cen-
turies)

kW Shape parameter of the Weibull distribution (unitless)
l Integer-valued variable (unitless)
n Intensity (no. of occurrences) of the random variable X (in Eq. 1) (unitless)
nyear, ndecade, ncentury Number of detritic layers (floods) per varve (i.e. per year), per 10 varves

(i.e. per decade), and per 100 varves (i.e. per century).
(floods yr−1,
floods decade−1,
floods century−1)

Hydrol. Earth Syst. Sci., 21, 5547–5581, 2017 www.hydrol-earth-syst-sci.net/21/5547/2017/
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Table 1. Continued.

Symbol Description Units

Nfloods Total number of floods (detritic layers) (Nfloods = 771 floods) (floods)
N , Nyear, Ndecade, Ncentury Total number of years/decades/centuries where varves are present

in the palaeoflood data set (Nyear = 9271 years,Ndecade = 925 decades,
Ncentury = 92 centuries) with N the place holder

(years, decades, cen-
turies)

Nvarves Total number of varves (9336 varves) (varves)
N1 Total number of interevent occurrence times (N1 = 739) (unitless)
Pexp One-point probability density distribution of the

exponential distribution
(unitless)

Pλ One-point probability density distribution of the Poisson distribution (unitless)
PW One-point probability density distribution of the Weibull distribution (unitless)
S(f ) Power-spectral density depending on the frequency f (variable dependent)
st , t = 1, . . . , N Running sum (variable dependent)
t = 1, 2, . . . , N Relative varve index or time index for our palaeoflood time series. Note

that the index “skips over” the 65-year gap, so for N =Nyear it goes
from t = 1 to 9271 years.

(years)

X Discrete random variable in Eq. (1) (unitless)
xyear(t), xdecade(t), xcentury(t) Number of floods per year, decade, century depending

on time t (model output)
(floods yr−1,
floods decade−1,
floods century−1)

y(t) Model input depending on time t (unitless)

The timings of the considered 771 palaeoflood events are
transformed into three event series (Fig. 3), the number of
floods (detrital layers) per year (nyear), per decade (ndecade),
and per century (ncentury), over the 9271 years of palae-
oflood data (over a 9336-year record). These three data sets
are integer-valued time series which contain Nyear = 9271,
Ndecade = 925, and Ncentury = 92 data points, and will pro-
vide the basis for our time series analyses in Sect. 4. In these
three palaeoflood time series (Fig. 3) which represent our
data, we observe that there are time periods with little fluc-
tuation of the number of floods per century (i.e. the 24th
to 18th centuries with values over the range 10–16 floods
century−1). However, we also see sudden transitions from
many to a few floods (as from 24 to 4 floods century−1 from
the 39th to 38th centuries) as well as from a few to many
floods (as from 7 to 25 floods century−1 from the 46th to
45th centuries).

The histograms of these data are also given in Fig. 3,
on the far right of each time series. The number of
years (kyear) with no floods (nyear = 0 floods yr−1) is
kyear = 8530 years (92.0 % of the record). Similarly, for
nyear = 1, 2, 3 floods yr−1, the number of years (respec-
tively) with those values are kyear = 712 (7.7 %), 28 (0.3 %),
and 1 (0.01 %) years. For Nyear = 9271 years examined,
there are 741 years which have 1 to 3 floods (detrital lay-
ers), a total of 771 floods. We will revisit these values in
Sect. 4.1. The data cover Ndecade = 925 non-overlapping
decades (because of the 65-year gap, 8 of the decades
within the 9336 years are disrupted). The number of decades
(kdecade) with no floods (ndecade = 0 floods decade−1) is
kdecade = 453 decades (49.0 % of the record). Similarly, for

ndecade = 1, 2, 3 floods decade−1, kdecade = 283 (30.6 %), 123
(13.3 %), and 43 (4.6 %) decades. For 4≤ ndecade ≤ 8 floods
decade−1, kdecade = 23 (2.5 %) decades. No decades have
ndecade > 8 floods decade−1. If we consider the data on the
century resolution, we have Ncentury = 92 non-overlapping
centuries, as the 65-year gap falls completely within 1 cen-
tury. The number of centuries (kcentury) with no floods
(ncentury = 0 floods century−1) is kcentury = 1 century (1 % of
the record). For 1 ≤ ncentury ≤ 5 and 6 ≤ ncentury ≤ 10 floods
century−1, kcentury = 26 and 35 centuries (28 and 38 % of
the record) respectively. For ncentury > 10 floods century−1,
kcentury then decreases (Fig. 3), with a maximum value of
ncentury = 31 floods century−1 which is reached once (i.e.
kcentury = 1 century).

The thicknesses of the detrital layers representing the 771
flood events that we investigate in this paper range from
0.02 to 23.00 mm (with quartiles of 25 %: 0.07 mm, 50 %:
0.10 mm, and 75 %: 0.18 mm) (see Appendix Fig. A1). Al-
though detrital layers, which are mainly constituted of silt-
sized dolomite, indicate the occurrence (season and year) of
an extreme precipitation event (flood), the thickness is not
taken as representative of the magnitude (e.g. peak discharge
or flow velocity) of the event. This is because the thickness
of a layer can also be influenced by the distance between the
source of the detritus and the studied section and the amount
of detritus available at the time of the extreme precipitation
and weaker vs. stronger rainfall during the extreme precipi-
tation events (Kämpf et al., 2012, 2015). In addition, over the
9336-year period we investigate, the source of given rainfall
events might result in different thickness signatures (Swier-
czynski et al., 2012, 2013). We also note that although we
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Figure 4. Data series of detrital layers (floods) and interevent occurrence times (IEOTs) from the Piànico–Sèllere, Italy, palaeoflood sequence.
(a) In panel (a.1) are shown the number of detrital layers (floods) per varve, nyear, given as a function of varve index t = 1 to 9336 years
(blue dots – data available at Mangili et al., 2017) as shown in Fig. 3. In panel (a.2) a 100-year portion of (A.1) (from t = 8090 to 8190 years)
is expanded with an illustration of 4 flood years that have detrital layers (floods) in them, and the interevent occurrence times 1 between
them. These 4 flood years, each with nyear ≥ 1 flood in them, appear as yellow symbols in all panels. (b) Interevent occurrence times, 1,
temporally located (i.e. as a function of the relative age) when they occurred. (c) Interevent occurrence times, 1j , plotted as a function of
“natural” time, where each 1 is no longer represented temporally when it occurs, but rather successively one after another, j = 1, 2, 3, . . . ,
741; interevent occurrence times of 1j = 0 are not shown. The detrital varve index j includes only those years (varves) where there are
nyear ≥ 1 floods yr−1 (i.e. at least one detrital layer in that year).

can identify when a flood is thought to have occurred, this
does not preclude the possibility that other floods occurred
but were not identified as a detrital layer. We do acknowledge
research (e.g. Corella et al., 2014; Schillereff et al., 2014)
where the type and thickness of detritus in Holocene varves
are used to make interpretations of the strength of a hydro-
meteorological event; however, due to the age of our sedi-
ments this sort of analysis of event magnitude was not possi-
ble here. In this paper, we therefore focus on just the tempo-
ral attributes of the 771 floods themselves over this 9336-year
period in the Pleistocene. See data availability for access to
the palaeoflood database.

In terms of the relative temporal uncertainty of the floods
(based on the varve sequence), a flood in a given year (rep-
resented by the detrital layers) can (very rarely) erode some
of the sediment underneath it, forming a hiatus of missing
sediment. This limitation is discussed in detail in Mangili et
al. (2005), who analysed, for 10 % of the outcrop presented
in this paper, the same stratigraphic intervals in both the Main
Section and the Wall Section, again 150 m apart. Out of the
896 varves they examined in both sections, they found that
3 varves out of 896 were not present (e.g. eroded away by a
flood) in the Wall Section but were present in the Main Sec-
tion, and that 4 varves out of 896 were not present in the Main
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Section but present in the Wall Section. Overall, this repre-
sented a total of 889 out of 896 varves (99.2 %) in common
between the two outcrops, which means that if we extend
their results to the other 90 % of the outcrop, some uncer-
tainty might exist, with up to 1 % of the varves “missing” in
time, which should have a very small impact on the relative
timing of floods discussed in this paper.

The analyses in this paper will concentrate on the fluctua-
tions in flood frequency over time (i.e. the number of floods
per year and per decade), examining the temporal correla-
tions, clustering, and cyclicity of the flood frequencies. Be-
fore proceeding to the analyses of these time series, we pro-
vide next (Sect. 3) the definitions and methods used in sub-
sequent sections.

3 Definitions and methods for the analysis of event
series

Both correlations and clustering were introduced in Sect. 1.
Here we provide more in-depth definitions and explanations
of clustering and correlation methods that will be used in ex-
amining our palaeoflood time series. In Sect. 3.1, we intro-
duce interevent occurrence times (IEOTs). Then, in Sect. 3.2,
Poisson processes, a model for non-correlated and non-
clustered time series. Section 3.3 describes the Weibull dis-
tribution (in the context of IEOTs) as an indicator of clus-
tering. Section 3.4 introduces autocorrelation as a method to
quantify short-range and long-range correlations in a given
time series. In Sect. 3.5, we describe power-spectral analysis
and detrended fluctuation analysis as methods for quantify-
ing long-range correlations. Finally, in Sect. 3.6 we briefly
introduce fractional noises.

3.1 Interevent occurrence times

In this paper, we will consider the number of palaeofloods
per year, decade, and century as event series in time. As indi-
cators of clustering and/or correlations (or lack thereof), we
will apply statistical methods to the event magnitudes (i.e.
the number of floods per year, decade, or century). We will
also consider the time intervals between successive events,
i.e. the interevent occurrence times (IEOTs) which we intro-
duce here. We will later use the statistical distribution of the
IEOTs as an indicator of clustering (or lack of) in the original
time series.

We introduce IEOTs in the context of our yearly palae-
oflood time series (top panel of Fig. 3) where, as previ-
ously, t is the relative age in years in our time series and
nyear is the number of floods per year. First, we define a
flood year to be any year t with at least one flood in it,
i.e. nyear(t)≥ 1 flood yr−1. Second, we define IEOT as the
time interval 1 between successive years that have one or
more floods, i.e. more formally, nyear(t)≥ 1 flood yr−1 and

nyear(t + 1)≥ 1 flood yr−1, but for all years in-between,
nyear(t + l)= 0 floods yr−1 for l = 1, 2, . . . , 1−1.

In Fig. 4a we illustrate finding the IEOTs: we present the
number of detrital layers per year (Fig. 4a.1, which is the
same as the top panel in Fig. 3) with as inset (Fig. 4a.2) an ex-
ample of four detrital layers with IEOTs of1= 52, 3, and 26
years. In Fig. 4b we give all the1 as a function of relative age
t for the entire palaeoflood data set. The values of 1 range
from 1 to 125 years (with quartiles of 25 %: 3 years, 50 %:
7 years, and 75 %: 15 years) and a mean 1= 12.5 years.
We then use a subscript j to indicate successive IEOTs, 1j ,
which we plot using “natural” time, in other words where
each 1 is no longer represented temporally when it occurs,
but rather successively one after another, j = 1, 2, 3, . . . ,N1,
with the total number of natural time intervalsN1 = 739 (we
discard the j value corresponding to the gap). In Fig. 4c we
plot the same 1 from Fig. 4b, but now as a function of the
detrital varve index (natural time), j = 1, 2, 3, . . . , N1.

The use of natural time (i.e. the time between all events is
“equal” in natural time) to represent unequally spaced events
in time series has been mainly used to examine seismic-
related time series (e.g. Uyeda et al., 2009; Rundle et al.,
2012), but has found use in a variety of other disciplines
ranging from biology and environmental sciences to cardi-
ology (see Varotsos et al., 2011, for a review of its use in
various disciplines).

3.2 Poisson process as a model for an uncorrelated
non-clustered time series

The standard example of an event series that is uncorrelated
in time, non-clustered, and stationary in time is the realiza-
tion of a Poisson process. In later analyses (Sect. 4.1) we will
compare the statistical distribution of the magnitudes in our
three palaeoflood time series (Fig. 3) to those of a Poisson
process, thus inferring the lack of correlations and cluster-
ing (if a Poisson process) or the presence of correlations or
clustering (if not a Poisson process). If a real-world process
(e.g. flooding) by which a time series results is assumed to be
Poissonian, then many synthetic realizations of that Poisson
process can be created, and their statistical properties con-
fronted with those of the observed “real-world” time series.
Poisson processes have been found in some cases to model
the temporal occurrence of floods (e.g. Kirby, 1969; Todor-
ovic and Zelenhasic, 1970) and in other cases to not be an
appropriate model (e.g. Mudelsee et al., 2004, who showed
that the winter floods of the Elbe River from 1500 to 2000
cannot be modelled by a stationary Poisson process).

For a time series to be considered a realization of a Poisson
process, the following must be true (Cox and Lewis, 1978):

i. the time series elements are non-negative integers;

ii. the time series considered is stochastic (i.e. has no obvi-
ous trends and periodicities and no deterministic com-
ponents);
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iii. the one-point probability distribution of the time series
elements follows a Poisson distribution, that is, a posi-
tive integer-valued random variable X, whose probabil-
ity densities Pλ are defined as (Cox and Lewis, 1978)

Pλ (X = n)=
λn

n!
exp(−λ), n= 1,2,3, . . . (1)

where “!” means factorial, exp is the exponential func-
tion, λ is the rate parameter with λ> 0, and n is the in-
tensity (number of occurrences) of the “random” vari-
able per given time unit (e.g. hour, year, decade, cen-
tury). The rate parameter λ is a physical quantity and
thus has units (time unit)−1, but the Poisson process as
given in Eq. (1) is a mathematical model and Pλ does
not have units.

iv. the times between successive events (interevent occur-
rence times, IEOTs) are independent in time (i.e. there is
no correlation between one IEOT and others, so events
occur independently of one another);

v. the one-point probability distribution P of the IEOTs1
is exponential with

Pexp (1)= λexp(−λ1), 1≥ 0 (2)

with the same rate parameter λ as in Eq. (1) and the
time unit of the original time series being small enough
that almost all time units have just no or one event (i.e.
λ� 1).

The Poisson process as defined in Eq. (1) does not lead to
any temporal clustering. The one-point probability distribu-
tion for the Poisson process for 0<λ≤ 1 had no mode, and
for λ> 1 it has a defined mode.

3.3 Weibull distribution of IEOTs as an indicator of
clustering

If the 1j (the IEOTs), in addition to not being exponentially
distributed, are Weibull distributed, this is taken as an indi-
cator of clustering of the original time series (Bunde et al.,
2005; Witt et al., 2010). The two-parameter Weibull proba-
bility distribution (Weibull, 1951) is a standard waiting time
distribution, i.e. frequently used for modelling the time inter-
vals between successive events (Cox and Lewis, 1978). The
continuous (vs. discrete, as in Eq. (1) for the Poisson distribu-
tion) two-parameter Weibull probability distribution is given
by (Weibull, 1951)

PW (1)=
kW

λW

(
1

λW

)kW−1

exp

[
−

(
1

λW

)kW
]
,1≥ 0 (3)

where the two parameters are λW for scale and kW for shape,
and 1 is any real number ≥ 0. When the shape parameter
kW = 1.0, the two-parameter continuous Weibull distribution
(Eq. 3) turns into

PW (1)=
1
λW

exp
(
−
1

λW

)
,1≥ 0, (4)

that is, the exponential distribution which describes the IEOT
distribution of a Poisson process with a parameter λ= 1/λW
(see Eq. 1).

For shape parameters 0.0 < kW < 1.0, the two-parameter
Weibull distribution (Eq. 3) is heavy-tailed (i.e. asymptoti-
cally scale invariant) with a tail parameter of (1−kW), which
means that the probability density for very large values 1 in
Eq. (3) scales with a power law with the tail parameter as
power-law exponent.

3.4 Autocorrelation as a method for quantifying
temporal (short-range and long-range) correlations

There are a variety of methods that can be used to explore
and quantify temporal correlations both in observed time se-
ries and realizations of a modelling process. As discussed in
Sect. 1, correlations (persistence) have been studied in many
environmental time series. Measures for correlations quan-
tify the statistical dependence between variables, and in par-
ticular, measures for temporal correlations describe the in-
tensity of this relation between time series elements with a
fixed temporal distance. To quantify the strength of corre-
lations, we use autocorrelation analysis applied to the time
series of number of floods per year (nyear), decade (ndecade),
and century (ncentury) (Fig. 3). The autocorrelation function
C (e.g. Priestley, 1982) for the number of floods is defined as

C (τ)=
1

Nσ 2 (n)

N−τ∑
j=1

(
nj − n

)(
nj+τ − n

)
(5)

where nj is a time series of the number of floods per year
(decade, century) with j = 1,2, . . . , N , with N =Nyear,
Ndecade or Ncentury (i.e. the total number of years, decades,
and centuries in the record), n is the mean number of floods
(per year, decade, century) for the entire record, τ is the time
lag (in years, decades, centuries), and σ 2(n) is the variance
of the time series. Positive values of the autocorrelation func-
tion are indicative of a process that on average, for a given lag
τ , has positive persistence between values separated by that
lag τ . In other words, if there are a large number of floods
in a given year, on average, τ years later will also be fol-
lowed by a large number of floods (compared to the mean
number of floods per year overall). The converse is also true:
if there are few floods in a given year, on average, τ years
later will also be followed by only a few floods (compared
to the mean number of floods per year overall). Negative val-
ues of the autocorrelation function are indicative of negative
persistence, whereby if there are a large number of floods in
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a given year, on average, τ years later will be followed by a
very few number of floods (compared to the mean number of
floods per year overall).

If the correlations are essentially linear and thus can be de-
scribed by the autocorrelation function, two types of correla-
tions can be considered: (i) short-range correlations (Priest-
ley, 1982; Box et al., 2013) and (ii) long-range correlations
(e.g. Taqqu and Samorodnitsky; 1992; Beran, 1994; Mala-
mud and Turcotte, 1999).

Short-range correlations are characterized by a decay of
the autocorrelation function C(τ) (Eq. 5) that is bounded by
an exponential decay for large lags, τ :

|C (τ)| ≤ γ0 exp(−γ τ),τ > τ0, (6)

where τ0, γ0, and γ are non-negative constants. In particu-
lar, this definition applies for time series with a finite correla-
tion length (C(τ)= 0 for τ > τ0). Statistical models for short-
range correlated time series include autoregressive (AR) and
moving average (MA) processes (Priestley, 1982).

In contrast to short-range correlated time series, long-
range correlated time series approach a power-law decay of
the autocorrelation function C(τ) (Eq. 5) for large lags τ :

C (τ)∼ τ−(1−β),0.0<β<1.0. (7)

The parameter β (0.0<β< 1.0) is the strength of the long-
range correlations. The autocorrelation function has two lim-
iting values: β = 0.0 (which represents short-range persis-
tence between the time series elements) and β = 1.0 (pink or
1/f noise). Koutsoyiannis and Montanari (2007) have shown
that the statistical uncertainty of the mean value of (hydrolog-
ical) time series is increased in the presence of correlations,
and in particular long-range correlations.

3.5 Power-spectral analysis and detrended fluctuation
analysis (DFA) for quantifying long-range
correlations

In the last section, we used the autocorrelation function as
one method to quantify long-range (and short-range) cor-
relations. Here we describe two more methods for quanti-
fying long-range correlations: power-spectral analysis and
detrended fluctuation analysis. We focus on long-range (vs.
short-range) correlations as these form the main part of our
analyses and modelling in later sections. These two meth-
ods are both more robust than autocorrelation in quantifying
long-range correlations (Witt and Malamud, 2013).

Long-range correlations are reflected by a scaling of
the power-spectral density S (square of the modulus of
the Fourier coefficients appropriately normalized) with fre-
quency f . The power-spectral density S exhibits a power-law
scaling such that (Taqqu and Samorodnitsky, 1992; Beran,
1994)

S (f )∼ f−β , (8)

where f is the frequency and the relationship holds (for long-
range persistence) over all β (Pelletier and Turcotte, 1999;
Witt and Malamud, 2013). Positive exponents (β > 0.0) in
Eq. (8) represent positive (long-range) persistence and neg-
ative ones (β < 0.0) anti-persistence. The specific case of
β = 0.0 corresponds to an uncorrelated time series (e.g. a
white noise), and a value of β = 1.0 is known also as a 1/f
or pink noise (Mandelbrot and van Ness, 1968; Bak et al.,
1987). Some examples of these long-range persistent time
series are given in the next Sect. 3.6. In this paper, to avoid
confusion with other estimators (e.g. DFA; see next), we will
indicate the measurement of the strength of long-range per-
sistence by power-spectral analysis using the notation βPS.

Another common method for quantifying long-range cor-
relations is detrended fluctuation analysis (DFA) (e.g. Peng
et al., 1994; Kantelhardt et al., 2001). Here, the scaling prop-
erties of long-range correlated time series are quantified in
terms of the fluctuation function. In this paper the number of
floods per year, decade, or century can be analysed by DFA;
we call these time series here xt , t = 1, . . . , N . The fluctua-
tion function is based on the running sums (or profile) of the
considered time series xt , t = 1, . . . , N :

st =

t∑
i=1

xi . (9)

This time series of the running sums st , t = 1, . . . , N is then
split up into non-overlapping segments of length l. For the
kth segment of the running sums, sk,i , i = 1, . . . , l, the fluc-
tuation is determined as the variance of the difference of this
segment and its best-fitting polynomial trend tk,i , i = 1, . . . ,
l (with the polynomial order k, usually between 1 and 4),

F 2 (k, l)=
1
l

l∑
i=1

(
sk,i − tk,i

)2
. (10)

The fluctuation of the time series is the mean of the fluctua-
tion of the segments:

F 2 (l)=
〈
F 2 (k, l)

〉
k
, (11)

where 〈 〉k is the mean value taken over all fluctuations of
length k segments. If the underlying time series xt , t = 1, . . . ,
N has long-range correlations, then the fluctuation function
F(l) exposes for long segment lengths l a power-law scaling
and will scale as (Peng et al., 1992)

F (l)∼ lα. (12)

The strength of long-range correlations, β, is related to
the scaling parameter of the fluctuation function, α, as
β = 2α−1. If polynomials of order k are considered, then
the resultant estimate of the long-range dependence is called
DFAk (e.g. DFA1, DFA2). In this paper we will calcu-
late α using DFA1 to DFA4. We will provide results using
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Figure 5. Examples of synthetic fractional Gaussian noises with
different modelled strengths of long-range persistence, 0.0≤ β ≤
1.0. The presented synthetic data series (unitless in magnitude and
time), which have 512 elements each, are normalized to have a mean
of 0 and a standard deviation of 1, and were created by Fourier
filtering (see Appendices 1 and 2 in Witt and Malamud, 2013, for
further details).

the notation βDFA (to indicate the use of DFA) based on
βDFA = 2α−1.

For Eqs. (7) (autocorrelation analysis), (5) (power-spectral
analysis), and (9) (DFA), in each case we have an inverse
power-law decay with increasing temporal scales (lag, fre-
quency, temporal segment length), which defines a self-affine
time series (the time series is statistically self-similar when
comparing different temporal scales) (Mandelbrot and Van
Ness, 1968). If the power-law exponent held over “all” tem-
poral scales (which it rarely does), then the correlation length
(the largest lag or temporal scale at which there are still sta-
tistical correlations in the time series) would be infinite. One
potential significance of this “infinite” correlation length is
that “all” values are statistically correlated with one another
in the time series. A second significance is that the time series
can be explained as a stochastic fractal (Malamud and Tur-
cotte, 1998). In the case of our palaeoflood series this means
potentially that the flood timings are organized in time as the
points of a Cantor dust (see Ott, 1993, for a discussion of
Cantor sets).

Extensive details about power-spectral analysis, DFA, and
software written in R (R Core Team, 2013) for performing
time series analysis using these techniques are given in the
review paper by Witt and Malamud (2013). This latter study

also investigates biases of both techniques which typically
occur when they are applied to time series that have a one-
point probability distribution that is strongly non-Gaussian
and/or the time series has very few values (e.g. just a few
thousand data).

3.6 Fractional noises as examples of long-range
correlated time series

Fractional noises are standard examples of long-range corre-
lated time series (Malamud and Turcotte, 1999; Mandelbrot,
1999), which we will use here to help us model long-range
persistent characteristics of our palaeoflood time series. Ex-
amples of six fractional noises are shown in Fig. 5, with the
strength of long-range persistence ranging from β = 0.0 (a
white noise) to β = 1.0 (a pink noise), in 0.2 increments. In
the white noise in Fig. 5, the values are uncorrelated with
each other, and as we increase the strength of long-range per-
sistence, the values, although drawn from the same under-
lying probability distribution, become more correlated with
one another (and their clustering increases).

4 Results of statistical metrics, clustering, correlations,
and cyclicity of the palaeoflood sequence

In this section, we first statistically analyse the 771 timings
of palaeofloods in terms of their elementary metrics of the
number of palaeofloods per year, decade, and century com-
pared to a Poisson process (Sect. 4.1). We then examine
the probability of IEOTs compared to a Weibull distribution
as a potential indicator of clustering (Sect. 4.2). Next, we
use autocorrelation of the palaeoflood time series to charac-
terize the temporal correlations (Sect. 4.3) and autocorrela-
tion of the IEOTs as another potential indicator of clustering
(Sect. 4.4). We then characterize the temporal correlations
of the time series using detrended fluctuation analysis and
power-spectral analysis (Sect. 4.5). Finally, we characterize
the cyclicity of the palaeoflood time series using a sinusoidal
model (Sect. 4.6). As the techniques we used are designed for
time series with a continuous one-point probability distribu-
tion (e.g. Gaussian, log-normal, or Levy distribution) vs. the
integer values that are found in our palaeoflood time series,
we throughout also show the statistical significance of our
findings.

4.1 Number of palaeofloods per year, decade, and
century, compared to a Poisson process

We now examine the number of floods per year, decade, and
century, as if the process that created them resulted in a se-
ries of floods uncorrelated in time. Here, we will consider a
time series to be the realization of the underlying process. If
we are able to show that our time series has properties dif-
ferent from a Poisson process (Sect. 3.2), we can infer that
it is correlated or clustered. We will use as a model a Pois-
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Figure 6. Histograms and autocorrelation of the palaeoflood time series with the corresponding Poisson model. (a) Histogram (also shown in
Fig. 3) of the number of floods per year (blue bars), decade (orange bars), and century (green bars), with each compared to the Poisson model
with respective rate parameters λyear = 0.083 floods yr−1, λdecade = 0.83 floods decade−1, and λcentury = 8.3 floods century−1. Diamonds
represent the mean Poisson model value and the error bars the standard deviation over 100 realizations. (b) Autocorrelation function (ACF)
(Eq. 5) of the number of floods per year (blue squares), decade (orange squares), and century (green squares). Also shown for the ACF of the
number of floods per decade is the best-fitting power-law model to the ACF (black dotted line) (Eq. 13). Also shown are the 97.5th percentile,
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scale), the corresponding best-fit Poisson model (grey diamonds) (Eq. 2) which was considered in Fig. 6, and the best-fit Weibull distribution
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significance for the autocorrelation function of a non-correlated time series with the same one-point probability distribution (horizontal dotted
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son process with a constant rate parameter to create model
time series of flood events per year, decade, and century (i.e.
similar to the palaeoflood time series shown in Fig. 3). We
will see below that the resultant model realizations will be
stationary, uncorrelated in time, and non-clustered, and then

show in subsequent sections that this modelling is inappro-
priate for our palaeoflood time series.

We first interpret the number n in Eq. (1) as the number of
detrital layers per varve (nyear, floods yr−1). The rate param-
eter λ controls the probability of an event: the mean num-
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ber of events per year (i.e. per varve) is nyear = λyear and the
variance of the number of events is σ 2 (nyear

)
= λyear. This

equation holds only mathematically but not physically, i.e. it
holds for the numbers but not for the units. The probability
in Eq. (1) is not time dependent, and rather only depends on
(if we take our unit of time to be 1 year) the probability of
nyear = 1 flood yr−1, nyear = 2 floods yr−1, etc., and not the
relative temporal spacing of the floods in time. To model the
series of the number of flood events per year in the 9.3 kyr
Piànico–Sèllere palaeoflood time series, we use a (constant)
rate parameter of λ= 0.083 floods yr−1 that is the mean
number of detrital layers per varve, i.e. (771 floods)/(9271
years)= 0.083 floods yr−1, where we discard the 65-year gap
for the total number of years considered.

As discussed in Sect. 3.2, another consequence of consid-
ering the number of floods per year as a Poisson process is
that the time interval 1 between two successive events (i.e.
the IEOTs between two successive floods) follows an expo-
nential one-point probability distribution P for very small
time units (Eq. 2) with rate parameter λ. Now, the relative
ordering between single floods is taken into account. For ex-
ample, if in a given decade we have three varves, each with
one flood, Eq. (2) will be different if the 3 years with floods
are in years 1, 2, and 3 (11 =12= 1 year, 13 ≥ 8 years
because the fourth flood will be in a subsequent decade)
vs. one flood each in years 1, 5, and 9 of the decade (i.e.
11 =12 = 4 years, 13 ≥ 2 years). Note that the time inter-
val1 can have non-integer values, for instance if two or more
events (floods) occur in a single time unit (within 1 year).

For our palaeoflood time series (Fig. 3), we now consider
whether the histograms (horizontal bars on the right-hand
side of Fig. 3) of the observed number of years, decades, and
centuries with a given number of floods per year, decade,
and century follow Poisson distributions. For each palae-
oflood time series, we create a Poisson model which con-
sists of 100 realizations of a Poisson process, each realiza-
tion with 9271, 927, and 92 (respectively, for year, decade,
and century) time series elements and with rate param-
eters λ= λyear = 0.083 floods yr−1

= λdecade = 0.83 floods
decade−1

= λcentury = 8.3 floods century−1 (the measure-
ments values are different as well as the units; the differences
cancel out because of multiplication of measurement values
and units). We discard the 65-year gap for the purposes of
this model. Each realization therefore has values that are un-
correlated in time and follow a Poisson distribution (Eq. 1).
Many common software programs (e.g. Excel, R, Matlab) are
able to easily generate such realizations.

We give the results of our Poisson model for each re-
spective time resolution (year, decade, century) in Fig. 6a
as diamonds (mean of the 100 realizations) ± error bars
(standard deviation of the 100 realizations). We find that
for the yearly data, the number of years observed (kyear)

with a given number of floods per year, nyear = 0, 1, 2, 3
floods yr−1, follows closely the number of years given by the
Poisson model. For example, returning to the values given

above, the number of years with nyear = 0, 1, 2, 3 floods yr−1

is observed to be kyear = 8530, 712, 28, and 1 years (re-
spectively), and with the Poisson model kyear = 8531± 26,
709± 25, 30± 5, and 1± 1 years (mean± standard devia-
tion) (respectively). In contrast, for both the decadal and
centennial data, the observed data set contains decades and
centuries with many fewer or greater floods compared to
the model data (see Fig. 6a). For example, the number of
decades with ndecade = 0, 1, 2 floods decade−1 is observed
to be kdecade = 453, 283, and 123 decades (respectively),
with the Poisson model giving kdecade = 406± 15, 338± 13,
and 140± 11 decades (mean± standard deviation) (respec-
tively).

We therefore conclude that at the yearly scale the observed
data follow a Poisson process, but at the decadal and centen-
nial scales, the time series cannot be modelled as a Poisson
process. In subsequent sections we will explore whether clus-
tering, correlations, or both are responsible for this.

4.2 Probability of interevent occurrence times (IEOTs)
compared to a Weibull distribution as a potential
indicator of clustering

Here, we analyse the one-point probability distributions of
the interevent occurrence times (IEOTs) (Sect. 3.1). As dis-
cussed in Sect. 3.2, a realization of a Poisson process is
characterized by “events” that are uncorrelated with one an-
other and the 1j have an exponential distribution (Eq. 2).
Conversely, it means that if the 1j (the IEOTs) are non-
exponentially distributed, the process is non-Poisson. In
Fig. 7a, we give the frequency density of 1 (the one IEOT
that includes the sediment gap is excluded) of the flood
record along with an exponential distribution which repre-
sents the interevent occurrence times of events in a Poisson
process. The distribution of the IEOTs has a higher number
of both short and long time intervals compared to an ex-
ponential distribution. This observation is supported by sta-
tistical hypothesis testing where an Anderson–Darling test
(Anderson and Darling, 1952) was adjusted to integer val-
ues of the IEOT distribution (using a method described in
Choulakian et al., 1994; Arnold and Emerson, 2011), and
the test rejected the null hypothesis that this distribution
can be explained as the result of a Poisson process (p-
value < 0.002).

We have shown above that our data are not a Poisson pro-
cess, and now wish to further characterize the distribution of
the IEOT. For the palaeoflood IEOTs, we use a maximum-
likelihood estimation (MLE) and assume a two-parameter
Weibull distribution (Eq. 3 and discussed in Sect. 3.3). We
find (see Fig. 7a) a best-fit shape parameter for the Weibull
distribution of kW = 0.91± 0.024, where the error bars rep-
resent the 95 % confidence intervals. However, this result is
questionable as the MLE technique is tailored to a Weibull
distribution as a continuous probability distribution, but the
interevent occurrence times 1 have discrete (integer) val-
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ues. Therefore, we use benchmarks (500 realizations of a
Weibull distributed model for random numbers) for fitting
Weibull distributions to integer-valued data. We find that the
MLE estimator tends to over-fit the shape parameter by 0.12,
i.e. we can correct our estimate of the shape parameter to
kW = 0.79± 0.024.

4.3 Autocorrelation of palaeoflood sequences to
quantify correlations

We now use the autocorrelation function (ACF) discussed in
Sect. 3.4 and apply it to our palaeoflood sequence as a po-
tential indicator of correlations. In our analyses of the palae-
oflood sequence, only pairs of years, decades, or centuries(
nj ,nj+τ

)
which do not contain the 65-year gap in the 9336-

year sequence of floods (detrital layers) are considered. The
autocorrelation function (Eq. 5) applied to the time series of
the number of floods per year, decade, and century is given
as correlograms in Fig. 6b (squares). This correlogram of
the yearly floods shows significant positive correlations with
a decaying trend and no obvious periodic components for
lags of 1≤ τ ≤ 200 years. Due to the strongly fluctuating be-
haviour of the annual data’s correlogram (squares) in Fig. 6b
it is difficult to determine the functional form of the decay,
i.e. to decide whether the decay is exponential (thin tailed,
short-range persistent) or approaching a power law (heavy
tailed, long-range persistent). Therefore, we apply the auto-
correlation function to the time series of the number of floods
per decade (with respect to non-overlapping 10-year time in-
tervals) and find (Fig. 6b) a power-law behaviour

C (τ)∼ τ−γACF ,τ>0 (13)

with a power-law exponent for the decadal time series
of γACF = 0.34± 0.04 (fitted for lags 1≤ τ ≤ 20 decade,
which is equivalent to 10≤ τ ≤ 200 years) with uncertainties
±1 standard error of the exponent. Comparing to Eq. (7),
γACF = (1−βACF), giving βACF = 0.66 ± 0.04. We will re-
turn to this power-law model (Eq. 13) in Sects. 4.5 and 5.2.
We conclude that for the floods per decade time series, when
using the autocorrelation function, the data exhibit long-
range correlations over the range 10≤ τ ≤ 200 years.

The time series of the number of floods per century con-
tains only 92 data points. We therefore have calculated the
autocorrelation function C only for lags τ = 1 century and
τ = 2 century as graphically presented in Fig. 6b. Based on
this figure, we see significant positive correlations and thus
confirm the results found for the temporal correlations of the
number of floods per year and decade. Due to the very few
lag values, however, we cannot discuss the functional shape
of this autocorrelation function.

We conclude that the three considered time series nyear,
ndecade, and ncentury have positive autocorrelations for lags of
τ < 200 years. For the number of floods per decade, ndecade,
we find indications of a power-law shape of the autocorrela-
tion function which indicates long-range persistence of the

time series over lags τ > 200 years. However, we will see
later (Sect. 4.6) for lags τ > 200 years that a power-law model
cannot be conclusively fit, and thus over all lags, we cannot
conclusively use ACF as a robust quantifier of long-range
correlations.

4.4 Autocorrelation of interevent occurrence times
(IEOTs) as a potential indicator of clustering

Another indicator of clustering is positive temporal correla-
tions of the IEOTs (Sect. 3.1). Such correlations are partic-
ularly caused by a “lumping” of small (large) IEOTs which
results in time intervals with an increased (decreased) flood
rate which correspond to flood clusters (phases of little flood-
ing activity). In Fig. 7b, we examine correlations (vs. cluster-
ing) of the IEOTs by applying the autocorrelation function
(Eq. 5) to the 1j for the IEOTs. We find significant positive
correlations of the 1j for flood year lags 1≤ τ1 ≤ 20 (no
units). This indicates that for the IEOT, small values of 1j
tend to follow small ones, and large ones tend to follow large
ones. Similar to Eq. (13), the correlogram (see Fig. 7b) of1j
exhibits a power-law behaviour

C (τ1)∼ τ
−γ1
1 , γ1 > 0 (14)

with a power-law exponent of γ1 = 0.45 ± 0.14 (fit for
lags of 1≤ τ1 ≤ 20 IEOTs, which is equivalent to 12.5≤
τ ≤ 250 years). Power-law correlations for IEOTs are re-
ported for a class of theoretical models by Bunde et al. (2003)
and Eichner et al. (2007), who have studied peaks over
thresholds of long-range correlated time series. We will ex-
plore this in more detail below.

In summary, we have analysed the one-point probability
distribution and the autocorrelation function of the IEOTs of
the palaeofloods with respect to a time resolution of 1 year
(i.e. we have not used time resolutions between palaeofloods
that are sub-annual, such as 3 months). The distribution of the
IEOTs can be well approximated by a Weibull distribution
with a shape parameter of kW = 0.78. Therefore, the IEOTs
are more likely to be very short or very long temporal peri-
ods compared to a random (uncorrelated) occurrence of the
IEOTs, and therefore the palaeoflood time series is not a re-
alization of a Poisson process. Furthermore, the IEOTs have
positive temporal correlations. This is particularly caused by
a clustering of the very high and very low IEOTs and thus
by a temporal clustering of the floods. The autocorrelation
function seems to follow a power-law behaviour.

4.5 Detrended fluctuation analysis (DFA) and
power-spectral analysis for quantifying long-range
correlations and as a potential indicator of cyclicity

We now apply both DFA and power-spectral analysis (both
discussed in Sect. 3.5) to our time series given in Fig. 3 so
that we can quantify the degree of correlations in our data,
at yearly, decadal, and centennial scales. As discussed in
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Figure 8. Detrended fluctuation analysis (DFA) of the 9271-year
Piànico–Sèllere, Italy, palaeoflood record: the fluctuation function
F for the number of floods per decade shown as a function of
the segment length l and for different orders of the detrending
(see the legend) on a double logarithmic scale. Segments contain-
ing parts of or the entire gap were excluded. Also shown are the
best-fitting power-law function (Eq. 12) for DFA3 and the cor-
responding power-law exponent α and its corresponding value of
βDFA = 2α− 1.

Sect. 3.5, both methods are more statistically robust than au-
tocorrelation in quantifying long-range correlations. Meth-
ods for quantifying long-range correlations have systematic
and random errors in the resultant estimator for time se-
ries with very asymmetric probability distributions and the
finite size effects of the time series. The systematic error
is how much the resultant estimator deviates from the un-
derlying “correct” value, and random errors are the spread
of the estimated quantity. Witt and Malamud (2013), us-
ing 17 000 synthetic benchmark series, studied systemat-
ically these two types of errors for power-spectral anal-
ysis, DFA, and semivariogram analysis. ACF gives simi-
lar results of robustness to semivariogram analysis due to
the two methodologies being very similar. Witt and Mala-
mud (2013) found that the systematic and random errors (bi-
ases and standard errors) of DFA and PS analysis are signifi-
cantly smaller (particularly for time series with non-Gaussian
one-point probability distribution, and with very few val-
ues in the time series) compared to semi-variogram anal-
ysis, and both DFA and PS analysis are appropriate for a
much broader range of long-range persistence strengths com-
pared to semi-variogram analysis. We therefore only con-
sider power-spectral analysis and DFA when considering the
quantification of long-range correlations.

We start with our yearly flood record nyear which con-
tains 771 floods and extends over 9336 years. It has a heav-
ily skewed one-point probability distribution with a coeffi-

cient of variation of cv = 3.46. Witt and Malamud (2013)
showed that very asymmetric one-point probability distri-
butions lead to a systematic underestimation of the persis-
tence strength for both techniques. Due to the palaeoflood
time series elements being integer valued and in a small
range (0≤ nyear ≤ 4 floods yr−1), both techniques lead to un-
certain results. Therefore, we will not apply power-spectral
analysis and DFA to the annual palaeoflood data set. But
we will quantify long-range persistence of the decadal and
centennial flood series, as the data are less heavily skewed
(cv = 1.30 and 0.77 respectively), and where there is a wider
range of integer values (0≤ ndecade ≤ 8 floods decade−1 and
0≤ ncentury ≤ 31 floods century−1).

In Fig. 8 we show the results of the DFA analysis of
ndecade. The fluctuation functions for different orders of de-
trending are shown on logarithmic axes. The almost lin-
ear shape indicates power-law behaviour of the fluctuation
function (see Eq. 12) for DFA3 and DFA4. DFA1 (DFA2)
follows this linear shape just for segment lengths up to
70 (100) decades. We expect a slowly varying trend (a long-
term cyclicity > 700 (1000) years) to cause this dependence
on the type of detrending and will analyse it in more detail
in Sect. 4.6. The power-law exponent for the decadal palae-
oflood time series was estimated (for DFA3) as αDFA = 0.62,
which corresponds to a strength of long-range persistence of
βDFA = 0.25. This is a weak strength of long-range persis-
tence. The third data set that counts the number of floods per
century contains just 92 time series elements, which is not
enough for a reliable DFA.

Power-spectral analysis for the decadal palaeoflood se-
ries ndecade is shown in Fig. 9. Although the power-spectral
density S has a lot of scatter, it is clearly oriented along a
line in the log–log axes, and thus exposes power-law (self-
affine) behaviour (see Eq. 8). The persistence strength (i.e.
the magnitude of the power-law exponent of the power-
spectral density S) is estimated as βPS = 0.39. This again in-
dicates a weak strength of long-range persistence. The cen-
tennial palaeoflood series ncentury is not suited for power-
spectral analysis due to the short length of Ncentury = 92 cen-
turies.

We also see the hint of long-term periodic components
superimposed onto the long-range persistence that is iden-
tified using power-spectral analysis. In Fig. 9 are given three
coloured lines that represent the 95th percentiles (95 %), de-
scribed in detail in a later section (Sect. 5.1). What we ob-
serve is that three values (large blue dots, outlined with a
grey ellipse) are above the three 95 % lines (i.e. they are sig-
nificant with p < 0.05) at a cyclicity of 1300 to 2300 years.
Again, as for DFA, we will explore this long-term cyclicity
(fluctuation) that appears to be superimposed onto the long-
range persistent signal in the next subsection.

We now consider both the systematic and random errors
that can occur when using DFA and power-spectral analysis
by using the techniques given in Witt and Malamud (2013)
and their systematic study using thousands of benchmark
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Figure 9. Power-spectral analysis: the power-spectral density (peri-
odogram) is presented as a function of the frequency (measured per
decade) for the number of floods per decade. Also given is the best-
fitting power-law function (Eq. 8) and the corresponding power-law
exponent. Additionally, presented are the 95th percentiles of the
power spectra created for synthetic data based on peaks over thresh-
olds of fractional noises (see Sect. 5.1) for different strengths of per-
sistence (see the legend and the description in the text). Highlighted
are the three values of the power-spectral density that exceed all of
these 95th percentiles; the corresponding cycle lengths are given.

synthetic time series to calibrate the “error” in each method
for a given one-point probability distribution, length of time
series, and strength (uncalibrated) of correlations. We ignore
any underlying periodicity as a contributing factor to any
errors. We find for our palaeoflood per decade time series
with 927 values and a coefficient of variation of cv = 1.3 that
βPS would lead to a calibrated β∗PS = 0.52 with (0.32, 0.71)
the 95 % confidence interval and that calibrating the value
of βDFA would give β∗DFA = 0.37 with (0.13, 0.63) the 95 %
confidence interval.

However, we have already indicated that there might be
a long-range fluctuation (cyclicity) superimposed onto our
long-range persistence signal. Therefore, we are unable to
“calibrate” our βPS and βDFA using the techniques of Witt
and Malamud (2013) and will instead proceed with an in-
vestigation of the period and amplitude of the long-term
cyclicity (see Sect. 4.6), which will lead us to a model-based
approach (see Sect. 5). In summary, by applying DFA and
power-spectral analysis we find evidence for long-range cor-
relations in our palaeoflood data set. For the decadal palae-
oflood time series and over temporal scales from yearly to
millennial, the estimated strengths of persistence for the (un-
calibrated) values are βPS = 0.39 and βDFA = 0.25.

4.6 Cyclicity and fluctuations in the 9.3 kyr palaeoflood
record

Several climate cycles on millennial scales are known from
the analysis of long-term palaeoclimate proxy data (e.g. ice
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Figure 10. Autocorrelation analysis of the decadal and centennial
palaeoflood records (see Fig. 3) and its Poisson model for lags of
up to 7500 years. Autocorrelation function (ACF) (Eq. 5) of the
number of floods per decade (a, orange squares) and century (b,
green triangles). Also shown are the 97.5th and 2.5th percentiles,
i.e. the upper and lower bounds of the 95 % confidence interval, of
the ACF (for lags τ>0) of an uncorrelated signal with the same one-
point probability distribution (i.e. realization of a Poisson model;
see Sect. 3.2). See also Fig. 6b, which is a similar analysis, but only
up to lags τ of 200 years.

cores). They are related to Heinrich events (Heinrich, 1988;
Bond et al., 1992) and the Dansgaard–Oeschger (Dansgaard
et al., 1993; Johnsen et al., 1992; Voelker, 2002; Fisher, 2016)
cycle which are caused by ocean ice dynamics and variations
in solar activity (Gray et al., 2010). The corresponding cycle
lengths range between 1000 and 5000 years. These long-term
cyclicity processes might play a role as a background signal
in the flood frequency described in our palaeoflood data set.

In Sect. 4.5 we quantified the long-range persistence of our
three palaeoflood records. We also found that by applying
(i) DFA there was an indication of a long-term cyclicity with
a period > 700–1000 years, and (ii) with power-spectral anal-
ysis a hint of long-term cyclicity with a period of 1300–2300
years. We now further explore potential long-term temporal
cycles and fluctuations in our data.

We first return to our autocorrelation analysis results pre-
sented in Sect. 4.3 (Fig. 6b) where we used lags τ up to 200
years and found, (i) for the decadal and centennial palae-
oflood time series, positive correlations (C > 97.5 % of the
Poisson model) for τ < 200 years, and (ii) for the yearly
palaeoflood time series, much weaker correlations (in places
below the confidence limits, and with significant scatter).

We now extend the same autocorrelation analysis up to
lags τ of 7500 years for all three time series. For the yearly
palaeoflood time series, we found significant scatter, and
so we just show the results for the autocorrelation analysis
applied to the decadal and centennial palaeoflood time se-
ries (Fig. 10). As before, we also show the lower and upper
bounds of the 95 % confidence interval of the ACF (for lags
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Figure 11. Analysis of flood rate fluctuations. (a) Shown is the time-dependent flood rate3 (black line) and its 95 % confidence bands (green
bands) as a function of the relative age t = 1 to 9336 years for the palaeoflood data set shown in Fig. 3 which was computed by using a kernel
density estimator. The grey colour indicates results that might be affected by boundary effects. The estimator is based on a Gaussian kernel
with a width of ±3σ , where σ = 250 years (Appendix C), shown in the inset figure. Also shown are the average flood rate (dashed grey
horizontal line) of λyear = 0.83 floods yr−1 and the best-fit sinusoidal curve (red curved line, Eq. 16). (b) For a comparison, the number of
floods per century ncentury (green bars) is presented. The grey vertical bar indicates the gap in the data set.

τ > 0) of the Poisson model. We now observe a strong os-
cillating signal on both sides of the 95 % confidence inter-
val, for about three periods, with minima at about 900, 3100,
and 5000 years, and maxima at about 2000, 4000, and 5500–
6500 years. In other words, we see a strong indicator of a
cycle with a period in the range of 1900–2100 years. This is
not contradictory with our previous observations using DFA
(power-spectral analysis) of cyclicity with a period of > 700–
1000 years (1300–2300 years). In terms of correlations, for
both the decadal and centennial autocorrelation signals, the
cycle overwhelms the signal, so no short-term or long-term
correlation behaviour can be concluded from Fig. 10.

In the hydrology community, semivariograms are also
commonly used for studying temporal correlations in time
series (e.g. Chiverton et al., 2015). The variogram was de-
veloped by a French professor of mining and engineering,
Matheron (1963). We therefore apply semivariograms to our
yearly, decadal, and centennial palaeoflood time series for
lags of up to 7500 years, with an explanation of semivari-
ograms and results given in Appendix B. Results are compa-
rable to that found with the autocorrelation analysis, with a
cyclicity at a period of about 1900–2100 years. Due to the
long-term cyclicity, the semivariogram does not approach a
limit value for large lags.

Previously (Sect. 4.1 to 4.3), our modelling considered the
flood rate per year to be constant (λyear = 0.83 floods yr−1)

(see Eq. (1), Fig. 6, and Fig. 7). We will now model the
flood rate λyear as a function of time t (in years) and use the
symbol 3(t), t = 1, . . . , 9336 years, to denote the long-term
fluctuations of the flood rate in our palaeoflood record. First,
to visualize the long-term fluctuations of the flood rate, we
use a kernel density estimator (see Appendix C) which com-
putes a weighted mean of the number of floods per year nyear
for a sliding time window. We applied Gaussian (based on
a standard deviation of σ = 250 years) weights, dealt appro-
priately with the gap and the values close to the boundaries
of the observational interval, and also computed 95 % confi-
dence intervals for3 (for technical details, see Appendix C).
The results (Fig. 11a) show that the time-dependent flood
rate 3 varies on millennial scales. We have high values of
3> 0.15 floods yr−1 at the beginning of the record, a first
minimum with 3= 0.065 floods yr−1 at a relative age of
t = 1000 years, a second maximum at t = 2000 years, a sec-
ond minimum at t = 3400 years, and an absolute maximum
with3= 0.16 floods yr−1 at a relative age of t = 4300 years.
The long-term fluctuations of the flood rate3(t) continue for
larger relative ages, but get weaker. As the 95 % confidence
intervals of the absolute maximum and some of the minima
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do not overlap, the fluctuations are statistically significant.
This long-term fluctuation can also be seen in the time series
of ncentury (Fig. 11b), but due to scatter the millennial-scale
cyclicity is not well defined.

We then model the cyclical behaviour of the flood fre-
quency by fitting a sinusoidal function to the annual palae-
oflood time series nyear. A best-fit sinusoidal function is ob-
tained by applying (with period T ) least-squares regression
to time t in years:

nyear (t)= a1+ a2 sin(2πt/T )+ a3 cos(2πt/T )+ ε (t) , (15)

with a1 a constant very similar to the average flood
rate λyear = 0.083 floods yr−1 given in Eq. (1); the term
“a2sin(2πt/T )+ a3cos(2πt /T )” is the best-fit sinusoidal
function with optimized parameters a2 and a3, and ε(t) is
the residual of the statistic model. Using trigonometric func-
tions, we can rewrite the middle two terms of the right-hand
side of Eq. (16) such that

nyear (t)= a1+Aratesin((2πt/T )+8)+ ε (t) , (16)

with the amplitude Arate = (a2
2 + a

2
3)

0.5 and the phase
8= arctan(a3/a2).

We have calculated the best-fitting sinusoidal model for
periods 1500 < T < 2500 years (with a step size of 1T = 10
years) and have found that the model leads to the small-
est variance of the residuals (σ 2(ε)= 0.081) when T = 2030
years (see Fig. D1), where we find just one minimum and
a very low curvature (platykurtic) shape. The model with
T = 2030 years best explains the original palaeoflood time
series when considering the time-dependent flood rate as a
sine wave. The corresponding model parameters are (when
T = 2030 years) a1 = 0.082 floods yr−1 (≈ λyear = 0.083
floods yr−1), amplitude Arate = 0.049 floods yr−1, and phase
8= 39◦. The value for Arate is almost 60 % of the average
palaeoflood rate (λyear). This model is graphically presented
in Fig. 11 as a red line.

When the periodic rate model is compared to the kernel
density estimate of the time-dependent rate 3, we find (i) a
good agreement of the positions of the maxima and minima,
and (ii) constant values of the maxima and of the minima
of the periodic rate model but very different values for the
five maxima of the time-dependent flood rate 3, and that
(iii) the periodic rate model is far outside the 95 % confi-
dence levels of the time-dependent rate 3 for the time inter-
val of 5800 < t < 6700 years, which is just 10 % of the length
of the palaeoflood record. We can conclude that the periodic
rate model captures the most important features of the time-
dependent rate 3.

4.7 Summary of clustering, correlation, and cyclicity of
the 9.3 kyr Piànico–Sèllere palaeoflood record

In Sect. 4 we have seen that the decadal number of floods
cannot be explained by a Poisson process due to the palae-
oflood time series’ one-point probability distribution and

long-range persistence (strength βPS ≈ 0.39 using power-
spectral analysis and βDFA≈ 0.25 using DFA). Furthermore,
we found our palaeoflood series to be clustered as the in-
terevent occurrence times are approximately Weibull dis-
tributed (shape parameter kW = 0.78± 0.02) and long-range
correlated (power-law exponent of the autocorrelation func-
tion γ1 = 0.45± 0.14). We also found evidence for long-
term cyclicity (period T ≈ 2030 years). In the next section
we will suggest a minimal model that captures these identi-
fied characteristics of clustering, correlation, and cyclicity.

5 Creating a peaks over threshold (POT) model to
capture correlations and clustering of the
observational data

In the previous section, we examined a 9.3 kyr palaeoflood
record from Piànico–Sèllere that occurred sometime during
the period 780 to 393 ka, and found long-range persistence
indicated by power-law behaviour of the power-spectral den-
sity, the fluctuation function, and the autocorrelation func-
tion as well as temporal clustering and long-period cyclic-
ity of the flood time series. We now introduce a model us-
ing peaks over threshold (POT) of synthetic time series that
consist of a fractional Gaussian noise (FGN)+ period, which
we will abbreviate as a POTFGN+Period model. This model
is based on the idea of long-range persistence and cyclic-
ity that (i) captures the correlation and clustering properties
of the palaeoflood observational data, (ii) captures the long-
period cyclicity, and (iii) depends on a minimum number of
parameters. In this section, we will first present a method
by which we can create a general model to incorporate cor-
relations, clustering, and cyclicity (Sect. 5.1). We next quan-
tify the correlation, clustering, and cyclicity properties of this
model (Sect. 5.2) and specify the parameters of this gen-
eral model to reflect the specific properties of our observed
9.3 kyr palaeoflood data (Sect. 5.3). We then confront the
model with the optimized parameters with the palaeoflood
data (Sect. 5.4) and finally discuss properties and a use of
this specified model by analysing long model realizations
(Sect. 5.5).

5.1 A POT model utilizing fractional noises and
long-term cyclical behaviour (POTFGN+Period)

To describe our palaeoflood record, we model a series of
events along a timeline such that they exhibit correlation
and clustering. As discussed in Sect. 3.6, fractional noises
exhibit linear correlations (i.e. by linear, we mean correla-
tions that can be quantified by autocorrelation function or
power-spectral analysis) that are long-range persistent (Be-
ran, 1994). POTs of fractional noises result in event series
that exhibit long-range persistence. Here the events are con-
sidered to be the values of the considered fractional noise
that exceed a high threshold (i.e. the POTs) (Altmann and
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Figure 12. Schematic of the POTFGN+Period model for peaks over thresholds (POTs) of fractional Gaussian noises (FGN) (see Fig. 13 for
POTs of FGN+ Period): (a) shown is a synthetic fractional Gaussian noise (unitless in magnitude) with a persistence strength of βmodel= 0.5.
The synthetic time series resolution is set at 1t = 1 year. See Fig. 5 for an example of other fractional Gaussian noises. (b) Three thresholds
are set (dashed horizontal lines). All noise values that are below the threshold θ01 are considered as years with 0 floods yr−1. All noise
values between the thresholds θ01 and θ12 (θ12 and θ23) are considered as years with 1 (2) floods yr−1. And, all noise values that exceed the
threshold θ23 are considered years with 3 floods yr−1. The thresholds θ01, θ12 and θ23 are chosen such that the resultant one-point probability
distribution is the same as our flood series. (c) Time series of the modelled number of floods per year (blue circles) for 1000 years. For (a),
(b), and (c) are also shown the histogram of the number of values at a given size.

Kantz, 2005; Bunde et al., 2005; Eichner et al., 2007; Olla,
2007; Santhanam and Kantz, 2008; Moloney and Davidsen,
2009). It has been shown that the interevent occurrence times
of such POT values follow a heavy-tailed or Weibull distri-
bution and have long-term correlations (Bunde et al., 2005).
Similar results have been found to hold for processes with
multifractal and other non-linear correlations (Bogachev et
al., 2007, 2008; Olla, 2007), but not for non-linear deter-
ministic systems (Schweigler and Davidsen, 2011). We have
taken the idea of using POTs of fractional noises and have
modified it in order to gain long-term periodic fluctuations in
the flood frequency and an annual number of floods ranging
from 0≤ xyear(t)≤ 5 floods yr−1.

The long-period cyclical behaviour of our 9.3 kyr palae-
oflood data set was taken into account by superimposing
a sine wave with a period of T = 2030 years onto an
input fractional Gaussian noise. The resulting time series
is formally different from the periodic fractional noises
introduced by Montanari et al. (1999). An integer-valued
time series of floods per year was created from the strongly
fluctuating input signal by introducing a group of thresholds.
The model POTFGN+Period was implemented using the
following three-part schema.

Step 1. Creation of a superposition of a fractional noise
and a periodic signal (FGN+Period) to input to our POT
model

a. Begin with a realization yt , t = 1, . . . , 9271 years of
a fractional Gaussian noise (FGN) with a given long-
range persistence strength (βmodel).

b. Normalize the FGN so that it has mean µ= 0.0 and
standard deviation σ = 1.0. An example of this normal-
ized FGN is illustrated in Fig. 12a.

c. Add to the normalized FGN a sine wave with period
T = 2030 years and a given amplitude (which can be
varied) Amodel. The value T = 2030 years is based on
the results of Sect. 4.6. The result of the normalized
FGN superimposed with a sine wave is a periodic FGN.

Step 2. POTs to obtain the number of floods per year

d. Begin with our periodic FGN from Step 1.

e. Decide the maximum number of floods per year,
xmax, the model will produce. For this paper, we
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Figure 13. POTFGN+Period model realizations. Shown are (a) long-range persistent flood time series that are modelled with the proposed
POTFGN+Period model (see Fig. 12) as peaks over thresholds (POTs) of a fractional Gaussian noise (illustrated in Fig. 5) with different
persistence strengths βmodel = 0.0, 0.2, 0.4, 0.6, 1.0 and no superimposed periodic component (Amodel = 0.0), and (b) flood time series
xyear with a long-term periodic cyclicity which are modelled as POTs of a Gaussian white noise (βmodel= 0.0) superimposed with a sine
wave (T = 2030 years) with different sine wave amplitudes Amodel = 0.0, 0.2, 0.4, 0.6, 1.0.

used xmax = 5 floods yr−1, i.e. the model can produce
xyear = 0, 1, 2, 3, 4, and 5 floods yr−1.

f. Define xmax thresholds where the thresholds θ01, θ12,
θ23, . . . are xmax horizontal lines which will intersect our
periodic FGN. The thresholds θ01, θ12, θ23, . . . are cho-
sen such that the resultant one-point probability distri-
bution of the number of floods per time unit is a Pois-
son distribution with a rate parameter of λyear = 0.083
floods yr−1, i.e. the same as in our palaeoflood series.

g. Determine for each value of the periodic FGN yt , t = 1,
. . . , 9271 years the highest of the xmax thresholds which
is exceeded. The ordinal number of this threshold is the
modelled number of floods per year xyear (as illustrated
in Fig. 12b). If no threshold is exceeded, the number of
floods per year is set to zero, xyear(t)= 0 floods yr−1.

h. The result is an integer-valued time series that models
the number of floods per year (as illustrated in Fig. 12c)
that has the same one-point probability distribution, the
same number of data points, and the same long-term
period (T = 2030 years) as our original palaeoflood
record. The model depends on two model parameters
(long-range persistence strength βmodel and amplitude
of periodic signal Amodel).

Step 3. Number of floods per decade and century

i. For computing the modelled number of floods per
decade xdecade the number of floods per year xyear is
summed up over 10 consecutive years.

j. For computing the modelled number of floods per cen-
tury xcentury the number of floods per decade xdecade is
summed up over 10 consecutive decades.

The resultant outputs of our POTFGN+Period model, the
integer-valued synthetic flood time series xyear, depend on
two parameters which are both related to the strongly fluc-
tuating input signal: the strength of long-range persistence
βmodel and the amplitude of the superimposed sine wave
Amodel. In Fig. 13, 12 model realizations are shown. The
six floods per year time series presented in Fig. 13a are con-
structed with strength of long-range persistence βmodel = 0.0,
0.2, . . . , 1.0 but without a long-term periodic component
(Amodel = 0.0). We see visually from Fig. 13a that higher
values of persistence lead to stronger clustering of the an-
nual number of floods, i.e. years with many floods tend to
follow years with many floods, and years without floods tend
to follow years without floods. The six synthetic floods per
year time series presented in Fig. 13b are constructed with
white noise (βmodel = 0) and with an increasing amplitude of
the long-term periodic componentAmodel = 0.0, 0.2, . . . , 1.0.
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Figure 14. Analysis of model realizations of the POTFGN+Period model (peaks over thresholds (POTs) of a (FGN+period)) with different
pairs of parameters for persistence strength and amplitude of the periodic component. Given for all six panels are the two model parameters
of the POTFGN+Period: (i) strength of long-range persistence of the underlying fractional Gaussian noise (FGN) βmodel = 0.00 to 1.00 (step
size 0.02) on the x-axis and (ii) the amplitude of the superimposed periodic component (period T = 2030 years), Amodel = 0.00 to 1.00
(step size 0.02) on the y-axis. For each of the 51× 51= 2601 pairs of model parameters (βmodel,Amodel), 1000 realizations were produced.
Each realization is a synthetic floods per year series which is constructed as described in Sect. 5.1 and illustrated in Fig. 12. In (a), (b),
(c), and (d) are given respectively the mean of the measured βPS, βDFA, kW, and Arate (see the legend for colours and contours) for the
1000 realizations in each of the 51× 51 cell parameter pairs (βmodel, Amodel). In (e), we then take measured values from each of the panels
(a) to (d) and show in (e) their corresponding (βmodel, Amodel) values. The measured values are chosen from each panel to be the same
range (with error bars) as our Piànico palaeoflood data as follows: (i ) strength of persistence, 0.370 ≤ βPS ≤ 0.410, 5000 values from panel
a, magenta dots; (ii) strength of persistence, 0.23≤ βDFA≤ 0.27, 5000 values from b), brown dots; (iii) shape parameter of the Weibull
distribution, 0.77≤ kW ≤ 0.81, 5000 values from (c), blue dots; and (iv) sinusoidal flood rate, 0.0450≤ Arate ≤ 0.0530, 5000 values from
(d), green dots. When a given realization has βPS, βDFA, kW, and Arate, all of which satisfy the preceding conditions (i.e. all four colours
for a given realization appear in e), then we give a black dot. In (f), the 2-D probability density of model parameters (βmodel, Amodel)
is shown whose persistence strength (βDFA), shape parameter of the Weibull distribution (kW), and best-fitting sinusoidal flood rate have
similar values to that of the Piànico palaeoflood record (see the legend for the colour code). Marked is the mode (red bullet) and the area that
contain approximately 50 % of the points (blue dashed lines).
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In Fig. 13b we can visually observe that for high values of
Amodel the years with many floods cluster periodically with a
period of T = 2030 years.

We now return to the three 95 % lines in Fig. 9. These were
derived as follows: we simulated 1000 realizations of the
model POTFGN+Period with Amodel = 0.0 and βmodel = 0.1,
0.3, or 0.5. For a fixed value of βmodel the power-spectral den-
sity (the periodogram) was computed for all resultant event
time series. For each frequency f the 1000 values of S(f )
were ordered from smallest to biggest and the 950th of 1000
values formed the three 95 % coloured lines in Fig. 9.

In summary, the time series presented in Fig. 13a and b
show that high values of either of the model parameters lead
to strong clustering. In the next subsection, we will investi-
gate the dependence of the clustering and correlation proper-
ties on the model parameters.

5.2 Quantifying correlation, clustering, and cyclicity
properties of the POTFGN+Period model

In the previous subsection, we have shown that it is possible
to use the POTs of a fractional noise that has been super-
imposed with a 2030-year period to create an integer-valued
time series with long-range persistence (correlation) proper-
ties and periodicity. In addition, we have been able to capture
the same “number” of values in our synthetic flood time se-
ries as in our palaeoflood record.

Now we want to evaluate the strength of clustering caused
by persistence and the contribution of the long-term period-
icity for different model parameters of our POTFGN+Period
model. This is done by creating ensembles of realizations
for different pairs of model parameters and by measuring
the strength of long-range persistence, the shape parame-
ter of the Weibull distribution of the interevent occurrence
times, and the periodic rate fluctuations of these realiza-
tions, and by comparing them with the values measured
for the palaeoflood record. The model has two parameters:
(i) βmodel, the long-range persistence strength of the under-
lying fractional Gaussian noise, and (ii) Amodel, the ampli-
tude of the superimposed periodic component with a period
T = 2030 years. Both parameters were sampled with a step
size of 0.02 from 0.00 to 1.00, resulting in a square grid
of 51× 51= 2601 pairs of model parameters. For each pair
of model parameters (βmodel,Amodel), 1000 synthetic flood
series (model realizations) were produced using the peaks-
over-thresholds method described in Sect. 5.1 and illustrated
in Fig. 12. The differences between the realizations for one
and the same pair of model parameters are caused by differ-
ent noise realizations.

The amplitude of the best-fitting sinusoidal flood rateArate
assuming a period of T = 2030 years and the shape parame-
ter kW of the best-fitting Weibull distribution of the interevent
occurrence times were determined for each model realiza-
tion (xyear). Further, each resultant palaeoflood yearly se-
ries (xyear) was aggregated to give the number of floods per

decade (xdecade), and then (using power-spectral analysis and
detrended fluctuation analysis) its strength of long-range per-
sistence βPS and βDFA was computed.

In Fig. 14a to d, for each of the 51× 51 “cells” of the pa-
rameter space of our POTFGN+Period model, are given the
mean values of measured βPS, βDFA, kW, and Arate (see
the legend for colours and contours) for that cell’s (βmodel,
Amodel) 1000 model realizations. The graphs show that on
average an increase in the model parameter long-range per-
sistence strength of the underlying fractional Gaussian noise,
βmodel, leads to an increased strength in long-range persis-
tence, βPS and βDFA, of the synthetic floods per decade se-
ries xdecade, and to a decrease in the shape parameter kW
of the Weibull distribution of the modelled interevent occur-
rence times (of xyear). Moreover, an increase in the Amodel
parameter of our POTFGN+Period model (i.e. the amplitude of
the superimposed periodic component with period T = 2030
years) leads to a larger best-fitting sinusoidal flood rate Arate.
However, in both cases the intensity of the increase depends
also on the second model parameter, as otherwise the im-
ages presented in Fig. 14a to d would have horizontally or
vertically striped structures. Furthermore, the mean values of
βPS, βDFA, kW, and Arate (Fig. 14a to d) do not give infor-
mation about the spread of these measured parameters for a
specific model parameter. This implies that for a specific cell,
we do not have the information about the probability to have
a model realization that is similar to the Piànico palaeoflood
data set.

5.3 Parameter fitting of the POTFGN+Period model

Here we identify pairs of model parameters (βmodel, Amodel)

that correspond to flood time series whose strength of
long-range persistence (βPS or βDFA), interevent occur-
rence time distribution (measured as the shape parame-
ter of the Weibull distribution kW), and best-fitting sinu-
soidal flood rate Arate have values close to those mea-
sured for the palaeoflood record from Piànico. From the
2.6× 106 synthetic flood series realizations generated in
Sect. 5.2, the realizations’ parameters are within the range
of our palaeoflood original series parameters as follows:
162 213 realizations (6.2 % of the total number of model
realizations) with 0.370≤ βPS ≤ 0.410, 157 782 realiza-
tions (6.1 %) with 0.23≤ βDFA ≤ 0.27, 132 025 realizations
(5.1 %) with 0.76≤ kW ≤ 0.81, and 152 056 realizations
(5.8 %) with 0.0450≤ Arate ≤ 0.0530. In Fig. 14e the cor-
responding model parameters of these realizations are pre-
sented as clouds of points and each point stands for a
POTFGN+Period model realization that is similar to the Piànico
palaeoflood record with regards to a single measure of cor-
relation or clustering. These points are located in specific ar-
eas: for instance, model realizations with a strength of long-
range persistence βPS similar to the value of the palaeoflood
record (pink dots) are found for βmodel < 0.8 and on the right-
hand side of the line connecting the points (βmodel = 0.4,
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Figure 15. POTFGN+Period model with optimized parameters. (a) Shown (black time series) is a realization of a fractional Gaussian noise
(FGN) with a long-range persistence strength of βmodel = 0.24 (normalized to a mean= 0.0 and variance= 1.0) that is superimposed with a
periodic component (period: T = 2030 years; amplitude: A= 0.30). This synthetic time series is given a time resolution of1t = 1 year and a
length Nyear = 9271 years. Peaks over thresholds (POTs) are considered (as in Fig. 12) for five thresholds (three shown here), θ01, θ12, etc.,
where input (FGN+ period) values < θ01 translate to xyear = 0 flood yr−1, input values between θ01 and θ12 result in xyear = 1 flood yr−1,
etc. The resultant model series of the number of floods per year (grey and blue circles) for 9271 years is constructed to have a Poissonian
one-point distribution and is shown at the bottom of (a). (b) Shown are 50 more model realizations of the POTFGN+Period model as number
of floods per year (see the legend for the colour code), with maximum xyear = 4 floods yr−1. (c) Time-dependent flood rate 3(t) given as
a function of time t (see Fig. 11a, text and Appendix C) using 1000 model realizations similar to (b). We first compute a kernel density
estimator for each of the 1000 model realizations. Then we take the mean of these at each time step, giving us a mean 3(t) (dashed black
line). We then compute the 95 % confidence band limits (dark grey bands), by ordering the 1000 values of 3(t) for each time step t and
choosing the 25th and 975th values. As the flood rate of the first and last 500 years might be affected by edge effects, the corresponding dark
grey colour banding is changed to light grey. For a comparison, the corresponding time-dependent flood rate for the palaeoflood data (solid
black line), as shown in Fig. 11a, is given. (d) Black diamonds represent the mean number of floods per year, decade, and century based on
1000 realizations of our POTFGN+Period model as given in the previous panels, with error bars 95 % confidence intervals. For comparison
are shown (i) the histogram (also shown in Fig. 6a) of the original palaeoflood time series number of floods per year (blue bars), decade
(orange bars), and century (green bars), and (ii) the corresponding Poisson model (grey diamonds, also shown in Fig. 6a) with respective rate
parameters λyear = 0.083 floods yr−1, λdecade = 0.83 floods decade−1, and λcentury = 8.3 floods century−1.
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Amodel = 0) and (βmodel = 0.0, Amodel = 0.8). Realizations
with values of Arate close to 0.049, i.e. the value of the best-
fitting sinusoidal flood rate of the palaeoflood record, are
centred around Amodel = 0.32 (green dots) with a spread that
grows with increasing values of βmodel. Next, we will iden-
tify the model parameters βmodel and Amodel which lead to
model time series that best match our palaeoflood record.

Figure 14e also shows that there are just a very few model
parameters that belong to all four clouds and thus are in the
desired ranges of βPS, βDFA, kW, and Arate. To identify opti-
mum model parameters, we choose POTFGN+Period model re-
alizations where the following four parameters intersect: βPS
and βDFA (characterize strength of long-range persistence,
pink and brown dots respectively), kW (characterizes clus-
tering, blue dots), and Arate (characterizes cyclicity strength,
green dots). In other words, we find where the brown, pink,
blue, and green dots intersect. Just 143 realizations (pre-
sented as black dots in Fig. 14e) out of the 2.6× 106 model
realizations are part of this intersection. They are located in a
small area of the 2-D parameter space: 0.10≤ βmodel≤ 0.30
and 0.20≤Amodel ≤ 0.38. It should be noted that this area
does not intersect with the x-axis or the y-axis, meaning
that both model parameters are necessary for an appropri-
ate description of the palaeoflood data. Because 143 real-
izations were not sufficient for effectively investigating (and
visualizing) the 2-D probability distribution of βmodel and
Amodel, for 0.06≤ βmodel ≤ 0.34 and 0.16≤ Amodel ≤ 0.42 (a
slightly extended area as to that just found) we created more
realizations (10 000 per cell) to gain a total of 1518 real-
izations with the desired long-range persistence, clustering,
and cyclicity properties. The 2-D probability density of these
points has been approximated by a normalized 2-D histogram
(Fig. 14f). The grid cell of βmodel = 0.25 and Amodel = 0.30
(presented as a red bullet) has the highest probability. This
pair of model parameters is considered to be the best fitting.
Approximately 50 % of the 1518 model realizations that are
similar to the palaeoflood data set are found for model param-
eters 0.19 <βmodel < 0.29 and 0.26 <Amodel < 0.34; this range
is indicated by the blue dashed lines in Fig. 14f. These ranges
give an estimate of the accuracy of POTFGN+Period model pa-
rameter determination.

In summary, the model evaluation provides evidence that
both model parameters of the strongly fluctuating input sig-
nal (the strength of long-range persistence of the fractional
noise and the amplitude of the sine wave superposed onto
it) of our POTFGN+Period model are required for an appro-
priate modelling of the clustering properties of the palae-
oflood record. Optimum parameters including error bars
(βmodel= 0.24± 0.05 and Amodel= 0.30± 0.04) have been
determined. One realization of the model with optimum pa-
rameters is given in Fig. 15a.

5.4 Model confrontation

In the last subsection, we specified the parameters of our
POTFGN+Period model in order to reproduce the observed
clustering and long-term periodic properties. Now we will
investigate further model properties such as the distributions
of floods per decade or per century and confront these prop-
erties with the values measured for the palaeoflood record
from Piànico.

For a comparison of the properties of the palaeoflood data
and of the POTFGN+Period model with the specified parame-
ters, we have created 1000 model realizations (50 of these
xyear series are shown in Fig. 15b). For each of the 1000
model realizations the time-dependent flood rate 3model(t)

(Sect. 4.6) was computed which enabled the calculation of
the mean time-dependent flood rate 3model (t) and its 95 %
confidence intervals (Fig. 15c). The mean time-dependent
flood rate 3model (t) fluctuates periodically with a 2030-year
period and replicates the long-term changes in rate fluc-
tuations qualitatively. However, the amplitudes of the rate
changes for some time intervals (t = 0 to 600 years, 3800
to 4800 years, and 5500 to 6800 years) are not correctly cap-
tured, i.e. they are outside the 95 % confidence intervals of
3model. This is due to the stationary character of our palae-
oflood model and the non-stationary character of the long-
term rate fluctuations.

For the ensemble of all model realizations, the histograms
of the number of floods per year, per decade, and per century
were computed, such that the mean number of floods per time
unit with 95 % error bars could be estimated (Fig. 15d). The
number of Piànico palaeofloods per year, decade, and century
(as discussed in Sect. 4.1 and seen in Fig. 6a) fit well within
the 95 % confidence intervals of the considered histograms.

Finally, for the ensemble of all POTFGN+Period (with spec-
ified parameters) model realizations, the clustering and cor-
relation properties were quantified: the persistence strength
(βPS, βDFA), the shape parameter of the Weibull distribu-
tion of the interevent occurrence times (kW), and the time-
dependent flood rate (3model(t)) were computed (see Ta-
ble 2). Table 2 shows that the correlation properties (βPS,
βDFA) of the model are on average weaker than those of the
palaeoflood record. Nevertheless, the 95 % confidence inter-
vals from the model contain the original palaeoflood values
for βPS, βDFA, kW, and Arate. The clustering properties (kW,
Arate) of the data are excellently captured by the model as the
mean values of the corresponding measures computed for the
model realizations are very close to the values measured for
the data.

In summary, we find a good agreement between the
POTFGN+Period model and the palaeoflood data series in par-
ticular with respect to the distribution of floods per time unit
and the clustering properties.
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Table 2. Statistics of long-range persistence, clustering, and cyclicity properties of the specified (βmodel= 0.24, Amodel= 0.30) palaeoflood
model; 1000 model realizations were created and their long-range correlations (βPS and βDFA), clustering (kW), and cyclicity properties
(Arate) were quantified. Given is for each measure the mean value and the 2.5th and 97.5th percentiles of the model realizations, the value
measured for the palaeoflood record, and the percentile of the value measured with respect to the values of the model.

Measure Model: mean value Palaeoflood record Percentile of
(2.5th and 97.5th percentiles) palaeoflood

record

βPS (computed for ndecade) 0.26 (0.14, 0.40) 0.39 97 %
βDFA (computed for ndecade) 0.21 (0.07, 0.34) 0.25 74 %
kW 0.79 (0.74, 0.84) 0.79 48 %
Arate 0.050 (0.038, 0.063) 0.049 48 %

5.5 Using and analysing realizations from the
POTFGN+Period model

We have shown in Sect. 5.4 above that our POTFGN+Period
model reproduces several properties of the palaeoflood time
series, including the distribution of floods per year, decade,
and century as well as long-range persistence, clustering,
and cyclicity properties. We now use realizations from the
POTFGN+Period model with optimized parameters to explore
how the number of floods per time unit (e.g. per decade or
century) is related to the number of floods in the following
time unit (e.g. does a century (decade) with a few floods
tend to follow a century (decade) with a few floods?). To
do this we create one long model realization with 109 years
(108 decades, 107 centuries). We computed the probability of
floods per century for given numbers of floods in the preced-
ing century.

Figure 16a shows the 2-D probability distribution of the
number of floods per century (ncentury(j)) and the number of
floods in the succeeding century (ncentury(j+1)). This distri-
bution is concentrated along the diagonal line ncentury(j+1)
= ncentury(j) and thus indicates positive correlations in the
number of floods per century time series realizations. Fig-
ure 16b presents the distribution of the number of floods per
century if the preceding century contained 0, 8, or 16 floods
century−1. These distributions are unimodal with a system-
atic shift in the mode and a dispersion that is increasing
with the numbers of floods in the preceding century. In other
words, the uncertainty of the forecasted number of floods per
century increases with the number of floods in the preceding
century.

Our results shown in Fig. 16 imply that low numbers of
floods century−1 follow low ones, and that high numbers of
floods century−1 follow high ones. In other words, a cen-
tury with no floods is much more likely to follow a cen-
tury with no or a very few floods rather than a century with
many floods, and a century with many (e.g. 20) floods is
much more likely to follow a century with many (e.g. 20)
floods than a century with no or a very few floods. How-
ever, this holds only in the statistical sense, and successions
of centuries with many floods can certainly follow centuries

with very few floods (and vice versa). For example, in the
palaeoflood data set we have found a “jump” from 24 to 4
floods century−1 (between the 39th and 38th centuries). In
our model the probability that a century with 4 floods will
follow a century with 24 floods is 0.02 % on average, but
will be much higher for time periods with a high amplitude
of the periodic component of the input signal. We also ob-
serve that in our original palaeoflood time series there is a
jump from 7 to 25 floods century−1 between the 46th and
45th centuries. A jump of this magnitude in our optimized
POTFGN+Period model has a probability of 3.9 % based on our
long synthetic realization, and is thus well captured by the
model. Furthermore, we found for the POTFGN+Period model
that medium changes in flood frequencies are fairly likely, as
for instance a transition from 25 to < 10 floods century−1 has
a probability of > 20 %. In a similar manner, we have also ex-
amined the summary statistics for the number of floods per
decade using our long synthetic time series realization. For
the simulated 108 decades, we find between 0 and 13 floods
decade−1, although > 10 floods decade−1 is very unlikely.
Similar to the centennial data, we find indications of corre-
lations that decades with few (many) floods are followed by
decades with few (many) floods, i.e. on average, low values
follow low ones and high values follow high ones.

6 Summary

We have presented a 9.3 kyr comprehensive flood record at
sub-annual resolution, obtained from the varved interglacial
Pleistocene sediments of the Piànico–Sèllere Basin. A lacus-
trine sediment unit of 9.5 m thickness has been considered
which consists of an almost continuous succession of about
15 500 varves that are interpreted as annual cycles. Approx-
imately 8 % of the varves contain 1–3 detrital layers which
are considered to be the result of channelized streamflow that
originated in the hills surrounding the Piànico–Sèllere Basin
and triggered by extreme precipitation events (Mangili et al.,
2005). Our analysis was aimed at understand the temporal
succession of detrital layers.
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Figure 16. Using the optimized POTFGN+Period model for fore-
casting the number of floods in 1 century based on the number
of floods in the previous century: based on the palaeoflood model
realizations for 109 years are shown (a) the 2-D probability of
the number of floods per century (xcentury(j)) and the number
of floods in the succeeding century (xcentury(j + 1)) (background
grid colours; see the legend for the scale). The solid grey diag-
onal line represents the equality of the number of floods in both
centuries (xcentury(j + 1)= xcentury(j)). (b) The 2-D probability
distribution shown in (a) is cut vertically at xcentury = 0, 8, and
16 floods century−1 and the corresponding probability densities
of floods per centuries after a century with xcentury = 0, 8, and
16 floods century−1 are presented as coloured lines (see the leg-
end). Also given is the probability density of floods per century of
the palaeoflood model.

The analysed palaeoflood record is unique as it comprises
the relative timings of 771 flood events, is continuous (ex-
cept a gap of 65 years, which is less than 1 % of the length of
the 9336-year time period), and was not affected by anthro-
pogenic influences. This palaeoflood record provides an ex-
ample of the high natural variability of flood frequency over
a long period (e.g. variations of 0–31 floods century−1). Be-
cause of the comprehensive data set, the temporal succession
of palaeofloods could be extensively studied as to its under-
lying statistics of correlations, clustering, and cyclicity. We
showed that the correlations of the decadal number of floods
over the 9.3 kyr palaeoflood are long range, with a long-range
persistence strength of βPS ≈ 0.39 (power-spectral analy-

sis) and βDFA ≈ 0.25 (DFA). Additionally, the flood fre-
quency is modulated by a long-term cyclicity with a period
of T = 2030 years. The palaeofloods are also shown to be
temporarily clustered as the interevent occurrence times are
Weibull distributed (with a shape parameter of kW = 0.78).

We have derived a model (POTFGN+Period) that is based
on POTs of a fractional Gaussian noise (FGN) superimposed
by a long period signal. This model allows us to construct
many realizations of an event series with properties similar
to those identified for the original palaeoflood time series.
Should more information (e.g. higher resolution, extending
the data series in time) become available related to our orig-
inal palaeoflood series, then the parameters of correlation,
clustering, and cyclicity are likely to be slightly changed, and
a modified model can then be easily created.

We used our model to create 2 600 000 synthetic flood se-
ries with different parameters, and then confronted the clus-
tering, correlation, and cyclicity properties of our original
palaeoflood record with the synthetic series to come up with
optimized parameters in our POTFGN+Period model. Based
on the optimized POTFGN+Period model, we found that it is
important when modelling our original palaeoflood time se-
ries that the model needs both long-range correlations and a
slowly varying component (periodicity) to capture the corre-
lation, clustering, and cyclicity properties of the palaeoflood
record. In other words, the observed temporal flood clusters
in our 9.3 kyr time series cannot be explained by either long-
range correlations or slow cyclical changes; rather, both com-
ponents need to be present.

As an example of the application of our optimized
POTFGN+Period model we use it to create long simulations
with parameters similar to that of our palaeoflood time se-
ries. We show that centuries with no or a few floods tend to
follow each other and that centuries with many floods tend to
follow centuries with many floods. Those centuries that are
extremely dry or wet we mostly attribute to the influence of
noise in both the 9.3 kyr palaeoflood record and the corre-
sponding model that we have created. We also found that the
uncertainty of the forecasted number of floods per century
increases with the number of floods in the preceding century.

Our research in this paper combines the statistical analysis
of correlations, clustering, and cyclicity in a very complete
and unique interglacial record of floods from the Pleistocene,
allowing one to create a model to simulate many realizations
with similar parameters to our original series. We believe that
this approach is applicable to other environmental event time
series (e.g. palaeo-hazards); where event magnitude is un-
known, the timings are unequally spaced in time, and where
the one-point probability distribution of the number of events
per time unit is strongly asymmetric (i.e. non-Gaussian). This
is true for many palaeo and historical environmental event se-
ries (e.g. earthquakes, wildfires, and volcanic eruptions). We
also believe our approach of creating an optimized model that
is congruent with the correlation, clustering, and cyclicity pa-
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rameters of the original event series is one that is generally
applicable, and useful for creating many “realizations”.

Data availability. The palaeoflood data used here, the number of
detrital layers per year, are available at https://doi.org/10.1594/
PANGAEA.879779 (Mangili et al., 2017).
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Appendix A: Detrital layer thickness figure
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Figure A1. Detrital layer thickness: (a) thickness and temporal lo-
cation of the detrital layers in the varved sediment; 771 layers are
located within the 9271 varves. The x-axis represents relative age,
with 0 years representing the most recent varve and increasing val-
ues indicating further back in time. The grey bar represents a sed-
iment gap of 65 years. The detrital layer thickness (green vertical
bars), shown on a logarithmic scale, ranges from 0.002 to 23 mm.
Some layers are just reported and not measured (black dots in a
horizontal line towards the top of panel a). The detrital layers are
unequally distributed over time. A histogram of the layer thickness
is given in (b).
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Appendix B: Semivariogram analysis of palaeoflood
time series

In the hydrological sciences, semivariograms are a standard
tool for investigating second-order correlations. The semivar-
iogram s(τ ) is a function of the lag τ as

s (τ )=
1

2N

N−τ∑
j=1

(
nj+τ − nj

)2 (B1)

where N is the length of the time series. The semivariogram
is a linear function of the autocorrelation function C (see
Eq. 5). In case of a stationary time series, the semivariogram
s saturates at a certain level (the sill).
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Figure B1. Semivariogram (Eq. B1) of the three palaeoflood time series, nyear, ndecade and ncentury for lags 0≤ τ ≤ 7500 years. Also shown
is the 95 % range of the semivariogram of the best-fitting Poisson model (see Sect. 3.2).

Shown in Fig. B1 are semivariograms of the three palae-
oflood time series, nyear, ndecade, and ncentury, for lags 0≤
τ ≤ 7500 years. Also shown in each panel is the correspond-
ing 95 % range of the best-fitting Poisson model. The semi-
variograms of the number of floods per decade and per cen-
tury (ndecade and ncentury) are significantly different from the
semivariograms of the Poisson model. Furthermore, there is
no sill; i.e. due to a long-term cyclicity, the semivariogram
does not approach a limit value for large lags.
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Appendix C: Computing the time-dependent flood rate
with kernel density estimators

Determining the time-dependent flood rate is necessary for
detecting gradual changes in flood frequency and for identi-
fying long-term cyclicity in flood occurrence. Here, the time-
dependent flood rate and its corresponding 95 % confidence
intervals have been determined by kernel density estimation
(Silverman, 1986). The kernel K is a non-negative function
which is symmetric with respect to 0. For our purposes we
use a Gaussian kernel KG with bandwidth σ :

KG (τ )=
1

√
2πσ 2

exp
(
−
τ 2

2σ 2

)
, (C1)

with τ a discrete time step (for this paper, τ = 1 year). The
kernel is truncated such that it is defined only for −3σ ≤
τ ≤ 3σ . This specific kernel is a discretized and truncated
Gaussian probability density function. The bandwidth pa-
rameter σ that is the standard deviation of the Gaussian dis-
tribution controls the width of the kernel. For this paper, we
have applied a bandwidth of σ = 250 years, and therefore
the Gaussian kernel that is created has a width of 1500 years
(range of ±3σ ). The idea of kernel density estimation is to
replace each flood in the floods per year function nyear by a
smooth kernel and to consider the superposition of all ker-
nels as a measure for the number of floods per year. This is
implemented by convolving Eq. (C1) with the time series of
the number of floods per year, nyear. At step one, the time-
dependent flood rate 3(t) with respect to the specific kernel
KG is computed for times t = 1, . . . , T by

3(t)=

3σ∑
τ=−3σ

nyear (t − τ)1(t − τ)KG (τ )

3σ∑
τ=−3σ

1(t − τ)KG (t)

, (C2)

with 1 the temporal range function of our time series, i.e.
1(t)= 1 for values of t in the temporal range of the time se-
ries and 1(t)= 0 for values outside (i.e. t ≤ 0, t > T or t is
inside in the gap). Thus, the numerator is the convolution of
the kernel densityKG and the number of floods per year nyear
and the denominator is the convolution of the kernel density
and the range function of the time series. Note that the range
function is only needed for approximately handling nyear val-
ues that are near the two ends of the time series and the gap.

After convolution and derivation of the time-dependent
flood rate 3(t), in step 2, we now derive their respective
95 % confidence intervals. This requires the computation of
the effective number of data points N(t) for each time point
t , which describes the number of time series elements that
contribute to the kernel density estimate of the rate, 3(t):

N (t)= 2σ
3σ∑

τ=−3σ
1(t − τ)KG (τ ) . (C3)

This effective bandwidth N(t) is smaller than 2σ for time
points t which are close to the beginning and end of the ob-
servational interval (e.g. t = 1 or t = T ), and equal to 2σ for
time points t far from these interval ends.

The distribution of the time-dependent rate 3(t) is re-
lated to a two-parameter Gamma distribution (Johnson et
al., 1993). This allows us to calculate the corresponding
95 % confidence intervals, i.e. the lower (30.025) and upper
(30.975) endpoints of the 95 % confidence intervals, as

30.025 (t)= 2F0 (0.025,0.5N(t)R(t),1)/N (t) , (C4)
30.975 (t)= 2F0 (0.975, {0.5N(t)R (t)}+ 1,1)/N (t) ,

with F0 the cumulative distribution function of the two-
parameter Gamma distribution and (i) 0.025 and 0.975 the
considered quantile, (ii) 0.5 N(t)R(t) and ({0.5N(t)R(t)}+
1) the shape parameter, and (iii) the value 1 the scale param-
eter. For comparison, we also calculated confidence intervals
of the time-dependent rates by applying a bootstrap-based
method as introduced by Mudelsee (2014) in his Sect. 6.3.2.
The two methods for calculating confidence intervals re-
sulted in very similar values.

Appendix D: Variance of residuals for fitting a
sinusoidal function
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Figure D1. Shown is the variance of the residuals (σ 2(ε)) for fitting
a sinusoidal function (Eq. 16) to the floods per year series nyear as a
function of the period T of this periodic function. The function for
the variance of the residuals has a minimum at Tmin = 2030 years
(shown as a star in the figure).
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