
Hydrol. Earth Syst. Sci., 21, 5201–5216, 2017
https://doi.org/10.5194/hess-21-5201-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

SMOS near-real-time soil moisture product: processor overview
and first validation results
Nemesio J. Rodríguez-Fernández1,2, Joaquin Muñoz Sabater1, Philippe Richaume2, Patricia de Rosnay1,
Yann H. Kerr2, Clement Albergel1,3, Matthias Drusch4, and Susanne Mecklenburg5

1European Centre for Medium-Range Weather Forecasts, Shinfield Road, Reading, RG2 9AX, UK
2CESBIO, Université de Toulouse, CNES, CNRS, IRD, 18 av. Edouard Belin, bpi 2801, 31401 Toulouse, France
3CNRM – UMR3589, Météo-France/CNRS, Toulouse, France
4European Space Agency, ESTEC, Noordwijk, the Netherlands
5European Space Agency, ESRIN, Frascati, Italy

Correspondence to: Nemesio J. Rodríguez-Fernández (nemesio.rodriguez@cesbio.cnes.fr)

Received: 7 April 2017 – Discussion started: 9 May 2017
Revised: 29 August 2017 – Accepted: 4 September 2017 – Published: 17 October 2017

Abstract. Measurements of the surface soil moisture (SM)
content are important for a wide range of applications.
Among them, operational hydrology and numerical weather
prediction, for instance, need SM information in near-real-
time (NRT), typically not later than 3 h after sensing. The
European Space Agency (ESA) Soil Moisture and Ocean
Salinity (SMOS) satellite is the first mission specifically de-
signed to measure SM from space. The ESA Level 2 SM
retrieval algorithm is based on a detailed geophysical mod-
elling and cannot provide SM in NRT. This paper presents
the new ESA SMOS NRT SM product. It uses a neural
network (NN) to provide SM in NRT. The NN inputs are
SMOS brightness temperatures for horizontal and vertical
polarizations and incidence angles from 30 to 45◦. In addi-
tion, the NN uses surface soil temperature from the European
Centre for Medium-Range Weather Forecasts (ECMWF) In-
tegrated Forecast System (IFS). The NN was trained on
SMOS Level 2 (L2) SM. The swath of the NRT SM retrieval
is somewhat narrower (∼ 915 km) than that of the L2 SM
dataset (∼1150 km), which implies a slightly lower revisit
time. The new SMOS NRT SM product was compared to the
SMOS Level 2 SM product. The NRT SM data show a stan-
dard deviation of the difference with respect to the L2 data
of< 0.05 m3 m−3 in most of the Earth and a Pearson correla-
tion coefficient higher than 0.7 in large regions of the globe.
The NRT SM dataset does not show a global bias with re-
spect to the L2 dataset but can show local biases of up to

0.05 m3 m−3 in absolute value. The two SMOS SM prod-
ucts were evaluated against in situ measurements of SM from
more than 120 sites of the SCAN (Soil Climate Analysis Net-
work) and the USCRN (US Climate Reference Network) net-
works in North America. The NRT dataset obtains similar
but slightly better results than the L2 data. In summary, the
NN SMOS NRT SM product exhibits performances similar
to those of the Level 2 SM product but it has the advantage
of being available in less than 3.5 h after sensing, comply-
ing with NRT requirements. The new product is processed
at ECMWF and it is distributed by ESA and via the Eu-
ropean Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT) multicast service (EUMETCast).

1 Introduction

Surface soil moisture (SM) represents less than 0.001 % of
the global freshwater budget by volume but it plays an im-
portant role in the water, carbon and energy cycles (Lahoz
and De Lannoy, 2014). SM is the water reservoir for plants
and agriculture and it affects the propagation of diseases such
as malaria (Montosi et al., 2012; Peters et al., 2014). The
amount of moisture in the soil is an important variable to
understand the coupling of the continental surface and the at-
mosphere (Koster et al., 2004; Seneviratne et al., 2006; Tuttle
and Salvucci, 2016). Surface SM softens the effect of precip-
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itations, affects the partitioning of the water cycle (infiltration
and run-off, and therefore the groundwater storage; see Mc-
Coll et al., 2017) and it can also be used to improve rainfall
estimations (Pellarin et al., 2008; Crow et al., 2009; Brocca
et al., 2016). SM measurements have been used to perform
data assimilation into land surface models (Xu et al., 2015;
Blankenship et al., 2016; Lievens et al., 2016), SVAT (Soil
Vegetation Atmosphere Transfer) models (Martens et al.,
2016; Ridler et al., 2014; Muñoz Sabater et al., 2007) and in
carbon-cycle models (Scholze et al., 2016). SM data assimi-
lation can improve river discharge predictions, and remote-
sensing measurements are useful in otherwise data-scarce
catchments (Alvarez-Garreton et al., 2016; Chen et al., 2011;
Pauwels et al., 2002). SM measurements are useful to mon-
itor landslide risks (Hawke and McConchie, 2011) and re-
motely sensed SM has been used to compute landslide sus-
ceptibility maps (Ray et al., 2010).

Regarding flood forecasting, in the framework of the Euro-
pean Flood Awareness System (EFAS) the forecast accuracy
improves significantly (5–10 %) when remotely sensed SM
is assimilated in addition to discharge data (Wanders et al.,
2014). SM initial conditions are among the most important
hydrological properties affecting flash flood triggering (Nor-
biato et al., 2008; Ponziani et al., 2012). The assimilation
of SM products from the Advanced Scatterometer (ASCAT)
has been successfully used in the context of flash flood early-
warning systems in Mediterranean catchments (Cenci et al.,
2016).

In addition to operational hydrology applications, opera-
tional numerical weather prediction also benefits from re-
motely sensed SM data assimilation. Meteorological agen-
cies such as the European Centre for Medium-Range
Weather Forecasts (ECMWF) and the United Kingdom Met
Office assimilate ASCAT surface SM into their operational
numerical weather prediction models (de Rosnay et al., 2013;
Dharssi et al., 2011). The approach has also been tested in
offline mode at Meteo France (Barbu et al., 2014). To be use-
ful for operational applications, remotely sensed data should
be available in near-real-time (typically less than 3–4 h after
sensing, hereafter NRT).

The Soil Moisture and Ocean Salinity (SMOS) European
Space Agency (ESA) satellite (Kerr et al., 2010) is the first
instrument that has been specifically designed to measure
SM from space. It carries an L-band (1.4 GHz) radiometer to
perform full polarization and multi-angular (0–60◦) measure-
ments of the Earth’s thermal emission. ECMWF uses SMOS
NRT brightness temperatures (Tb) in their operational inte-
grated forecasting system (IFS; Muñoz Sabater et al., 2012).
The ESA SMOS operational Level 2 SM retrieval algorithm
is based on a point-per-point iterative minimization of the
difference of a physical model and the satellite measurements
(Kerr et al., 2012). The free parameters are the SM content
and the 1.4 GHz opacity, which is mainly due to the water
content of the vegetation in between the soil surface and the

sensor (which some authors refer to as VOD, vegetation op-
tical depth).

Many studies have evaluated the SMOS L2 SM dataset
in comparison to other remote-sensing datasets, models and
in situ measurements (Al Bitar et al., 2012; Wanders et al.,
2012; Albergel et al., 2012; Bircher et al., 2013; Al-Yaari
et al., 2014a, b; Leroux et al., 2014; Louvet et al., 2015;
Kerr et al., 2016). SMOS shows very good global perfor-
mance although other remote-sensing and model products
can show better performances at some sites. In any case,
datasets from the only two instruments specifically conceived
to measure SM, SMOS and NASA’s Soil Moisture Active
Passive (SMAP), compare very well with each other (Jack-
son et al., 2016; Burgin et al., 2017).

As already mentioned, most operational users over land,
in particular in numerical weather prediction and operational
hydrology, require SM information to be available in NRT,
typically referring to less than 3–4 h after sensing. For in-
stance, ASCAT SM data are distributed by the European
Organisation for the Exploitation of Meteorological Satel-
lites (EUMETSAT) within 135 min after data acquisition
(Wagner et al., 2013), which allows for assimilating the data
by operational numerical weather prediction centres such as
ECMWF (de Rosnay et al., 2013). In the case of the cur-
rent SMOS ground segment, the production of Level 1C Tb
data from raw data takes typically 1 h of processing time
and the Level 2 SM inversion up to 80 min for a half-orbit.
However, due to data handling operations, the synchroniza-
tion of some operations and the dissemination orchestration,
the total latency time from data acquisition to SM dissemi-
nation is of the order of 6 h. Therefore, this processing chain
does not fulfil the NRT requirements. However, as already
mentioned, SMOS Tb measurements are provided in NRT to
ECMWF. In addition, with 6 years of SMOS measurements
available, statistical algorithms can be exploited to provide
faster retrievals and neural networks (NNs) have shown to be
a promising technique to generate a SM dataset from SMOS
Tb measurements (Rodríguez-Fernández et al., 2015). Based
on the latter, a NN processing chain to provide SMOS SM in
NRT has been implemented by the ESA. The requirements
are that the NRT dataset should display at least the same ac-
curacy as the geophysical level 2 SM data product, the data
should be retrieved over a large swath and the retrieval should
rely on a minimum of auxiliary data files. As with the AS-
CAT NRT SM processing chain cited above, the SMOS NRT
SM chain handles model parameters derived offline using a
database with a large number of past observations. The ad-
vantages are that the processing is robust and very fast. In
the case that significant changes in the Level 1 data used as
input are available, then the model parameters should be up-
dated correspondingly.

The new SMOS NRT SM product is available from 2016
onwards and it is distributed through the World Meteorologi-
cal Organization’s Global Telecommunication System (GTS)
and the EUMETCast service from EUMETSAT in NetCDF
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format. EUMETCast is a dissemination system that uses
commercial telecommunication geostationary satellites and
research networks to multi-cast data files to a wide user com-
munity.

This paper describes the SMOS NRT SM processing chain
and discusses the first evaluation results. It is organized as
follows. Section 2 describes the data used for the implemen-
tation and the validation of the SMOS NRT SM product. Sec-
tion 3 discusses the NRT SM processing chain (more details
are given in the Appendix). Section 4 contains a description
of the methods used to evaluate the NRT SM product. Sec-
tion 5 presents the evaluation results. Finally, a summary is
presented in Sect. 6.

2 Data

2.1 SMOS satellite

SMOS (Mecklenburg et al., 2012; Kerr et al., 2010) mea-
sures the thermal emission from the Earth at a frequency of
1.4 GHz in full-polarization and for incidence angles from
0 to ∼ 60◦. The full incidence-angle range is accessible in
the centre of the swath. On the contrary, only angles in the
40–45◦ range are accessible all across the swath. SMOS
has 69 antennas to perform interferometry and synthesize
an aperture of ∼ 7.5 m (Anterrieu and Khazaal, 2008). The
spatial resolution on the ground, defined as the projection
of the full width at half maximum of the synthesized beam,
is 43 km on average over the field of view (Kerr et al.,
2010). The satellite follows a sun-synchronous polar orbit
with 06:00 LST (local solar time) (ascending half-orbit) and
18:00 LST (descending half-orbit) Equator overpass times.

2.1.1 SMOS level 2 SM

The SMOS level 2 processor performs a detailed modelling
of the Earth’s emission at 1.4 GHz at two polarizations and
a large number of incidence angles using the τ −ω (optical
depth− single scattering albedo) approach to account for in-
teraction of L-band radiation with the vegetation (Wigneron
et al., 2007). The ground effective temperature is computed
from the soil temperature at a deep layer (∼ 1 m) and the
surface layer (a few centimetres), using the formulation
of Choudhury et al. (1982) with the parameterization by
Wigneron et al. (2001). The soil temperature for those two
layers is taken from ECMWF IFS model simulations.

For each grid node, the surface is modelled with
4 km× 4 km cells taking into account different land covers.
Then the processor computes the contributions of those cells
within 123 km× 123 km accounting for the projection of the
SMOS synthesized antenna power pattern on the Earth sur-
face to model SMOS-like Tb values. The vegetation opti-
cal depth (τ ) and the SM content are free parameters that
are allowed to vary to minimize the difference of the sim-
ulated Tb values and SMOS Level 1C Tb measurements. In

the case of forest, two contributions to the opacity are taken
into account: one from the trees, which is estimated from the
maximum leaf area index (LAI; Ferrazzoli et al., 2002), and
another from the understory vegetation. Soil temperature is
obtained from ECMWF IFS data. For footprints with mixed
land cover, the SM content of the minor land cover is esti-
mated from ECMWF IFS and its contribution to the Tb is
fixed. For such cases, the SMOS SM retrieval is only per-
formed for the dominant land cover class within the footprint
(Kerr et al., 2012). ESA Level 2 SM data are provided in an
icosahedral equal area (ISEA) 4H9 grid (Sahr et al., 2003)
with a sampling space of 15 km.

The version of the SMOS L2 SM dataset used in this study
is v620, which became operational in May 2015. In order to
have enough data for a robust training of the NN, an addi-
tional dataset from 1 June 2010 to 30 June 2012 was repro-
cessed with the same version v620 of the L2 SM algorithm.
The evaluation of the NRT SM product has been done from
May 2015 to the time of the NRT SM implementation (end
of 2015).

2.1.2 SMOS NRT SM

The SMOS NRT SM product was obtained by training a
NN using SMOS Tb measurements and soil temperature
from ECMWF models as input. SMOS Tb measurements are
provided by ESA to ECMWF in NRT (less than 3 h after
sensing) for operational monitoring within the IFS (Muñoz-
Sabater, 2015).

The training dataset used for the supervised learning phase
of the NN was the SMOS Level 2 SM product. The train-
ing was done using data from June 2010 to June 2012 and it
is described in Sect. 3. The NRT SM processing chain was
evaluated using data from May to November 2015. Taking
into account the satisfactory results of the evaluation (pre-
sented in Sect. 5), the SMOS NRT SM product became op-
erational in January 2016. The SMOS NRT SM product is
computed at ECMWF and delivered to ESA, where the data
are sent to EUMETSAT for dissemination via EUMETCast.
SMOS NRT SM data can also be accessed via the SMOS on-
line dissemination service from the ESA Earth Online por-
tal. The SMOS NRT SM data are provided in NetCDF files
in the same ISEA 4H9 grid of other ESA SMOS products.
The version of the SMOS NRT SM data used in this study
is version 100. More details on the NRT SM processor are
presented in Sect. 3 and in the Appendix.

2.2 In situ SM measurements

The SMOS NRT SM product was evaluated against in situ
measurements of SM over a large number of sites. The same
evaluation was done with the Level 2 SM product. The in situ
data used for those evaluations are described below.

The Soil Climate Analysis Network (SCAN) of the United
States Department of Agriculture (Schaefer et al., 2007) has
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been widely used to evaluate modelled and remote-sensing
SM datasets and it contains over 100 sensors or sites. The
sensors are located in agricultural regions with a relatively
homogeneous landscape in many cases. The sensors used in
this study are placed horizontally at 5 cm depth.

The United States Climate Reference Network (USCRN,
Bell et al., 2013) is a network of climate monitoring stations
with sites across the USA, managed and maintained by the
National Oceanic and Atmospheric Administration (NOAA).
This network was designed with climate science in mind.
The stations are placed in pristine environments expected to
be free of development for many decades. There are around
140 stations with sensors at different depths. The sensors
used in this study are horizontally installed at 5 cm.

The in situ data have been obtained directly from the teams
operating both networks but these datasets are also available
from the International Soil Moisture Network (Dorigo et al.,
2011).

3 The SMOS NRT SM processor

The SMOS NRT SMOS processor is based on a NN ap-
proach to retrieve SM from SMOS observations. Rodríguez-
Fernández et al. (2015) showed that SMOS Tb values binned
in 5◦ width incidence-angle bins (the L3TB product; Al Bitar
et al., 2017) can be used to retrieve SM on a daily basis.
They used ECMWF SM model fields as reference dataset to
train the NN. Rodríguez-Fernández et al. (2013) had previ-
ously shown that SMOS Level 3 SM (Al Bitar et al., 2017)
can also be used as reference data to train the NN instead
of ECMWF modelled SM fields. They also showed that the
additional input dataset with the most significant impact on
the retrieval is the soil temperature dataset. In the context of
the ESA operational NRT SM processor, the goal was to ob-
tain a SM dataset as similar as possible to the ESA Level 2
SM dataset but in NRT. Therefore, the ESA SMOS Level 2
SM dataset (Kerr et al., 2012) was used as reference dataset
for the training phase. Finally, taking into account opera-
tional constraints, the only complementary data used for the
retrieval are soil temperature estimations for the first layer
(0–7 cm) of ECMWF models, which is the complementary
dataset with the most significant impact (∼ 3 %) on the re-
trieval (Rodríguez-Fernández et al., 2013). This dataset was
chosen because it is the same model data used by the Level 2
SM algorithm (Sect. 2).

3.1 Input data

The input to the SMOS NRT SM processor are SMOS NRT
Tb values, which are distributed by ESA to ECMWF in
BUFR (binary universal form for the representation of me-
teorological data) format (Gutierrez and Canales Molina,
2010; de Rosnay et al., 2012). The Tb values are provided
with the polarization referred to in the antenna reference

frame XY . Several quality checks are performed to filter the
Tb values: TbX and TbY should be in the expected physical
range (80–340 K) and the real and imaginary components
of the cross-polarized measurements (TbXY ) should be in the
range (−50, 50 K), otherwise the Tb values are considered to
be corrupted or affected by RFI (radio frequency interference
from human-built equipment). In order to keep information
on the possible residual RFI contamination, a RFI probability
was computed for each observation as the number of BUFR
Tb measurements filtered out due to the RFI flags with re-
spect to the total number of Tb measurements. The observed
Tb values are also filtered out if a specific BUFR flag indi-
cates that the observation is located in a zone affected by
the aliased image of the Sun. The selected NRT Tb values
are transformed from the antenna-based XY reference frame
to the ground-based horizontal and vertical (HV ) reference
frame as described by Al Bitar et al. (2017).

In a second step theHV Tb values are averaged in 5◦ width
incidence-angle bins. Three angle bins are actually used for
training and applying to the NN: 30–35◦, 35–40◦ and 40–
45◦. As discussed by Rodríguez-Fernández et al. (2016), us-
ing these three angle bins is the best trade-off between per-
formances (which improve with a large angular signature)
and swath width of the retrieval (which decreases with an in-
creasing number of angle bins used). With this configuration
SM is retrieved in the central 914 km of the swath (the maxi-
mum possible swath is ∼ 1150 km). A SM retrieval can only
be done if there is a well-defined value of the Tb for all three
angle bins and the two polarizations H and V . The current
implementation of the NRT SM processor does not perform
any interpolation of the Tb vs. incidence-angle profiles.

Using the SMOS Tb values measured at a time t for a given
latitude (λ) and longitude (φ) grid point and for each polar-
ization and incidence-angle bin, Tbλφ (t), a local normalized
index can be computed as follows:

Iλφ(t)= SM
T min

b
λφ +

[
SM

T max
b
λφ −SM

T min
b
λφ

] Tbλφ (t)− T
min
bλφ

T max
bλφ − T

min
bλφ

, (1)

where T max
b and T min

b are the maximum and minimum val-

ues of the Tb in the local time (λ, φ) series, SMT min
b and

SMT max
b are the associated SM in the SMOS Level 2 SM ref-

erence dataset. The index I is computed for each incidence-
angle bin and polarization at the time t of the SMOS ac-
quisition and it contains local information on the dynamic
ranges of both the measured Tb and the reference SM. In
the current version of the processor (v100), T max,min

b and

SMT
max,min
b have been computed using data from 1 June 2010

to 30 June 2012 (the same period used to train the NN; see
Sect. 3.2). This linear expectation index is inspired by the
approach used to retrieve SM with the scatterometers such as
ASCAT (Wagner et al., 1999; Bartalis et al., 2007) and helps
to improve the performances of the NN retrieval (Rodríguez-
Fernández et al., 2015).
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The only auxiliary data used by the SMOS SM NRT pro-
cessor are snow depth and soil temperature from the latest
high-resolution forecast produced by the ECMWF IFS, with
a typical latency of less than 1 h. The ECMWF IFS soil tem-
perature in the 0–7 cm layer is used as input to the NN, as
it increases the performances of the retrieval (Rodríguez-
Fernández et al., 2016). SMOS data from a given grid point
are not used if snow is found in that point based on the latest
ECMWF snow depth forecast field or if the soil temperature
forecast of the top 7 cm of soil is below 274 K. The SMOS
NRT SM dataset is a land-only product and a SM retrieval
is not provided if more than 50 % of the SMOS footprint is
covered by water. This filter avoids spurious SM values near
the coastlines, for instance. Of course, even if less than 50 %
of the footprint surface is covered by water, the SM retrieval
can still be affected by the free water. Users interested in re-
gions close to the coast or to water bodies are advised to use
the land-sea mask available on the ESA SMOS data prod-
ucts portal. This mask was computed from the 1 km USGS
(US Geological Survey) land-sea mask aggregated into the
ISEA grid common to Level 1 and Level 2 SMOS products.

3.2 The NN processor

The HV angle-binned Tb values have been collocated with
ECMWF IFS forecasts for the soil temperature and snow
cover and finally they have been collocated with version 620
SMOS L2 SM data (Kerr et al., 2012) in the 1 June 2010 to
30 June 2012 period. As discussed above, a local normalized
index I has been computed from extreme Tb values and the
associated L2 SM. In addition to the filters discussed above
(hard RFI, Sun tails, frozen or snow covered soil, water frac-
tion), to compute the extreme value tables and for the training
of the NN, the following filters have also been applied:

– the latitude is limited to the (−60, 75◦) range;

– a SMOS L2 SM value associated to the maximum or
minimum Tb is required (otherwise I cannot be de-
fined);

– the SM uncertainty provided by the Dqx (data quality
index) parameter in L2 SM data files was required to be
lower than 0.06 m3 m−3 to use the most reliable data for
the training.

The input vectors contain Tb values, I indexes for H and
V polarizations, the three angle bins from 30 to 45◦, and
the soil temperature from 0 to 7 cm from the ECMWF IFS.
Therefore, input vectors have a total of 13 elements. All
13 elements must be well-defined to train the NN and there
must be a well-defined, associated SM value.

One-fifth of the vectors in the training database were
selected randomly to have ∼ 3× 105 vectors. A subset of
60 % of those vectors is used for the actual training, 20 %
is used for evaluation of the NN performances during the
training and to avoid over-training, the final 20 % is used to

Table 1. SMOS near-real-time (NRT) soil moisture (SM) processor
output fields.

Fields in the NRT product

ISEA grid point number
Latitude
Longitude
Number of days since 1 January 2000
Seconds from midnight (all times are UT)
Soil moisture
Soil moisture uncertainty
RFI probability

test the performances of the trained NN a posteriori. Gradi-
ent back-propagation and minimization with the Levenberg–
Marquardt algorithm has been used. One single hidden layer
with 5 neurons has been used, as it has been shown by
Rodríguez-Fernández et al. (2016) that it is enough to cap-
ture the relationship between the input data and the refer-
ence SM, while keeping the NN as simple as possible. No
signs of overtraining were found and the training was stopped
after 50 iterations when the mean squared difference was
asymptotically approaching a minimum. When the trained
NN was applied to the test subset and the NN output was
compared to the SMOS L2 SM, the Pearson correlation R
was 0.86, the standard deviation of the difference (STDD)
was 0.068 m3 m−3 and the root mean square error or dif-
ference (RMSE) was also 0.068 m3 m−3, which implies that
there was not a significant bias between both SM datasets.
These results show that the NN ability to capture the dynam-
ics of the current L2 SM dataset is very good. The evaluation
results discussed in Sect. 5 below confirm that the quality of
the NRT SM NN product fulfil the specifications of the oper-
ational product.

NRT SM NN uncertainties were computed by error prop-
agation through the NN taking into account the error of the
Tb measurements used as input as explained in the Appendix.

3.3 SMOS NRT SM processor output

The SMOS NRT SM product is a land-only product, collo-
cated and delivered in the ISEA 4H9 grid (Sahr et al., 2003)
common to other ESA SMOS products. The main charac-
teristics of the product and the description of the fields are
presented in Muñoz-Sabater et al. (2016). The processor out-
put fields are shown in Table 1. Figure 1 shows the NRT SM
product and its associated uncertainty for a portion of an orbit
on 27 May 2012.
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Figure 1. Comparison of the NRT SM NN product (a) and the Level 2 SM (b) for one orbit of 27 May 2012. The corresponding NRT SM
uncertainty is shown in (c), while the L2 SM uncertainty is shown in (d).

4 Methods

4.1 Global evaluation

Several metrics have been used to evaluate the NRT SM
dataset from 15 May to 25 November 2015 against the
SMOS L2 SM dataset. For all grid points λφ, the tempo-
ral means of both SM datasets, SM

L2
λφ and SM

NRT
λφ , have been

computed as the following:

SM
NRT
λφ =

1
Nt

Nt∑
i=1

SMNRT
λφ (ti) (2)

and

SM
L2
λφ =

1
Nt

Nt∑
i=1

SML2
λφ (ti) , (3)

using only times (ti) for which a well-defined value is present
simultaneously in both datasets. This number is in principle
different for each λφ grid point, but it will be noted as Nt in
the following instead of Nλφt to simplify the notation.

A bias map has been computed from the local (λ and φ)
mean of each dataset as follows:

Biasλφ = SM
NRT
λφ −SM

L2
λφ . (4)

In order to compare the temporal dynamics of the two
datasets, the Pearson correlation R has also been computed
as follows:

Rλφ =

Nt∑
i=1

(
SMNRT

λφ (ti )−SMNRT
λφ

)(
SML2

λφ (ti )−SML2
λφ

)
√
Nt∑
i=1

(
SMNRT

λφ (ti )−SMNRT
λφ

)2
√
Nt∑
i=1

(
SML2

λφ (ti )−SML2
λφ

)2
, (5)

where the sum runs for all the points available at a given
position λφ: Nt .

The absolute values of the two datasets have been evalu-
ated using the standard deviation of the difference as a met-
ric. The local time series differenceD of the two datasets was
defined as

Dλφ(t)= SMNRT
λφ (t)−SML2

λφ(t). (6)

The standard deviation of the difference time series (STDD)
has been computed as the following:
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STDDλφ =
√

D2
λφ −Dλφ

2

=

√√√√ 1
Nt

Nt∑
i=1

D2
λφ (ti)−

(
1
Nt

Nt∑
i=1

Dλφ (ti)

)2

. (7)

In some studies, the STDD is calculated indirectly from
the bias and the root mean squared difference (RMSD) and
called unbiased-RMSD (ubRMSD).

4.2 Local evaluation against in situ measurements

Evaluating remote-sensing measurements against in situ
measurements is a difficult exercise. The spatial resolution of
coarse-scale remote-sensing observations (∼ 40 km) is very
different to point-like measurements by in situ sensors. The
large-scale spatial representativeness of the in situ measure-
ments is not guaranteed (see for instance Gruber et al., 2012).
In addition, the depth of the microwave emitting layer can
be different with respect to the sensing depth of the in situ
measurements. The goal of the current study is not to deal
with these open issues but to compare two different retrieval
approaches using the same instrument, therefore spatial rep-
resentativeness or sensing depth differences will not affect
the comparison. More detailed evaluations of SMOS SM re-
trievals can be found in the following references: Al Bitar
et al. (2017), Kerr et al. (2016), Leroux (2012), Van der
Schalie et al. (2016) and Jackson et al. (2012).

The SMOS NRT SM and the SMOS L2 SM datasets have
been evaluated against the in situ measurements discussed
in Sect. 2 in a consistent manner. First, for each station
available, a quality check of the data was performed. Sites
with suspicious data (e.g. measurement discontinuity, spu-
rious jumps) were eliminated. The locations of the 127 re-
tained stations are shown in Fig. 4.

The same metrics discussed in the previous section have
been computed for the NRT SM dataset with respect to the
in situ measurements and for the L2 SM dataset with respect
to the in situ measurements. The Pearson correlation was
used to compare temporal dynamics of the two SM datasets.
The long-term (seasonal) dynamics were compared by com-
puting the Pearson correlation coefficient R of SML2 and
SMNRT with respect to SMinSitu, site per site. In addition, the
short-term (1–30 days) dynamics were evaluated by comput-
ing site per site the Pearson correlation of the anomalies time
series. Following Albergel et al. (2009), the SM anomaly at a
given time t , SMa(t), was computed using a 31-day window
centred at t as follows:

SMa(t)=
SM(t)−Mean(SM(t − 15, t + 15))

STD(SM(t − 15, t + 15))
, (8)

where SM(t − 15, t + 15) represents the ensemble of mea-
surements in the 31-day window. The Pearson correlation co-
efficient R computed with the anomalous time series will be
referred to as Ra in the following.

The metrics were computed independently for the NRT
and the L2 datasets in a first step. In a second step, the metrics
were recomputed only using times for which both the NRT
and the L2 were simultaneously available, and thus, using the
same number of points for the two time series.

5 Results – SMOS NRT SM evaluation

5.1 Swath-level comparison to SMOS L2 SM

Figure 1a and c show the NRT NN SM product and its asso-
ciated uncertainty for a portion of an orbit on 27 May 2012.
The corresponding L2 SM and its associated uncertainty as
given by the DQX (data quality index) parameter (Kerr et al.,
2012) are also shown (Fig. 1b and d). As discussed in Sect. 3,
the swath width of the NRT SM retrieval is somewhat nar-
rower than the L2 SM one but both maps show similar spatial
structures and numerical values. The uncertainties have sim-
ilar numerical values as well, but the spatial patterns are not
the same. This is expected as the two retrieval algorithms are
different. Finally, it should be noted that the spatial coverage
can be different for both products as shown in Fig. 2:

– The NRT SM product can show circle-arc gaps when
not all of the angle bins have a well-defined Tb value,
while in contrast the L2 algorithm can perform an in-
version even if some Tb values have been filtered out.

– The NRT SM global retrieval algorithm can provide
a SM estimate even when the local minimization of
the L2 algorithm does not converge. This can happen
mainly in dense forest areas.

5.2 Global evaluation with respect to SMOS L2 SM

The SMOS NRT SM product has also been compared to the
SMOS L2 SM product globally and over the period men-
tioned in Sect. 4. Figure 3a and b show the mean of the NRT
and L2 SM products over the period of the study. Both maps
show an overall excellent agreement, although it is possible
to appreciate a significant negative bias (−0.05 m3 m−3) in
the NRT SM product in the regions with the highest L2 SM
(tropical and boreal forest). The typical number of points
with both NRT SM NN and SM L2 in the evaluation period
is ∼ 100. The correlation of both products is high (> 0.7)
over a large part of North America, the southernmost part
of South America, the Iberian peninsula, the Sahel, South
Africa, Australia and parts of central Eurasia. The correla-
tion is significantly lower over forest (both tropical and bo-
real) and in deserts such as the Sahara. In the Sahara, the
low correlation is probably not significant because the SM
values are very low and the variance is driven by the noise.
Actually, Fig. 3f shows that the STDD is also very low in
this region. Therefore, L2 SM and NRT SM have actually
similar values. In contrast, dense forest regions show a high
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Figure 2. Comparison of the NRT SM NN product (a) and the Level 2 SM (b) for one orbit of 27 May 2012.

Figure 3. Mean SM for the NRT (a) and the L2 (b) SMOS products. Pearson correlation (c), bias (d), root mean square of the difference (e)
and standard deviation of the difference (f) of the NRT SM and L2 SM.
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Figure 4. Locations of the in situ measurement sites used in this
study.

STDD in addition to a low R. Therefore, both products show
some differences in these regions. Unfortunately, in situ mea-
surements are not available to perform an independent eval-
uation of both datasets for dense-forest sites. In conclusion,
both products show similar dynamics over large parts of the
globe. The bias map (Fig. 3d) shows that the NRT SM prod-
uct shows a tendency to underestimate the L2 SM dataset,
which is an expected behaviour as it has been obtained us-
ing a regression technique and extreme values are under-
represented in the reference dataset. The most significant ef-
fect of the bias is to increase the RMSD (Fig. 3e) with respect
to the STDD in parts of Europe and Canada. However, one
should note that both the RMSD and the STDD are lower
than 0.04 m3 m−3 over most of the globe (all except the red-
dish regions in Fig. 3e and f).

5.3 Evaluation with respect to in situ measurements

The SMOS NRT SM product was evaluated against in situ
measurements from the SCAN (Schaefer et al., 2007) and
USCRN (Bell et al., 2013) (Sect. 2). These networks of in
situ measurements have been extensively used for the vali-
dation of remote-sensing data (Albergel et al., 2009, 2012;
Rodríguez-Fernández et al., 2015; Al Bitar et al., 2012; Kerr
et al., 2016).

The quality metrics discussed in Sect. 4 have been com-
puted site per site and independently for the SMOS NRT. The
same evaluation was done for L2 products. The mean number
of points in the time series from May 2015 to November 2015
is 186 for the L2 product while it is only half of that value
for the NRT product. The reason is a longer revisit time of
the SM NRT NN product due to the narrower swaths of the
retrievals and the lack of retrievals if not all the six Tb values
are well-defined for both polarizations and the three angle
bins from 30 to 45◦.

Table 2 summarizes the results in the form of averages
over all the sites (for the Pearson correlation, the median

Table 2. SMOS Level 2 and NRT NN SM comparison to in situ
measurements over the USCRN and SCAN networks. The columns
are as follows: the SM product, the mean number of points in the
time series, the mean and median Pearson correlation with respect
to in situ measurements, the mean bias (mean in situ SM minus
mean SMOS SM), the root mean square and standard deviation of
the difference time series averaged over all sites, and the Pearson
correlation of the anomalous time series (Ra). The statistics have
been computed independently for the NRT SM NN and the L2 SM
product. The number of SM retrievals is, on average, larger for the
L2 SM. The two lower rows show the results using only times for
which both the NRT SM NN and the L2 SM products are simulta-
neously available.

SM Mean Mean Median Mean Mean Mean Mean
Npts R R bias RMSD STDD Ra

L2 186 0.63 0.64 0.035 0.100 0.065 0.56
NRT 94 0.70 0.71 0.036 0.095 0.058 0.48

L2 88. 0.67 0.69 0.026 0.092 0.062 0.59
NRT 88. 0.71 0.72 0.031 0.091 0.056 0.56

value is also given). Both SMOS products show a similar
mean bias with respect to the in situ measurements, while
the mean STDD and RMSD are slightly lower for the NRT
SM product. In order to get further insight into the intrin-
sic quality differences of both datasets, the same statistics
have been computed but only using times for which both
SMOS products are retrieved. The results are also shown in
Table 2. The differences in the evaluation of both products
decreases, but the NRT product still shows a larger correla-
tion and lower STDD with respect to the in situ measure-
ments than the L2 product.

Since the mean or median values alone do not show the
full picture of the evaluation for more than 100 sites, Fig. 5a
and b show box plots for the Pearson correlation coefficient
of the time series (R) and the anomalous time series (Ra), re-
spectively. Figure 5c and d show box plots for the bias and the
STDD. As expected, there is a large variation from one site to
another. The bias and STDD distributions are similar for both
products. The correlation is as high as almost 1 for some sites
both for the NRT SM and L2 SM (the maximum is slightly
higher for the later). Interestingly, the lower values of the
distribution of the correlation are higher for the NRT prod-
uct. In summary, the bias and Ra distributions are very sim-
ilar for both products while the NRT product shows a lower
STDD and a higher R for the central two quartiles of the dis-
tribution (green boxes in Fig. 5). This behaviour was already
found by Rodríguez-Fernández et al. (2015), who analysed
different NN models to retrieve SM from SMOS observa-
tions after training the NN on ECMWF simulated SM fields.
When comparing to in situ measurements, the best NN mod-
els showed a higher Pearson R and a lower STDD than those
obtained for the ECMWF SM model simulations. These re-
sults can be understood because, provided that the training is
done with a large number of statistically representative sam-
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Figure 5. Box plots for (a) the Pearson correlation coefficient (R)
of the NRT and L2 time series with respect to the in situ measure-
ments, (b) Pearson correlation coefficient of the anomalous time
series (Ra), (c) bias (mean in situ minus mean SMOS SM) and
(d) STDD of the two SMOS products in comparison to in situ mea-
surements. The green boxes contains the middle 50 % of the data,
the central bar represents the median value of the distribution. The
upper edge (hinge) of the box indicates the 75th percentile of the
dataset (q3), and the lower hinge indicates the 25th percentile (q1).
The mean values are also shown as black crosses. The upper and
lower bars represent the minimum and maximum values of the dis-
tribution excluding outliers. Points are considered as outliers if they
are larger than q3+ 1.5(q3− q1) or smaller than q1− 1.5(q3− q1).

ples, the NN will not be significantly affected by outliers or
inconsistent values during the training phase. The NN out-
put is the most likely (in the sense of the Bayes theorem)
SM value taking into account a given set of input data. Thus,
a good NN model can show slightly better quality metrics

Figure 6. (a) Scatter plots showing the Pearson correlation coeffi-
cient of the NRT and L2 SM time series with respect to the in situ
measurements (R). The error bars account for the 95 % confidence
intervals. The red symbols represent averaged values. (b) Same
as (a) but for the anomalous time series (Ra).

when compared to in situ measurements than the dataset used
as reference to train the NN.

Finally, Fig. 6 shows scatter plots of the correlation for
the time series and for the anomalous time series taking into
account the respective confidence intervals. For most of the
sites, both products show the same statistics with respect to
the in situ measurements and globally, the scatter plot points
lie close to the 1 : 1 line.

6 Conclusions

This paper describes the ESA SMOS NRT SM processor and
the first evaluation of this new operational dataset. This pro-
cessor is based on a NN algorithm that uses SMOS NRT
brightness temperatures and ECMWF IFS soil temperature
in the 0–7 cm layer as input. It has been trained with SMOS
Level 2 SM data as reference. The SMOS NRT brightness
temperatures have been transformed from the antenna refer-
ence frame to the ground reference frame to express the po-
larization as horizontal and vertical components. In addition,
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they have been binned in 5◦ width incidence-angle bins. Soil
temperature and snow cover forecasts from ECMWF IFS are
used to filter out frozen soil or soil covered by snow. The
uncertainties of the NRT SM data were estimated from the
input brightness temperature uncertainties.

The SMOS NRT SM product was evaluated with respect
to the original SMOS Level 2 SM product using several
months of data. The NRT SM product compares well with the
L2 product. The most significant difference is that the NRT
SM dataset shows local negative bias at the positions were
the highest SM values were found (basically under tropical
forest).

The SMOS NRT SM product was also evaluated with re-
spect to in situ measurements of SM with the SCAN and
the USCRN. The NRT product shows similar performances
to those of the L2 product. Actually, the mean and median
correlation are slightly higher than those obtained for the
L2 product. In addition, the STDD with respect to the in
situ measurements is lower for the NRT product than for the
L2 product.

In summary, the SMOS NRT SM product shows similar
performance to the Level 2 product but it has the advantage
to be available in NRT. NRT brightness temperatures are re-
ceived by ECMWF from ESA in less than 3 h after sensing.
The NRT SM production takes on average of 15 min (the ar-
rival of new NRT Tb data is checked every 30 min and the
actual NRT SM production takes a few minutes). The SMOS
NRT SM product is delivered to ESA and EUMETSAT for
dissemination via EUMETCast. Therefore, the SMOS NRT
SM data are available for a large range of operational appli-
cations such as numerical weather prediction, hydrological
forecasting and crop modelling.

Data availability. The datasets used in this study (Sect. 2) are pub-
licly available. The SMOS L2 SM and NRT SM data can be down-
loaded from the ESA. The SMOS NRT SM data are also available
via EUMETCast in NRT. The in situ measurements can be down-
loaded from the International Soil Moisture Network (Dorigo et al.,
2011).
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Appendix A: NRT SM algorithm

The SMOS NRT has been described qualitatively in Sect. 3.
The current section describes the algorithm and the output
uncertainties calculation in detail. Complementary informa-
tion can be found in Rodríguez-Fernández et al. (2016) and
Muñoz-Sabater et al. (2016).

A1 NN specification

The NN discussed in Sect. 3 has two layers. The first layer
contains j = 1, . . . , nL1 nodes or neurons with an hyperbolic
tangent as activation function. The second layer contains a
single neuron with a linear function as activation function.
The number of input elements nin is 13: six Tb values (H and
V for incidence-angle bins from 30 to 45◦), 6 index I (H and
V for incidence-angle bins from 30 to 45◦), and ECMWF
soil temperature. The inputs ranges should be re-normalized
to have values in the (−1, 1) range. If for each input vector
element, the minimum and maximum values found during
the training phase are given by the vectors vmin

i and vmax
i

(i= 1, . . . , nin), the normalization can be computed as fol-
lows:

vnorm
i =−1+ 2

vi − vmin
i

vmax
i − vmin

i

, ∀i = 1. . .nin. (A1)

The normalized input, together with the first layer
weights (WL1) and bias BL1 are used to compute the first
layer outputs vL1 as follows:

vL1
j = tanh

(
nin∑
i=1

W
ij

L1v
norm
i +B

j

L1

)
, ∀j = 1. . .nL1. (A2)

The output of the second layer is computed from the first
layer outputs, and the second layer weights (WL2) and
bias BL2 as follows:

vL2
=

nL1∑
j=1

W
j

L2v
L1
j +BL2. (A3)

The values of the weights WL1 and WL2 and the bias BL1
and BL2 are determined after the training phase. The exact
values for the operational NRT SM processor can be found
in Muñoz-Sabater et al. (2016). Finally, to obtain the NN
output (vout), the output of the second layer has to be re-
normalized as follows:

vout
= vL2

newMin+
vL2

newMax− v
L2
newMin

vL2
oldMax− v

L2
oldMin

(
vL2
− vL2

oldMin

)
. (A4)

A2 NN output uncertainties

From the definition of Iλφ(t) (Eq. 1), it is possible to compute
the uncertainties from the Tb and SM uncertainties. First,
Eq. (1) can be rewritten as the following:

Iλφ(t)= SM
T min

b
λφ +

[
SM

T max
b
λφ −SM

T min
b
λφ

]
× I1λφ (t), (A5)

where I1λφ (t) is given by

I1λφ (t)=
Tbλφ (t)− T

min
bλφ

T max
bλφ − T

min
bλφ

. (A6)

The uncertainties 1Iλφ(t) and 1I1λφ (t) can be computed
from uncertainties in Tb measurements, in the maximum and
minimum Tb and the associated SM values as follows:

1I 2
λφ(t)=

[
SM

T max
b
λφ −SM

T min
b
λφ

]2(
1I1λφ (t)

)2
+
[
1− I1λφ (t)

]2(
1SM

T min
b
λφ

)2

+
[
I1λφ (t)

]2(
1SM

T max
b
λφ

)2
, (A7)

where 1I1λφ (t) is given by

1I 2
1λφ (t)=

1Tbλφ (t)
2

T 2
Dλφ

+

(
1T max

bλφ

)2

T 2
Dλφ

(
Tmλφ (t)

TDλφ

)2

+

(
1T min

bλφ

)2

T 2
Dλφ

(
−1+

Tmλφ (t)

TDλφ

)2

, (A8)

as a function of the uncertainty of the local instantaneous
measurement 1Tbλφ (t) and the uncertainties of the local ex-
treme Tb values (1T max

bλφ and 1T min
bλφ ).

The uncertainties of the NN output given by Eqs. (A1)–
(A4) can be estimated from the uncertainties in the input
vector elements (1vi) as follows. First the uncertainties of
the normalized input vector can be computed as

1vnorm
i = 2

1vi

vmax
i − vmin

i

, ∀i = 1. . .nin. (A9)

Using those quantities, the uncertainty of the two layer NN
given by Eqs. (A2) and (A3) can be expressed as

(
1vL2

)2
=

nin∑
i=1

(1vnorm
i

)2( nL1∑
j=1

W
j

L2W
ij

L1σ
j

)2
 , (A10)

where σ j is given by the following:

σ j = 1− tanh2

(
nin∑
i=1

W
ij

L1v
norm
i +B

j

L1

)
, ∀j = 1. . .nL1. (A11)

It is worth noting that in the current implementation, the NN
weights are assumed to be constant after training. There ex-
ist some methods to estimate the additional output uncer-
tainty that originates from the NN weight uncertainty that
comes from the uncertainties in the reference data used for
the training (see for instance Aires et al., 2004) but they are
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too complex to be implemented in the SMOS NRT SM oper-
ational processor. In contrast, some uncertainties in the refer-
ence data used for the training have already been taken into

account through 1SM
T min

b
λφ and 1SM

T max
b
λφ in Eq. (A7).

Finally, the uncertainty after the normalization of the out-
put can be written as

1vout
=
vL2

newMax− v
L2
newMin

vL2
oldMax− v

L2
oldMin

1vL2. (A12)

Expressing the output uncertainty as Eq. (A10) implies
that the vector elements vi are independent. However, when
using index I as input as well as the actual Tb measurements,
some elements are not independent. Since the uncertainties in
Eq. (A10) are expressed in quadratic form, Eq. (A10) gives
an upper limit to the output uncertainty.
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