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Abstract. Hydrological drought is not only caused by natu-
ral hydroclimate variability but can also be directly altered by
human interventions including reservoir operation, irrigation,
groundwater exploitation, etc. Understanding and forecast-
ing of hydrological drought in the Anthropocene are grand
challenges due to complicated interactions among climate,
hydrology and humans. In this paper, five decades (1961–
2010) of naturalized and observed streamflow datasets are
used to investigate hydrological drought characteristics in a
heavily managed river basin, the Yellow River basin in north
China. Human interventions decrease the correlation be-
tween hydrological and meteorological droughts, and make
the hydrological drought respond to longer timescales of me-
teorological drought. Due to large water consumptions in the
middle and lower reaches, there are 118–262 % increases in
the hydrological drought frequency, up to 8-fold increases in
the drought severity, 21–99 % increases in the drought du-
ration and the drought onset is earlier. The non-stationarity
due to anthropogenic climate change and human water use
basically decreases the correlation between meteorological
and hydrological droughts and reduces the effect of human
interventions on hydrological drought frequency while in-
creasing the effect on drought duration and severity. A set of
29-year (1982–2010) hindcasts from an established seasonal
hydrological forecasting system are used to assess the fore-
cast skill of hydrological drought. In the naturalized condi-
tion, the climate-model-based approach outperforms the cli-
matology method in predicting the 2001 severe hydrologi-
cal drought event. Based on the 29-year hindcasts, the for-
mer method has a Brier skill score of 11–26 % against the

latter for the probabilistic hydrological drought forecasting.
In the Anthropocene, the skill for both approaches increases
due to the dominant influence of human interventions that
have been implicitly incorporated by the hydrological post-
processing, while the difference between the two predictions
decreases. This suggests that human interventions can out-
weigh the climate variability for the hydrological drought
forecasting in the Anthropocene, and the predictability for
human interventions needs more attention.

1 Introduction

Drought is a natural phenomenon occurring due to climate
variability that is associated with oceanic and/or terrestrial
anomalies (Hong and Kalnay, 2000; Hoerling and Kumar,
2003). As the rainfall deficit reaches a certain threshold, a
meteorological drought occurs. If the meteorological drought
persists for a period of time, it will decrease the soil mois-
ture and river flow, resulting in agricultural and hydrologi-
cal droughts. Although the rainfall deficit is a primary driver
for agricultural and hydrological droughts, terrestrial hydro-
logical processes (e.g., snow melting, evapotranspiration)
and geological and topographic conditions also play a non-
trivial role in the drought propagation (Van Loon et al., 2012;
Rimkus et al., 2013; Teuling et al., 2013; Stoelzle et al., 2014;
Staudinger et al., 2015). Therefore, monitoring and forecast-
ing of agricultural and hydrological droughts not only pro-
vide more relevant guidelines for the management of agri-
cultural and water resources but also raise challenging scien-
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tific questions on the mechanism and predictability of multi-
scale drought processes (Pozzi et al., 2013; Yuan et al., 2013;
Wood et al., 2015).

Given that rainfall deficit is a major cause of the hydrolog-
ical drought, many studies focus on understanding the prop-
agation from meteorological to hydrological drought. For in-
stance, Vicente-Serrano and López-Moreno (2005) investi-
gated the relationship between streamflow and antecedent
rainfall by using a correlation analysis, and found that hy-
drological drought index series have the highest correlation
with a 2-month accumulated meteorological drought index
series in a mountainous Mediterranean basin. Such a corre-
lation analysis method was then widely used to understand
the timescale of hydrological drought (Rimkus et al., 2013;
Haslinger et al., 2014; Bloomfield et al., 2015; Folland et
al., 2015; Niu et al., 2015; Kumar et al., 2016). A recent
study from Barker et al. (2016) comprehensively investi-
gated the relationship between meteorological and hydrolog-
ical droughts for 121 near-natural catchments in the United
Kingdom, where the relationship was found to be associated
with natural climate and catchment properties.

Besides natural climate and hydrological processes that af-
fect the development of hydrological drought, human activi-
ties such as land-use and land-cover change, irrigation, reser-
voir operation and groundwater exploitation can also influ-
ence hydrological drought significantly (AghaKouchak et al.,
2015; Van Loon et al., 2016a). López-Moreno et al. (2009)
found that the second largest reservoir in Europe increased
the duration and severity of hydrological drought over down-
stream areas. Similar studies found that reservoir regulation
might reduce the drought severity over upstream areas but
increase it over downstream areas in Australian and Chinese
catchments (Wen et al., 2011; Zhang et al., 2015), as many
reservoirs were built for meeting the irrigation demand more
reliably. However, there is limited knowledge on the inte-
grated impact of human activities on hydrological drought
processes over a large river basin due to the lack of human
water-use data, which is one of the major issues that hinders
the understanding of hydrological drought in the Anthro-
pocene (Van Loon et al., 2016b). An alternative approach is
to use a land surface hydrological model (Wada et al., 2013;
Zhou et al., 2016) or a less complicated water balance model
to recover the naturalized streamflow by assimilating the re-
ported water-use data. The naturalized streamflow data can
be used to calibrate the hydrological model without human
components to investigate the natural response of hydrologi-
cal processes to climate variations (Yuan et al., 2016); it can
also be used to investigate the integral anthropogenic impact
on hydrological drought by comparing with observed stream-
flow time series.

The ultimate goal for the understanding of drought pro-
cesses is to facilitate the development of drought early warn-
ing systems for drought adaptation and mitigation. Fortu-
nately, the development of ocean–atmosphere–land coupled
general circulation models (CGCMs) provides an unprece-

dented opportunity to transform advances in seasonal fore-
casting research (Kirtman et al., 2014; Yuan et al., 2015a)
into an integrated drought service. Besides meteorological
drought forecasts (Dutra et al., 2012; Yuan and Wood, 2013;
Ma et al., 2015), agricultural drought forecasts with dynam-
ical seasonal climate forecast models have also been widely
applied and evaluated (Luo and Wood, 2007; Mo et al.,
2012; Sheffield et al., 2014; Yuan et al., 2015b; Thober et
al., 2015). However, dynamical forecasting of hydrological
drought based on the CGCM–hydrology coupled approach
(Yuan et al., 2015a) has received less attention (Trambauer et
al., 2015; Sikder et al., 2016), although there are many statis-
tical forecasting studies for low flows. The reasons are three-
fold: (1) a skilful seasonal forecasting of streamflow usually
occurs over basins with large storages of snow, surface and/or
subsurface water (Wood and Lettenmaier, 2008; Koster et
al., 2010), and strong control from initial hydrological condi-
tions limits the added value from climate predictions (Wood
et al., 2016; Yuan, 2016); (2) unlike meteorological drought
forecasts, both agricultural and hydrological drought fore-
casts are influenced by the uncertainty in the hydrological
model, and the hydrological drought forecasting tends to be
more challenging since the errors from upstream areas can
be transferred to or even amplified in downstream areas; and
(3) many river basins are altered by human activities, where
the management impacts are often neglected in most dynam-
ical forecasting systems. In fact, seasonal forecasting of hy-
drological drought in the Anthropocene raises the questions
of how to define the predictability of the anthropogenic pro-
cesses within a coupled hydroclimate system, how to distin-
guish the uncertainty from each component, and how to as-
sess the forecast skill of hydrological drought with natural
and anthropogenic forcings.

This paper focuses on the understanding and seasonal fore-
casting of hydrological drought over a heavily managed river
basin in north China, the Yellow River basin. Both natu-
ralized and observed streamflow along the mainstream of
the Yellow River will be used to (i) investigate the rela-
tionship between meteorological and hydrological droughts
under natural and anthropogenic conditions, (ii) to quantify
the influence of human activities on the characteristics of
hydrological drought (e.g., drought frequency, duration and
severity, and seasonality of hydrological drought onset), and
(iii) to assess hydrological drought forecasting in the Anthro-
pocene with an experimental seasonal hydrological forecast-
ing system established over the Yellow River basin (Yuan et
al., 2016).

2 Data and methods

2.1 Study domain and hydroclimate observation data

The precipitation dataset at 0.25◦ resolution during 1961–
2010 was interpolated from 324 meteorological stations
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Figure 1. Locations of hydrological stations in the Yellow River basin. Shaded areas are regional mean annual rainfall (mm day−1) averaged
during 1961–2010.

within the Yellow River basin (Yuan et al., 2016). Figure 1
shows that regional mean annual precipitation decreases
from southeast to the northwest. Most precipitation over the
Yellow River occurs in the summer season due to the influ-
ence of the East Asian monsoon, resulting in a strong season-
ality of precipitation, with more than 80 % of annual precip-
itation falling within May–September (Fig. 2). For each hy-
drological gauge, the sub-basin mean precipitation was cal-
culated to investigate the relationship between meteorologi-
cal and hydrological droughts.

Figure 1 shows the locations of 12 mainstream hydrolog-
ical gauges used in this study, with Tangnaihai gauge in the
headwater region and Lijin gauge at the outlet of the entire
Yellow River basin that has a drainage area of 7.52×105 km2.
Details of the drainage areas for the 12 gauges can be found
in Yuan et al. (2016). Both natural and observed streamflow
datasets at monthly timescale during 1961–2010 were pro-
vided by the local authority of the Yellow River. The natural-
ized streamflow (Wnat) was calculated as follows:

Wnat =Wobs+Wirr+Widu+Wciv+Wdiv+Wres, (1)

where Wobs is the observed streamflow; Wirr is surface wa-
ter consumed in irrigation, i.e., irrigated surface water that
is transpired from crops, evaporated from bare ground and
river or channel water surfaces, absorbed into soil (through
infiltration, percolation and recharge to shallow groundwa-
ter), or leaked from river or channel beds to groundwater dur-
ing transportation, so Wirr is not simply the water withdrawn
from rivers but it is actually the surface water consumption in
the processes of irrigation that already considers the flow re-
turned to the river; similarly, Widu and Wciv are surface water

consumed by industrial and civil sectors, also by considering
the waste water returned to the river; Wdiv is the interbasin
water diversion; and Wres is the water regulated by reservoirs.
To account for the non-stationarity both from anthropogenic
climate change (Milly et al., 2008, 2015) and land-use and
land-cover changes (Villarini et al., 2009; Zhang et al., 2011),
the variable runoff coefficient (annual runoff divided by an-
nual precipitation) and more physically based methods that
consider the soil conservation (e.g., the Grain for Green
project over the Loess Plateau), effect of groundwater over-
draft on surface water, and evaporation loss from reservoirs
or channels are used to correct the naturalized streamflow.
Such a correction is critical for the Yellow River due to sig-
nificant climate change and human interventions (Zhang et
al., 2011). For example, small, medium and heavy rainy days
decreased by 20–26 % over the areas between Hekouzhen
and Longmen gauges in the 1980s as compared with those
in 1950s and 1960s, while the duration of extremely heavy
rainfall events decreased from 0.82 to 0.38 days. The an-
nual streamflow over the middle reach of the Yellow River
could decrease by 19 % with the same annual precipitation
due to ecological conservation, and could decrease by 47 %
due to the riverbed leakage induced by groundwater over-
draft. The corrections for the annual mean streamflow over
the areas from Tangnaihai to Lanzhou, and down to Hek-
ouzhen, Longmen, Sanmenxia, Huayuankou and Lijin are
3.16× 108, 0.80× 108, 6.17× 108, 10.99× 108, 9.23× 108

and 2.61× 108 m3, respectively. Definitely, there are uncer-
tainties in the naturalized streamflow, which is difficult to
quantify because of absent “real” streamflow under natural
conditions over the Yellow River. However, to our knowl-
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Figure 2. Monthly mean rainfall (mm day−1) averaged over 1961–2010 for each sub-basin.

edge, this is the most comprehensive estimation of natural-
ized streamflow over the Yellow River basin so far, based on
abundant data from different sectors. Yuan et al. (2016) used
the naturalized streamflow to calibrate the Variable Infiltra-
tion Capacity (VIC) land surface hydrological model (Liang
et al., 1996) during 1961–1981, when the human interven-
tions were supposed to be limited. The naturalized stream-
flow was then compared with VIC simulations during the
validation period 1982–2010, and the naturalized stream-
flow agreed with VIC simulations quite well with the Nash–
Sutcliffe efficiency (NSE) varying between 0.71–0.91 (Fig. 4
in Yuan et al., 2016).

Except for the Tangnaihai gauge in the headwater region,
streamflow at the hydrological gauges used in this study
was influenced by human interventions (Fig. 3). Therefore,
the Yellow River is an ideally large river basin to investi-
gate the hydrological drought processes and predictability
in the Anthropocene. In general, human interventions de-
crease streamflow over upper and middle reaches of the Yel-
low River during rainy seasons, while increase it during dry
seasons (Fig. 3b–h). This suggests that reservoirs in the up-
per and middle reaches of the Yellow River store rain water
in wet season and distribute it in the remaining time of the
year according to the need, which is similar to regulations in
other parts of the world (Wada et al., 2014). Actually, Fig. 4a
shows that the annual mean observed streamflow at upper

reaches can be higher than the naturalized streamflow dur-
ing dry years due to the reservoir water release (e.g., years
2000, 2002, 2006 and 2010 for the Lanzhou gauge). Over
the lower reaches, the observed streamflow is significantly
lower than the naturalized streamflow during wet season
due to heavy water consumption, and riverbed leakages be-
cause of groundwater overdraft and possible geomorphology
change caused by sediment accumulation (Fig. 3i–l). The ob-
served streamflow is close to the naturalized streamflow dur-
ing dry seasons because of no significant water consumption
or reservoir management. Figure 4 also shows that the mag-
nitudes of reservoir storage changes are quite small as com-
pared with streamflow. In fact, the mean absolute changes of
reservoir storage during 1998–2010 are about 14–38 and 12–
14 % of observed and naturalized streamflow, respectively.
This suggests that other human interventions, such as direct
withdrawal of surface water for agricultural, industrial and
civil consumptions, account for a large part of streamflow
variations in the Yellow River.

2.2 Definitions of drought indices and hydrological
drought event

The Standardized Precipitation Index (SPI; McKee et al.,
1993) was used as the meteorological drought index. The
main advantage of SPI is its multiscale nature, i.e., it
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Figure 3. Monthly mean naturalized (NAT, blue lines) and observed (OBS, red lines) streamflow (108 m3) averaged over 1961–2010 for
12 hydrological gauges located from upper to lower mainstream of the Yellow River.

Figure 4. Annual mean naturalized (NAT, blue bars) and observed (OBS, red bars) streamflow (108 m3), and reservoir storage change
(108 m3, negative green values represent reservoir water distribution) accumulated within four selected sub-basins (from headwater down to
the Lijin gauge) during 1998–2010.
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can be used to represent meteorological drought at differ-
ent timescales. In this study, sub-basin mean precipitation
datasets averaged over antecedent 1 to 24 months were used
to calculate SPI-1 to SPI-24. To account for the seasonality,
the SPI for each target month and for each timescale was cal-
culated separately by using 50-year data. For example, SPI-6
for October 1982 was calculated by firstly fitting an empiri-
cal distribution based on the precipitation averaged between
May and October during 1961–2010, and the May–October
mean precipitation in 1982 was then used to determine the
SPI-6 value for October 1982.

Similarly, monthly naturalized streamflow datasets at
12 hydrological gauges during 1961–2010 were also stan-
dardized by using the same procedure, resulting in a hydro-
logical drought index named as the Standardized Streamflow
Index (SSI). Note that SSI was similar to the standardized
runoff index (SRI) defined by Shukla and Wood (2008), ex-
cept that streamflow is used here for a standardization. For
the anthropogenic streamflow, the same parameters of prob-
abilistic distributions fitted from the naturalized streamflow
were used, and the SSI values were then calculated. Both
the 50-year (1961–2010) data and a series of 30-year tran-
sient climatologies (e.g., a 1961–1990 climatology was used
for year 1975, a 1962–1991 climatology was used for 1976,
and so on) were used to calculate the stationary and non-
stationary SPI and SSI values, respectively. A threshold of
−0.8 was used to represent a drought condition for both
SPI and SSI. Also, a hydrological drought event was se-
lected when the SSI was below −0.8 for at least 3 contin-
uous months (Yuan and Wood, 2013), where the drought on-
set month was the first month where SSI fell below −0.8.
Once a hydrological drought event occurred, both the dura-
tion (months) and severity (

∑n
i=1(−0.8−SSIi), where n is

the number of month for the drought event) were calculated.
Additionally, the number of drought events, mean drought
duration and severity were obtained for both naturalized and
observed SSI.

2.3 Seasonal hydrological ensemble hindcast datasets

A number of seasonal hydrological ensemble hindcast
datasets created by Yuan (2016) were used in this study. To
have this paper self-contained, the hindcast experiments are
briefly described below. Firstly, a continuous offline hydro-
logical simulation with calibrated VIC model and river rout-
ing model driven by observed meteorological forcings from
1951 to 2010 was conducted to generate the initial hydro-
logical conditions (ICs) for the hydrological hindcasts (Yuan
et al., 2016). The observed meteorological forcing datasets
including daily precipitation, daily maximum and minimum
surface air temperature, and surface wind were interpolated
from 324 China Meteorological Administration stations. The
VIC model (version 4.0.5) was used to predict runoff in a
water balance mode over the the entire Yellow River basin
with 1321 grid cells at 0.25◦ resolution, and a routing model

was used to translate the runoff into streamflow at each 0.25◦

grid cell, and to route the flow into rivers and finally into the
ocean (Yuan et al., 2016). Secondly, a set of 6-month ensem-
ble streamflow prediction (ESP) experiments were carried
out by using the VIC and routing models, where the hydro-
logical models were initialized with generated ICs and were
forced by 28 ensemble forcing during 1982–2010 exclud-
ing target year. It is named as ESP/VIC hereafter. Thirdly,
a grand ensemble of 99 realizations from eight North Amer-
ican Multimodel Ensemble (NMME; Kirtman et al., 2014)
models was used to force hydrological models to generate
the NMME/VIC hindcast dataset (Yuan, 2016). Here, the 1◦

NMME global hindcasts of monthly precipitation and tem-
perature were bilinearly interpolated into 0.25◦, the interpo-
lated monthly hindcasts for each NMME model were then
bias-corrected independently against observations by using
the quantile-mapping method (Wood et al., 2002) in a cross-
validation mode (i.e., dropping observation and forecast in
the target year when generating the climatology), and these
bias-corrected monthly hindcasts were finally temporally
disaggregated to daily by historical sampling and rescaling
(Yuan, 2016). The forecast streamflow can be directly com-
pared with offline simulated streamflow. To compare with
observed streamflow, a hydrological post-processing proce-
dure (Yuan, 2016) was applied to adjust the forecast stream-
flow statistically by using the Bayesian theory. To account
for the non-stationarity, the hydrological post-processing was
carried out by using observed streamflow during 1982–2010
in a cross-validation mode (Yuan, 2016), and the correspond-
ing SSI was also calculated by using the concurrent hindcast
period (i.e., 1982–2010). It should be pointed out that the
non-stationarity could be reduced further in a real-time fore-
casting mode because of the gradual use of concurrent cli-
mate and hydrology information for the calibration and ini-
tialization of the hydrological model for (seasonal) hydro-
logical forecasting in the next 3–6 months. While only the
ensemble mean (deterministic) forecast skill for streamflow
was evaluated in Yuan (2016), both deterministic and proba-
bilistic forecast skill of streamflow (especially for low flows)
were assessed in this paper.

3 Results

3.1 Relation between meteorological drought and
hydrological drought

Figure 5 shows the Pearson correlation coefficients between
SPI at different timescales and monthly SSI both for nat-
uralized and observed streamflow. There is an increase in
correlation as the SPI timescale increases, suggesting that
streamflow is not only influenced by concurrent precipita-
tion but also by antecedent precipitation up to a few months.
Similar to Vicente-Serrano and López-Moreno (2005), the
timescale with the maximum correlation is considered as the
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Figure 5. Correlations between Standardized Precipitation Index (SPI) at different timescales and monthly naturalized (blue) or observed
(red) Standardized Streamflow Index (SSI) for 12 hydrological gauges located from the upper to lower mainstream of the Yellow River. The
solid lines are for SPI and SSI calculated based on transient 30-year climatologies with consideration of non-stationarity, while the dashed
lines are for those based on the 50-year (1961–2010) climatology.

timescale of SPI that streamflow responds to. For the nat-
uralized streamflow, it responds to 6–12 months SPI over
the upper and middle reaches of the Yellow River, and to
about 4 months SPI over the lower reaches. The correla-
tions for observed streamflow are significantly lower than
for naturalized streamflow for gauges from Xunhua down
to Huayuankou, with p values less than 0.01 (Fig. 5b–j).
There is also a significant difference in correlation for the
Gaocun gauge with p < 0.05 (Fig. 5k), but the difference is
not statistically significant for the Lijin gauge with p > 0.1
(Fig. 5l). Except for the Tangnaihai gauge in the headwa-
ter region, the SPI timescales with the maximum correlation
are longer for observed streamflow than that for naturalized
streamflow, suggesting that human interventions basically

make the hydrological drought respond to longer timescale of
meteorological drought. By considering the non-stationarity,
the correlations decrease generally from the Longmen gauge
(Fig. 5h) to the downstream areas, and the decrease is more
obvious for observed streamflow and for longer timescale of
SPI. This suggests that the relation between meteorological
drought and hydrological drought over the lower reaches of
the Yellow River is not stationary, and anthropogenic climate
change and human interventions add more nonlinearity to the
propagation from meteorological to hydrological droughts.

In order to analyze the relation during different seasons,
five gauges from upper to lower reaches are selected and the
correlations between SPI at different timescales and monthly
SSI for different target months are plotted in Fig. 6. It is
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Figure 6. The same as Fig. 5 but for each target month for five selected hydrological gauges.

found that streamflow responds to the shorter timescale of
SPI in wet and warm seasons and to the longer timescale in
dry and cold seasons. Again, the correlations for observed
streamflow for different target months are lower than that for
naturalized streamflow, except for the headwater region (i.e.,
Tangnaihai gauge) without significant human interventions
(Fig. 6). The differences are larger during summer seasons
than winter seasons, which is consistent with the seasonal-
ity of human water use as shown by different streamflow in
Fig. 3. Again, non-stationarity basically weakens the rela-
tion between meteorological and hydrological droughts over
lower reaches, regardless of season.

3.2 Effect of human interventions on the hydrological
drought characteristics

To demonstrate the effect of human interventions on stream-
flow variations directly, both the time series of naturalized
and observed SSIs calculated based on transient climatolo-
gies are plotted for the five selected gauges in Fig. 7. It is
found that human interventions sometimes have a positive in-
fluence on hydrological drought over the upper reaches. For
example, observed SSI can be larger than naturalized SSI
at the Lanzhou gauge (Fig. 7b). However, those increases
mostly occur in winter seasons, while they do decrease in
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Figure 7. Time series of naturalized (blue) and observed (red) 1-month Standardized Streamflow Index (SSI) for five selected hydrological
gauges. SSI is calculated based on transient 30-year climatologies. The horizontal black lines represent the threshold of −0.8 for drought
conditions.

summer season when the water demand and water consump-
tion are high. For the middle and lower reaches, observed
SSIs are basically lower than naturalized SSIs (Fig. 7d–e),
indicating that human interventions exacerbate hydrological
drought conditions in the lower reaches of the Yellow River
basin. The results based on 50-year climatology generally
have lower SSI in 1990s–2000s and higher SSI in 1960s–
1970s (not shown), suggesting there are decreasing trends in
streamflow over the Yellow River basin that is consistent with
previous studies (e.g., Piao et al., 2010).

By following the definition of hydrological drought event
(it should last for at least 3 continuous months) in Sect. 2.2,
the frequency, duration and severity of hydrological droughts
under natural and anthropogenic conditions are calculated
and shown in Fig. 8. Under natural conditions, seasonal hy-

drological drought occurs 8–16 times during the 50-year
(1961–2010) period, where the frequency of hydrological
drought is not necessarily higher over lower reaches than that
over upper reaches (Fig. 8a). This is partly because there is
more precipitation over lower reaches, and the naturalized
hydrological drought basically represents the response to the
meteorological drought. In contrast, the observed hydrolog-
ical drought frequency shows quite different characteristics,
where the human interventions increase drought frequency
by up to 65 % from the upper gauges down to the Xiaheyan
gauge (the 5th gauge in Fig. 8a), but they increase the drought
frequency by 118 or even 262 % over the lower reaches (e.g.,
Lijin gauge at the outlet).

For the drought duration in natural conditions, it is gen-
erally longer over upper reaches, which is again due to a
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Figure 8. Characteristics of hydrological drought events based on
streamflow time series with or without human influences during
1961–2010 for 12 hydrological gauges. A hydrological drought
event is selected when the Standardized Streamflow Index (SSI) is
continuously below −0.8 for at least 3 months. Blue and red bars
are for the results based on transient 30-year climatologies, and cyan
and pink bars are for results based on the 50-year (1961–2010) cli-
matology.

drier climate (Fig. 8b). With human interventions, there is
a slight decrease in drought duration for the upper gauges
down to Xiaheyan gauge. This suggests that human inter-
ventions reduce the persistency of drought over the upper
reaches of the Yellow River basin. From Shizuishan gauge
(the 6th gauge in Fig. 8b) down to the outlet, the duration of
hydrological drought increases by 21–99 % under human in-
terventions. There is no significant change in drought sever-

ity down to Xiaheyan gauge (the 5th gauge in Fig. 8c), but
the severity increases by up to 8 times over the lower reaches
(Fig. 8c). Therefore, human interventions not only increase
drought frequency over most areas of the Yellow River basin
but also increase drought severity dramatically over the lower
reaches. As compared with the results based on a con-
stant climatology (cyan and pink bars in Fig. 8), the non-
stationarity generally reduces human influence on drought
frequency, but increases the human impact on drought du-
ration and severity.

To investigate the preference of the occurrence of seasonal
hydrological drought, the onset seasons are identified based
on individual hydrological drought events. And the ratios of
number of drought onsets during different seasons to the to-
tal number of drought events are plotted in Fig. 9. Without
human interventions, most seasonal hydrological droughts
start in summer, especially for the upper and lower gauges
(Fig. 9a–b). While for the gauges over middle reaches, au-
tumn is also a preferred season for drought onset (Fig. 9a–
b). However, Fig. 9 shows that human intervention changes
the seasonality of hydrological drought onset significantly,
where the spring is the preferred season for the drought on-
set for the lower reaches, and the ratio for summer season
is also increased for the upper reaches. With human inter-
ventions, the hydrological drought onset is earlier, no matter
what climatology (transient or constant) you use (Fig. 9c–d).

3.3 Seasonal forecasting of hydrological drought with
human interventions

To demonstrate the capability of predicting hydrological
drought in the Anthropocene, a drought case of 2001 is se-
lected to verify the ensemble forecasting of SSI. In terms of
meteorological condition, 2001 is a moderate dry year, with
precipitation less than the climatology by 9.4 %. However,
2001 is a severe hydrological drought year, with observed
streamflow less than the climatology by 26–37 % over the
upper reaches and by 51–86 % over the lower reaches (http:
//www.yellowriver.gov.cn/). Figure 10 shows the ensemble
forecasts started from February and June of 2001 for the se-
lected five gauges from upper to lower reaches. As verified by
the offline simulated SSI, the climatological forecast method
(ESP/VIC) has some skill in the February forecast, but to-
tally misses the drought in the June forecast with the ensem-
ble mean SSIs (blue lines in the left panels of Fig. 10) close
to zeros that are larger than the drought threshold lines (black
horizontal lines) of −0.8. By using the climate-model-based
approach (NMME/VIC; see Yuan, 2016 for details), there are
no significant improvements for the forecasts started from
February, but a number of ensembles can capture the hydro-
logical drought conditions for the forecasts started from June,
with the ensemble mean SSIs (blue lines in the right panels of
Fig. 10) closer to the drought threshold lines. This suggests
added values from climate forecast models in the hydrologi-
cal drought forecasting.

Hydrol. Earth Syst. Sci., 21, 5477–5492, 2017 www.hydrol-earth-syst-sci.net/21/5477/2017/

http://www.yellowriver.gov.cn/
http://www.yellowriver.gov.cn/


X. Yuan et al.: Understanding and seasonal forecasting of hydrological drought 5487

Figure 9. Ratios of the number of hydrological drought onsets occurring in different seasons to the total number of hydrological drought
events for the 12 hydrological gauges during 1961–2010. Drought events are classified the same as those in Fig. 8. The left panels (a, c)
are for the results based on transient 30-year climatologies, and the right panels (b, d) are for results based on the 50-year (1961–2010)
climatology.

The results shown in Fig. 10 neglect the errors or uncer-
tainties in the hydrological model because the offline simu-
lated hydrological drought index is used as reference to ver-
ify the forecasts. To compare with observed SSI, the forecast
streamflow series are post-processed (see Sect. 2.3 for de-
tails), and the results for 2001 are shown in Fig. 11. Both
ESP/VIC and NMME/VIC can predict a drought condition
with ensemble mean SSIs much lower than−0.8 for the mid-
dle and lower gauges (Hekouzhen, Huayuankou and Lijin),
but both underestimate the drought severity. NMME/VIC
shows non-trivial improvement against ESP/VIC in terms
of the drought forecasting. An interesting difference is that
five gauges have similar ensemble spreads in the natural
conditions (Fig. 10), but the spreads vary among upstream
and downstream gauges in the anthropogenic conditions
(Fig. 11). This is because the hydrological post-processing
is applied for each target month and for each gauge inde-
pendently, the ensemble spreads do not necessarily increase
over forecast leads after the post-processing, while they in-
deed depend on the magnitude or intensity of human inter-
ventions.

To assess the probabilistic forecast skill for hydrological
droughts during the hindcast period of 1982–2010, the Brier
score (BS; Wilks, 2011) is used. It is defined as

BS=
1
n

n∑
k=1

(yk − ok)
2, (2)

where n denotes a number of forecast-reference pairs of hy-
drological drought conditions; ok is probability from the ref-
erence (offline simulated SSI for the natural condition, and
observed SSI for the anthropogenic case) for the kth pair,
with ok = 1 if the drought occurs (SSI <−0.8) and ok = 0 if
it does not (SSI >−0.8); yk is the corresponding probabil-
ity of drought occurrence from the forecast, for example, if
6 of 10 ensemble forecast members have SSI <−0.8, then
yk = 0.6. BS is similar to the root mean squared error, so a
smaller BS represents a better performance.

Figure 12 shows the BS for ensemble hydrological drought
forecasts at different hydrological gauges and at different
lead times. The statistics are based on a set of comprehensive
hindcasts, where for each month during the 29-year (1982–
2010) period there is a 6-month hindcast. This consists of
348 hindcast cases, each one is 6-months long, and has 28
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Figure 10. Seasonal ensemble hindcast of the 2001 Yellow River
hydrological drought from upstream to downstream gauges by us-
ing a climatology method (ESP/VIC) and the climate-model-based
approach (NMME/VIC). Vertical axes are Standardized Streamflow
Index (SSI), where SSI <−0.8 represents a hydrological drought
condition. Solid black lines represent the offline simulated SSI by
the hydrological model VIC, green and red lines are for individual
ensemble members from the hindcasts started from the beginnings
of February and June, respectively, and blue lines are the ensemble
means of the hindcasts.

or 99 realizations for ESP/VIC and NMME/VIC, respec-
tively. For the natural condition (upper panels of Fig. 12),
the BS values increase as the forecast leads increase, indicat-
ing that the performance generally decreases over leads. The
performance of probabilistic hydrological drought forecast-
ing is better over lower reaches than that over upper reaches
both for ESP/VIC and NMME/VIC, suggesting the influ-
ence of catchment memory. As compared with ESP/VIC,
NMME/VIC has a better performance, with BS decreased by
11–26 % in the first month and by 3–14 % in the second and
third months.

As verified against observed SSI (lower panels of Fig. 12),
the performances for ESP/VIC and NMME/VIC are surpris-
ingly better than the natural cases, and the performances
do not necessarily degrade over forecast lead times. This
is because human interventions increase the occurrence and
severity of hydrological drought, and outweigh the climate
variations in many cases. The hydrological post-processing
imparts the first-order control in the forecasting, and many
post-processed forecasts can represent drought conditions
(SSI <−0.8), although they may underestimate the severity
as shown in Fig. 11 (right panels). The differences in BS be-

Figure 11. The same as Fig. 10 but for the post-processed Stan-
dardized Streamflow Index (SSI) hindcasts from ESP/VIC and
NMME/VIC (see Sect. 2.3 for details) as verified by observed SSI.

tween ESP/VIC and NMME/VIC for the anthropogenic case
are smaller than that for the natural case. In other words, sea-
sonal predictability of hydrological drought in the Anthro-
pocene greatly depends on the information of human water
use, or the predictability of human interventions.

4 Concluding remarks

This paper investigates the effects of human interventions
on hydrological drought processes and forecasting. Natu-
ralized and observed monthly streamflows are standardized
to calculate the hydrological drought index, the Standard-
ized Streamflow Index (SSI). Comparison between natural-
ized and observed SSI at 12 hydrological gauges along the
mainstream of the Yellow River basin (the second largest
river basin in China with a drainage area of 7.52× 105 km2)

shows that human interventions decrease the correlation be-
tween hydrological and meteorological droughts, and make
the hydrological drought respond to a longer timescale of
meteorological drought. The relation between meteorolog-
ical drought and hydrological drought over lower reaches
of the Yellow River is not stationary, anthropogenic climate
change and human interventions add more nonlinearity to the
propagation from meteorological to hydrological droughts.
Seasonal hydrological drought events are identified with
monthly SSI <−0.8 for at least 3 continuous months. Due to
heavy human water consumptions over the middle and lower
reaches of the Yellow River, there are 118–262 % increases
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Figure 12. Brier score (BS) for ensemble hydrological drought
forecasts at different lead times from the climatology method
(ESP/VIC) and the climate-model-based approach (NMME/VIC)
for different hydrological gauges as verified against VIC offline
simulated (a, b) and observed (c, d) streamflows over the Yel-
low River basin during the period 1982–2010. For the verifica-
tion against observed streamflow, the forecasts have been post-
processed.

in the drought frequency and up to 8-fold increases in the
drought severity, the drought duration increases by 21–99 %,
and the hydrological drought onset is earlier. However, these
estimations are heavily based on the quality of naturalized
streamflow data. The current procedure of generating natu-
ralized streamflow is basically data driven, where the inter-
action among different elements is not explicitly considered.
In the future, more sophisticated methods such as assimilat-
ing those precious data into a physical hydrology model that
explicitly considers surface-water–groundwater interactions
and human influences, is necessary for a more robust estima-
tion of naturalized streamflow. Multisource satellite retrieval
data (e.g., GRACE terrestrial water storage change, SMAP
soil moisture, and MODIS evapotranspiration) could also be
a useful complement to in situ data and hydrological model-
ing of the estimation.

The naturalized streamflow datasets are used to calibrate
the VIC land surface hydrological model and the routing
model, and both climatological forcings (ESP) and climate
model predicted forcings (NMME) are used to drive the hy-
drological models to provide seasonal streamflow forecasts.
For a severe hydrological drought event that occurred over
the Yellow River in 2001, ESP/VIC does not capture it while
NMME/VIC has some skill when they are verified against
naturalized SSI. The added values from climate-model-based
seasonal hydrological drought forecasting are decreased in
the Anthropocene, where both methods can predict a drought
condition after the hydrological post-processing but underes-
timate the severity. Unlike those in naturalized hydrological

drought forecasting, the ensemble spreads do not necessarily
increase over forecast leads in the Anthropocene because of
the seasonality of human interventions that have been implic-
itly incorporated in the hydrological post-processing. Based
on the assessment of all hindcasts during 1982–2010, it is
found that NMME/VIC decreases (improves) the BS against
ESP/VIC by 11–26 % in the first month and by 3–14 % in the
second and third months for the probabilistic hydrological
drought forecasting in the naturalized conditions. In the An-
thropocene, the performances of both forecast methods be-
come better in terms of BS, and the forecast skill does not
necessarily decrease over forecast leads due to the dominant
influence of human water consumption on the hydrological
drought processes.

While the effects of human interventions on hydrologi-
cal drought processes have been studied in the past, to our
knowledge, this study is among the first to investigate sea-
sonal hydrological drought forecasting in the Anthropocene.
Intensive and direct influence of human water use challenges
our understanding of hydrological drought predictability.
Traditionally, hydroclimate predictability usually refers to
the struggle between deterministic and chaotic physical pro-
cesses. In the Anthropocene, the human influence sometimes
outweighs those natural hydroclimate variations and variabil-
ity, and can be a major source of predictability (or uncertainty
if it is not fully understood) for hydrological drought. Current
hydrological post-processing procedures account for the sea-
sonality of human water use by adding or deducting water
to or from the predicted streamflow, and adjusting the fore-
cast results based on the Bayesian theory. Another popular
method is to parameterize the human interventions directly
in the hydrological models (e.g., Wada et al., 2014; Zhou et
al., 2016 among others), where the irrigated area can be es-
timated for crop water demand, and the diversion and return
flows can also be simulated in those models. This modeling
framework could be further pushed forward by the availabil-
ity of Surface Water and Ocean Topography (SWOT) satel-
lite data in the near future, where surface water storage in
reservoirs and rivers can be monitored at 250 m resolution
(Biancamaria et al., 2016). However, it is difficult to ac-
count for the interannual variability of human water use in a
“real” forecasting mode. During severe hydrological drought
events, human water use tends to be more intensive to adapt
to drought conditions. How to quantify and model the vari-
ability of human water use is an interdisciplinary question
for both physical and social sciences. In addition, the in-
terdisciplinary collaboration is also indispensable to objec-
tively quantify and to accurately predict drought impact, as
the drought impact and drought are quite different.

Data availability. Seasonal climate hindcast data from
NMME models can be accessed at the IRI website
(http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/),
precipitation and temperature observations are provided by the
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China Meteorological Administration (http://data.cma.cn/en).
Hydrological data is available upon request to the corresponding
author.
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