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Abstract. This study examines the relative roles of cli-
matic variables in altering annual runoff in the contermi-
nous United States (CONUS) in the 21st century, using a
monthly ecohydrological model (the Water Supply Stress In-
dex model, WaSSI) driven with historical records and future
scenarios constructed from 20 Coupled Model Intercompar-
ison Project Phase 5 (CMIP5) climate models. The results
suggest that precipitation has been the primary control of
runoff variation during the latest decades, but the role of tem-
perature will outweigh that of precipitation in most regions
if future climate change follows the projections of climate
models instead of the historical tendencies. Besides these two
key factors, increasing air humidity is projected to partially
offset the additional evaporative demand caused by warm-
ing and consequently enhance runoff. Overall, the projec-
tions from 20 climate models suggest a high degree of con-
sistency on the increasing trends in temperature, precipita-
tion, and humidity, which will be the major climatic driv-
ing factors accounting for 43–50, 20–24, and 16–23 % of the
runoff change, respectively. Spatially, while temperature rise
is recognized as the largest contributor that suppresses runoff
in most areas, precipitation is expected to be the dominant
factor driving runoff to increase across the Pacific coast and
the southwest. The combined effects of increasing humidity
and precipitation may also surpass the detrimental effects of
warming and result in a hydrologically wetter future in the
east. However, severe runoff depletion is more likely to oc-
cur in the central CONUS as temperature effect prevails.

1 Introduction

Precipitation and temperature are the two key climatic vari-
ables that control land water balances and thus control wa-
ter availability for both ecosystem and humans (Lutz et
al., 2014; Milly et al., 2005; Seager et al., 2013; Piao et
al., 2010). Changes in temperature interact with changes in
precipitation and cause profound shifts in water balance,
such as snowpack melting and accumulation (Barnett et
al., 2005; Zhang et al., 2015), intensification of hydrologic
cycle (Creed et al., 2015; Davis et al., 2015), precipitation
partitioning (Duan et al., 2016b; Zhou et al., 2015), ex-
treme floods and droughts (Duan et al., 2016a; Trenberth et
al., 2014; Duan and Mei, 2014b), and can lead to hydrologi-
cal “nonstationarity” (Milly et al., 2008).

Surface and subsurface (shallow aquifers) runoff is a
critical source of fresh water for humans (Vörösmarty et
al., 2000). The impacts of temperature and precipitation
changes on the magnitude and variability of runoff (Fick-
lin et al., 2009; Arnell and Gosling, 2013; Nash and Gleick,
1991; Vano et al., 2012) have drawn particular attention due
to its importance for water supplies. Future changes in pre-
cipitation, evaporation, and plant water use are direct driving
forces of runoff generation. Climate change alters both pre-
cipitation and the partitioning of precipitation into evapotran-
spiration (ET) and runoff since a warmer climate generally
provides more energy for water fluxes between the land and
the atmosphere. Although an increase in precipitation may
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cause increase in both ET and runoff, the enhanced evapora-
tive demand can result in decreases in runoff efficiency (ra-
tio of runoff to precipitation) (McCabe and Wolock, 2016).
Both observation and simulation studies in the US suggest
that higher ET induced by rising temperature is unlikely to
be counterbalanced by the increase in precipitation, and will
lead to less runoff at large scales (Duan et al., 2016b; Jackson
et al., 2005; Duan et al., 2017). Further, warming may also
cause precipitation decrease in some regions and exacerbate
the effects of temperature on runoff change.

Several studies have examined the relative contributions of
historical changes in precipitation and temperature to runoff
variation at watershed (Karl and Riebsame, 1989), regional
(Ryberg et al., 2014; Gupta et al., 2015), and continen-
tal (McCabe and Wolock, 2011) levels across the conter-
minous US (CONUS). These studies all agree that precip-
itation, instead of temperature, explains most of the long-
term change and variability in runoff during the past cen-
tury. McCabe and Wolock (2011) suggested that the ef-
fects of temperature on runoff may become more substan-
tial under a warming climate. However, no study in the lit-
erature has rigorously investigated the potential changes in
the roles of precipitation and temperature under future cli-
mate scenarios. According to the Parameter-elevation Re-
lationships on Independent Slopes Model (PRISM) dataset
(http://prism.oregonstate.edu/) (Daly et al., 2008), the rate of
decadal change in temperature over the CONUS fluctuated
between −0.03 and +0.28 ◦C from the 1960s to the 2000s.
The rate of warming is likely to accelerate under intermedi-
ate or high-emission scenarios and increase the pressure of
water scarcity in many regions in this century (IPCC, 2014;
Schewe et al., 2014). In addition, future change in climate is
projected to vary spatiotemporally in both direction and mag-
nitude in the CONUS (Mearns et al., 2012). Thus, sensitivity
of water budget to climate change may be discrepant across
time and space. Although the possible underestimation of the
influence of temperature in altering regional water resources
has been discussed recently (Sospedra-Alfonso et al., 2015;
Woodhouse et al., 2016), a comprehensive evaluation under
different climate backgrounds and land-cover compositions
is still lacking.

We aim to address two questions in this study: (1) to what
extent, if any, will the relative roles of precipitation and tem-
perature in controlling runoff shift, if future climate changes
follow the projections of climate models instead of the ten-
dencies documented in the recent decades, and (2) how will
runoff change in the future and what are the potential roles of
other climatic driving forces besides precipitation and tem-
perature? In the remainder of the paper, we first describe the
methodology of runoff simulation and sensitivity assessment,
and the hydro-climatic datasets used, followed by the results.
Then, the advantages, limitations, and implications of this
study are discussed and the conclusions are drawn.

Figure 1. Location of the 18 water resource regions (WRRs) in the
conterminous United States (CONUS).

2 Methods

2.1 Study area

The CONUS covers the 48 adjoining states and the Dis-
trict of Columbia. In the hydrologic unit system developed
by the US Geological Survey (USGS) (http://water.usgs.gov/
GIS/huc.html), the nation is divided into six levels of hydro-
logic units and each unit is identified by a unique hydrologic
unit code (HUC) consisting of 2–12 digits. The first level of
classification divides the CONUS into 18 two-digit HUC ar-
eas that are also commonly referred to as water resource re-
gions (WRRs) (Fig. 1). These regions can be further divided
into 2099 eight-digit HUC areas, or HUC-8 watersheds. This
study investigates climate and runoff variations at the resolu-
tion of HUC-8 watershed, as well as the aggregations in each
WRR and the entire CONUS. The full lists and boundaries of
hydrologic units at different levels can be found in the Water-
shed Boundary Dataset (https://datagateway.nrcs.usda.gov/).

2.2 Runoff modeling

The runoff responses to climate change and variability were
modeled with the Water Supply Stress Index model (WaSSI).
WaSSI is a monthly ecohydrological model that was devel-
oped to capture land-cover specific large-scale water balance
in the CONUS based on empirical and physically based pa-
rameters (Caldwell et al., 2012; Sun et al., 2011b). It was
integrated from a snow model, an ET model, and a soil mois-
ture accounting model. A conceptual snow sub-model (Mc-
Cabe and Markstrom, 2007) is used to partition the total pre-
cipitation into rainfall and snowfall, and to estimate snow-
pack melt/accumulation and snow water equivalent with con-
cern of the mean elevation, latitude, and air temperature in
the watershed. ET is calculated with an ecosystem ET model
developed from the empirical relationships between ET and
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precipitation, potential evapotranspiration (PET), and leaf
area index (LAI) (Sun et al., 2011a, b). These ET functions
were established for 10 different land-cover classes indepen-
dently to account for the different water demand within dif-
ferent vegetation, ranging from cropland, deciduous forest,
evergreen forest, mixed forest, grassland, shrubland, wet-
land, open water, urban area, to barren land. Then, this ET
estimation is further constrained by soil water availability,
which is simulated using the algorithms of Sacramento Soil
Moisture Accounting model (SAC-SMA) (Burnash, 1995),
as well as the processes of infiltration and runoff generation
at monthly basis. SAC-SMA is a classic rainfall–runoff con-
ceptual model that has been successfully used by the US Na-
tional Weather Service (NWS) to issue river forecasts across
the country for decades. Necessary inputs for WaSSI include
monthly precipitation, air temperature, PET, LAI, and land-
cover composition. In this study, the spatial distribution of
LAI and the 10 land-cover classes were assumed to be static
over time. Monthly climate data were first scaled to water-
sheds by the area-weighted averages. All the water balance
components were calculated independently for each land-
cover class within each watershed, and then were aggregated
into monthly means. The model parameters were acquired
from several previous studies, including (1) the parameters
of snow sub-model (four parameters for each WRR) were es-
timated for each WRR by comparing regional monthly mean
snow water equivalent to remotely sensed values from the
Snow Data Assimilation System (McCabe and Markstrom,
2007; Caldwell et al., 2012); (2) the parameters of ET sub-
model (three empirical parameters for each land-cover type)
were estimated by empirical relationships derived from eddy
covariance or sapflow measurements at multiple sites (Sun
et al., 2011a, b); and (3) SAC-SMA parameters (11 parame-
ters for each watershed) used to drive the soil water balance
sub-model were developed from soil physical characteristics
documented by the State Soil Geographic Database (http:
//soildatamart.nrcs.usda.gov) (Anderson et al., 2006; Koren
et al., 2003).

The WaSSI model has been validated against observations
at USGS gauged sites at the levels of both 8-digit (Cald-
well et al., 2012) and 12-digit HUC watersheds (S. Sun et
al., 2015). We here verify the model performance at CONUS
and WRR scales to complement to previous validations. The
simulated annual runoff, driven by monthly precipitation and
temperature from the PRISM dataset, was compared against
the USGS measurements over the entire CONUS (Fig. 2a
and c) and in the 18 WRRs (Fig. 2b and d) for the time period
of 1961–2010. Despite a slight overestimation of the minima,
WaSSI shows reliable accuracy in capturing annual runoff at
both CONUS and WRR scales, with R-square statistic reach-
ing 0.91 and 0.95, and root mean squared error (RMSE) lim-
ited to 29 and 55 mm yr−1, respectively.
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Figure 2. Validations of the WaSSI model at the conterminous
United States (CONUS) and water resource region (WRR) lev-
els. (a, b) Comparisons of simulated annual runoff (R) (mm yr−1)
against USGS observed data in 1961–2010 over the entire
CONUS (a) and in 18 WRRs (b). (c, d) Comparisons of simulated
runoff coefficient (runoff / precipitation, R/P ) against that derived
from USGS observed data in the CONUS (c) and WRRs (d).

2.3 Quantifying the independent effects of climatic
variables

Large-scale water balance can be described as runoff (R)
equals precipitation (P ) minus ET and changes in soil mois-
ture (SM) and the hydrologically connected snowpack (SP):

R = P −ET+ dSM/dt + dSP/dt. (1)

While P is the primary water input, changing temperature
(T ) and other climatic factors interact with each other and
affect R by altering the melt/accumulation of snowpack and
controlling ET with the constraints of vegetation and soil
moisture.

Here we develop a simple approach of sensitivity test to
examine the relative roles of climatic variables in R variation,
as

1R =
∑N

i=1
ECi+EInt, (2)

where 1R denotes the change in R, which equals the
combined effect of variations in all the climatic variables
(Ci, i = 1,2, . . .,N ). 1R can be decomposed into the in-
dependent effects of each variable (ECi) and the effect
of interactions between them (EInt). From a pre-change
period (t1) to a post-change period (t2), 1R is quanti-
fied by R change (%) driven by changes in all the vari-
ables, as the difference between R(C1t2 , . . .,Cit2 , . . .,CNt2)
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and R(C1t1 , . . .,Cit1 , . . .,CNt1), while ECi is estimated by
R change driven by changes in the variable Ci only,
as the difference between R(C1t1 , . . .,Cit2 , . . .,CNt1) and
R(C1t1 , . . .,Cit1 , . . .,CNt1). EInt is calculated as the 1R mi-
nus

∑N
i=1 ECi, representing the changes in R that cannot

be accounted for by the independents effects. Given that the
changing climatic variables may cause either positive or neg-
ative effects on R, their contributions (%) are quantified by
the relative weights, as

C(Ci)= 100 · |ECi|/
(∑N

i=1
|ECi| + |EInt|

)
. (3)

2.4 Modeling experiments

2.4.1 Climate projection

Climate data downscaled from the raw outputs of 20 global
climate models (GCMs) (Table 1) of the fifth phase of
the Coupled Model Inter-comparison Project (CMIP5) (the
MACAv2-LIVNEH dataset, Livneh et al., 2013, available
at http://maca.northwestknowledge.net/) were used to test
the potential future changes in R. This dataset includes
the CMIP5 experiments of “historical”, Representative Con-
centration Pathways (RCP) 4.5, and RCP8.5, which corre-
spond to the climate forcings (i.e., greenhouse gases emis-
sions, aerosols, land use feedbacks, etc.) observed in the
history and projected in a future with the radiative forcing
reaching 4.5 and 8.5 W m−2 in 2100 (equivalent to 650 ppm
and 1370 ppm CO2), respectively (Moss et al., 2010; IPCC,
2014). The used climatic variables include monthly P , max-
imum and minimum T , solar radiation (Rs), wind speed
(Ws), and specific humidity (Sh) spanning from 1950 to 2099
(Fig. 3).

To evaluate the R responses to various changes in future
climates, we conducted four 30-year simulation experiments:
(i) RCP4.5/2030s (S1 scenario), near-future 2020–2049 un-
der RCP4.5; (ii) RCP4.5/2080s (S2), far-future 2070–2099
under RCP4.5; (iii) RCP8.5/2030s (S3), near-future 2020–
2049 under RCP8.5; (iv) RCP8.5/2080s (S4), far-future
2070–2099 under RCP8.5. These four future scenarios cover
two post-change time periods (2030s and 2080s) and are
compared to the historical condition in 1970–1999 (1980s)
that represents the baseline level. Traditional sensitivity test
methods usually assume a fixed amount of change (Karl and
Riebsame, 1989) or allow one (or more) of the variables to
remain constant over time (McCabe and Wolock, 2011). In
this study, the 30-year-long continuous climate series were
used to examine the long-term patterns while implicitly in-
corporating the inter- and intra-annual variations. This large
set of climate projections was collected to enable a robust
quantification of the major uncertainties from GCM structure
and emission scenario.
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Figure 3. Temporal variations of annual mean precipitation (a), sur-
face air temperature (b), solar radiation at surface (c), wind speed
near surface (d), and specific humidity near surface (e) over the
CONUS. Thick lines and the shading denote the multi-model en-
semble means and uncertainty ranges of the 20 GCMs, respectively.

2.4.2 Estimation of potential evapotranspiration

Hamon’s PET equation has been used for PET estimation in
previous WaSSI simulations because it only requires mean
temperature as input and has shown reliable correlation with
actual ET in historical periods (Lu et al., 2005; Vörösmarty et
al., 1998). Essentially, temperature-based methods perform
well because T is correlated with radiation and humidity at
monthly timescale (Sheffield et al., 2012). Such correlations
are the physical bases of the empirical ET functions, through
which variability in P , T , and LAI was able to explain the
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Table 1. List of the 20 climate models and the changes in mean annual precipitation and temperature over the conterminous United
States (CONUS) from the baseline scenario (B) to future scenarios S1 (RCP4.5/2030s), S2 (RCP4.5/2080s), S3 (RCP8.5/2030s), and S4
(RCP8.5/2080s).

GCM Country Precipitation (mm yr−1) Temperature (◦C)

B S1 S2 S3 S4 B S1 S2 S3 S4

bcc-csm1-1 China 787 −3 +13 +33 −5 11.4 +1.7 +2.4 +1.9 +4.8
bcc-csm1-1-m China 786 +18 −18 +29 +33 11.4 +1.5 +2.4 +1.7 +4.3
BNU-ESM China 798 +51 +42 +25 +45 11.5 +1.9 +3.2 +2.0 +5.4
CanESM2 Canada 800 +14 +42 +19 +83 11.3 +2.3 +3.5 +2.4 +5.8
CCSM4 USA 783 +29 +29 +18 +58 11.5 +1.5 +2.5 +1.9 +4.6
CNRM-CM5 France 780 +46 +56 +40 +85 11.4 +1.4 +2.8 +1.6 +4.6
CSIRO-Mk3-6-0 Australia 780 +14 +84 +24 +74 11.2 +2.0 +3.4 +2.0 +5.6
GFDL-ESM2M USA 787 +6 +20 +32 +31 11.3 +1.6 +2.2 +1.7 +4.2
GFDL-ESM2G USA 791 +21 +36 +38 +12 11.4 +1.2 +1.7 +1.2 +3.7
HadGEM2-ES UK 784 +16 +7 +18 +7 11.3 +2.2 +3.8 +2.5 +6.8
HadGEM2-CC UK 779 +23 +39 +5 +32 11.3 +2.3 +4.2 +2.7 +6.7
inmcm4 Russia 779 −7 +4 +0 +13 11.4 +0.9 +1.7 +1.1 +3.4
IPSL-CM5A-LR France 780 +8 +14 +13 −8 11.5 +1.8 +3.0 +1.8 +5.8
IPSL-CM5A-MR France 789 −4 +13 −25 −70 11.3 +1.9 +3.2 +2.3 +6.0
IPSL-CM5B-LR France 781 +23 +62 +34 +82 11.4 +1.5 +2.4 +1.7 +4.4
MIROC5 Japan 788 +9 +10 +24 +6 11.2 +2.3 +3.6 +2.4 +5.7
MIROC-ESM Japan 791 +56 +37 +30 +9 11.3 +2.1 +4.1 +2.6 +6.6
MIROC-ESM-CHEM Japan 784 +12 +38 +26 +10 11.4 +2.4 +4.0 +2.7 +6.9
MRI-CGCM3 Japan 783 +20 +47 +38 +87 11.4 +0.8 +1.7 +1.0 +3.2
NorESM1-M Norway 784 +13 +31 +25 +63 11.3 +1.8 +3.1 +2.2 +5.1

main controls of evaporation and transpiration fluxes without
including the radiative and aerodynamic variables. However,
recent studies revealed that the bias in temperature-based
methods could be amplified in future scenarios of global
warming, leading to overestimation of PET and ultimately
ET and the severity of land surface drying (Milly and Dunne,
2011; Sheffield et al., 2012). Penman–Monteith (PM) refer-
ence ET (Allen et al., 1998), as a commonly used alternative
PET model, incorporates the effects of surface temperature,
humidity, wind, and radiation, and is considered the most re-
liable PET approach where sufficient meteorological data ex-
ist (Kingston et al., 2009; Feng and Fu, 2013).

In this case, using the Hamon equation would lead to
130 mm yr−1 larger PET increase from the baseline to
RCP8.5/2080s than that using PM equation (Fig. 4). We as-
sume that the PM PET projections are more reasonable be-
cause the effects of future changes in Rs, Ws, and Sh are in-
cluded as well as T . In the remainder of this paper, we focus
on analyzing the R changes and the independent effects of
five climatic variables based on PM PET, i.e., P , T (includ-
ing changes in maximum T , minimum T , and mean T that
was estimated as the average of maximum and minimum),
Rs, Ws, and Sh. Effects of P and T evaluated from simula-
tions of Hamon PET will also be investigated to address the
consistency and discrepancy caused by using different PET
methods.
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Figure 4. Temporal variations of changes in annual potential evap-
otranspiration (PET) over the CONUS against the baseline level
(1970–1999). Thick lines and the shading denote the ensemble
means and uncertainty ranges of the 20 GCMs, respectively.

www.hydrol-earth-syst-sci.net/21/5517/2017/ Hydrol. Earth Syst. Sci., 21, 5517–5529, 2017



5522 K. Duan et al.: Roles of climatic variables in controlling runoff change in the US

Figure 5. Projected changes in multi-year mean annual runoff
(%) at HUC-8 watershed scale. (a–d) Changes from the base-
line to S1 (RCP4.5/2030s) (a), S2 (RCP4.5/2080s) (b), S3
(RCP8.5/2030s) (c), and S4 (RCP8.5/2080s) (d) scenarios. The
maps display the multi-model mean changes from the 20 GCMs.

3 Results

3.1 Projected changes in runoff

Changes in mean annual R under future climate change sce-
narios vary among HUC-8 watersheds (Fig. 5) and WRRs
(Fig. 6) across the CONUS. Runoff depletion is projected
to cover most part of the central CONUS across WRR7–
WRR12, with largest decreases over 50 % found in the south
of WRR10 (Missouri) under RCP8.5. Increases are mainly
projected in the southwest, the north of Missouri, and re-
gions along the Atlantic coast and Pacific coast. Extreme in-
creases over 100 % are projected in several arid watersheds in
WRR15 (Lower Colorado) and WRR16 (Great Basin). How-
ever, this may be caused by the inability of GCMs in repro-
ducing the low P values in these extremely dry areas. Al-
though the general spatial patterns appear to be similar in
the four scenarios, there is an evident expansion of the areas
showing either extreme increasing or decreasing trend from
the 2030s to the 2080s under both RCP4.5 (Fig. 5a, b) and
RCP8.5 (Fig. 5c, d) scenarios.

The large variability of regional changes in R (Fig. 6) in-
dicates considerable uncertainties from GCM structure. In
most cases, the uncertainty range is limited to −30–+30 %,
showing both positive and negative changing signals. The
distributions of the median lines and interquartile ranges
(IQRs) suggest a hydrologically drier future in WRR7–12
and WRR14 (Upper Colorado), where consistent decreas-
ing signal is found in all the scenarios. Increasing trend can
be found in WRR1 (New England), WRR2 (Mid-Atlantic),
WRR17 (Pacific Northwest), and WRR18 (California). Gen-
erally, the uncertainty ranges tend to increase from 2030s to
2080s under both RCPs, and reach a particularly high level
under RCP8.5/2080s. There is a noticeable consistency in
the pattern that the GCMs agree more on the simulations

in 2030s while the uncertainty aggregates over time toward
the 2080s, which implies the limitation of the state-of-the-art
GCMs in predicting the farther future.

3.2 Independent effects of climate variables

The changes in R discussed above are under the combined
impact of changing P , T , Rs, Ws, and Sh. The indepen-
dent effects of these factors over the entire CONUS are il-
lustrated in Fig. 7a, b. The P and T are clearly the two most
influential factors, which are projected to cause divergent
changes in R due to the increase in P (+15–31 mm yr−1)
and T (+1.8–5.3◦). The median values show that annual R

under the independent P effect is expected to increase by
13 mm yr−1 (4 %) in 2030s and 24 mm yr−1 (8 %) in 2080s
under RCP4.5, and by 21 (7 %) and 30 (10 %) mm yr−1 at
the same time under RCP8.5. In contrast, the independent
effects of T reach −32 (−11 %), −50 (−17 %), −34 (−12
%), and −80 (−28 %) mm yr−1 in the scenarios S1–S4. The
negative effect of rising T is expected to exceed the posi-
tive effect of increasing P and lead to overall decrease in R.
However, Sh, the third largest contributor, will enhance R by
3–12 % and largely offset the T effects. A significant increas-
ing trend in Sh is projected under both RCP4.5 and RCP8.5
(Fig. 3e), which will suppress vapor pressure deficit and thus
partially counterbalance the increasing evaporative demand
caused by warming. Meanwhile, the effects of Rs (slightly
negative), Ws (slightly positive), and interactions among the
factors (Int) are relatively minimal (< 3 %), suggesting that
the variations in T , P , and Sh can explain the major changes
in R.

It is worth noticing that much larger uncertainty ranges can
be found in the P effects. Compared to the highly consistent
increases in T and Sh, the 20 GCMs constantly disagree on
the changing direction of P . Under RCP8.5/2080s, the multi-
model result of P effect ranges from −11 to 24 %, and the
IQR also reaches the highest level (13 %). This indicates that
uncertainty in P projection is still the largest contributor to
the uncertainty in R simulations, especially in the far future.

We also compared these results with those evaluated based
on Hamon PET (Fig. 7c), and found some similar features.
The differences in independent effects of P and T between
the two sets of results are mostly smaller than 5 %, and both
results show that the T effect would be twice as large as the
P effect at the CONUS scale. This suggests that the bias in
PET model structure is not likely to turn over the relative im-
portance of P and T effects as long as ET model is properly
calibrated. However, the projected decreases in R (i.e., the
“Total” effects) are obviously more severe when using Ha-
mon PET because the positive effect of increasing humidity
is not considered.
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Figure 6. Area-averaged changes in runoff in the 18 water resource regions (WRRs) in the future scenarios. The four future scenarios are
denoted by S1 (RCP4.5/2030s), S2 (RCP4.5/2080s), S3 (RCP8.5/2030s), and S4 (RCP8.5/2080s) on the x axis. The vertical spread of the
box–whisker plots shows the different results projected from the 20 GCMs, with the boxes covering the ranges from the 25 % quartile to
the 75 % quartile of the distributions and the red lines within each box marking the median values. Points outside the whiskers are taken as
extreme outliers and marked by plus signs.
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Figure 7. Independent effects of the climate variables over the conterminous United States (CONUS) in the future scenarios S1
(RCP4.5/2030s), S2 (RCP4.5/2080s), S3 (RCP8.5/2030s), and S4 (RCP8.5/2080s). (a, b) Effects of precipitation (P ), temperature (T ),
solar radiation (Rs), wind speed (Ws), specific humidity (Sh), interactions among the variables (Int), and their sum (Total) on runoff based
on the projections of Penman–Monteith PET. (c) Effects of precipitation (P ), temperature (T ), interaction between P and T (Int), and their
sum (Total) on runoff based on the projections of Hamon PET. The format of the box–whisker plots is the same as that in Fig. 6.
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3.3 Relative contributions of precipitation and
temperature

Table 2 summarizes the relative contributions of P and T to
R change for the historical and future periods in 18 WRRs
and the entire CONUS. Historical changes in P , T , and their
effects on R were tested using PRISM climate data spanning
from January 1960 to December 2010. Given the significant
spatial and temporal variability in R trend across the CONUS
(Mauget, 2003; McCabe and Wolock, 2002, 2011; Gupta et
al., 2015), a consistent breakpoint is statistically unavailable.
We hereby took 1985 as the breakpoint year for all the wa-
tersheds and evaluated the multi-decadal mean changes from
1961–1985 (pre-change period) to 1986–2010 (post-change
period). Although the selection of different breakpoints may
cause certain deviations, the analysis can provide a compa-
rable benchmark for exploring the shifts in future scenarios
at a multi-decadal scale. Unsurprisingly, the results of these
latest decades show the prevailing role of P in nearly all the
regions, with WRR14 being the only exception. In the future
periods (from baseline to S1–S4), however, results derived
from both PM and Hamon PET suggest that the role of T

rise will surpass P and become the largest driver in most of
the regions (15–16 out of 18 WRRs) in the future. In contrast,
a larger mean contribution of P can be occasionally found in
the Atlantic coast (WRR1, 2), Pacific coast (WRR18), and
the southwest (WRR12, 15). Considering that the inconsis-
tency among GCMs may make the recognition of larger con-
tributor dubious, we used Wilcoxon signed-rank test (Gib-
bons and Chakraborti, 2011) to assess the statistical signifi-
cance of the difference between each pair of P and T contri-
butions (i.e., 20 samples from the 20 GCMs). The test results
reveal high agreement among GCMs on the prominent role
of T across most regions (underlined in Table 2).

At CONUS level, the mean contributions of P and T are
projected to lie within 20–24 and 43–50 % using PM PET,
and 33–40 and 55–62 % using Hamon PET, suggesting a sim-
ilar shift in the relative importance of these two key driving
factors. However, future changes in Sh, Rs, and Ws account
for another 16–23, 2–7, and 1–4 % of R change respectively,
and indirectly affect the attributions to P and T . For exam-
ple, the R increase in WRR1 would be completely attributed
to P increase if Sh was not considered, and thus lead to an
overestimation of P contribution.

3.4 Spatial distribution of the major driving factors

To further investigate the spatial pattern of future climatic
controls on annual R, we mapped the coverage of dominant
driving factors (Fig. 8) and examined its consistency with
the changing trend in R at watershed scale (Table 3). Judg-
ing by multi-model ensemble means, P and T are the largest
driving factor in 10–22 and 68–89 % of the CONUS area, re-
spectively. High consistency on their dominant roles (80 %
or more of the 20 GCMs agree on the sign) can be found in

Figure 8. Relative importance of P and T in affecting runoff
change across the HUC-8 watersheds in the future scenar-
ios of S1 (RCP4.5/2030s) (a), S2 (RCP4.5/2080s) (b), S3
(RCP8.5/2030s) (c), and S4 (RCP8.5/2080s) (d). The watersheds
under larger influence of P and T are marked with blue and red
colors, respectively. The dark colors denote the areas where 80 %
or more of the 20 GCMs agree on the sign, while the light colors
denote the results of ensemble average.

4–7 and 21–41 % of the CONUS, respectively. As P and T

are projected to keep increasing, the coverages of P - and T -
dominant areas are also expected to expand from the 2030s
to the 2080s. A directional change suggests that rising T will
become more influential in the east (WRR1–6), while P will
prevail in more watersheds across the west (WRR13–18). Al-
though the aggregated effect of Sh is quite close to that of P

at large scales, it is only expected to play a dominant role in
several watersheds (1 % in area) across the borders between
WRR10 and WRR11 under RCP8.5/2080s.

The P -dominant areas that are mainly distributed in the
southwest (WRR13,15) and Pacific coast (WRR17,18) show
clear signals of increasing R, driven by the widespread in-
crease in P . One the other hand, only two-thirds of the T -
dominant areas coincide with the areas of decreasing R, cov-
ering a large part of the central CONUS (WRR7, 9, 10,
11) and a number of watersheds scattered in the northwest
(WRR14, 16, 17). Although T is also identified as the most
influential factor in the eastern regions WRR1–5, the com-
bined effect of the other four factors, primarily P and Sh, is
projected to exceed the T effect and lead to an increase in R.

4 Discussion

4.1 Spatial patterns of future runoff change

This study characterizes and generalizes large-scale relation-
ships among changing P , T , and R despite the large geo-
graphic differences. The coherence in the spatial dynamics
of R trend and the corresponding climatic drivers shows a
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Table 2. Comparison of multi-model averaged contributions (%) of precipitation (P ) and temperature (T ) to changes in runoff in the
18 water resource regions (WRRs) and entire CONUS in the historical period (1961–2010) and future scenarios S1 (RCP4.5/2030s), S2
(RCP4.5/2080s), S3 (RCP8.5/2030s), and S4 (RCP8.5/2080s). A larger contributor identified by multi-model ensemble means is in bold, and
a significantly larger contributor identified by Wilcoxon signed-rank test (at 5 % significance) is in italic.

WRR Historical Projections based on PM PET Projections based on Hamon PET

S1 S2 S3 S4 S1 S2 S3 S4

P T P T P T P T P T P T P T P T P T

1 88 9 36 36 36 38 34 38 31 42 61 38 58 40 57 41 53 46
2 80 17 27 40 28 41 30 39 28 43 47 50 49 50 51 47 46 52
3 60 30 31 37 26 41 30 38 24 44 43 49 38 56 41 52 32 60
4 83 13 24 44 23 46 29 41 23 47 44 54 42 57 50 48 40 58
5 73 22 23 42 23 44 29 40 25 46 40 57 38 59 46 51 37 60
6 64 30 28 40 27 42 32 38 26 45 41 54 40 56 46 49 37 58
7 89 6 23 47 19 51 23 48 20 52 40 57 32 65 37 59 32 65
8 48 37 27 39 23 43 24 42 24 46 38 53 34 58 35 56 29 61
9 89 8 22 47 20 49 26 45 20 43 37 56 34 61 40 53 33 57
10 81 6 19 47 18 50 18 49 20 46 35 57 32 62 32 60 33 59
11 88 4 20 42 19 45 18 44 18 47 30 55 29 60 27 58 26 63
12 74 14 35 29 27 35 30 32 27 39 44 38 37 46 38 42 31 51
13 71 18 25 36 27 38 26 35 22 42 35 53 36 56 37 53 28 61
14 30 51 21 48 25 48 20 49 24 49 31 64 36 60 32 64 31 61
15 72 17 28 33 36 32 33 32 36 29 35 52 41 48 43 47 37 49
16 65 23 21 45 24 46 23 45 29 43 34 59 36 58 32 60 38 51
17 91 7 28 42 28 43 29 42 31 42 44 54 44 54 45 53 47 51
18 95 4 47 29 43 32 46 30 46 30 58 36 54 41 56 39 54 42
CONUS 57 29 20 45 20 47 24 43 21 50 35 58 35 60 40 55 33 62

Table 3. Cross-comparison of the areal proportions (%) with different dominant driving factors and changing directions of runoff (R) in
the future scenarios S1 (RCP4.5/2030s), S2 (RCP4.5/2080s), S3 (RCP8.5/2030s), and S4 (RCP8.5/2080s). The areas where a variable is the
largest driving factor identified by multi-model ensemble means is marked in parentheses. The areas where a variable is identified as the
“dominant” factor are in bold. A climate variable is identified as the “dominant” one only when 80 % or more of the 20 GCMs agree that it
is the largest driving factor of runoff change.

Scenario S1 S2 S3 S4

Precipitation
R↗ ∗ 4 (10) 7 (17) 6 (15) 6 (21)
R↘ 0.2 (0.2) 0 0.2 (0.2) 0 (0.7)

Temperature
R↗ 9 (51) 15 (45) 7 (55) 13 (26)
R↘ 15 (38) 23 (37) 14 (30) 28 (42)

Specific humidity
R↗ 0 (0.2) 0 (2) 0 (0.2) 0.8 (5)
R↘ 0 (0.2) 0 (0.4) 0 1 (5)

∗ “↗” and “↘” indicate increase and decrease in the multi-model means of runoff, respectively.

rough pattern: T change dominates R decrease while P and
Sh changes dominate R increase. However, it should be in-
terpreted with limitations on timescale and underlying sur-
face features. This pattern does not hold true in all the wa-
tersheds due to the nonlinear complexity of R response to
climate change at various timescales, as well as the influence
of other watershed characteristics (e.g., topography, land use,
soil property). For example, slight decreases in annual P but
increases in annual R are projected in south Texas due to
the changes in intra-annual climate variability. The role of T

may also become more positive in regions where water avail-

ability is dominated by snow melting (Barnett et al., 2005;
Lutz et al., 2014). In addition, local R can be affected by
other factors, such as land-cover evolution and the direct ef-
fects of atmospheric composition on transpiration (Gedney
et al., 2006; Zhang et al., 2001, 2015).

4.2 The role of land cover and land use

Land cover, LAI, and soil are important controls on catch-
ment water balance and R sensitivity to climate change
(Zhang et al., 2001; Bosch and Hewlett, 1982; Cheng et
al., 2014). This study specifically focused on evaluating the

www.hydrol-earth-syst-sci.net/21/5517/2017/ Hydrol. Earth Syst. Sci., 21, 5517–5529, 2017



5526 K. Duan et al.: Roles of climatic variables in controlling runoff change in the US

separate and combined effects of changing climates on R

within a static land cover/land use. We did not consider the
potential evolution of land cover and its interactions with wa-
ter balance. We made no explicit tabulation of the impact of
land cover/land use on the R responses to climate change, but
we did incorporate it as a key factor by estimating ET with
a set of functions of climate, LAI, and soil moisture capac-
ity and deficit. Across the land-cover classes, the uncertainty
ranges of independent contributions of P (13–30 %) and T

(39–51 %) are relatively small compared to the ranges across
WRRs (18–47 and 29–52 %). This may be because the dis-
crepancy across different land covers is largely offset by the
different climate backgrounds across the country. Evaluation
of future land-cover change and its impact on R is beyond the
scope of this study. However, our results imply that the poten-
tial impact of land-cover change might not be large enough
to alter the relative significance of P and T in controlling
future continental water availability.

4.3 Implications for water and land management

Our results have important implications for water and land
management across the CONUS. Water resource planning
may need to prepare different management strategies for ar-
eas facing contrasting future hydrological conditions. Addi-
tional water storage such as reservoirs may be needed in re-
gions expecting more R, while inter-basin water transfer, im-
proving water use efficiency, and other water conservation
measures such as rain harvesting, and waste water recycling
should be implemented for areas expecting water shortages.
The vast croplands across central US are likely to be threat-
ened by rising T and diminishing water availability for irri-
gation and food production. Adaptations in cropping systems
and irrigation strategy are needed to secure food supply and
increase resiliency to drought and changing climate (Challi-
nor et al., 2014; Teixeira et al., 2013). The drier and hotter
conditions may also result in increasing water stress, higher
risks of tree insects and disease outbreaks, and catastrophic
wildfires in forests (Dale et al., 2001) (e.g., national forests in
WRR14, 16, 17) and grasslands (e.g., in WRR10–11). Inno-
vative land management practices such as forest thinning and
fuel management, irrigation, and planting drought-tolerant
species are vital to minimize the potential risk and vulnera-
bility to climate change and reduce the threats to ecosystems
and society (G. Sun et al., 2015; Grant et al., 2013; Vose et
al., 2016).

4.4 Uncertainties and caveats

Considerable uncertainty lies in the projection of future cli-
mate changes from the 20 GCMs. The uncertainty ranges
under both RCP4.5 and RCP8.5 show significant expansions
over time from the 2030s to the 2080s. In particular, the large
uncertainty in predicting future P may substantially compro-
mise the reliability in evaluating either R change or the roles

of P and T (Karl and Riebsame, 1989; Piao et al., 2010).
Although the results allow us to draw some conclusions on
the general patterns, uncertainties are large and vary differ-
ently across space and time. There are certain limitations in
this evaluation that should be noted when interpreting the re-
sults. First, we did not incorporate other sources of uncer-
tainty, such as the methodology of downscaling (Duan and
Mei, 2014a; Chen et al., 2011), and structure and parame-
ters of hydrologic model (Jung et al., 2012). Although the
selections of GCM and emission scenario are more likely to
be the largest sources of uncertainty in hydro-climatic mod-
eling (Kay et al., 2009; Wilby and Harris, 2006; Duan and
Mei, 2014b), the other sources may also affect the results
to different extents. The roles of uncertainties from differ-
ent sources can be particularly equivocal when investigating
seasonal/monthly variability and extreme events (Bosshard
et al., 2013; Giuntoli et al., 2015; Bae et al., 2011; Kay et
al., 2009). Second, we focused on the independent effects
of potential climate changes, while assuming that the inter-
relationship among the meteorological variables and water-
balance components remains the same as in historical peri-
ods. In future studies, improved climate datasets and better
representation of the physical mechanisms of climatic fac-
tors (e.g., radiation: Bohn et al., 2013; wind speed: McVicar
et al., 2012) are needed to reduce uncertainties.

5 Conclusions

This study evaluates the relative roles of precipitation and
air temperature, as well as solar radiation, wind speed, and
air humidity, in altering annual runoff across the CONUS
based on a large ensemble of simulations using data from
both historical measurements and CMIP5 GCM projections.
Despite the large uncertainty and spatial variability involved
in the results, two robust conclusions can be drawn at the
CONUS and regional scales on a multi-decadal basis. First,
the role of temperature will outweigh that of precipitation in
a continued warming future in the 21st century, in spite of the
fact that precipitation has been the primary control of runoff
variation during the latest decades. The projections from 20
climate models suggest a high degree of consistency on the
increasing trends in both precipitation and temperature, but
the negative effect of temperature is expected to exceed the
positive effect of precipitation on runoff change in most re-
gions. Over the entire CONUS, temperature is projected to be
the largest contributor (43–50 %), followed by precipitation
(20–24 %), humidity (16–23%), solar radiation (2–7 %), and
wind speed (1–4 %). Spatially, precipitation is likely to be
the dominant driving factor for runoff increase across the Pa-
cific coast and the southwest, while temperature will be more
influential in the central CONUS and parts of the northwest
and cause runoff decreases.

Second, increasing humidity is expected to partially offset
the additional evaporative demand caused by warming, and
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consequently enhance runoff widely across the country. Al-
though the rising temperature is projected to be the largest
control of runoff change in the eastern CONUS, the com-
bined effects of increasing humidity and precipitation will
surpass the detrimental effects of warming and result in a hy-
drologically wetter future. This study also raises concern on
the choice of PET method. It has been well acknowledged
in hydrometeorological communities that temperature-based
PET methods tend to be oversensitive to temperature change.
Our results further demonstrate that the main risk of using
temperature-based PET is overlooking the effects of other
changing climatic variables (mainly humidity in this case),
which have not been as widely measured as temperature and
are relatively understudied, rather than overestimating the ef-
fects of temperature.
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