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Abstract. Initial conditions for flows and depths (cross-
sectional areas) throughout a river network are required
for any time-marching (unsteady) solution of the one-
dimensional (1-D) hydrodynamic Saint-Venant equations.
For a river network modeled with several Strahler orders
of tributaries, comprehensive and consistent synoptic data
are typically lacking and synthetic starting conditions are
needed. Because of underlying nonlinearity, poorly defined
or inconsistent initial conditions can lead to convergence
problems and long spin-up times in an unsteady solver.
Two new approaches are defined and demonstrated herein
for computing flows and cross-sectional areas (or depths).
These methods can produce an initial condition data set that
is consistent with modeled landscape runoff and river ge-
ometry boundary conditions at the initial time. These new
methods are (1) the pseudo time-marching method (PTM)
that iterates toward a steady-state initial condition using an
unsteady Saint-Venant solver and (2) the steady-solution
method (SSM) that makes use of graph theory for initial flow
rates and solution of a steady-state 1-D momentum equation
for the channel cross-sectional areas. The PTM is shown to
be adequate for short river reaches but is significantly slower
and has occasional non-convergent behavior for large river
networks. The SSM approach is shown to provide a rapid
solution of consistent initial conditions for both small and
large networks, albeit with the requirement that additional
code must be written rather than applying an existing un-
steady Saint-Venant solver.

1 Introduction

1.1 Motivation

Setting initial conditions for unsteady simulations of the
Saint-Venant equations (SVEs) across large river networks
can be challenging. Every element of the river network must
be given initial values of flow and depth, and these val-
ues should be consistent with the inflow boundary condi-
tions (e.g., from a land surface model) at the starting time to
prevent instabilities. This issue has not been previously ad-
dressed in the literature, arguably because (i) adequate initial
conditions are fairly trivial for small SVE reaches, (ii) hy-
drological models with large river networks often do not use
the full SVE (e.g., Beighley et al., 2009) or use it over a
smaller set of reaches (e.g., Paiva et al., 2012), and (iii) time-
marching models only consider results after spin-up time
is complete (i.e., after the effects of the initial conditions
have been washed out of the system solution), which implies
the initial conditions are entirely irrelevant in analyzing the
model results. However, for SVE solutions of river networks,
the initial conditions can dramatically affect both spin-up
time and convergence. Indeed, in our experience, näive initial
conditions can cause the spin-up time to be longer than the
time-marching period of interest. In extreme cases, this can
result in divergence and complete failure of an SVE solver.
Consistency between the initial conditions and the boundary
conditions appears to be necessary for short spin-up times,
and thus is the focus of this study. Note that the need for
consistency in an SVE model initialization is due to the cou-
pling of nonlinearity and the water surface slope in the mo-
mentum equation, so common reduced-physics models (not
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discussed herein) may not be as sensitive to consistent initial
conditions.

Saint-Venant equation modeling arguably dates from
Preissmann’s seminal work (Preissmann, 1961; Preissmann
and Cunge, 1961), followed by decades of advances in tech-
niques and applications (Cunge, 1974; Ponce et al., 1978;
Cunge et al., 1980; Abbott et al., 1986; Zhao et al., 1996;
Sanders, 2001; Pramanik et al., 2010). These models focused
on hydraulics of short river reaches or main stem rivers that
are easy to initialize for flow and depth. It is only recently that
the solvers for large river networks have become practical
(Hodges, 2013; Liu and Hodges, 2014), and it is with large
networks that initial conditions are problematic. Indeed, ini-
tial conditions and associated spin-up problems have been re-
cently acknowledged and investigated for hydrological mod-
els (e.g., Ajami et al., 2014) but without consideration of a
separate river network model. Work by Seck et al. (2015)
and Rahman and Lu (2015) show that hydrological model
spin-up computational times could be significant and were
dominated by the selected initial hydrological conditions.

Our experience with Saint-Venant river network modeling
is that simple approaches to initial conditions often cause lo-
calized numerical instabilities, slow convergence of the time-
marching numerical solution, and long model spin-up times.
Herein, we investigate the initial condition problem for a
Saint-Venant river network model for a given set of inflows
from a hydrological model.

1.2 Synthetic vs. observed initial conditions

Model spin-up time is completed when the effects of initial
conditions cannot be observed in the model results. Thus, by
definition, the initial conditions cannot affect the unsteady
solution beyond spin-up time. It follows that initial condi-
tions are irrelevant to the quality of the time-marching simu-
lation and are only important in how they affect the spin-up
duration. We can imagine a “perfect” set of initial conditions
with zero spin-up time, which would require initial flows and
depths consistent with (i) the actual unsteady behavior prior
to the model start time and (ii) the model boundary condi-
tions; the latter includes both the bathymetric model for the
river channels and the coupled hydrological model providing
runoff and baseflows. Such perfect initial conditions are prac-
tically unattainable due to the sparsity of synoptic flow/depth
data as well as unavoidable uncertainty and errors in both
bathymetric and hydrological models. Another way to think
of this is that perfect initial conditions also require perfect
boundary conditions (perfect bathymetry and hydrology), or
else some spin-up time is required to wash out inconsisten-
cies. In general, the spin-up time will be affected by how far
the initial conditions are from the theoretical perfect condi-
tions.

The key point is that the exact observed river initial condi-
tions (if such were available throughout a network) will not
eliminate or necessarily reduce spin-up time if the observed

data are inconsistent with the model boundary conditions.
Similarly, interpolations of sparse synoptic data will not be a
priori consistent with the boundary conditions and thus can-
not eliminate spin-up time. Inconsistency is a critical con-
cept: the mismatches between the initial conditions and the
boundary conditions can lead to unrealistic destabilizing im-
pulses in time marching the SVE solution. Such impulses can
require extensive spin-up time to damp their effects. An ex-
treme example is a high runoff rate into an almost dry stream
that can cause a Gibbs phenomenon at a wave front and nega-
tive values for the computed cross-sectional area (Lax, 2006;
Kvočka et al., 2015; Yang et al., 2012). Although several
studies show such numerical discontinuities can be resolved
(Kazolea and Delis, 2013; Caleffi et al., 2003; Liang et al.,
2006), the high computational cost of damping or resolving
is a burden (Kvočka et al., 2015) that seems unnecessary dur-
ing spin-up since it cannot affect the time-marching results.

We argue that the primary goal of initial conditions is pro-
viding consistency with the boundary conditions to allow
smooth, convergent spin-up of an unsteady solver. This task
can be accomplished with synthetic initial conditions that are
independent of observations. The only practical discrimina-
tors between using observed and synthetic initial conditions
are (i) the effort required to prepare the initial condition data
and (ii) the length of spin-up time.

As demonstrated herein, consistent synthetic initial con-
ditions can be readily generated for even large complex net-
works – a task that is daunting for interpolation/extrapolation
of sparse synoptic observations. Indeed, developing consis-
tent synthetic initial conditions only requires the channel ge-
ometry and hydrological model that are used for the SVE
time marching, supplemented by a steady-state SVE solver
(Sect. 2.3). In contrast, interpolation/extrapolation of synop-
tic data requires analysis of the data locations and model ge-
ometry, which is likely to require customization for each river
network.

Unfortunately, we cannot definitively prove our second
discriminator; the wide range of possible hydrological mod-
els, channel geometry models, and synoptic observation sys-
tems makes it impossible to prove that initial conditions
based upon observations will always require longer spin-up
times. However, no one has proposed an approach for in-
terpolation/extrapolation of observed synoptic data that pro-
vides simultaneous consistency with a hydrological model, a
river geometry model, and the SVE. It follows that we are on
firm ground in stating that any existing approach using ob-
served data as SVE initial conditions will result in inconsis-
tencies. Finally, as our work demonstrates that inconsistent
initial conditions cause long spin-up times in SVE models
of sufficiently large river networks, it can be argued that ob-
served data should be deprecated as initial conditions until a
consistent approach is demonstrated and the spin-up can be
shown to be shorter than provided by synthetic initial condi-
tions.
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1.3 Initial condition approaches

Approaches for specifying initial conditions for the SVE can
be grouped into three main categories: (i) a “synoptic start”
applying an interpolated/extrapolated set of sparse observa-
tional data, (ii) a “cold start” with initial flow rates and flow
depths prescribed either as zero (e.g., Chau and Lee, 1991)
or from some analytical values, e.g., mean annual flows and
depths, and (iii) a “steady-state” start, which we describe
herein. The metric for evaluating initial conditions is not how
well they reflect available real-world observations but how
effective they are in efficiently providing a consistent set of
initial conditions.

Based on our discussion above, the first approach (synop-
tic start) is unlikely to be efficient for SVE initial conditions
in a large river network due to inconsistencies between obser-
vations and model boundary conditions as well as inconsis-
tencies caused by interpolating/extrapolating sparse observa-
tions throughout a network. There are no proven approaches
to analyzing consistency and melding observations to hydro-
logical model runoff, so the river network model spin-up will
be subject to random inconsistencies and instabilities that can
delay or prevent convergence.

The second approach, a cold start, provides innumerable
possible ways to create initial conditions. For example, mean
annual flows and depths (e.g., from the NHDPlus data in the
US) can provide a smooth and consistent set of flows and
elevations throughout a network. Although such cold start
initial conditions can be internally consistent, they may be
far from the flows/depths implied by the initial hydrological
forcing. For example, a river network model that is started
with mean annual values would be substantially in error if the
initial hydrological inflows were from the monsoon season.
As a result of inconsistencies between the selected cold start
values and the hydrological inflows, a cold start can require
extensive spin-up time to dilute or wash out the error. Indeed,
the spin-up time dominated the computational time for the
large SVE networks that we previously modeled in Liu and
Hodges (2014) when we used a cold start with mean annual
values. It might be possible to design a cold start approach
that is consistent with the hydrological inflows; however, we
suspect that any such approach is likely to be merely a variant
of the steady-state approach discussed herein.

Herein, we investigate the third approach, steady-state ini-
tial conditions, as a preferred method for initializing a large
river network model. With this idea, a set of consistent ini-
tial conditions is one that satisfies both the t = 0 hydrological
forcing and the steady-state Saint-Venant equations at t = 0.
That is, we know that we cannot match the unsteady SVE at
t = 0 as we cannot perfectly know the time-varying nonlin-
ear effects before the model starts (unless, of course, we run
a model for the prior period, which would be simply time
shifting the initial condition problem). The steady-state ap-
proach has the advantage of providing flows and depths that
are consistent across the entire network with all the boundary

conditions (inflows and channel geometry) as well as consis-
tent with the nonlinear governing equations. These consis-
tencies eliminate destabilizing impulses otherwise caused by
mismatches between the flow/depth in a river reach and the
runoff, so subsequent time marching of the unsteady solu-
tion is smooth. Furthermore, the steady-state solution is the
closest available proxy to the unknown unsteady solution at
t = 0, so this approach should minimize the spin-up time re-
quired to reach an unsteady time march that is independent
of the initial conditions.

1.4 Overview

Herein, we present an efficient approach to establishing a
set of steady-state conditions that provides a consistent and
smooth starting point for time marching an unsteady Saint-
Venant simulation. A full model initialization problem has
two parts: (i) determining a set of flows and water surface
elevations that are consistent steady solutions of the SVE
for starting an unsteady solver and (ii) determining the spin-
up time needed to ensure errors in the initial conditions are
washed out of the unsteady solution. The second problem is
highly dependent on the network characteristics and the par-
ticular flow and boundary conditions during spin-up, so for
brevity, this work deals quantitatively with solving the first
problem and then illustrates the effects on the second prob-
lem.

2 Methods

2.1 Saint-Venant equations

The Saint-Venant equations for temporal (t) evolution of
flow and water surface elevation along one spatial dimen-
sion (x) following a river channel are generally derived us-
ing the hydrostatic and Boussinesq approximations applied
to the incompressible Navier–Stokes and continuity equa-
tions (de Saint-Venant, 1871). Cross-section averaging to ob-
tain the 1-D equations is considered reasonable where cross-
sectional gradients are smaller than along-channel gradients.
However, the equations are widely used even where such as-
sumptions are questionable (e.g., near a bridge with multi-
ple immersed piers), with the effects of significant cross-
section gradients or non-hydrostatic behavior being repre-
sented as empirical energy losses. A number of conserva-
tive and non-conservative equation forms have been used,
with different advantages and disadvantages (Hodges and
Liu, 2014). Herein, we follow Liu and Hodges (2014) in us-
ing cross-sectional area (A) and flow rate (Q) as principle
solution variables of the numerical system and the local wa-
ter depth (h) and friction slope (Sf) as a secondary variables
(i.e., variables that depend on A and Q through auxiliary re-
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lationships). The equation set can be written as

∂A

∂t
+
∂Q

∂x
= ql (1)

∂Q

∂t
+
∂

∂x

(
Q2

A

)
+ gA

∂h

∂x
= gA(S0− Sf), (2)

where boundary conditions are the local channel bottom
slope (S0) and the local lateral net inflow (ql), the latter rep-
resenting both inflows from the landscape and outflows to
groundwater. Auxiliary equations for h= h(A) are derived
from river cross-section data. The Chezy–Manning equation
can be used to provide the friction slope as

ASf = ñ
2Q2F, (3)

where ñ is the standard Manning’s n roughness coefficient
and F is a convenient equivalent friction geometry (Liu and
Hodges, 2014), which subsumes the conventional hydraulic
radius (Rh) using a definition of

F =
1

AR
4/3
h

=

(
P 4

A7

)1/3

, (4)

where P = P(A) is the wetted perimeter and Rh = AP
−1.

Note that Eq. (4) fixes a typographical error in Eq. (10) of Liu
and Hodges (2014) and Eq. (3.55) of Hodges and Liu (2014).
Required boundary conditions for the unsteady Saint-Venant
solution are ql(t) for each stream segment, Qbc(t) at the
furthest upstream node (headwater) in river branches with
a Strahler order of 1, and h with an h(A) relationship at
the downstream boundary (assumed subcritical). The time-
marching unsteady solution requires initial conditions for
(Q,A), which can also be given as (Q,h) with A= A(h).
Implementation details of the unsteady solver used herein
can be found in Liu and Hodges (2014) and Liu (2014).

2.2 Pseudo time-marching approach

The most obvious approach for finding steady-state initial
conditions is to time march an unsteady solver until a steady
state is achieved. That is, we apply the unsteady solver
with time-invariant boundary conditions of ql(t)= ql(0) and
Qbc(t)=Qbc(0) for t0 ≤ t < 0 where t0 is our pseudo time
start and t = 0 is the time for which we want a set of initial
conditions. We call this the pseudo time-marching method
(PTM). The initial condition for PTM is a set of Q(t0) and
A(t0) for each stream segment (e.g., some cold start method
as described above). At first glance, the logic here might
seem circular: we are trying to solve for initial condition
set {Q(0),A(0)} of the unsteady model and PTM requires
specifying {Q(t0),A(t0)}. This begs the question as to why
PTM should be used rather than simply applying a cold start
of the unsteady solver withQ(0)=Q(t0) and A(0)= A(t0).
The answer is that the key difference between the PTM us-
ing Q(t0) and A(t0) and a cold start of the unsteady solver

with the same values is that the former has time-invariant
boundary conditions while the latter’s are time varying. Thus,
an unsteady solver with time-varying boundary conditions is
trying to take an inconsistent starting condition and converge
it to a moving target. In contrast, the PTM takes the incon-
sistent starting conditions and attempts to converge them to
a time-invariant target, which is more likely to be successful.
However, the PTM does not a priori ensure consistency be-
tween the Q(t0) and A(t0) starting conditions and the t = 0
boundary conditions. It follows that PTM performance can
be subject to the same type of problems as a cold start de-
pending on the choice of Q(t0) and A(t0) and the skill of the
modeler in their selection. In Sect. 4.5, we show that PTM
typically has problems for large river systems with complex
geometry because the complexity of selecting a reasonable
set of {Q(t0),A(t0)} to ensure convergence.

The PTM is outlined as Algorithm 1. A user-selected pa-
rameter (ε) is used as a threshold tolerance value for declar-
ing convergence to the steady state. A typical choice of the
tolerance ε is the square root of the computer hardware tol-
erance. For example, on a 64-bit Intel architecture, the hard-
ware tolerance for a double precision floating point floating
number is 2.2204× 10−16, which means a good choice of ε
is 1.4901× 10−8. As a practical matter, ε of 10−6 or even
10−4 is likely to be sufficient for initial conditions; that is,
as further spin-up time is still required to dilute initial con-
dition errors, the convergence needs only to be sufficient for
consistency across the network. The method can use a time-
step size that is either constant or varying, with an automatic
reduction in step size when convergence is not achieved in
a given time step (Liu and Hodges, 2014). To avoid infinite
runtimes for non-convergent behavior (e.g., due to instabili-
ties developed with inconsistent starting conditions), the so-
lution is terminated (failure to converge) in Algorithm 1 after
the user-selected Nmax iterations. The starting conditions for
{Q(t0),A(t0)} are discussed in Appendix A.

2.3 Steady-solution method

The PTM approach (above) results in a steady solution of
the unsteady Saint-Venant equations that satisfies both mo-
mentum and continuity for time-invariant ql(0) and Qbc(0)
boundary conditions in the unsteady solver. However, we can
achieve a similar effect more directly by writing a steady-
state version of the Saint-Venant equations as

∂Q

∂x
= ql (5)

∂

∂x

(
Q2

A

)
+ gA

∂h

∂x
= gA(S0− Sf). (6)

A key point, implied by Eq. (5), is that the spatial gradient
of steady-stateQ over a stream segment is entirely due to the
lateral inflow (ql) without any influence of A. It follows that
for steady ql and Qbc boundary conditions, the flow in the
ith river segment (Qi) that has Strahler order Si must be the
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Algorithm 1 Pseudo time-marching method

1: procedure PSEUDOTIMEMARCHING (Aini, Qini, ε, Nmax)
{Aini,Qini: initial guesses ofA andQ; ε: tolerance;Nmax: max-
imal iteration number}

2: A← Aini
3: Q←Qini
4: i← 0
5: t0← 0
6: for i = 1 to Nmax do
7: Solve SVE at time point ti using unsteady method
8: Compute error: e←

∣∣Qt −Qt−1
∣∣+ ∣∣At −At−1

∣∣
9: if e < ε then

10: return Success
11: end if
12: ti+1← ti +1ti
13: i← i+ 1
14: end for
15: return Failure
16: end procedure

sum of all the Qj for all the j connected reaches of Strahler
order Sj < Si . That is, the steady flow at any point is simply
the sum of all the connected upstream t = 0 boundary con-
ditions. The corresponding A (and hence depth h) can then
be computed with a numerical partial differential equation
(PDE) solution of Eq. (6) for known Q values. Note that for
large river networks, the natural downstream boundary con-
dition is subcritical, which requires specification of h and the
corresponding A as the starting point. We call this a “steady-
solution method” (SSM). To look at this from another view-
point, if A is uniform, then Eq. (6) devolves the fundamental
equation of gradually varying flow, dE/dx = S0− Sf, where
E is the specific energy. Thus, the SSM corresponds to using
the steady-state flow based on all boundary conditions and
solving for surface elevations with a gradually varying flow
solution for non-uniform cross sections.

To efficiently compute the conservative initial Q through-
out the river network, it is useful to apply graph theory as
discussed in Hodges and Liu (2014). A river network can
be classified as a “direct acyclic graph” (DAG) as a river
may split upstream or downstream at a junction, but the flow
cannot loop back to a starting point. The connectivity of a
DAG can be efficiently computed by applying existing graph
methods, such as depth-first search (DFS) or breadth-first
search (BFS), which provide simple and efficient approaches
to computing Q(0) for each stream segment over an entire
network. Note that these methods were designed and named
by computer scientists, so “depth” in DFS and “breadth”
in BFS do not refer to hydraulics or river geometry but in-
stead are jargon referring to the graph network characteris-
tics. For simplicity in the present work, we confine ourselves
to the subset of DAG systems that are simply connected trees,
i.e., where there is never more than a single downstream
reach from any junction (as shown in Fig. 1) so that there are

Figure 1. Propagation of flow rate Q at a junction.

no uncertainties in flow directions or magnitudes. Extending
the method to geometry with multiple downstream reaches
(e.g., braiding, canals, deltas) requires additional rules for
downstream splitting of flows that are beyond the scope of
the present work.

A simple DFS traversal (Cormen et al., 2001) for Q is
shown in Algorithm 2. From each headwater node (Qj ),
the inflow boundary condition is propagated downstream by
adding the value to the downstream node and including any
lateral ql from the upstream reach (stored in Qk). For river
networks, the DFS traversal is highly efficient and requires
negligible computational time for river networks of 105 com-
putational nodes (e.g., Liu and Hodges, 2014). Based on our
experience, the DFS computational costs should be essen-
tially trivial for even continental-scale systems of 107 nodes.

Algorithm 2 DFS traversal for Q

1: procedure QTRAVERSAL
2: for all i do {initialization}
3: Qi← 0
4: end for
5: for each headwater node j with BC Qj (t) do
6: Qj ←Qj (t = 0)
7: k← downstream node of node j
8: while k is not empty do
9: Qk←Qk +Qj (t = 0)

10: k← downstream node of node k
11: end while
12: end for
13: return
14: end procedure

After the steady Qi for each stream segment is computed,
Eq. (6) can be solved for the correspondingAi . We discretize
this equation with the Preissmann scheme, similar to the ap-
proach used for the unsteady Saint-Venant equation in Liu
and Hodges (2014). The value and derivative for any term
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are approximated as

f (x, t)'
1
2
(fj+1+ fj ) (7)

∂

∂x
f (x, t)'

1
1x

(fj+1− fj ), (8)

where subscripts indicate a node in the discrete system. Us-
ing j + 1/2 to represent geometric data that are logically be-
tween nodes (i.e., roughness ñ and S0), Eq. (6) becomes

2
1x

[(
Qj+1

)2
Aj+1

−

(
Qj

)2
Aj

]
+

g

1x

(
Aj+1+Aj

)(
hj+1−hj

)
− g

[
Aj+1+Aj

]
S0(j+1/2)

+ gñ2
j+1/2

[(
Qj+1

)2
Fj+1+

(
Qj

)2
Fj

]
= 0. (9)

These nonlinear equations are similar to the unsteady dis-
crete equations, except that Q for each computational node
is known from the DFS traversal. Newton’s method is used
to solve this system for A without linearization, similar
to the approach in Liu and Hodges (2014). The SSM re-
quires a starting guess for A to solve the steady-state prob-
lem. Herein, we use a bisection method with the Chezy–
Manning equation for normal depth conditions (discussed in
Appendix A). The overall algorithm for SSM is illustrated in
Algorithm 3.

Algorithm 3 Steady-solution method

1: procedure STEADYSOULTION
2: Call QTraversal()
3: for all all node j in network do {Initial guess of A}
4: Call bisection routine BiSection(Qj )
5: end for
6: Solve steady version of dynamic eqn in Eq. (9)
7: return
8: end procedure

3 Computational Tests

3.1 Overview

The performance of PTM and SSM are examined with a
series of test cases ranging from simple uniform cross sec-
tions over short river reaches to 15 000 km of a real river net-
work. To demonstrate the robustness and performance of the
SSM, we conduct tests from three perspectives: (i) effects
of different cross-section geometries; (ii) scalability with an
increasing number of computational nodes; and (iii) real-
world river networks. Two different computers are used: the
cross-section and scalability tests are run on a computer with
2.00 GHz Intel Xeon D-1540 CPUs and 64 GB of RAM,
while the large network tests are run on a computer with
2.52 GHz Intel i7-870 CPUs and 8 GB of RAM. In both

cases, Ubuntu Linux is the operating system and GNU C++
compiler is used.

3.2 Effects of cross-section geometry

Test cases for cross-section geometry effects were conducted
for synthetic geometry of simple river reaches without tribu-
taries. Cases included rectangular, parabolic, trapezoidal, and
non-uniform cross sections, with a range of channel lengths,
widths, and computational nodes, as provided in Table 1.

3.3 Scalability

To demonstrate the scalability as the number of computa-
tional nodes increases, we use the geometry and flow con-
ditions of Case 4 in Table 1 and generate synthetic test cases
with increasing numbers of nodes from a few hundred to over
a million in the set: { 560, 2800, 5600, 11 200, 22 400, 44 800,
89 600, 179 200, 358 400, 716 800, 1 433 600 }.

3.4 Large river networks

To examine the robustness of PTM and SSM for more realis-
tic conditions over both small and large scales, we use a sec-
tion of Waller Creek (Texas, USA) as well as the entire water-
shed of the San Antonio and Guadalupe river basins (Texas,
USA). The former is a small urban watershed for which
dense cross-section survey data are available, whereas the
latter is a large river basin that has been previously modeled
with the RAPID Muskingum routing model (David et al.,
2011) and the SPRNT Saint-Venant model (Liu and Hodges,
2014).

The Waller Creek study includes two stream reaches and
the catchment area illustrated in Fig. 2. The total stream
length is 11.6 km, which drains an area of 14.3 km2. The lay-
out of Waller Creek is shown in Fig. 2a, and parts of the
bathymetry surveyed data from City of Austin are shown in
Fig. 2b for clarity. Two different model geometries were con-
sidered, which are designated as WCA and WCB. For WCA,
the stream is discretized by 373 computational nodes based
on separation of the surveyed cross sections. WCA neglects
the minor tributary of Waller Creek and includes the full
complexity of the surveyed cross sections shown in Fig. 2b.
In contrast, WCB includes both tributaries but uses wider
computational node separation with only 30 of the 373 sur-
veyed cross sections.

To test the initial condition approach for a large river net-
work, we use the San Antonio and Guadalupe river basins
(Fig. 3), which have a combined total stream length of
12 728 km (excluding some minor first-order segments). The
model herein uses 63 777 computational nodes, 59 594 seg-
ments, and 2643 junctions but is otherwise similar to the
model setup with 1.3× 105 nodes used in Liu and Hodges
(2014). Although the unsteady SPRNT model is typically
run by coupling with a land surface model for headwater and
lateral inflows, for the present steady-state tests we used a
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Figure 2. (a) Waller Creek and catchment in Austin (Texas, USA). (b) Surveyed cross sections of main channel for Waller Creek (Texas).
Only 149 of 327 cross sections are shown for clarity. Elevations are relative to mean sea level (data courtesy of the City of Austin).

Table 1. Cross-section geometry test cases. WB and Ssw represent bottom width and sidewall slope, respectively; f represents the focal
length of parabolic shape.

Channel Number of
Test length computational Cross-section Cross-section
case (km) nodes shape type shape detail

Case 1 3.1 78 Uniform rectangular WB = 20 m
Case 2 0.2 6 Uniform trapezoidal WB = 1 m; Ssw = 0.5
Case 3 0.3 6 Uniform trapezoidal WB = 0.1 m; Ssw = 1.5
Case 4 5.6 71 Uniform trapezoidal WB = 10 m; Ssw = 0.5
Case 5 10 167 Uniform quasi-parabolic f = 37.8
Case 6 10 1664 Surveyed bathymetry Unsymmetrical cross section
Case 7 122 31 Surveyed bathymetry Unsymmetrical cross section

synthetic inflow data set for the headwater inflows. The syn-
thetic flow at each headwater stream was computed based on
a downstream peak flow rate distributed uniformly across all
the headwater reaches. We used the peak flow rate recorded
on the main stem of Guadalupe River at Victoria (Texas) on
19 January 2010 by USGS gauge 08176500. As this gauge
does not include the San Antonio River flows, we divided the
peak flow rate (453 m3 s−1) by the total number of headwater
streams in the Guadalupe River (815) to get a single inflow
value that was applied to each headwater reach (0.55 m3 s−1).
The same flow rate was used for the 725 headwater reaches of
the San Antonio River network. This approach ensures that
there is flow in every branch in the river network.

As is often the case in large river networks, comprehen-
sive cross-section geometry data were not available for the
San Antonio and Guadalupe rivers. Indeed, Hodges (2013)
noted data availability and our ability to effectively use syn-

thetic geometry as one of seven fundamental challenges to
continental river dynamics modeling.

Because the geometry affects both PTM and SSM solu-
tions, we tested four different estimation approaches for syn-
thesizing geometry (Cases A, B, C, and D). Case A uses
synthetic trapezoidal cross sections using the approach ap-
plied in Liu and Hodges (2014) based on Western et al.
(1997). In this method, trapezoidal widths (W ) are computed
from mean annual flows (Qm) from the NHDPlus data set
as W = αQ0.5

m with α = 1.5. For the side slope of the trape-
zoidal cross section, an identical sidewall slope (45◦) is used
throughout the river network. Case B channels were similar
to Case A but included some minor changes to Manning’s
n, inflow boundary conditions, and channel bottom slopes
in reaches where instabilities occurred, which was neces-
sary to provide convergence for the PTM (see Sect. 4.5).
Case C channels were based on work of Santibanez (2015),
who used USGS streamflow measurements in the San Anto-
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Figure 3. San Antonio and Guadalupe river network from an NHDPlus V2 flowline.

nio and Guadalupe river network along with the at-a-station
hydraulic geometry approach (Rhodes, 1977) to find the
best trapezoidal cross-section approximation for the drainage
area. Using this approach, the bed width (b0) is an exponen-
tial function of cumulative drainage area (AD) as

b0 = γA
λ
D, (10)

where b0 is meters, AD is km2, and the coefficients are
γ = 12.59 and λ= 0.382. The Santibanez (2015) approach
provides reasonable values for trapezoidal channel sidewall
slopes over most of the basin but fails in many of the first-
order streams with small drainage areas (< 25 km2) where
the computed sidewall slopes are near zero. For simplicity
in the present test cases, a uniform value of 45◦ is used for
the sidewall slopes throughout the river network. Case D
uses channel bathymetry data generated from Zheng (2016),
which use a height above nearest drainage (HAND) anal-
ysis (Nobre et al., 2011) applied to the National Elevation
Dataset (NED) to provide an automated approach for esti-
mating trapezoid-based composite cross sections.

4 Results

4.1 Comparison metrics

The overall algorithm efficiency is evaluated by the number
of Newton iterations required for convergence to steady state.
The number of Newton iterations reflects the difficulty in
converging the nonlinear solution and is proportional to the
simulation runtime. As this metric is independent of com-
puter architecture, it provides a universal measure of algo-
rithm performance. For SSM, we use the number of iterations
to converge the area (A) solution of Eq. (6), which is the
dominant computational cost (i.e., the non-iterative graph-
traversal solution for Q is negligible in comparison). For
PTM, we use the cumulative sum of Newton iterations for
the (Q,A) solution over all pseudo time steps. Where con-
verged solutions of PTM and SSM both exist, comparisons
(not shown) indicate the resulting (Q,A) steady-state results
are identical within the convergence tolerance (ε = 10−6).

4.2 Effects of cross-section geometry

Table 2 provides a comparison of Newton iterations for the
test cases of Table 1 for single reaches with different channel
cross sections. The SSM converges quickly across all cases,
whereas the performance of the PTM is always substantially
slower than that of the SSM. The performance of the PTM
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Table 2. Newton iterations required to achieve convergence for
benchmark geometry test cases. The converged results are identi-
cal for both methods.

Relative
Test PTM SSM speed-up
case iterations iterations of SSM

Case 1 327 6 54×
Case 2 73 4 18×
Case 3 136 8 17×
Case 4 773 9 85×
Case 5 8634 76 113×
Case 6 13 765 4 3441×
Case 7 91 234 30 3041×

appears somewhat erratic, which is likely because the overall
number of pseudo time steps depends on how far the starting
guess is from the converged answer and the size of the time
step used in the PTM pseudo time march.

By comparing the geometric data from Table 1 with the
results in Table 2, it can be seen that the largest discrepan-
cies between PTM and SSM performance (Cases 6, 7) are
with non-uniform cross sections. In both of these, the SSM
performsO(103) times better, compared toO(10) toO(102)

improvements for simple geometry cases. This result is con-
sistent with the idea that the performance of PTM depends
on how close the starting guess for {Q,A} is to the steady-
state solution. With non-uniform cross-section geometry, the
starting guess is generally quite far from the steady-state con-
dition, as it is difficult to a priori estimate gradients of the
water surface that match the nonlinear acceleration associ-
ated with cross-section variability. In contrast, the benchmark
tests with simple cross-section geometry (Cases 1–5) show
more modest speed-up by SSM, which is consistent with the
steady-state solution for PTM with simple geometry being
closer to the starting guess. For short reaches with simple ge-
ometry and only a few computational nodes (Cases 2, 3), the
speed-up by SSM is essentially irrelevant.

4.3 Scalability

Computing initial conditions using models with varying
numbers of computational nodes for Case 4 in Table 1 pro-
vides the speed-up results shown in Fig. 4. These tests use
simple trapezoidal cross sections and, consistent with the re-
sults above, the speed-up advantage of the SSM is relatively
modest with less than 103 nodes. However, beyond this point,
the effective speed-up with SSM is quite dramatic. It appears
that the SSM method becomes more effective than PTM both
with increasing complexity of the cross-sectional geometry
and the increasing number of computational nodes.
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Figure 4. Speed-up multiplier of SSM compared to PTM for Case 4
as a function of the number of computational nodes.

4.4 Waller Creek test cases

The results of initial condition convergence for two Waller
Creek simulations are shown in Table 3. The SSM method
dramatically reduces the total number of iterations to con-
vergence, which is also reflected in reducing the computer
runtime by 99 and 92 % for WCA and WCB, respectively.
Although the absolute runtime for this small system is triv-
ial for either PTM or SSM, the disparity provides insight into
the performance that is confirmed with the more complicated
river network (discussed below).

4.5 San Antonio and Guadalupe river basins

The results of the full river network computations are pro-
vided in Table 4, which show the SSM was successful and
used a relatively small number of Newton iterations despite
the complexity of the system. Although results in Sect. 4.2
and Sect. 4.4 indicate that PTM method is acceptable for
small systems, results for large-scale river network simula-
tions are less promising. In the San Antonio and Guadalupe
river network configurations, three out of four PTM solutions
failed; that is, the method diverged from any selected starting
condition and finally caused convergence failure. Configura-
tions A, C, and D all showed evidence of numerical instabil-
ities leading to divergence. For example, configuration D in
PTM method failed at convergence after 497 iterations; the
maximum L2 convergence norm of the matrix reached up to
1.51e235, which is unquestionably divergent. Our inability to
converge PTM with any A, C, or D cases led to development
of the ad hoc B setup that provided the only PTM solution on
the full river network. To obtain the B configuration, we iden-
tified reaches where instabilities developed and made minor
ad hoc adjustments for Manning’s n, inflow boundary con-
ditions, and channel bottom slopes until the model showed
reasonable convergence behavior (see below). Note that the
modeler’s time to tune the system for the PTM method to
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Table 3. Total Newton’s iterations required to achieve convergence of the Waller Creek test case.

Pseudo time-marching Steady-solution Relative PTM SSM
Configuration iterations (PTM) iterations (SSM) speed-up of SSM runtime runtime

WCA 2900 23 130× 1.570 s 0.011 s
WCB 890 13 70× 0.037 s 0.003 s

Figure 5. Convergence of the L2 norm between consecutive pseudo
time-marching solutions for the PTM with configuration B of the
San Antonio and Guadalupe river network. Note the above figure
uses the number of time-marching steps as compared to the larger
number of Newton iterations provided in Table 4.

successfully converge is not included in the comparisons of
Table 4.

The convergence behavior of the PTM for configuration B
is shown in Fig. 5. It can be seen that for several hundred
time-marching steps the solution was oscillating rather dra-
matically but eventually settled down to a slow, smooth be-
havior. We believe this is evidence of the PTM trying to
overcome inconsistencies between the {Q(t0),A(t0)} start-
ing conditions and the boundary conditions in the network.
Note that PTM for B was not converged to the same ε = 10−6

tolerance used for SSM. Instead, the solution was manually
terminated after more than 9 h, when the convergence norm
reached 1.6×10−4 and was sufficiently smooth so that it was
clear that the method would eventually converge.

5 Discussion

5.1 Effects on spin-up

As alluded to in the introduction, obtaining an effective
model initial condition is only one step in the initialization

of an unsteady model. A second step is understanding at
what time the model results are independent of any errors
or inconsistencies in the initial conditions – i.e., the spin-up
time. Some model spin-up time is generally unavoidable as
we never have exactly the correct spatially distributed ini-
tial conditions that are exactly consistent with spatially dis-
tributed boundary conditions. In effect, eliminating spin-up
time requires a set of initial conditions that are not only con-
sistent with the boundary conditions at t = 0 but also con-
sistent with the boundary conditions for tm < t < 0, where
tm represents the system “memory” (or the time interval to
wash out a transient impulse).

As an illustration of the scale of the spin-up problem
compared to the initial condition problem, we have run the
SPRNT unsteady SVE model (Liu and Hodges, 2014) for
the San Antonio and Guadalupe river network using over
30 000 data points of unsteady lateral inflows for 14 days in
January 2010. These boundary condition data were gener-
ated from the North American Land Data Assimilation Sys-
tem (NLDAS). The initial conditions were generated using
SSM, as described above. The initial conditions were then
perturbed by ±20% in every first-order reach, which pro-
vides two slightly different initial condition data sets to com-
pare to the baseline. In Fig. 6, the time-marching results for
the perturbed and baseline initial condition cases reach the
same state throughout the network (0.001% threshold value)
at 152 and 154 h of simulation time, respectively. Thus, ap-
proximately 160 h represents a conservative estimate of the
expected time for errors in first-order streams to be diluted
in the higher-order (larger) river branches. Note that it only
takes 3.8 s of CPU time to compute initial conditions using
SSM and an additional 5 min of CPU time to compute the
time marching during the spin-up interval with the SPRNT
unsteady model. This is 2 orders of magnitude faster than
the 9 h or more of CPU time required just to compute initial
conditions using PTM for the same system.

5.2 Model performance

In general, the PTM performed poorly except on very sim-
ple systems. As the river network complexity increases, the
PTM changes from being somewhat slower than SSM to be-
ing non-convergent. Indeed, the PTM has only one advantage
over the SSM in providing initial conditions to an unsteady
SVE solver: specifically, no new code is needed as PTM uses
the same unsteady SVE code. However, using PTM for large
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Table 4. Total Newton’s iterations required to achieve convergence for four configurations of the San Antonio and Guadalupe river network.

PTM Newton SSM Newton Relative PTM SSM
Configuration iterations iterations speed-up of SSM runtime∗ runtime

A convergence failure 61 – – 3 s
B 192 527 51 > 3775× 9 h 5 min 8 s 3 s
C convergence failure 29 – – 6 s
D convergence failure 46 – – 14 s

∗ The PTM method was terminated after the L2 convergence norm reached 1.6× 10−4, whereas the SSM was converged to the
predefined tolerance of 10−6.
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Figure 6. Spin-up for the San Antonio and Guadalupe river network
with the SPRNT unsteady SVE model initialized using the SSM
approach. The positive and negative 20 % perturbations are for the
Q initial conditions in first-order reaches.

systems requires a frustrating trial and error approach to tun-
ing the system to obtain convergence. In contrast, the SSM
provides a rapid solution to the initial condition problem
because Q is computed from simple graph traversal (once
through the network), and the subsequent computation of A
is “local” (in the sense there is no coupling between distant
computational nodes). Note that in contrast to PTM, the SSM
does not require the modeler to select a set of starting con-
ditions; i.e., the SSM starting condition (Q) is defined solely
by the t = 0 boundary conditions. Thus, different modelers
will produce exactly the same Q(0) and A(0) with the same
number of iterations when using the SSM on identical ge-
ometry and boundary conditions. This same cannot be said
for PTM as modelers must select their {Q(t0),A(t0)} start-
ing condition and may need to resort to custom model tuning
to obtain convergence.

Herein, we only tested two methods for initial conditions,
both based on finding the steady-state {Q,A} that are consis-
tent with the boundary conditions. However, we can also ar-
gue that the cold start and synoptic start (see Sect. 1.3) would
likely perform as bad or worse than PTM. That the cold start

would perform poorly follows from the fact that it has the ex-
act same problem as the PTM (converging over time from in-
consistent starting data) but increases the difficulty by trying
to converge to the unsteady boundary conditions. A cold start
effectively turns the initial condition problem into a spin-up
problem. For a cold start model performing similarly to the
PTM for the San Antonio and Guadalupe river network, we
can expect spin-up to require more than 104 time steps of the
unsteady solver.

Although it is possible that a synoptic start could per-
form better than PTM or a cold start, it seems likely that any
approach to interpolating/extrapolating sparse observational
data across a larger river network will necessarily result in
inconsistencies between the initial {Q,A} and the boundary
conditions. If such inconsistencies result in model instabil-
ities (a difficult thing to predict), the overall model spin-up
time could be extensive. The key problem for the synop-
tic start is that it requires judgment as to how to best in-
terpolate/extrapolate observational data for initial conditions,
which is contrasted to the SSM approach of simply using the
actual Q(0) boundary conditions and the steady solver with-
out any further choices by the modeler.

Note that the poor performance of the PTM cannot be at-
tributed to inefficiencies in the unsteady solver. As discussed
in Sect. 5.1, the unsteady solver computed 150 h of unsteady
simulation from the SSM about 5 or 1800× faster than real
time. This implies that the unsteady solver computed 114 min
of real-world unsteady flows in the 3.8 s required for the
SSM to compute the steady-state initial condition. Thus, the
SPRNT unsteady solver is quite efficient – except when given
an inconsistent set of initial and boundary conditions as in the
PTM solution.

5.3 Limitations

For simplicity, the SSM algorithms presented herein are for
common river networks with only a single reach downstream
of each junction. Such tree networks are a subset of the more
general DAG river networks. Extension to more complex
DAG geometry requires the definition of splitting rules to
uniquely define partitioning of Q where the flow splits into
multiple downstream branches. Search algorithms for more
complicated DAG forms are available in the graph theory lit-
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erature (e.g., Cormen et al., 2001) and could be readily ex-
tended to the SSM.

Fundamental to the SSM approach is the presumption that
there are no places of net flow accumulation or loss through-
out the network. All reservoirs and hydraulic structures are
treated as pass through so that all the upstream flow is propa-
gated through the downstream reaches. However, if there are
known locations of accumulation or loss, the river network
could be divided into subnetworks with separate SSM solu-
tions. For example, upstream of a reservoir an SSM solution
can be used to obtain the inflow to the reservoir, which can be
used with operating information from the reservoir to provide
the correct outflow Q for use in the SSM solution for down-
stream reaches. Hydraulic structures that affect h (or dh/dx)
as a function of Q can be readily included in the SSM. To
do so merely requires changing the momentum equation in
a reach to model the physics of the structure (as is similarly
done in unsteady SVE models).

6 Conclusions

It is demonstrated that inconsistencies between initial con-
ditions and boundary conditions for a large river network
solver of the Saint-Venant equations can lead to long spin-up
times or solution divergence. We note that synthetic initial
conditions are preferred over observed synoptic initial con-
ditions due to the ability of the former to provide smooth
and consistent spin-up. Two methods to compute synthetic
initial conditions for flow (Q) and cross-sectional area (A)
for an unsteady Saint-Venant river network model have been
presented. Both approaches use the steady-state solution for
t = 0, which provides initial conditions that are smooth and
globally consistent with the boundary conditions for the
model start time. The PTM is likely similar to undocumented
approaches previously used; i.e., application of an unsteady
model with constant boundary conditions to achieve a steady
solution consistent with initial land surface inflows. For large
river networks, the PTM method is slow and inconsistent,
arguably depending on the quality of the first guesses for
Q and A and the size of the time step required for a sta-
ble pseudo time march. A new SSM is developed to address
these issues. The SSM computes the initial condition Q in
each reach from the inflow boundary conditions of the en-
tire network at t = 0 by applying a mass-conservative graph
traversal technique. The initial condition A in each reach is
found from the solution of the steady-state 1-D momentum
equation with known Q. The first-guess problem for A is
solved as a normal-flow problem with the Chezy–Manning
equation and the Q from graph traversal. Although SSM re-
quires writing an additional numerical solver rather than re-
lying on an existing unsteady solver (as used in PTM) our
numerical experiments show that SSM is more robust and
consistently faster than PTM. The code for both initial con-
dition solvers is publicly available at GitHub (Liu, 2014).

Data availability. Cross-section geometry test cases can be found
in the open-source repository mentioned in Liu (2014). Test cases
and files for scalability, Waller Creek, San Antonio and Guadalupe
River network are uploaded to a public repository under Texas
ScholarWorks (http://hdl.handle.net/2152/61757).
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Appendix A: Starting conditions

PTM requires starting conditions (or a first guess) of
{Q(t0),A(t0)} for unsteady solution of Eqs. (1) and (2),
whereas SSM needs a first guess only for A in the solution
of Eq. (6). As the Q solution by the graph traversal method
for Eq. (5) does not require any starting conditions, it fol-
lows that for the PTM the best choice for Q(t0) is the same
Q developed by the simple graph traversal approach used for
SSM (i.e., Algorithm 2). To obtain starting conditions for A
in SSM or A(t0) in PTM, a reasonable guess is the A asso-
ciated with the “normal depth”, denoted An for the starting
Q. The normal depth is obtained from the Chezy–Manning
equation solved for normal flow conditions, i.e.,

Q=
1
ñ
AnR

2/3
h S

1/2
0 . (A1)

The hydraulic radius at normal depth requires the area
at normal depth and the wetted perimeter at normal depth,
Rh(n) = An/Pn, which implies Chezy–Manning can be writ-
ten as

An =

(
ñQ

S
1/2
0

)3/5

P
2/5
n . (A2)

Thus, an initial guess forA can be computed for knownQ,
ñ, and S0, where P = P(A) is a known piece-wise continu-
ous function based on river bathymetric data. Since P(A) is
a nonlinear function, Eq. (A2) must be solved with a non-
linear solution method. A simple bi-section method can be
used following Algorithm 4 with the residual function r(A)
defined as

r(A)=

(
ñQ

S
1/2
0

)3/5

P(A)2/5−A= 0. (A3)

Note that failure to converge for Algorithm 4 is not nec-
essarily fatal; unconverged results are likely to be adequate
as they are simply the initial guess for iterative solution by
PTM or SSM. As a further simplification, it seems likely that
the P(A) in Eq. (A2) could be approximated using a simple
rectangular cross section, P(A)=W+2A/W , where known
channel widths (W ) are used. This simplification is valuable
in continental-scale river network simulations, where ade-
quate river geometric data throughout a network cannot be
guaranteed (Hodges, 2013).

Algorithm 4 Bi-section method

1: procedure BiSection Q, n,S0,Nmax, ε {ε: tolerance}
2: Au← 0.01 {Search for upper bound}
3: repeat
4: Au← 2Au
5: Evaluate r(A) in Eq. (A3)
6: unitl r > 0
7: Al← 0
8: for i = 1 to Nmax do {Bisection method}
9: rl← r(Al)

10: ru← r(Au)

11: Am← (Au+Al)/2
12: if |ru− rl|< ε then
13: return Am
14: else
15: rm← r(Am)
16: if rm > 0 then
17: Au← Am
18: else
19: Al← Am
20: end if
21: end if
22: end for
23: return Am
24: end procedure

Notation
A Cross-sectional area (m2)
b0 Trapezoidal channel bed width (m)
b1 Trapezoidal channel sidewall slope
DA Drainage area (mile2)
g Gravitational acceleration (ms−2)
f Generic function
F Equivalent friction geometry (m−10/3)
h Depth (m)
ñ Manning’s roughness (m−1/3 s)
P Wetted perimeter (m)
Q Volumetric flow rate (m3 s−1)
ql Flow rate per unit length through

channel sides (m2 s−1)
r Residual function
Rh Hydraulic radius (m)
S0 Channel bottom slope
Sf Channel friction slope
S Strahler order
t Time (s)
W Channel width (m)
x Along-channel spatial coordinate
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