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Abstract. A substantial interpretation of electromagnetic in-
duction (EMI) measurements requires quantifying optimal
model parameters and uncertainty of a nonlinear inverse
problem. For this purpose, an adaptive Bayesian Markov
chain Monte Carlo (MCMC) algorithm is used to assess
multi-orientation and multi-offset EMI measurements in an
agriculture field with non-saline and saline soil. In MCMC
the posterior distribution is computed using Bayes’ rule. The
electromagnetic forward model based on the full solution of
Maxwell’s equations was used to simulate the apparent elec-
trical conductivity measured with the configurations of EMI
instrument, the CMD Mini-Explorer. Uncertainty in the pa-
rameters for the three-layered earth model are investigated
by using synthetic data. Our results show that in the scenario
of non-saline soil, the parameters of layer thickness as com-
pared to layers electrical conductivity are not very informa-
tive and are therefore difficult to resolve. Application of the
proposed MCMC-based inversion to field measurements in a
drip irrigation system demonstrates that the parameters of the
model can be well estimated for the saline soil as compared
to the non-saline soil, and provides useful insight about pa-
rameter uncertainty for the assessment of the model outputs.

1 Introduction

Electromagnetic induction (EMI) with low frequency is a
powerful tool to map the hydrological processes in the va-
dose zone due to the sensitivity to water content and soil
salinity (Robinson et al., 2009). The use of EMI is largely
motivated by the need for robust and compact system de-
sign, ease of use, rapid acquisition, and capability to provide
a large set of georeferenced measurements, which can be as-
sociated with the spatial variability of subsurface at the field
scale (Corwin, 2008). The EMI instrument is used to measure
soil apparent electrical conductivity (ECa), providing distri-
bution of averaged electrical conductivity over a particular
depth range. The depth of investigation of ECa depends on
the coil spacing, the coil orientation, and the frequency of
the energizing field. Mester et al. (2011) reported that in the
low induction number condition, the coil orientation, offset,
and frequency have major, moderate and minor effects on the
penetration depth, respectively. Soil moisture, salinity, and
texture cannot be directly observed with EMI measurements.
However, in non-saline soils, cation exchange capacity, and
soil moisture and texture are factors responsible for ECa vari-
ations (Rhoades et al., 1976; Sudduth et al., 2003), whereas
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in saline soil, the ECa measurement is generally dominated
by the soil salinity, and the reason is the accumulation of
more salt concentration in the topsoil due to the loss of water
through evaporation (Corwin and Lesch, 2005a, b; Ershadi
et al., 2014). The success of EMI measurements to assess soil
salinity depends on the establishment of site-specific petro-
physical relationships to relate ECa with the soil salinity esti-
mated by electrical conductivity of the saturated paste extract
(ECe) (Cook and Walker, 1992).

Several inversion algorithms have been developed for EMI
measurements to improve the resolution of subsurface fea-
tures and the assessment of soil properties (Hendrickx et al.,
2002; Santos et al., 2010; Triantafilis and Monteiro Santos,
2013). The majority of these inversion algorithms solve a 1-
D earth model for electromagnetic wave propagation. The
model of McNeill (1980) has been extensively used for low
induction number and Maxwell’s equations have been uti-
lized for high-conductive soil (ECa > 100 mS m−1) where
the low induction number assumption is not valid. For ex-
ample, Li et al. (2013) used Geonics EM38 to measure ECa
in a rice paddy and inverted these using the McNeill (1980)
forward model to estimate the variation of soil salinity in a
field condition. They reported that the yield reduced by 33 %
in an irregularly shaped patch of strong saline topsoil.

EMI systems are sensitive to the field-specific calibration
procedure, which limits the accuracy of ECa measurements.
In inversion modeling, however, precise measurement of ECa
is a prerequisite to characterize subsurface soil properties.
For decades, the development and use of quantitative EMI
inversions were mainly hampered by the lack of efficient cal-
ibration methods; von Hebel et al. (2014) used electrical re-
sistivity tomography to calibrate EMI measurements before
inversion to estimate three-dimensional images of subsurface
electrical conductivity. Recently, Jadoon et al. (2015) cali-
brated EMI measurements via vertical electrical conductivity
profile measured by capacitance sensors in different pits and
later performed inversion for calibrated multi-configuration
EMI measurements to estimate the effect of soil salinity dis-
tribution in an acacia tree farm.

EMI inversion algorithms are generally robust and provide
useful estimates of subsurface properties in terms of opti-
mal model parameters. Analysis of uncertainty in model pa-
rameters is however often left unaddressed. Parameter un-
certainty can be associated with measurement errors (acqui-
sition geometry, instrumental calibration and human error),
modeling errors (assumptions in the electromagnetic forward
model and petrophysical relationships), prior assumptions
or constraints, parametrization, and estimation methods. Pa-
rameter uncertainty analysis can serve two main purposes:
to identify the model parameters of dominant importance,
and to provide confidence in the estimated model parame-
ters (Scharnagl et al., 2011). For instance, Minsley (2011)
used synthetic data considering the characteristics of the
shallow ground-based EMI system, geophex GEM-2 (Huang
and Won, 2003), to quantify the parameter uncertainty of a

three-layer model via a Bayesian Markov chain Monte Carlo
(MCMC) approach. They showed that combining multiple
configuration EMI measurements significantly reduced total
error, was best able to capture the shallow interface, and re-
duced regions of uncertainty at depth.

Conventional estimation of a single best-fit model with lin-
ear uncertainty does not usually trace ambiguity in the mod-
els, and may lead to a misguiding or imprecise interpreta-
tion. In this work, an adaptive Bayesian MCMC algorithm
was used for inverting multi-orientation and multi-offset EMI
measurements, in which the parameter posterior distribution
represents the complete solution of the Bayesian inversion
problem, including prediction of optimal parameter values
and the associated uncertainty. Synthetic scenarios are first
analyzed for a three-layered earth model to evaluate the un-
certainty in model parameters for saline and non-saline soil
using the characteristics of the CMD Mini-Explorer EMI sys-
tem. Field measurements of the CMD Mini-Explorer are then
used to quantify parameter uncertainties in the three-layered
earth model and soil salinity distributions in an agricultural
field irrigated with drip irrigation system.

2 Materials and methods

2.1 Electromagnetic forward model

Forward EMI response for a given layered earth model is
usually calculated by the McNeill (1980) model, which is
generated using the cumulative electrical conductivity distri-
bution over a certain depth range, and is valid under condi-
tion of low induction number. The alternative method used to
calculate the forward EMI response is to solve the Maxwell
equation for the magnetic field measured over a horizon-
tal layered medium (Keller and Frischknecht, 1966; Ander-
son, 1979). Preliminary analysis indicated that the electro-
magnetic forward model, which is based on high induction
number assumption, returned more reliable apparent electri-
cal conductivity values than the standard sensitivity curves
of McNeill (1980). Furthermore, increased computational
power made it possible to characterize the subsurface by
utilizing forward models based on the Maxwell equation
(Santos et al., 2010). The effective depth of exploration is
independent of ECa in a low induction number condition,
whereas in high induction number condition an inverse re-
lationship was found between the depth of exploration and
ECa (Callegary et al., 2007). For a combination of a vertical
and horizontal dipole source–receiver with an offset ρ over
a multilayered earth, the electromagnetic forward model can
be written as

ECHCP
a (x,ρ)=

−4ρ
ωµ0

Im

 ∞∫
0

R0J0(ρλ)λ
2dλ

 , (1)
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ECVCP
a (x,ρ)=

−4
ωµ0

Im

 ∞∫
0

R0J1(ρλ)λdλ

 . (2)

In these expressions, ECVCP
a and ECHCP

a represent appar-
ent electrical conductivity – measured in vertical and hori-
zontal coplanar mode, µ0 represents permeability of the free
space, λ indicates the radial wave number, J0 and J1 cor-
respond to the zero-order and first-order Bessel functions,
x is the depth of layer, ω is the angular frequency, and Im
the quadrature component. The reflection factor R0 is ob-
tained recursively, starting from the lowest layer N +1, with
RN+1 = 0:

Rn(hn,σn)=

0n−0n+1
0n+0n+1

+Rn+1 exp(−20n+1hn+1)

1+ 0n−0n+1
0n+0n+1

Rn+1 exp(−20n+1hn+1)
, (3)

0n =

√
λ2+ωµ0jσn, (4)

where σ0 = 0, hn is the height, and σn is the electrical con-
ductivity for the nth layer. This is based on the assumption
that each layer is uniform with infinite horizontal extent. EMI
measurements were carried out under high induction number
conditions (ECa > 100 mS m−1) utilizing the full solution of
Maxwell’s equation to model the forward EMI response.

2.2 Bayesian inference

Bayesian inference is used to express the uncertainties in the
system parameters based on a suitable likelihood function
and a prior. Given a set of unknown parameters, the so-called
posterior distribution of the model parameters, which is the
distribution of the parameters conditioned on available ob-
servations, is calculated as the product of the prior distribu-
tion and the likelihood function (Arulampalam et al., 2002;
Sivia, 2006). Bayesian inversion has gained a lot of interest
in recent years and has been applied in different applications,
including climate, ocean and geophysical modeling (Malin-
verno, 2002; Zedler et al., 2012; Olson et al., 2012; Altaf
et al., 2014; Sraj et al., 2014).

Suppose a set of observations ({yi}ni=1) is available and
assume a certain model to predict the data. Let α be the set of
unknown parameters in the model; then according to Bayes’
rule,

p(α|{yi}ni=1)∝ p({y
i
}
n
i=1|α) p(α), (5)

where p(α) is the prior distribution of α that represents the a
priori knowledge about α (i.e., before considering the data).
The p({yi}ni=1|α) denotes the likelihood function: the proba-
bility of predicting the data given α. The p(α|{yi}ni=1) is the
posterior probability: the probability of recovering α given
the data ({yi}ni=1).

Let us consider the forward modelM , for the evaluation of
the observations y as a function of the parameters such that

y =M(α). (6)
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Figure 1. Three-layer synthetic earth model of electrical conductiv-
ity for (a) non-saline soil and (b) saline soil in the top horizon.

Let ε be a random variable representing the discrepancy be-
tween our model M(α) and the observations, which we refer
to as the observational noise:

ε = y−M(α). (7)

Assuming the components of the observational noise to be
independent and Gaussian of mean zero and variance σ 2, the
likelihood function can then be decomposed as

p({yi}ni=1|α)=

n∏
i=1

1
√

2πσ 2
exp

(
−
(yi −Mi(α))

2

2σ 2

)
. (8)

Here we consider σ 2 as an additional unknown (hyper) pa-
rameter and try to estimate its distribution as part of the in-
ference process. The (joint) posterior distribution is then ex-
pressed as

p(α,σ 2
|{yi}ni=1)∝

n∏
i=1

1
√

2πσ 2

exp
(
−
(yi −Mi(α))

2

2σ 2

)
p(α)p(σ 2). (9)

The choice of the prior is a key step in the inference pro-
cess. Here, an informative uniform prior for all five (three
conductivities and two thickness) parameters is considered,
with αk in the range [αmax

k αmin
k ]; i.e.,

p(αk)=

{ 1
αmax
k −α

min
k

for αmin
k < αk ≤ α

max
k ,

0 otherwise.
(10)

For the noise variance σ 2, we consider a Jeffreys prior
(Sivia, 2006):

p(αk)=

{
1
σ 2 for σ 2 > 0,

0 otherwise.
(11)
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Figure 2. Observed electrical conductivity obtained from the forward response of the six different configuration of CMD Mini-Explorer
(red star), estimated (modeled) earth electrical conductivity (blue asterisk) and the range of ECa simulated by MCMC for (a) non-saline and
(b) saline soil scenarios.

Figure 3. Summary of the MCMC simulation for the synthetic
three-layer earth model of non-saline soil. (a) True (red line) and es-
timated parameter (blue dashed line) for the vertical electrical con-
ductivity profile, and the gray background with the 95 % confidence
interval of kernel distribution estimation (KDE). Panels (b–f) show
the KDE of the marginalized posterior distributions for the three
layer conductivities (σ1, σ2, and σ3) and the two layer thicknesses
(h1 and h2).

The most commonly used computational strategy to nu-
merically solve a multidimensional parameters Bayesian in-
ference problem is the Markov chain Monte Carlo (MCMC)
method. We have applied an adaptive Metropolis MCMC al-
gorithm to sample the posterior distribution, as described in
details in Haario et al. (2001) and Roberts and Rosenthal
(2009)

2.3 Synthetic and field measurements

Two sets of experimental setups were considered to test the
MCMC approach and to evaluate the estimated model pa-
rameters and associated uncertainties using synthetic data for
CMD Mini-Explorer configurations. Figure 1a and b show a
three-layer earth model setups of low and high conductiv-
ity for non-saline soil and saline soil salinity, respectively. In
both setups, thicknesses for the three-layer earth model were
conceptualized by a plow horizon (0.25 m thick), with an in-
termediate subsoil layer (0.50 m thick) and underlying con-
solidated layer up to 1.5 m depth. The plowing horizon gener-
ally has less soil moisture as compared to the deeper horizon
because of evaporation and infiltration processes. The sce-
nario of non-saline soil therefore used a plowing horizon with
low electrical conductivity of 15 mS m−1 as compared to the
intermediate and consolidated soil layers (Fig. 1a). In the
saline soil scenario, salt accumulates on the surface of soil
due to evaporation of water. As a result, the electrical conduc-
tivity of plowing horizon is considered higher 1800 mS m−1

as compared to the deeper layers (Fig. 1b). In the agricul-
tural field, the increase in the soil salinity is generally due to
the use of poor water quality or the excessive use of fertiliz-
ers. The forward response of both scenarios was calculated
in HCP and VCP via Eqs. (1) and (2), respectively, for EMI
configuration setups using the characteristics of CMD Mini-
Explorer of three receiver coils respectively placed at 0.32,
0.71 and 1.18 m distance from the receiver.

In both scenarios, six configurations, three for each HCP
and VCP with different spacings, were taken as an output
for forward models. Let α = (σ1,σ2,σ3,h1,h2)

T be a vector
of model parameters. σ1, σ2, and σ3 are layer conductivities,
and h1 and h2 thicknesses. Bayesian inference was used to
estimate these five parameters that minimize the errors be-
tween observed and modeled HCP and VCP. An adaptive
MCMC method was used to sample the posterior distribu-
tions and consequently update α distributions according to
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Figure 4. Summary of the MCMC simulation for the synthetic
three-layer earth model of saline soil. (a) True (red line) and es-
timated parameter (blue dashed line) for the vertical electrical con-
ductivity profile, and the gray background with the 95 % confidence
interval of kernel distribution estimation (KDE). Panels (b–f) show
the KDE of the marginalized posterior distributions for the three
layer conductivities (σ1, σ2, and σ3) and the two layer thicknesses
(h1 and h2).

the observed data. All the results presented below are based
on 104 MCMC samples. Parameter range for h1 and h2 was
fixed between 0.05 and 0.6 m in each scenario. In the non-
saline scenario, parameter range for σ1, σ2, and σ3 was con-
sidered between 5 and 100 mS m−1 and the saline soil sce-
nario range was fixed between 5 and 3000 mS m−1. A uni-
form prior distribution function was considered in both sce-
narios.

Field measurements were also carried out in a farm, where
Acacia trees were irrigated with saline groundwater. The
farm is located at a distance of 6 km from the Red Sea coast
at Al-Qadeimah, Makkah province, Saudi Arabia. EMI mea-
surements were collected at an interval of 2 m over a 40 m
long transect, along which three Acacia trees were irrigated
using drip irrigation. At each location, EMI measurements
using CMD Mini-Explorer system gives six different val-
ues of apparent electrical conductivity (using two coil ori-
entations and three offsets); each responds to different depth
ranges. Ten pits were dug along the same transect and in each
pit the bulk electrical conductivity σb profile was measured
at 15 locations within a depth range of 0.05–1.5 m via 5TE
capacitance sensors (Decagon Devices, Pullman, USA). EMI
and 5TE measurements were performed 8 h after the drip ir-
rigation system was stopped, so that the soil moisture is not
concentrated below the drippers and to give enough time to
reduce the soil moisture impact due to evaporation, root wa-
ter uptake, and infiltration (Jadoon et al., 2015).

3 Results and discussion

3.1 Synthetic data

Figure 2a and b depict the observed, estimated (modeled) and
range of ECa as they result from the chain of MCMC simu-
lation for six configurations of the synthetic case with saline
and non-saline soil. The x axis represents VCP and HCP with
three coil spacing (ρ32, ρ71, ρ118). In a non-saline sce-
nario, the layer electrical conductivity increases with depth
(Fig. 1a), and this is reflected in the observed and modeled
ECa in the VCP and HCP with increasing trend for larger
spacing (Fig. 2a). The ECa value for the VCP and HCP with
maximum spacing of 1.8 m between transmitter and receiver
corresponds to deeper horizon; in the case of saline soil sce-
nario the layer conductivity decreases (Fig. 1b) and as a result
ECa values in VCP and HCP configuration exhibit a decreas-
ing trend (Fig. 2b). The electromagnetic forward model is
sensitive to high electrical conductive soil, so the modeled
ECa values for the saline soil scenario match well with the
observed as compared to the non-saline scenario. The mis-
match between the observed and modeled ECa values for
non-saline soil is due to the weak sensitivity of the forward
electromagnetic model to the low electrical conductivity.

Figure 3a shows the true parameter values (red line) with
the estimated parameters using MCMC (blue dashed line)
for the non-saline soil scenario. The MCMC samples were
used to obtain the marginalized posterior distributions based
on kernel density estimation (KDE) (Parzen, 1962). The
95 % confidence interval of the KDE for each parameter is
shown by the shaded gray background (Fig. 3a). The re-
sulting marginalized posterior probability density functions
(PDFs) of the three conductivities and two thicknesses are
shown in Fig. 3b–f. The estimated parameters (Fig. 3b–f)
show a single peak, corresponding to the best parameter val-
ues. The electrical conductivities of the three model layers
(σ1, σ2, and σ3) are reasonably well estimated as compared
to the layer thicknesses. Different uniform prior distributions
were also tested for the layer thicknesses, but the MCMC so-
lution converged close to the prior instead of the true layer
thicknesses. The topography of the objective function was
too flat in this case to allow consequent changes in the direc-
tion of layer thicknesses. This suggests that the electromag-
netic model is not sensitive to the layer thicknesses for the
low-conductive soil layer.

Figure 4 illustrates the true and estimated depth profile of
electrical conductivity for saline scenario, and the KDE of
the marginalized posterior distributions for the three layer
conductivities (σ1, σ2, and σ3) and the two layer thicknesses
(h1 and h2). The shaded gray background shows the 95 % of
the KDE for each parameter (Fig. 4a). The vertical electrical
conductivity profile is well recovered by MCMC. The elec-
trical conductivity of the top two layers are well estimated as
compared to the consolidated layer with low electrical con-
ductivity. Furthermore, for the six tested configurations of
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Figure 5. (a) Electrical conductivity (mS m−1) measured by the 5TE capacitance sensors from 10 soil pits along transect and the location of
the soil pits is indicated by black triangles (Jadoon et al., 2015); (b) the soil electrical conductivity obtained by using Markov chain Monte
Carlo simulation for multi-configuration electromagnetic induction measurements.
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Figure 6. Measured six different configuration of CMD Mini-Explorer (red star), estimated (modeled) earth electrical conductivity (blue
asterisk) and the range of ECa simulated by MCMC for (a) non-saline soil at pit 4 and (b) saline soil at pit 9 location.

CMD Mini-Explorer, the HCP and VCP configuration with
spacing 1.18 m are mostly sensitive to the consolidated layer
while the remaining four configurations are more sensitive to
the upper horizon. A large range of the parameter space was
explored by MCMC (Fig. 4b–e), illustrating the sensitivity of
the electromagnetic model to the considered parameters.

3.2 Experimental data

Measurements were carried out in a farm, where acacia trees
were irrigated with saline groundwater. The farm is located
at a distance of 6 km from the Red Sea coast at Al-Qadeimah,
Makkah province, Saudi Arabia. EMI measurements were
collected at an intervals over a 40 m long transect, along
which three acacia trees were irrigated using drip irrigation.
At each location, EMI measurements using the CMD Mini-
Explorer system provides six different values of apparent
electrical conductivity (using two coil orientations and three
offsets); each responds to different depth ranges. Ten pits
were dug along the same transect and in each pit the verti-
cal σb profile was measured at 15 locations within a depth
range of 0.05–1.5 m via 5TE capacitance sensors (Decagon
Devices, Pullman, USA). 5TE and EMI measurements were
carried out on the same day 8 h after the drip irrigation sys-
tem was stopped, so that the soil moisture concentration be-
low the drippers is avoided, and enough time is given for the

reduction of soil moisture impact due to root water uptake,
evaporation and infiltration (Jadoon et al., 2015).

Figure 5 shows the soil electrical conductivity measured
in ten pits along a transect and the modeled soil elec-
trical conductivity as estimated by the MCMC using the
multi-configuration EM induction measurements. Pit loca-
tions along the transect are indicated by black triangle and
cubic interpolation of 150 5TE sensor measurements were
used to construct the two-dimensional profile of measured
soil electrical conductivity σ (Fig. 5a). The groundwater used
to irrigate the acacia trees has an electrical conductivity of
4200 mS m−1. The three patterns of high electrical conduc-
tivity is due to the infiltration front and soil salinity near
the three acacia trees. In total, 21 multi-configuration EMI
measurements were performed along a transect and cali-
brated with in situ measurements collected using capacitance
sensors (Jadoon et al., 2015). The three-layer earth model
was considered for Bayesian inference of the five param-
eters (σ1,σ2,σ3,h1,h2) and their uncertainty based on the
15 000 MCMC samples. For all MCMC simulations, the pa-
rameter search space was set relatively large, with the range
of low and high values of electrical conductivity of soil;
0< σ1 < 3000 mS m−1, 0< σ2 < 3000 mS m−1, 0< σ3 <

3000 mS m−1, 0.05< h1 < 0.6 m, and 0.05< h1 < 0.6 m. In
the depth section of soil electrical conductivity resulting from
the EMI MCMC simulations, the effect of infiltration pat-
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Figure 7. Summary of the MCMC simulation for three-layer earth
model by considering CMD Mini-Explorer measurement over a
non-saline soil. (a) True (red line) and estimated parameter (blue
dashed line) for the vertical electrical conductivity profile, and the
gray background with the 95 % confidence interval of kernel distri-
bution estimation (KDE). (b–f) The KDE of the marginalized pos-
terior distributions for the three layer conductivities (σ1, σ2, and σ3)
and two layer thicknesses (h1 and h2).

terns and the soil salinity due to the drip irrigation near the
three acacia trees is clear (Fig. 5b). The estimated soil elec-
trical conductivity values by MCMC are in a good agreement
with the sensor measurements performed in pits (Fig. 5a).

Figure 6a and b show the measured, estimated (modeled)
and range of ECa as they result from the MCMC chain for the
six multi-configurations of CMD Mini-Explorer for saline
and non-saline soil. Three coil spacings for each VCP and
HCP are represented on the x axis. EMI measurement is
shown for non-saline and saline soil at locations 4 and 9 of
the pit (Fig. 5a), respectively. The soil was completely dry
for non-saline soil as no irrigation was applied, whereas in
the case of saline soil the moisture in the soil varied be-
tween 0.005 and 0.19 at the time of EMI and sensor mea-
surements. In non-saline soil, the measured six ECa values
range between 5 and 60 mS m−1 and the modeled ECa be-
tween 23 and 38 mS m−1 (Fig. 6a). The range of ECa esti-
mated from the last 10 000 MCMC samples is in the range of
0–75 mS m−1. As observed in the synthetic non-saline soil
scenario, the electromagnetic forward model was not sensi-
tive to the low electrical conductive soil. Similarly, the fit be-
tween the measured and modeled ECa is not in good agree-
ment with the real measurements (Fig. 6a). Furthermore, the
misfit may be due to the large search parameter space in the
MCMC simulations. In the case of saline soil, the electrical
conductivity of the top 50 cm soil is high due to the saline
infiltration and soil salinity. This effect can be seen in the de-
creasing trend of the measured ECa for the VCP and HCP

Figure 8. Summary of the MCMC simulation for three-layer earth
model by considering CMD Mini-Explorer measurement over a
saline soil. (a) True (red line) and estimated parameter (blue dashed
line) for the vertical electrical conductivity profile, and the gray
background with the 95 % confidence interval of kernel distribution
estimation (KDE). (b–f) The KDE of the marginalized posterior dis-
tributions for the three layer conductivities (σ1, σ2, and σ3) and two
layer thicknesses (h1 and h2).
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Figure 9. Spatial distribution of soil salinity (ECe) obtained using
Bayesian inversion of multi-configuration EMI measurements along
a transect.

measurements with larger coil spacing (Fig. 6b). The mea-
sured and modeled ECa are in good agrement and this is due
to the high sensitivity of the electromagnetic forward model
to high electrical conductive soil.

Figure 7 plots the vertical profile of electrical conductivity
for non-saline soil as measured by capacitance sensors (red
line), the value of the MCMC estimated parameters (blue
dashed line), and the KDE of the marginalized posterior dis-
tributions for the three layer conductivities and the two layer
thicknesses. The CMD Mini-Explorer measurements at pit
4 for non-saline soil were used for the analysis. In Fig. 7a
the measured vertical profile of soil electrical conductivity
falls within the shaded area in the top 95 % KDE distribution
limit 0–0.7 m depth and below this depth the modeled soil
electrical conductivity is overestimated. The mismatch be-
tween the measured and modeled ECa for the maximum coil
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separation Hρ118 and Vρ118 is behind the overestimation
of the soil electrical conductivity. The marginalized poste-
rior PDFs of the three conductivities and two thicknesses are
shown in Fig. 7b–f. The PDFs of the parameters (Fig. 7b–f)
exhibit a single peak, corresponding to the best parameters.
The peak of the σ3 is flat between 30 and 38 mS m−1 and it
seems that the topography of the objective function does not
change within this range of conductivity in each iteration of
the MCMC simulation.

Figure 8 plots the vertical profile of electrical conductivity
for the saline soil measured by capacitance sensors (red line),
the value of the MCMC estimated parameters (blue dashed
line), and the KDE of the marginalized posterior distributions
for the three layer conductivities and the two layer thick-
nesses. CMD Mini-Explorer measurements at pit 9 for saline
soil was used for the analysis. The shaded area in Fig. 8a indi-
cates the 95 % KDE distribution limits. The whole measured
vertical profile of soil electrical conductivity falls within the
shaded area, suggesting that the electrical conductivity is
well estimated. The marginalized posterior PDFs of the three
conductivities and two thicknesses, as shown in Fig. 8b–f,
exhibit a single peak for all parameters except the layer thick-
ness h2 which is flat, suggesting that the data were not infor-
mative to refine our prior knowledge about h2. The posterior
PDFs of the first two conductivities (σ1 and σ2) and layer
thickness h1 exhibit a clear Gaussian shape with an obvious
maximum a posteriori (MAP) estimate. For the conductivity
parameter σ3, we notice a posterior with a well-defined peak,
but no standard PDF shape.

Figure 9 shows the spatial distribution of the soil salin-
ity as estimated from EMI measurement using MCMC. Soil
salinity ECe is related to bulk electrical conductivity σb via
a linear relationship (ECe = 13.74σb+0.001) established by
Jadoon et al. (2015) for the same site. Infiltration front and
high soil salinity range between 0.01 and 0.5 m at three lo-
cations where acacia trees are irrigated with brackish wa-
ter. The results show that the Bayesian inversion of multi-
configuration EMI measurements successfully estimates the
soil salinity caused by the brackish water infiltration. In the
field, acacia tree roots concentrated in the top 70 cm of soil
and the low soil salinity below 30 cm shows that acacia
are capable of extracting salt solutions and reducing subsoil
salinity.

4 Conclusion

In this paper, an adaptive Bayesian MCMC algorithm has
been implemented for the model assessment and uncertainty
analysis of multi-orientation and multi-offset EMI mea-
surements. The algorithm has been tested for CMD Mini-
Explorer with both synthetic and field measurements con-
ducted in an agriculture field over a non-saline and saline
soil. Using Bayesian inference, marginalized posterior PDFs
were computed for three subsurface electrical conductivities

(σ1, σ2, and σ3) and two layer thicknesses (h1 and h2) using
MCMC. Such analysis helps to provide insight about param-
eter estimates and uncertainties.

The experimental results showed that the MCMC simula-
tions can improve the reliability of the electromagnetic for-
ward model to estimate the subsurface electrical conductiv-
ity profiles. Analysis shows that the electromagnetic forward
model is less sensitive to the non-saline soil as compared to
the saline soil. The proposed approach is flexible and can be
implemented for various low-frequency ground-based EMI
systems and can provide subsurface electrical conductivity
distribution and uncertainty of model parameters. Future re-
search will focus on implementing the Bayesian inference
approach on time-lapse EMI measurements in different agri-
cultural fields to monitor the soil dynamics, and estimate the
model parameters and their uncertainties.
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