Hydrol. Earth Syst. Sci., 21, 4803–4823, 2017 https://doi.org/10.5194/hess-21-4803-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.





# Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater

 $Rui\ Ma^{1,2}, Ziyong\ Sun^{1,2}, Yalu\ Hu^2, Qixin\ Chang^2, Shuo\ Wang^2, Wenle\ Xing^2, and\ Mengyan\ Ge^2$ 

<sup>1</sup>Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan, 430074, China

Correspondence to: Rui Ma (rma@cug.edu.cn) and Ziyong Sun (ziyong.sun@cug.edu.cn)

Received: 5 January 2017 – Discussion started: 15 February 2017

Revised: 29 May 2017 - Accepted: 7 August 2017 - Published: 27 September 2017

**Abstract.** The roles of groundwater flow in the hydrological cycle within the alpine area characterized by permafrost and/or seasonal frost are poorly known. This study explored the role of permafrost in controlling groundwater flow and the hydrological connections between glaciers in high mountains and rivers in the low piedmont plain with respect to hydraulic head, temperature, geochemical and isotopic data, at a representative catchment in the headwater region of the Heihe River, northeastern Qinghai-Tibet Plateau. The results show that the groundwater in the high mountains mainly occurred as suprapermafrost groundwater, while in the moraine and fluvioglacial deposits on the planation surfaces of higher hills, suprapermafrost, intrapermafrost and subpermafrost groundwater cooccurred. Glacier and snow meltwaters were transported from the high mountains to the plain through stream channels, slope surfaces, and supraand subpermafrost aquifers. Groundwater in the Quaternary aquifer in the piedmont plain was recharged by the lateral inflow from permafrost areas and the stream infiltration and was discharged as baseflow to the stream in the north. Groundwater maintained streamflow over the cold season and significantly contributed to the streamflow during the warm season. Two mechanisms were proposed to contribute to the seasonal variation of aquifer water-conduction capacity: (1) surface drainage through the stream channel during the warm period and (2) subsurface drainage to an artesian aquifer confined by stream icing and seasonal frost during the cold season.

#### 1 Introduction

Permafrost plays an important role in groundwater flow and thus hydrological cycles of cold regions (Walvoord et al., 2012). This is especially true for the mountainous headwaters of large rivers. In these areas interactive processes between permafrost and groundwater influence water resource management, engineering construction, biogeochemical cycling, and downstream water supply and conservation (Cheng and Jin, 2013). Study of groundwater in permafrost areas has been prompted by the need for water supplies, problems associated with groundwater in mining, and construction of buildings, highways, railways, airfields and pipelines. The ice features of permafrost areas and geological mapping are also of great interest (Woo, 2012).

In permafrost-dominated watersheds, hydrogeological regimes are primarily controlled by the distribution of frozen ground and taliks, as well as the freeze-thaw cycle of the active layer (White et al., 2007). Freezing alters the intrinsic behavior of aquifers because ground ice occupies interstitial voids and reduces the permeability of the water storage matrix (Woo, 2012). Thawing changes hydraulic connections between different water pools (Carey and Woo, 2000), further affecting the groundwater flow path and its interaction with surface water (e.g., Bense and Person, 2008; Carey and Quinton, 2005; Woo et al., 2008; Zhang et al., 2013). For example, groundwater-surface water interactions in Alaska were more commonly found in areas of discontinuous permafrost where hydraulic connections were spatially and temporally variable (e.g., Anderson et al., 2013; Minsley et al., 2012; Walvoord et al., 2012). At high latitudes, permafrost

<sup>&</sup>lt;sup>2</sup>School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China

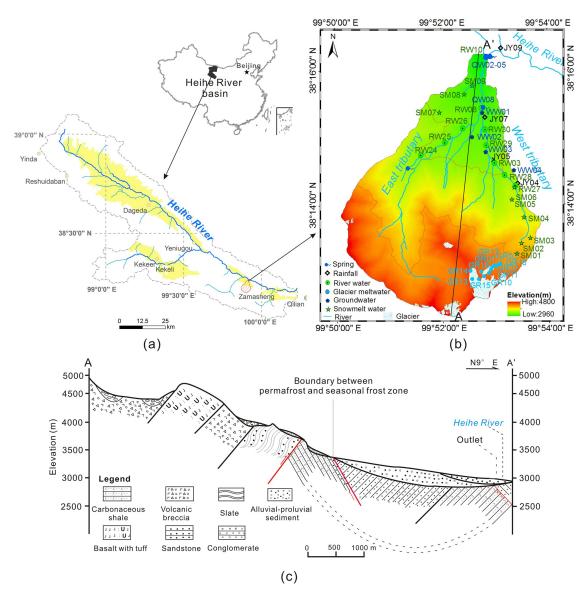
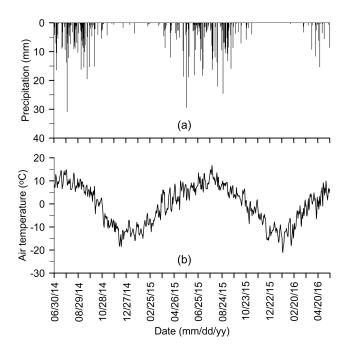



Figure 1. (a) Location of the headwater regions of the Heihe River and the distribution of unconsolidated deposits within the regions, (b) a map of the Hulugou catchment showing monitoring and sampling sites, and (c) a geological cross section.


distribution may affect lake density in addition to surface flow (Anderson et al., 2013). In areas of continuous permafrost, subpermafrost groundwater is often isolated from the surface, and there are unique mechanisms in thermokarst lake dynamics such as lateral expansion and breaching (Jones et al., 2011; Plug et al., 2008). Permafrost is now warming and thawing in many regions of the world (e.g., Anderson et al., 2013), and connections between permafrost degradation and local hydrologic changes have been established (e.g., O'Donnell et al., 2012; Yoshikawa and Hinzman, 2003).

Groundwater behavior in permafrost-dominated areas is becoming more important as permafrost, an effective barrier to recharge, continues to degrade (Walvoord and Striegl, 2007). However, permafrost hydrogeology studies have been limited to research on groundwater chemistry and modeling, mostly in northern latitude regions such as Alaska (USA), Canada, Siberia, Fennoscandia and Antarctica (e.g., Bense et al., 2009; Carey and Quinton, 2005; Evans et al., 2015; Ge et al., 2011; Woo et al., 2008). Fundamental knowledge gaps of groundwater systems in areas of permafrost still exist (Kane et al., 2013). Linkage between groundwater circulation and discharge has not been found in field studies, but simulations have shown a possible connection between changes in climate, groundwater movement, and increases in the winter low flows of northern Eurasian and northwestern North American rivers (Smith et al., 1991; Walvoord and Striegl, 2007). The quantitative substantiation of this link-

age is challenging because hydrogeological and permafrost information is scarce in remote areas and regional-scale permafrost–hydrology interactions are complicated. Lack of hydrogeological information such as hydraulic head data, detailed hydrostratigraphy and groundwater age data impedes development of detailed models (Walvoord et al., 2012). Thus, a thorough understanding of groundwater flow systems in permafrost regions is a prerequisite for constructing advanced numerical modeling to quantitatively characterize groundwater flow and its interaction with surface water.

Because of the limited infrastructure and short field seasons, geochemical and isotopic tracers in samples from baseflow discharge and springs have been used to investigate recharge conditions and flow paths of groundwater in remote permafrost regions. For example, Stotler et al. (2009) illuminated the role of permafrost in deep flow system evolution, fluid movement and chemical evolution using hydrogeochemistry and <sup>2</sup>H and <sup>18</sup>O isotopes. Anderson et al. (2013) investigated the causes of lake area changes in the Yukon Flats, a region of discontinuous permafrost in Alaska, with <sup>2</sup>H and <sup>18</sup>O isotopes and found that about 5 % of lake water came from snowmelt and/or permafrost thaw. Using stable isotopes (<sup>18</sup>O, <sup>2</sup>H and <sup>13</sup>C<sub>DIC</sub>) and noble gases, Utting et al. (2013) explored groundwater recharge and flow from permafrost watersheds in the western Arctic of Canada. Geochemical and isotopic data have proved useful in delineating the groundwater system and identifying flow paths in permafrost zones. However, the related research was mainly limited to arctic and subarctic river basins.

To better understand the effects of permafrost on groundwater flow and its interactions with surface water in mid- to low-latitude and high-altitude mountain areas, we selected the Hulugou catchment, which is a representative catchment in the headwater region of the Heihe River and covered by large areas of continuous and discontinuous permafrost and seasonal frost, as study site. The Heihe River is the second largest inland river in China with a drainage area of  $\sim 150000 \, \mathrm{km}^2$  (Fig. 1a). It provides water for domestic use, agriculture, and industry in the Qinghai, Gansu and Inner Mongolia provinces of northwestern China. The hydraulic head and temperature data obtained from newly drilled wells as well as geochemical and isotopic information were combined to (1) trace the recharge and flow paths of groundwater and (2) investigate the control of distribution and freezethaw processes of permafrost and seasonal frost on groundwater dynamics and groundwater-surface water interaction. It should be noted that moraine and fluvioglacial deposits are widely distributed on the planation surfaces of the higher hills in the headwater region of the Heihe River (Fig. 1a). However, their control on groundwater recharge and flow has not been studied. This is the first report on the occurrence of subpermafrost and intrapermafrost groundwater in the planation surface areas and on their hydraulic connectivity with groundwater in the seasonal frost zone and streams. Our results provide new insights into the hydrological function of



**Figure 2.** (a) Precipitation and (b) air temperature recorded at an elevation of 3649 ma.s.l. within the Hulugou catchment from June 2014 to April 2016.

planation surface area as a major reservoir for the storage and flow of groundwater in permafrost regions.

# 2 Study area and background

#### 2.1 General setting

The Hulugou catchment has a drainage area of 23.1 km<sup>2</sup> and is located within Qilian Mountains in the northeastern Qinghai–Tibet Plateau, between 38°12′14″ N and 38°16′23″ N latitude and 99°50′37″ E and 99°53′54″ E longitude (Fig. 1b). The elevation of the Hulugou catchment ranges between 2960 and 4820 m, increasing from north to south. The slope ranges from 0 to 85°.

The catchment has a continental semiarid climate characterized by warm, rainy summers and cold, dry winters. From the plain to the high mountains, the mean annual precipitation ranges from 400 to 600 mm, approximately 70% of which occurs during July–September (Fig. 2). In the high mountains with elevations from  $\sim$  3800 to 4800 m, most precipitation falls as snow. The annual potential evaporation is 1102 mm. The mean annual temperature is  $-3.9\,^{\circ}$ C, and the minimum and maximum temperatures are -25.2 and 25.8 °C, respectively. The daily precipitation and temperatures in the plain from 2014 through 2016 are shown in Fig. 2.

The catchment geomorphology is composed of high mountains, erosion hills, a piedmont sloping plain and a narrow gorge. High mountains in the southern part of the catchment contains five alpine glaciers, two ice lakes, and a range of classic glacial features such as U-shaped valleys, cirques, horn peaks, arêtes, moraines and talus slopes. The five glaciers have a total area of 0.827 km<sup>2</sup> (Li et al., 2014). The erosion hills are in the north, northeast and northwest of the catchment, with the planation surfaces on the top of the higher hills (3400–3800 m; Xu et al., 1989). The planation surfaces are underlain by permafrost, with typical permafrost-related features such as thermokarst ponds, frost mounds, permafrost bogs and permafrost plateaus. Cracks, terraces and landslides caused by active layer detachment slides are common on the upper slopes. The sloping plain is composed of several partially superimposed alluvial-pluvial fans. It is funnel-shaped, surrounded by the high mountains and hills, and connecting to the narrow gorge at the base, which leads into the Heihe River (Fig. 1c). The plain dips slightly toward the Heihe River with 2–3° slopes.

The Hulugou stream is fed by the eastern and western tributary in front of the narrow gorge (Fig. 1b). Both tributaries and their branches originated from the high mountains are all ephemeral and fed mainly by glacier and snow meltwaters, ice lakes, and springs. From headwaters to the plain, they receive runoff from the subcatchments which are derived from precipitation. The tributaries are intermittently dry throughout the cold season (from October to May). Only the main stream in the narrow gorge is perennial, though it is ice-covered during winter.

# 2.2 Hydrogeology

Bedrock in the high mountains comprises lower Ordovician metamorphic and volcanic rock, including interbedded metasandstone and slate (Xu et al., 1989). Late Quaternary moraine deposits, derived primarily from these formations, are located at the front of the glaciers within cirques (Fig. 1c). The moraine is 5–30 m thick and consists of nonsorted, angular gravels and boulders. Scree deposits are also common in the high mountain area, and generally located at the foot of steep rock slopes or valley walls.

Bedrock in the erosion hills is composed of shales with limestone and sandstone (Xu et al., 1989). The slopes are generally covered with weathered residues of 0.5–3 m thickness but can also have local areas of exposed bedrock, talus material and silt deposits. The top of the higher hills, recognized as planation surfaces, are covered with middle and upper Pleistocene moraine and fluvioglacial deposits from several meters to tens of meters thick (Cao, 1977). Thin mud deposits are also found here, especially in thermokarst ponds, permafrost bogs and permafrost plateaus.

The surface geology in the piedmont sloping plain is primarily upper Pleistocene fluvioglacial deposits, which are mainly composed of poorly sorted, subangular, mud-bearing pebble gravels with erratic boulders. The underlying strata are glacial moraine and fluvioglacial deposits of the middle and lower Pleistocene series and conglomerates and sand-

stones from the Cretaceous (Xu et al., 1989). The Holocene alluvial-proluvial deposits are only found on the bottom of the narrow gorge. Near the outlet of the Hulugou catchment, the upper Quaternary alluvial-proluvial deposits occur on the first to third terraces of the Heihe River.

The groundwater flows correspond to the topography, with a flow trend from south to north. According to previous regional hydrogeological investigations (1:200 000; Cao, 1977), permafrost in the headwater regions of the Heihe River mainly occurs in areas exceeding 3600 m a.s.l., and the groundwater in permafrost regions was conjectured to be suprapermafrost groundwater. Neither subpermafrost nor intrapermafrost groundwater has been reported. Our field investigation demonstrates that permafrost can be found as low as 3500 m a.s.l. in shady slopes. We found springs or seeps at the lower margin of the cirques containing moraine and scree deposits and at the upper slopes of the hills with fluvioglacial deposits on the top planation surfaces. Groundwater in the seasonal frost zone primarily occurred in fluvioglacial deposits of the sloping piedmont plain, as well as in the mountain scree deposits and slope deposits of the hills.

#### 3 Materials and methods

#### 3.1 Field measurement

Four cluster wells, WW01, WW02, WW03 and WW04, were installed in July and August 2014, for groundwater monitoring and sampling (locations shown in Fig. 1b). Each cluster included 3–4 wells with different interval screen depths. The screened intervals were 5, 10, 15 and 25 m underground for cluster WW01, 5, 10, 20 and 30 m underground for clusters WW02 and WW03, and 1.5, 12 and 24.3 m underground for cluster WW04. No water was found in wells within the WW02 cluster. Cluster wells WW01, WW02 and WW03 were located in the piedmont sloping plain dominated by seasonal frost, at elevations of 3144, 3250 and 3297 m, respectively. Cluster WW04 was located in a planation surface dominated by thermokarst ponds, frost mounds and permafrost bogs, at an elevation of 3501 m.

During installation of each cluster well, temperature loggers (HOBO U20-001-02 temperature logger; Onset, Bourne, MA, USA) were buried in sediments at depths of 0.5, 1, 1.5, 2, 3, 5, 10, 15 (or 20) and 25 (or 30) m underground to monitor ground temperature. The ground temperature was recorded at intervals of 15 min. Both groundwater table (if available) in the cluster wells and stream stage were measured using electronic pressure sensors (HOBO U20-001-02 water level logger; Onset, Bourne, MA, USA). The sensor for stream water pressure measurement was installed in a stilling well to exclude waves and turbulence. Atmospheric pressure was measured simultaneously using a barometric pressure sensor (S-BPB-CM50; Onset, Bourne, MA, USA), so that differential pressure between water and atmo-

spheric pressure could be calculated and then converted to the water table. The data were recorded every 15 min to be consistent with ground temperature measurements.

Five weather stations have been maintained by the Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, since 2004 within the Hulugou catchment. These stations collect air temperature, humidity, precipitation and wind speed data at 30 min intervals (Chen et al., 2014). Data from the station on the sloping plain and the one near cluster WW04 ( $\sim$  200 m away; similar elevation) were collected in this study.

## 3.2 Water sampling and analysis

For ion and isotope analysis, groundwater samples were collected from 12 wells between 2014 and 2016, and stream water samples were collected from 12 sites that were approximately evenly distributed from upstream to downstream between 2011 and 2016 (Fig. 1b). Both types of samples were collected at 7- to 14-day intervals during the warm season from June to September, but less frequently during the cold season. They were collected 3-4 times in January and 3-4 times in April. In addition to the 12 regularly sampled wells, groundwater was also irregularly sampled from 7 springs and 18 shallow wells with depth < 3 m. Glacier meltwater was collected at 13 periglacial sites at elevations from 4261 to 4432 m between 2013 and 2015. Weekly precipitation (rainfall and/or snowmelt) was sampled from three sites that were distributed at about 200 m elevation intervals between 2012 and 2015.

When groundwater was collected from wells, appropriate well purging was done using a peristaltic pump before sampling. At all sampling times, pH, electric conductivity (EC), temperature and dissolved oxygen concentration were measured in field using a portable Hatch EC and pH meter (HACH HQ40d), and alkalinity was determined on the sampling day using the Gran titration method (Gran, 1952). Seven water sample subsets were collected from each site and filtered with 0.22  $\mu$ m membranes in the field into polythene bottles that were thoroughly prewashed with deionized water. Samples for cation and minor element analysis were acidified with ultrapure HNO<sub>3</sub> to pH = 2. All samples were wrapped with parafilm and stored at 4 °C before being transported to the laboratory.

All samples were analyzed for major ions, minor elements (Fe, Si and Sr), <sup>18</sup>O and <sup>2</sup>H isotopic compositions, and <sup>13</sup>C isotopic compositions of DIC at the Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan). A total of 13 groundwater and spring samples were analyzed for <sup>3</sup>H concentrations and 7 were analyzed for <sup>14</sup>C activity. Anions (SO<sub>4</sub><sup>2</sup>, Cl<sup>-</sup> and NO<sub>3</sub><sup>-</sup>) were determined using ion chromatography (IC; DX-120, Dionex, USA), while cations (Ca<sup>2+</sup>, Mg<sup>2+</sup>, K<sup>+</sup> and Na<sup>+</sup>) and some minor elements (Fe, Si and Sr) were determined by inductively coupled plasma-atomic emission spectrometry (ICP-

AES; IRIS INTRE II XSP) within 14 days after sampling. Ionic balance errors were < 5 % for 84 % of the samples and between 5.1 and 8 % for the remaining samples.

Isotopic compositions of  $^{18}O$  and  $^2H$  were analyzed using an ultra-high precision isotopic water analyzer (L2130-I, Picarro, USA), and were expressed in  $\delta$  per milliliter relative to the V-SMOW (Vienna Standard Mean Ocean Water), with precision of 0.025 and 0.1 %, respectively. The  $^3H$  concentration was determined by the solid polymer electrolysis enrichment method with a tritium enrichment factor of 10 using an LSC-LB1 Liquid Scintillation Counter (Quantulus  $^{1220^{TM}}$ ). The detection limit for the tritium measurement was approximately  $\pm 1$  TU. The  $^3H$  values were reported in tritium units (TU).

The  $\delta^{13}C$  value of DIC in water samples was measured using a wavelength scanning cavity ring-down spectroscopy (WS-CRDS; G2131-I, Picarro, USA) and reported per milliliter relative to Vienna PeeDee Belemnite (V-PDB). The analytical precision for  $\delta^{13}C_{\text{DIC}}$  was  $0.1\,\%$ . For measuring  $^{14}C$ , water samples were treated first with 85 % phosphoric acid and filtered to remove weathering carbonates.  $CO_2$  was purified and collected with a cryotrap, and then reduced to graphite using the Zn/Fe method. Finally,  $^{14}C$  activity was determined using an accelerator mass spectrometry (AMS; 3 MV, Tandetron) at the Xi'an AMS Center, China. The  $^{14}C$  activity was reported as percent modern carbon (pmC) and the analytical precision was  $2\,\%$ .

# 3.3 Sediment sampling and analysis

Sediment samples were collected at 30 to 100 cm depth intervals when drilling the deepest borehole within each cluster. The subset for stable isotopic analyses was placed in an 8 mL borosilicate glass vial sealed with a Teflon-lined screw cap and parafilm and stored at  $-20\,^{\circ}$ C. After being transported to the laboratory, water was extracted from the sediment samples using the cryogenic vacuum distillation technique and then measured for  $\delta^{18}$ O and  $\delta^{2}$ H (Smith et al., 1991; Sternberg et al., 1986). The measuring instrument, method and precision were the same as those noted above.

# 3.4 The <sup>14</sup>C age model

Along the groundwater flow path, the <sup>14</sup>C gained in soils is often diluted by geochemical reactions such as carbonate dissolution, exchange with the aquifer matrix and biochemical reactions. Therefore, when using the decay of <sup>14</sup>C<sub>DIC</sub> as a measure of groundwater age, the dilution by nonatmospheric sources must first be corrected. Accounting for the dilution of <sup>14</sup>C caused by geochemical reaction, groundwater age is calculated using the following decay equations (Clark and Fritz, 1997):

$$t = 8267 \times \ln\left(\frac{q \times {}^{14}C_0}{{}^{14}C}\right),\tag{1}$$

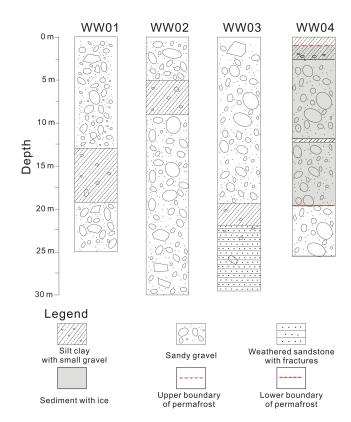
where t is the groundwater age in years BP, <sup>14</sup>C is the measured <sup>14</sup>C activity, <sup>14</sup>C<sub>0</sub> is the modern <sup>14</sup>C activity in the soil derived from DIC, and q is the dilution factor.

Several models have been proposed to obtain the dilution factor (e.g., Mook, 1980; Pearson and Hanshaw, 1970; Tamers, 1975; Vogel, 1970, 1967; Vogel and Ehhalt, 1963). In this study, a  $\delta^{13}$ C-mixing model modified by Clark and Fritz (1997) from the Pearson model (Pearson and Hanshaw, 1970) was applied to correct the  $^{14}$ C dilution by carbonate dissolution. This model is based on variations in  $^{13}$ C abundance, which differs significantly between the soil-derived DIC and carbonate minerals in the aquifer and is thus a good tracer of DIC evolution in groundwaters. The processes that add, remove or exchange carbon from the DIC pool and thereby alter the  $^{14}$ C and  $^{13}$ C concentrations will be accounted by the dilution factor q, which can be obtained from a  $^{13}$ C mass balance:

$$q = \frac{\delta^{13} C_{DIC} - \delta^{13} C_{carb}}{\delta^{13} C_{rech} - \delta^{13} C_{carb}},$$
(2)

where  $\delta^{13}C_{DIC}$  is the measured  $\delta^{13}C$  in groundwater,  $\delta^{13}C_{carb}$  is the  $\delta^{13}C$  of the calcite being dissolved (usually close to 0%), and  $\delta^{13}C_{rech}$  is the initial  $\delta^{13}C$  of DIC in the infiltrating groundwater. The  $\delta^{13}C_{rech}$  was taken to be -18%, as suggested by Han et al. (2011) for northern China.

## 4 Results


# 4.1 Sediments

Well logs for clusters WW01, WW02 and WW03 indicate that the sediments in the seasonal frost area are mainly composed of sandy gravels which are highly permeable (Fig. 3). A silt clay layer with thickness between 3 and 6 m was found at all three sites and might extend throughout the sloping plain. The underlying bedrock was not revealed by the deepest boreholes at clusters WW01 and WW02, indicating that unconsolidated sediments are thicker than 25 and 30 m at the two sites. At cluster WW03, weathered sandstone was found at 22 m depth, indicating decreased thickness of unconsolidated sediments at the top of the sloping plain. These data suggest that the alluvial-pluvial deposits might accumulate on a slightly sloping shallow saucer-shaped basin, being the thickest at the center of the plain and becoming thinner towards its edges (Fig. 1c).

The sediments at cluster WW04 consist of a top clay layer to the depth of 2 m, icy sandy gravel from 2 to 20 m and icefree sandy gravel at 20–25 m depth. There was a 0.2 m thick sandy clay layer at the depth of 12 m which was also ice free.

## 4.2 Groundwater depth

No water was found in any wells within cluster WW02 throughout the years, in the 5 and 10 m deep wells within



**Figure 3.** The well logs of the sediments for clusters WW01, WW02 and WW03 within the seasonal frost zone, as well as cluster WW04 within the permafrost zone.

cluster WW03 during cold season, or in the 12 m deep well within cluster WW04 at most times. Figure 4 shows the variation of groundwater depth over time from 2014 to 2016 in the wells with groundwater. The groundwater depth in the 20 and 30 m wells within cluster WW03 fluctuated between 13 and 18 m belowground during the warm, rainy season from mid-June to late October and declined and became stable in the cold, rainless season. The water table in the 20 m well was close to that in the 30 m well from late June to late July and higher than that for the rest of the time. The difference of water table between two wells ranged from  $\sim 4$  m in the cold season to < 1 m in the warm season. For cluster WW01, the groundwater depth in the 5 m well was comparatively stable with values between 4 and 5 m throughout the whole year, and that in the 10, 15 and 25 m wells was 4-6 m belowground in the warm season but dropped dramatically to 5-19 m belowground in the cold season. Although the groundwater depth differed greatly between the cold and warm seasons, it was relatively stable during each of the two seasons. Similar to cluster WW03, the water table in the shallower well was always higher than that in the deeper well within cluster WW01, but the difference was much smaller during the warm season than the cold season.

The water table depth in the 1.5 m well at cluster WW04 was close to the ground surface from June to September and

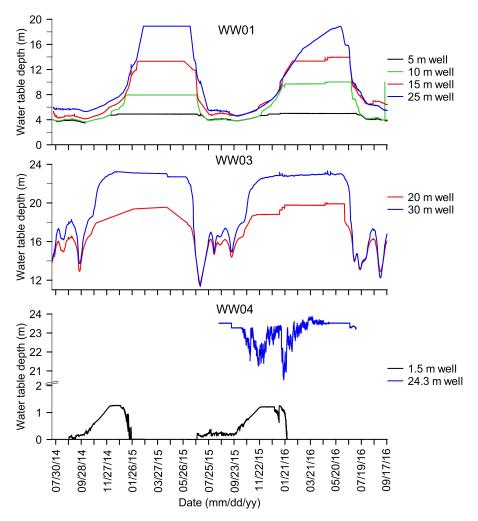



Figure 4. Time series of water table depth in the wells at cluster WW01, WW02 and WW04.

decreased to 1.5 m belowground from October to December. The groundwater depth in the 24.3 m well at cluster WW04 varied between 20.3 and 23.5 m belowground.

## 4.3 Ground temperature

The profiles in Fig. 5 show the intermonthly variation of ground temperature over a year from September 2014 to August 2015 at each cluster. The upper part of the profiles was influenced by seasonal heating and cooling from the land surface, showing significant seasonal changes in temperature. The temperature decreased at a gradually reduced rate with depth in the warm season and this was reversed in the cold season, which was presented as right-concave and left-concave profiles in a temperature vs. depth graph, respectively. Two types of profiles converged at a critical depth where seasonal variation in temperature disappeared. The critical depth was about 7.5, 10 and 12 m belowground at the clusters WW03, WW02 and WW01, respectively, much deeper than that (only  $\sim 2\,\mathrm{m}$ ) at cluster WW04.

However, a slightly dynamic variation in temperature was still observed below the critical depths at clusters WW01 and WW03. This was probably caused by the groundwater recharge or discharge processes, which is supported by comparing the temperature profiles among the four clusters. The dynamic variation in temperature was not found at depths between 10 and 30 m at cluster WW02, where groundwater depth exceeded 30 m, nor at depths between 2 and 20 m at cluster WW04, where temperature remained almost constant  $\sim 0~^{\circ}\text{C}$  and thus groundwater was frozen throughout the year. A slightly seasonal variation in temperature was observed below 20 m at cluster WW04 with the pattern similar to that in the upper part of the profiles, i.e., increased temperatures in summer and decreased temperatures in winter.

The ground temperature profiles in the warm season did not intersect with the 0 °C isotherm at the clusters WW01, WW02 and WW03 (Fig. 5), confirming that these three clusters are in a seasonal frost zone. The seasonal frozen depth was about 2 and 2.5 m at clusters WW03 and WW02, shal-

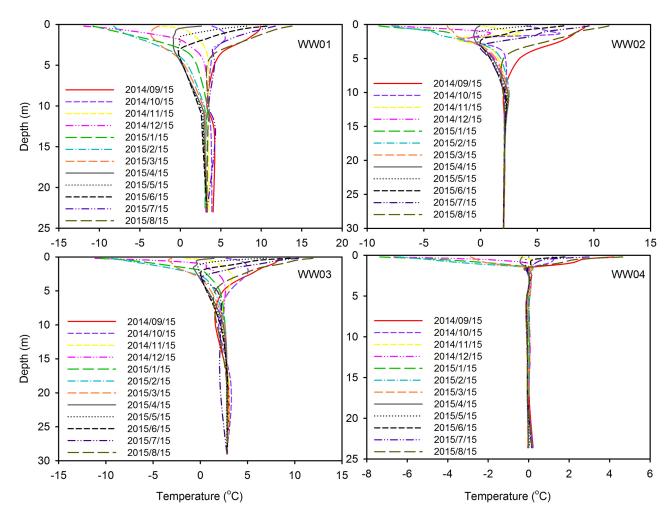



Figure 5. Temperature envelopes in the sediments at clusters WW01, WW02 and WW03 within the seasonal frost zone, as well as cluster WW04 within the permafrost zone.

lower than that (3 m) at cluster WW01. The active layer was 2 m thick at cluster WW04.

## 4.4 Hydrogeochemistry

The chemical compositions including major ions, minor elements (Si and Sr) and TDS for different types of water were listed in Table 2. The stream water concentrations had the seasonal variation. They exhibited the lowest values within the periglacial and permafrost zone, increased within the seasonal frost zone and further increased at the catchment outlet. Except for NO<sub>3</sub><sup>-</sup> and SO<sub>4</sub><sup>2-</sup>, other major ions and minor elements (Si, Sr) concentrations as well as TDS were similar between the stream water at the catchment outlet and the groundwater in winter (Table 2 and Fig. 6). The spring waters exhibited minor changes in geochemistry over time.

The groundwaters sampled from the seasonal frost zone of the sloping plain (clusters WW01 and WW03) were  $HCO_3 \cdot SO_4$ – $Ca \cdot Mg$  and  $HCO_3 \cdot SO_4$ – $Mg \cdot Ca$  types, being slightly alkaline with a pH between 7.64 and 8.74. The sam-

ples at cluster WW01 had higher major ions and higher Si, Sr and TDS concentrations than those at cluster WW03 (Table 1 and Figs. 6 and 7). The  $Ca^{2+}$ ,  $Mg^{2+}$ ,  $NO_3^-$ ,  $SO_4^{2-}$ , Sr and TDS concentrations in groundwater at relatively shallow depths ( $\leq 15\,\mathrm{m}$ ) were generally higher than those in the deeper parts of the aquifer (> 15 m) at cluster WW01, whereas  $Na^+$  and  $K^+$  were higher in the deeper parts (Table 1 and Fig. 7). Among the groundwaters at cluster WW03, the  $Ca^{2+}$ ,  $Mg^{2+}$ ,  $NO_3^-$ ,  $SO_4^{2-}$ , Sr and TDS concentrations in the 20 m well were highest, followed by those in the 30 m well, and then lowest in the 10 m well. The other parameters  $(Mg^{2+}, Cl^-, HCO_3^-)$  and Si concentrations) were similar at different depths within clusters WW01 or WW03.

At cluster WW04, the chemical type was HCO<sub>3</sub>–Ca for groundwater in the 1.5 m well, HCO<sub>3</sub>·SO<sub>4</sub>–Mg·Ca for groundwater in the 24.3 m well and HCO<sub>3</sub>–Ca·Na·Mg for groundwater in the 12 m well. Among the stream water, thermokarst water and groundwaters, the groundwater in the 12 m well had the highest Ca<sup>2+</sup>, Mg<sup>2+</sup>, K<sup>+</sup>, Na<sup>+</sup>, Si, Sr,

**Table 1.** Mean values and standard deviations ( $\pm$  SD) of major ions and Si, Sr and TDS concentrations in groundwater and stream water (in mg L<sup>-1</sup>) within permafrost and seasonal frost zones. Number of samples used to calculate is also shown. All samples were collected from January 2014 to September 2015. "H" refers to high flows in the warm season, "L" refers to low flows in cold season, and "n.s." means that no samples were collected.

| Sampling information                                                                                                                                                                                                                                                                                                                    | n                                                                                                                                           | Numb                                                                                                                                                                                                       |                                                                                                                                     | Ca                                                                                                                                                                                                                                                                                                                                                                  | 2+                                                                                                                                                                                                    | Mg <sup>2</sup>                                                                                                                                                                                                                                                                                                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Na                                                                                                                                                                                                                 | +                                                                                                                                                                                                                                                                                                                                               | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sr                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              | Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water type;<br>location                                                                                                                                                                                                                                                                                                                 | Sample<br>site                                                                                                                              | Н                                                                                                                                                                                                          | L                                                                                                                                   | Н                                                                                                                                                                                                                                                                                                                                                                   | L                                                                                                                                                                                                     | Н                                                                                                                                                                                                                                                                                                                     | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                  | L                                                                                                                                                                                                                                                                                                                                               | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н                                                                                                                                                                                                         | L                                                                                                                                                                                                                                                                            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                                                                                                                                          |
| Stream water;                                                                                                                                                                                                                                                                                                                           | RW27                                                                                                                                        | 18                                                                                                                                                                                                         | 2                                                                                                                                   | 28.5 ± 3.9                                                                                                                                                                                                                                                                                                                                                          | 11.3 ± 2.7                                                                                                                                                                                            | 15.6 ± 2.3                                                                                                                                                                                                                                                                                                            | 5.3 ± 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.6 ± 0.4                                                                                                                                                                                                          | 0.9 ± 0.1                                                                                                                                                                                                                                                                                                                                       | 0.5 ± 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.3 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.2 \pm 0.0$                                                                                                                                                                                             | $0.1 \pm 0.0$                                                                                                                                                                                                                                                                | $0.9 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.2 \pm 0.0$                                                                                                                                                                                                                              |
| east tributary,                                                                                                                                                                                                                                                                                                                         | RW28                                                                                                                                        | 15                                                                                                                                                                                                         | 2                                                                                                                                   | 27.9 ± 2.7                                                                                                                                                                                                                                                                                                                                                          | 16.5 ± 9.1                                                                                                                                                                                            | 15.2 ± 1.5                                                                                                                                                                                                                                                                                                            | 8.4 ± 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.6 ± 0.5                                                                                                                                                                                                          | 1.3 ± 0.5                                                                                                                                                                                                                                                                                                                                       | 0.5 ± 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.4 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2 ± 0.0                                                                                                                                                                                                 | $0.1 \pm 0.0$                                                                                                                                                                                                                                                                | $0.9 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3 ± 0.3                                                                                                                                                                                                                                  |
| periglacial zone                                                                                                                                                                                                                                                                                                                        | RW03                                                                                                                                        | 15                                                                                                                                                                                                         | 0                                                                                                                                   | 27.3 ± 2.6                                                                                                                                                                                                                                                                                                                                                          | n.s.                                                                                                                                                                                                  | 14.5 ± 1.7                                                                                                                                                                                                                                                                                                            | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5 ± 0.4                                                                                                                                                                                                          | n.s.                                                                                                                                                                                                                                                                                                                                            | $0.4 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.2 \pm 0.0$                                                                                                                                                                                             | n.s.                                                                                                                                                                                                                                                                         | $0.8 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n.s.                                                                                                                                                                                                                                       |
| Stream water;                                                                                                                                                                                                                                                                                                                           | RW29                                                                                                                                        | 17                                                                                                                                                                                                         | 2                                                                                                                                   | 34.0 ± 7.3                                                                                                                                                                                                                                                                                                                                                          | 19.3 ± 13.3                                                                                                                                                                                           | 20.7 ± 6                                                                                                                                                                                                                                                                                                              | 14.2 ± 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5 ± 1.2                                                                                                                                                                                                          | 1.8 ± 1.4                                                                                                                                                                                                                                                                                                                                       | 0.6 ± 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.4 \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.2 \pm 0.1$                                                                                                                                                                                             | $0.1 \pm 0.1$                                                                                                                                                                                                                                                                | 1.2 ± 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4 ± 0.3                                                                                                                                                                                                                                  |
| east tributary,                                                                                                                                                                                                                                                                                                                         | RW30                                                                                                                                        | 15                                                                                                                                                                                                         | 0                                                                                                                                   | 33.6 ± 9.6                                                                                                                                                                                                                                                                                                                                                          | n.s.                                                                                                                                                                                                  | 20.0 ± 6.9                                                                                                                                                                                                                                                                                                            | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4 ± 1.3                                                                                                                                                                                                          | n.s.                                                                                                                                                                                                                                                                                                                                            | 0.5 ± 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.2 \pm 0.1$                                                                                                                                                                                             | n.s.                                                                                                                                                                                                                                                                         | 1.1 ± 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n.s.                                                                                                                                                                                                                                       |
| seasonal frost zone                                                                                                                                                                                                                                                                                                                     |                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                            |
| Stream water;                                                                                                                                                                                                                                                                                                                           | RW24                                                                                                                                        | 19                                                                                                                                                                                                         | 3                                                                                                                                   | 26.1 ± 1.8                                                                                                                                                                                                                                                                                                                                                          | $32.5 \pm 14.4$                                                                                                                                                                                       | $12.6 \pm 1.0$                                                                                                                                                                                                                                                                                                        | 16.7 ± 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.8 \pm 0.3$                                                                                                                                                                                                      | 2.1 ± 0.6                                                                                                                                                                                                                                                                                                                                       | $0.6 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.7 \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.1 \pm 0.0$                                                                                                                                                                                             | $0.2 \pm 0.1$                                                                                                                                                                                                                                                                | $1.1 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.4 \pm 1.1$                                                                                                                                                                                                                              |
| west tributary,                                                                                                                                                                                                                                                                                                                         | RW25                                                                                                                                        | 19                                                                                                                                                                                                         | 0                                                                                                                                   | 31.2 ± 2.8                                                                                                                                                                                                                                                                                                                                                          | n.s.                                                                                                                                                                                                  | $15.1 \pm 1.8$                                                                                                                                                                                                                                                                                                        | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.2 \pm 0.4$                                                                                                                                                                                                      | n.s.                                                                                                                                                                                                                                                                                                                                            | $0.6 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.1 \pm 0.0$                                                                                                                                                                                             | n.s.                                                                                                                                                                                                                                                                         | $1.2 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n.s.                                                                                                                                                                                                                                       |
| seasonal frost zone                                                                                                                                                                                                                                                                                                                     | RW26                                                                                                                                        | 19                                                                                                                                                                                                         | 0                                                                                                                                   | $32.3 \pm 3.1$                                                                                                                                                                                                                                                                                                                                                      | n.s.                                                                                                                                                                                                  | $15.5 \pm 1.8$                                                                                                                                                                                                                                                                                                        | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.5 \pm 0.5$                                                                                                                                                                                                      | n.s.                                                                                                                                                                                                                                                                                                                                            | $0.7 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.1 \pm 0.0$                                                                                                                                                                                             | n.s.                                                                                                                                                                                                                                                                         | $1.2 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n.s.                                                                                                                                                                                                                                       |
| Stream water;                                                                                                                                                                                                                                                                                                                           | RW08                                                                                                                                        | 20                                                                                                                                                                                                         | 3                                                                                                                                   | $46.6 \pm 8.9$                                                                                                                                                                                                                                                                                                                                                      | $60.2 \pm 37.7$                                                                                                                                                                                       | $28.5 \pm 6.3$                                                                                                                                                                                                                                                                                                        | 39.3 ± 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.9 ± 1.7                                                                                                                                                                                                          | 9.7 ± 6.9                                                                                                                                                                                                                                                                                                                                       | $0.8 \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.2 \pm 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.3 \pm 0.1$                                                                                                                                                                                             | $0.5 \pm 0.4$                                                                                                                                                                                                                                                                | $1.6 \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.6 \pm 1.2$                                                                                                                                                                                                                              |
| catchment outlet,<br>seasonal frost zone                                                                                                                                                                                                                                                                                                | RW10                                                                                                                                        | 20                                                                                                                                                                                                         | 4                                                                                                                                   | 50.9 ± 6.5                                                                                                                                                                                                                                                                                                                                                          | 76.7 ± 11.2                                                                                                                                                                                           | 31.3 ± 4.6                                                                                                                                                                                                                                                                                                            | 36.6 ± 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.3 ± 1.6                                                                                                                                                                                                          | $26.2 \pm 12.2$                                                                                                                                                                                                                                                                                                                                 | 0.9 ± 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.6 ± 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4 ± 0.1                                                                                                                                                                                                 | $0.8 \pm 0.1$                                                                                                                                                                                                                                                                | 1.8 ± 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.8 ± 1.3                                                                                                                                                                                                                                  |
| Spring water;                                                                                                                                                                                                                                                                                                                           | QW02                                                                                                                                        | 19                                                                                                                                                                                                         | 4                                                                                                                                   | 59.3 ± 4.1                                                                                                                                                                                                                                                                                                                                                          | 51.4 ± 16.1                                                                                                                                                                                           | 36.7 ± 1.7                                                                                                                                                                                                                                                                                                            | 31.5 ± 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $14.1 \pm 0.8$                                                                                                                                                                                                     | 12.4 ± 3.9                                                                                                                                                                                                                                                                                                                                      | $1.4 \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.1 \pm 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.5 \pm 0.0$                                                                                                                                                                                             | $0.5 \pm 0.2$                                                                                                                                                                                                                                                                | $2.3 \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.7 \pm 1.3$                                                                                                                                                                                                                              |
| seasonal frost                                                                                                                                                                                                                                                                                                                          | QW03                                                                                                                                        | 20                                                                                                                                                                                                         | 4                                                                                                                                   | $62.7 \pm 5.7$                                                                                                                                                                                                                                                                                                                                                      | $48.6 \pm 14.1$                                                                                                                                                                                       | $37.5 \pm 2.6$                                                                                                                                                                                                                                                                                                        | $30.3 \pm 8.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $16.6 \pm 0.4$                                                                                                                                                                                                     | $13.4 \pm 6.2$                                                                                                                                                                                                                                                                                                                                  | $1.4 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.0 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.6 \pm 0.0$                                                                                                                                                                                             | $0.5 \pm 0.2$                                                                                                                                                                                                                                                                | $2.4 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.9 \pm 1.0$                                                                                                                                                                                                                              |
| zone                                                                                                                                                                                                                                                                                                                                    | QW04                                                                                                                                        | 20                                                                                                                                                                                                         | 4                                                                                                                                   | $64.5 \pm 5.1$                                                                                                                                                                                                                                                                                                                                                      | $48.5 \pm 15.3$                                                                                                                                                                                       | 39.0 ± 2.3                                                                                                                                                                                                                                                                                                            | $30.4 \pm 8.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $18 \pm 0.3$                                                                                                                                                                                                       | 13.5 ± 5.5                                                                                                                                                                                                                                                                                                                                      | $1.5 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.1 \pm 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.6 \pm 0.0$                                                                                                                                                                                             | $0.5 \pm 0.2$                                                                                                                                                                                                                                                                | $2.4 \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.8 \pm 1.2$                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                         | QW05                                                                                                                                        | 20                                                                                                                                                                                                         | 4                                                                                                                                   | $65.5 \pm 7.3$                                                                                                                                                                                                                                                                                                                                                      | $52.9 \pm 10.0$                                                                                                                                                                                       | $39.7 \pm 3.2$                                                                                                                                                                                                                                                                                                        | $34.0 \pm 5.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $19.1 \pm 0.5$                                                                                                                                                                                                     | $16.3 \pm 4.2$                                                                                                                                                                                                                                                                                                                                  | $1.5 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.2 \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.7 \pm 0.0$                                                                                                                                                                                             | $0.6 \pm 0.1$                                                                                                                                                                                                                                                                | $2.6 \pm 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.0 \pm 1.1$                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                         | QW08                                                                                                                                        | 20                                                                                                                                                                                                         | 4                                                                                                                                   | $58.9 \pm 5.5$                                                                                                                                                                                                                                                                                                                                                      | $44.6\pm15.2$                                                                                                                                                                                         | $36.2\pm3.0$                                                                                                                                                                                                                                                                                                          | $28.2 \pm 8.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $13 \pm 1.3$                                                                                                                                                                                                       | $8.0\pm2.6$                                                                                                                                                                                                                                                                                                                                     | $1.1\pm0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.9\pm0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.6\pm0.0$                                                                                                                                                                                               | $0.5\pm0.2$                                                                                                                                                                                                                                                                  | $2.3\pm0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.7\pm1.2$                                                                                                                                                                                                                                |
| Well water;                                                                                                                                                                                                                                                                                                                             | WW04 (24.3 m)                                                                                                                               | 1                                                                                                                                                                                                          | 0                                                                                                                                   | 47.4                                                                                                                                                                                                                                                                                                                                                                | n.s.                                                                                                                                                                                                  | 22.9                                                                                                                                                                                                                                                                                                                  | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.3                                                                                                                                                                                                               | n.s.                                                                                                                                                                                                                                                                                                                                            | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3                                                                                                                                                                                                       | n.s.                                                                                                                                                                                                                                                                         | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n.s.                                                                                                                                                                                                                                       |
| permafrost zone                                                                                                                                                                                                                                                                                                                         | WW04 (12 m)                                                                                                                                 | 0                                                                                                                                                                                                          | 2                                                                                                                                   | n.s.                                                                                                                                                                                                                                                                                                                                                                | $204.6\pm1.4$                                                                                                                                                                                         | n.s.                                                                                                                                                                                                                                                                                                                  | $95.9 \pm 1.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n.s.                                                                                                                                                                                                               | $221.0\pm10.4$                                                                                                                                                                                                                                                                                                                                  | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $9.7\pm1.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.s.                                                                                                                                                                                                      | $2.7\pm0.1$                                                                                                                                                                                                                                                                  | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $9.1\pm0.2$                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                         | WW04 (1.5 m)                                                                                                                                | 17                                                                                                                                                                                                         | 0                                                                                                                                   | $72.4 \pm 5.7$                                                                                                                                                                                                                                                                                                                                                      | n.s.                                                                                                                                                                                                  | $15.4\pm1.4$                                                                                                                                                                                                                                                                                                          | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $8.6\pm2.8$                                                                                                                                                                                                        | n.s.                                                                                                                                                                                                                                                                                                                                            | $4.3\pm1.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.3\pm0.0$                                                                                                                                                                                               | n.s.                                                                                                                                                                                                                                                                         | $3.9\pm0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n.s.                                                                                                                                                                                                                                       |
| Well water;                                                                                                                                                                                                                                                                                                                             | WW03 (30 m)                                                                                                                                 | 19                                                                                                                                                                                                         | 4                                                                                                                                   | $55.1 \pm 11$                                                                                                                                                                                                                                                                                                                                                       | $33.3 \pm 13.2$                                                                                                                                                                                       | $36.7 \pm 6.3$                                                                                                                                                                                                                                                                                                        | $25.2 \pm 9.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $17.6\pm15.1$                                                                                                                                                                                                      | $21.1\pm10.6$                                                                                                                                                                                                                                                                                                                                   | $1.6\pm0.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.7\pm1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.4\pm0.1$                                                                                                                                                                                               | $0.3\pm0.1$                                                                                                                                                                                                                                                                  | $1.8\pm0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.2\pm1.2$                                                                                                                                                                                                                                |
| the top of the                                                                                                                                                                                                                                                                                                                          | WW03 (20 m)                                                                                                                                 | 19                                                                                                                                                                                                         | 3                                                                                                                                   | $60.1 \pm 6.9$                                                                                                                                                                                                                                                                                                                                                      | 57.0 ± 9.6                                                                                                                                                                                            | $38.8 \pm 3.8$                                                                                                                                                                                                                                                                                                        | $35.6 \pm 7.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $7.3 \pm 2.7$                                                                                                                                                                                                      | $6.7 \pm 1.3$                                                                                                                                                                                                                                                                                                                                   | $1.2 \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.4\pm0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.4 \pm 0.0$                                                                                                                                                                                             | $0.4 \pm 0.1$                                                                                                                                                                                                                                                                | $1.9\pm0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.9 \pm 1.0$                                                                                                                                                                                                                              |
| sloping plain,<br>seasonal frost zone                                                                                                                                                                                                                                                                                                   | WW03(10 m)                                                                                                                                  | 6                                                                                                                                                                                                          | 0                                                                                                                                   | $46.5 \pm 11.8$                                                                                                                                                                                                                                                                                                                                                     | n.s.                                                                                                                                                                                                  | $35.7 \pm 13.1$                                                                                                                                                                                                                                                                                                       | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $9.4 \pm 6.8$                                                                                                                                                                                                      | n.s.                                                                                                                                                                                                                                                                                                                                            | 4.7 ± 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.3 \pm 0.1$                                                                                                                                                                                             | n.s.                                                                                                                                                                                                                                                                         | $1.9 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n.s.                                                                                                                                                                                                                                       |
| Well water;                                                                                                                                                                                                                                                                                                                             | WW01 (25 m)                                                                                                                                 | 19                                                                                                                                                                                                         | 4                                                                                                                                   | $65.3 \pm 20.1$                                                                                                                                                                                                                                                                                                                                                     | 31.4 ± 4.3                                                                                                                                                                                            | $43.2 \pm 10.9$                                                                                                                                                                                                                                                                                                       | $20.7 \pm 9.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $24.5 \pm 42.5$                                                                                                                                                                                                    | 14.5 ± 7.7                                                                                                                                                                                                                                                                                                                                      | $1.7 \pm 1.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.3 \pm 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.5 \pm 0.1$                                                                                                                                                                                             | $0.2 \pm 0.1$                                                                                                                                                                                                                                                                | $2.2 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.1 \pm 1.1$                                                                                                                                                                                                                              |
| the base of the                                                                                                                                                                                                                                                                                                                         | WW01 (15 m)                                                                                                                                 | 19                                                                                                                                                                                                         | 4                                                                                                                                   | $67.1 \pm 15.7$                                                                                                                                                                                                                                                                                                                                                     | $70.8 \pm 20.1$                                                                                                                                                                                       | $43.8 \pm 9.6$                                                                                                                                                                                                                                                                                                        | 41.8 ± 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $13.2\pm18.1$                                                                                                                                                                                                      | $13.1 \pm 7.8$                                                                                                                                                                                                                                                                                                                                  | $1.4\pm0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.5 \pm 0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.5 \pm 0.1$                                                                                                                                                                                             | $0.5\pm0.1$                                                                                                                                                                                                                                                                  | $2.2\pm0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.6 \pm 0.9$                                                                                                                                                                                                                              |
| sloping plain,                                                                                                                                                                                                                                                                                                                          | WW01 (10 m)                                                                                                                                 | 19                                                                                                                                                                                                         | 2                                                                                                                                   | $64.9 \pm 17.4$                                                                                                                                                                                                                                                                                                                                                     | $80.8 \pm 3.6$                                                                                                                                                                                        | $42.2 \pm 11.8$                                                                                                                                                                                                                                                                                                       | $34.4 \pm 4.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8.7\pm2.2$                                                                                                                                                                                                        | $6.6\pm1.3$                                                                                                                                                                                                                                                                                                                                     | $1.3\pm0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.7\pm0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.4\pm0.1$                                                                                                                                                                                               | $0.4\pm0.0$                                                                                                                                                                                                                                                                  | $2 \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.4\pm0.2$                                                                                                                                                                                                                                |
| seasonal frost zone                                                                                                                                                                                                                                                                                                                     | WW01 (5 m)                                                                                                                                  | 12                                                                                                                                                                                                         | 0                                                                                                                                   | $76.6 \pm 8.4$                                                                                                                                                                                                                                                                                                                                                      | n.s.                                                                                                                                                                                                  | $48.9 \pm 4.8$                                                                                                                                                                                                                                                                                                        | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $9.0\pm1.0$                                                                                                                                                                                                        | n.s.                                                                                                                                                                                                                                                                                                                                            | $1 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.5\pm0.1$                                                                                                                                                                                               | n.s.                                                                                                                                                                                                                                                                         | $2.1\pm0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n.s.                                                                                                                                                                                                                                       |
| Sampling information                                                                                                                                                                                                                                                                                                                    | n                                                                                                                                           | Numb<br>samp                                                                                                                                                                                               |                                                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                   | SO <sub>4</sub> <sup>2-</sup>                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       | NO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    | Cl-                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HCO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              | TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |
| Water type;<br>location                                                                                                                                                                                                                                                                                                                 | Sample<br>site                                                                                                                              | Н                                                                                                                                                                                                          | L                                                                                                                                   | Н                                                                                                                                                                                                                                                                                                                                                                   | L                                                                                                                                                                                                     | Н                                                                                                                                                                                                                                                                                                                     | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                  | L                                                                                                                                                                                                                                                                                                                                               | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L                                                                                                                                                                                                         | Н                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                                                                                                                                                                                                                          |
| Stream water;                                                                                                                                                                                                                                                                                                                           | RW27                                                                                                                                        | 18                                                                                                                                                                                                         | 2                                                                                                                                   | 29.5 ± 11                                                                                                                                                                                                                                                                                                                                                           | 32.9 ± 13                                                                                                                                                                                             | 6 2.2 ± 1.1                                                                                                                                                                                                                                                                                                           | 1.4 ± 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3 ± 0.1                                                                                                                                                                                                          | 7.3 ± 0.9                                                                                                                                                                                                                                                                                                                                       | 105.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ± 13.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $04.0 \pm 4.1$                                                                                                                                                                                            | 134 ± 16.                                                                                                                                                                                                                                                                    | .7 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .5 ± 11.8                                                                                                                                                                                                                                  |
| east tributary,                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    | 01125                                                                                                                                                                                                                                                                                                                                           | 102.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0 ± 30.1                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                         | RW28                                                                                                                                        | 15                                                                                                                                                                                                         | 2                                                                                                                                   | $31.7 \pm 8.3$                                                                                                                                                                                                                                                                                                                                                      | $30.2 \pm 11$                                                                                                                                                                                         | $0 	 2.5 \pm 0.9$                                                                                                                                                                                                                                                                                                     | $1.4 \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $3.1 \pm 0.3$                                                                                                                                                                                                      | $8.1 \pm 2.5$                                                                                                                                                                                                                                                                                                                                   | 102.1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ±12.9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $07.3 \pm 5.5$                                                                                                                                                                                            | 133.6 ± 14                                                                                                                                                                                                                                                                   | 4.2 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0 ± 50.1                                                                                                                                                                                                                                  |
| periglacial zone                                                                                                                                                                                                                                                                                                                        | RW28<br>RW03                                                                                                                                |                                                                                                                                                                                                            | 0                                                                                                                                   | 31.7 ± 8.3<br>31.2 ± 8.9                                                                                                                                                                                                                                                                                                                                            | 30.2 ± 11<br>n.s.                                                                                                                                                                                     | 0 2.5 ± 0.9<br>2.6 ± 0.9                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3.1 \pm 0.3$<br>$3.3 \pm 0.2$                                                                                                                                                                                     | n.s.                                                                                                                                                                                                                                                                                                                                            | 102.1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07.3 ± 5.5<br>n.s.                                                                                                                                                                                        | 133.6 ± 14                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n.s.                                                                                                                                                                                                                                       |
| · ·                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                             | 15                                                                                                                                                                                                         |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       | 2.6 ± 0.9                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |
| periglacial zone                                                                                                                                                                                                                                                                                                                        | RW03                                                                                                                                        | 15<br>15                                                                                                                                                                                                   | 0                                                                                                                                   | 31.2 ± 8.9                                                                                                                                                                                                                                                                                                                                                          | n.s.                                                                                                                                                                                                  | 2.6 ± 0.9                                                                                                                                                                                                                                                                                                             | n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.3 ± 0.2                                                                                                                                                                                                          | n.s.                                                                                                                                                                                                                                                                                                                                            | 101.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ± 12.2<br>± 29.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n.s.                                                                                                                                                                                                      | 131.5 ± 14                                                                                                                                                                                                                                                                   | 4.4<br>4.9 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n.s.                                                                                                                                                                                                                                       |
| periglacial zone Stream water; east tributary,                                                                                                                                                                                                                                                                                          | RW03<br>RW29                                                                                                                                | 15<br>15<br>17                                                                                                                                                                                             | 0                                                                                                                                   | $31.2 \pm 8.9$<br>$45.3 \pm 16.6$                                                                                                                                                                                                                                                                                                                                   | n.s.<br>57.6 ± 14                                                                                                                                                                                     | $ \begin{array}{ccc}     2.6 \pm 0.9 \\     2 & 2.9 \pm 1 \\     3 \pm 1.2 \end{array} $                                                                                                                                                                                                                              | n.s.<br>1.7 ± 0.4<br>n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3 ± 0.2<br>3.4 ± 0.4                                                                                                                                                                                             | n.s.<br>6.6 ± 0.0                                                                                                                                                                                                                                                                                                                               | 101.2 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ± 12.2<br>± 29.8 1<br>± 33.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n.s.<br>33.6 ± 9.9                                                                                                                                                                                        | 131.5 ± 14                                                                                                                                                                                                                                                                   | 4.4<br>4.9 168<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n.s.<br>.6 ± 44.4                                                                                                                                                                                                                          |
| periglacial zone<br>Stream water;<br>east tributary,<br>seasonal frost zone                                                                                                                                                                                                                                                             | RW03<br>RW29<br>RW30                                                                                                                        | 15<br>15<br>17<br>15                                                                                                                                                                                       | 0<br>2<br>0                                                                                                                         | $31.2 \pm 8.9$ $45.3 \pm 16.6$ $46.8 \pm 27.1$                                                                                                                                                                                                                                                                                                                      | n.s.<br>57.6 ± 14<br>n.s.                                                                                                                                                                             | $ \begin{array}{ccc}     2.6 \pm 0.9 \\     2 & 2.9 \pm 1 \\     3 \pm 1.2 \end{array} $                                                                                                                                                                                                                              | n.s.<br>$1.7 \pm 0.4$<br>n.s.<br>$1.9 \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $3.3 \pm 0.2$<br>$3.4 \pm 0.4$<br>$3.3 \pm 0.4$                                                                                                                                                                    | n.s.<br>6.6 ± 0.0<br>n.s.                                                                                                                                                                                                                                                                                                                       | 101.2 =<br>131.4 =<br>125.1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ± 12.2<br>± 29.8 1<br>± 33.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n.s.<br>33.6 ± 9.9<br>n.s.                                                                                                                                                                                | $131.5 \pm 14$ $175.1 \pm 44$ $172.1 \pm 61$                                                                                                                                                                                                                                 | 4.4<br>4.9 168<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n.s.<br>.6 ± 44.4<br>n.s.                                                                                                                                                                                                                  |
| periglacial zone Stream water; east tributary, seasonal frost zone Stream water;                                                                                                                                                                                                                                                        | RW03<br>RW29<br>RW30<br>RW24                                                                                                                | 15<br>15<br>17<br>15                                                                                                                                                                                       | 0 2 0 3                                                                                                                             | $31.2 \pm 8.9$ $45.3 \pm 16.6$ $46.8 \pm 27.1$ $28.7 \pm 8.4$                                                                                                                                                                                                                                                                                                       | n.s.<br>57.6 ± 14<br>n.s.<br>73.3 ± 14                                                                                                                                                                | $ \begin{array}{ccc} 2.6 \pm 0.9 \\ 2 & 2.9 \pm 1 \\ 3 \pm 1.2 \\ 8 & 2.7 \pm 0.6 \end{array} $                                                                                                                                                                                                                       | n.s.<br>$1.7 \pm 0.4$<br>n.s.<br>$1.9 \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $3.3 \pm 0.2$<br>$3.4 \pm 0.4$<br>$3.3 \pm 0.4$<br>$3.5 \pm 0.2$                                                                                                                                                   | n.s.<br>$6.6 \pm 0.0$<br>n.s.<br>$3.9 \pm 0.2$                                                                                                                                                                                                                                                                                                  | 101.2 =<br>131.4 =<br>125.1 =<br>96 ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ± 12.2<br>± 29.8 1<br>± 33.2<br>± 6.9 1<br>± 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n.s.<br>33.6 ± 9.9<br>n.s.<br>22.7 ± 5.8                                                                                                                                                                  | $131.5 \pm 14$ $175.1 \pm 44$ $172.1 \pm 61$ $124.2 \pm 11$                                                                                                                                                                                                                  | 1.4<br>1.9<br>1.0<br>1.5<br>1.2<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0                                                                                                                                                                                                     |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary,                                                                                                                                                                                                                                      | RW03<br>RW29<br>RW30<br>RW24<br>RW25                                                                                                        | 15<br>15<br>17<br>15<br>19                                                                                                                                                                                 | 0 2 0 3 0                                                                                                                           | $31.2 \pm 8.9$ $45.3 \pm 16.6$ $46.8 \pm 27.1$ $28.7 \pm 8.4$ $41.4 \pm 10.1$                                                                                                                                                                                                                                                                                       | n.s.<br>57.6 ± 14<br>n.s.<br>73.3 ± 14<br>n.s.                                                                                                                                                        | 2.6±0.9<br>2 2.9±1<br>3±1.2<br>8 2.7±0.6<br>3.1±0.7<br>3.2±0.7                                                                                                                                                                                                                                                        | n.s.<br>1.7±0.4<br>n.s.<br>1.9±0.4<br>n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3.3 \pm 0.2$<br>$3.4 \pm 0.4$<br>$3.3 \pm 0.4$<br>$3.5 \pm 0.2$<br>$3.7 \pm 0.2$                                                                                                                                  | n.s.<br>6.6 ± 0.0<br>n.s.<br>3.9 ± 0.2<br>n.s.                                                                                                                                                                                                                                                                                                  | 101.2 =<br>131.4 =<br>125.1 =<br>96 ±<br>108.5 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ± 12.2<br>± 29.8 1<br>± 33.2<br>= 6.9 1<br>± 11.5<br>= 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n.s.<br>33.6 ± 9.9<br>n.s.<br>22.7 ± 5.8<br>n.s.                                                                                                                                                          | $131.5 \pm 14$ $175.1 \pm 44$ $172.1 \pm 61$ $124.2 \pm 11$ $151.6 \pm 17$                                                                                                                                                                                                   | 4.4<br>4.9 168<br>1.0<br>1.5 192<br>7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n.s.<br>6 ± 44.4<br>n.s.<br>5 ± 34.0<br>n.s.                                                                                                                                                                                               |
| periglacial zone Stream water; east tributary, seasonal frost zone Stream water; west tributary, seasonal frost zone                                                                                                                                                                                                                    | RW03<br>RW29<br>RW30<br>RW24<br>RW25<br>RW26                                                                                                | 15<br>15<br>17<br>15<br>19<br>19                                                                                                                                                                           | 0<br>2<br>0<br>3<br>0                                                                                                               | $31.2 \pm 8.9$ $45.3 \pm 16.6$ $46.8 \pm 27.1$ $28.7 \pm 8.4$ $41.4 \pm 10.1$ $44.7 \pm 10.6$                                                                                                                                                                                                                                                                       | n.s.<br>$57.6 \pm 14$<br>n.s.<br>$73.3 \pm 14$<br>n.s.<br>n.s.<br>$207.9 \pm 10$                                                                                                                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                 | n.s.<br>1.7±0.4<br>n.s.<br>1.9±0.4<br>n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3.3 \pm 0.2$<br>$3.4 \pm 0.4$<br>$3.3 \pm 0.4$<br>$3.5 \pm 0.2$<br>$3.7 \pm 0.2$<br>$3.6 \pm 0.3$                                                                                                                 | n.s.<br>$6.6 \pm 0.0$<br>n.s.<br>$3.9 \pm 0.2$<br>n.s.<br>n.s.                                                                                                                                                                                                                                                                                  | 101.2 = 131.4 = 125.1 = 96 ± 108.5 = 108 ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ± 12.2<br>± 29.8 1<br>± 33.2<br>± 6.9 1<br>± 11.5<br>= 9.5<br>± 30 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n.s.<br>33.6 ± 9.9<br>n.s.<br>22.7 ± 5.8<br>n.s.                                                                                                                                                          | $131.5 \pm 14$ $175.1 \pm 44$ $172.1 \pm 61$ $124.2 \pm 11$ $151.6 \pm 17$ $156.7 \pm 1$                                                                                                                                                                                     | 4.4<br>4.9 168<br>1.0 1.5 192<br>7.6 18<br>446.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.                                                                                                                                                                                     |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone                                                                                                                                                             | RW03<br>RW29<br>RW30<br>RW24<br>RW25<br>RW26<br>RW08                                                                                        | 15<br>15<br>17<br>15<br>19<br>19<br>19<br>20                                                                                                                                                               | 0<br>2<br>0<br>3<br>0<br>0                                                                                                          | $31.2 \pm 8.9$ $45.3 \pm 16.6$ $46.8 \pm 27.1$ $28.7 \pm 8.4$ $41.4 \pm 10.1$ $44.7 \pm 10.6$ $92 \pm 30$                                                                                                                                                                                                                                                           | n.s. 57.6 ± 14 n.s. 73.3 ± 14 n.s. n.s. 207.9 ± 10 246.1 ± 71                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                  | n.s.<br>$1.7 \pm 0.4$<br>n.s.<br>$1.9 \pm 0.4$<br>n.s.<br>n.s.<br>2. $1.9 \pm 0.4$<br>2. $1.9 \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3.3 \pm 0.2$ $3.4 \pm 0.4$ $3.3 \pm 0.4$ $3.5 \pm 0.2$ $3.7 \pm 0.2$ $3.6 \pm 0.3$ $3.7 \pm 0.4$                                                                                                                  | n.s.<br>$6.6 \pm 0.0$<br>n.s.<br>$3.9 \pm 0.2$<br>n.s.<br>n.s.<br>$5.2 \pm 0.6$                                                                                                                                                                                                                                                                 | 101.2 = 131.4 = 125.1 = 108.5 = 108.5 = 166.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ± 12.2<br>± 29.8 1<br>± 33.2<br>∴ 6.9 1<br>± 11.5<br>= 9.5<br>± 30 2.<br>± 25.7 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n.s.<br>33.6 ± 9.9<br>n.s.<br>22.7 ± 5.8<br>n.s.<br>n.s.<br>40.0 ± 85.6                                                                                                                                   | $131.5 \pm 14$ $175.1 \pm 44$ $172.1 \pm 61$ $124.2 \pm 11$ $151.6 \pm 17$ $156.7 \pm 1$ $263.6 \pm 61$                                                                                                                                                                      | 4.4<br>4.9 168<br>1.0<br>1.5 192<br>7.6<br>18<br>1.2 446.<br>7.5 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8                                                                                                                                                                        |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water;                                                                                                                                              | RW03 RW29 RW30 RW24 RW25 RW26 RW10 QW02                                                                                                     | 15<br>15<br>17<br>15<br>19<br>19<br>19<br>20<br>20                                                                                                                                                         | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4                                                                                                | $31.2 \pm 8.9$ $45.3 \pm 16.6$ $46.8 \pm 27.1$ $28.7 \pm 8.4$ $41.4 \pm 10.1$ $44.7 \pm 10.6$ $92 \pm 30$ $106.4 \pm 23.8$ $126.1 \pm 27.7$                                                                                                                                                                                                                         | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  207.9 ± 10  246.1 ± 71                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                  | n.s.<br>$1.7 \pm 0.4$<br>n.s.<br>$1.9 \pm 0.4$<br>n.s.<br>n.s.<br>$2.31 \pm 1.1$<br>$2.7 \pm 0.7$<br>$2.8 \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $3.3 \pm 0.2$ $3.4 \pm 0.4$ $3.3 \pm 0.4$ $3.5 \pm 0.2$ $3.7 \pm 0.2$ $3.6 \pm 0.3$ $3.7 \pm 0.4$ $4 \pm 0.4$                                                                                                      | n.s.<br>$6.6 \pm 0.0$<br>n.s.<br>$3.9 \pm 0.2$<br>n.s.<br>n.s.<br>$5.2 \pm 0.6$<br>$6.9 \pm 2.3$                                                                                                                                                                                                                                                | 101.2 = 131.4 = 125.1 = 125.1 = 108.5 = 108.5 = 166.3 178.8 = 222.3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ± 12.2<br>± 29.8 1<br>± 33.2<br>± 33.2<br>6.9 1<br>± 11.5<br>= 9.5<br>± 25.7 2<br>± 12.8 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n.s.<br>33.6 ± 9.9<br>n.s.<br>22.7 ± 5.8<br>n.s.<br>n.s.<br>33.6 ± 9.9<br>n.s.<br>22.7 ± 5.8<br>n.s.<br>n.s.<br>23.7 ± 2.6                                                                                | $131.5 \pm 14$ $175.1 \pm 46$ $172.1 \pm 61$ $124.2 \pm 11$ $151.6 \pm 17$ $156.7 \pm 1$ $263.6 \pm 61$ $294.4 \pm 47$ $358 \pm 31$                                                                                                                                          | 4.4<br>4.9 168<br>1.0 100<br>1.5 192<br>7.6 18<br>1.2 446.<br>7.5 516<br>4 382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>n.s.<br>1. ± 89.7<br>.4 ± 22.7                                                                                                                                                   |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water; seasonal frost                                                                                                                               | RW03 RW29 RW30 RW24 RW25 RW26 RW08 RW10 QW02 QW03                                                                                           | 15<br>15<br>17<br>15<br>19<br>19<br>19<br>20<br>20                                                                                                                                                         | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4                                                                                                | $31.2 \pm 8.9$ $45.3 \pm 16.6$ $46.8 \pm 27.1$ $28.7 \pm 8.4$ $41.4 \pm 10.1$ $44.7 \pm 10.6$ $92 \pm 30$ $106.4 \pm 23.8$ $126.1 \pm 27.7$ $137.3 \pm 43.6$                                                                                                                                                                                                        | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  207.9 ± 10  246.1 ± 71  162.1 ± 31                                                                                                                            | $2.6 \pm 0.9$ $2 	 2.9 \pm 1$ $3 \pm 1.2$ $8 	 2.7 \pm 0.6$ $3.1 \pm 0.7$ $3.2 \pm 0.7$ $7.0 	 3.9 \pm 1.2$ $.0 	 4 \pm 1.1$ $.1 	 4.2 \pm 1.4$ $.8 	 4.1 \pm 1.6$                                                                                                                                                    | n.s.<br>$1.7 \pm 0.4$<br>n.s.<br>$1.9 \pm 0.4$<br>n.s.<br>n.s.<br>$1.9 \pm 0.4$<br>n.s.<br>$2.1 \pm 1.1$<br>$2.7 \pm 0.7$<br>$2.8 \pm 0.4$<br>$2.6 \pm 0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.3 \pm 0.2$ $3.4 \pm 0.4$ $3.3 \pm 0.4$ $3.5 \pm 0.2$ $3.7 \pm 0.2$ $3.6 \pm 0.3$ $3.7 \pm 0.4$ $4 \pm 0.4$ $4.9 \pm 0.5$ $5 \pm 0.7$                                                                            | n.s.<br>$6.6 \pm 0.0$<br>n.s.<br>$3.9 \pm 0.2$<br>n.s.<br>n.s.<br>$5.2 \pm 0.6$<br>$6.9 \pm 2.3$<br>$5.5 \pm 0.4$<br>$5.3 \pm 0.7$                                                                                                                                                                                                              | 101.2 = 131.4 = 125.1 = 125.1 = 108.5 = 108.5 = 166.3 = 178.8 = 222.3 = 233.1 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2  | ± 12.2<br>± 29.8 1<br>± 33.2<br>± 66.9 1<br>± 11.5<br>= 9.5<br>± ± 30 2<br>± 25.7 2<br>± 12.8 2<br>± 13.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.s.<br>33.6±9.9<br>n.s.<br>22.7±5.8<br>n.s.<br>n.s.<br>40.0±85.6<br>330.7±2.6<br>330.7±2.6                                                                                                               | $131.5 \pm 14$ $175.1 \pm 44$ $172.1 \pm 61$ $124.2 \pm 11$ $151.6 \pm 17$ $156.7 \pm 1$ $263.6 \pm 61$ $294.4 \pm 47$ $358 \pm 31$ $381.2 \pm 56$                                                                                                                           | 4.4<br>4.9 168<br>1.0 1.5 1922<br>7.6 188<br>1.2 446.<br>7.5 516<br>4 3822<br>9.9 373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7                                                                                                                                                           |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water;                                                                                                                                              | RW03 RW29 RW30 RW24 RW25 RW26 RW10 QW02                                                                                                     | 15<br>15<br>17<br>15<br>19<br>19<br>19<br>20<br>20<br>20                                                                                                                                                   | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4<br>4                                                                                           | $31.2 \pm 8.9$ $45.3 \pm 16.6$ $46.8 \pm 27.1$ $28.7 \pm 8.4$ $41.4 \pm 10.1$ $44.7 \pm 10.6$ $92 \pm 30$ $106.4 \pm 23.8$ $126.1 \pm 27.7$                                                                                                                                                                                                                         | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  207.9 ± 10  246.1 ± 71  162.1 ± 31  152.7 ± 26  156.0 ± 26                                                                                                    | 2.6 ± 0.9<br>2                                                                                                                                                                                                                                                                                                        | n.s. 1.7±0.4 n.s. 1.9±0.4 n.s. 1.9±0.4 n.s. 1.9±0.4 2.1 1.9±0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $3.3 \pm 0.2$ $3.4 \pm 0.4$ $3.3 \pm 0.4$ $3.5 \pm 0.2$ $3.7 \pm 0.2$ $3.6 \pm 0.3$ $3.7 \pm 0.4$ $4 \pm 0.4$                                                                                                      | n.s.<br>$6.6 \pm 0.0$<br>n.s.<br>$3.9 \pm 0.2$<br>n.s.<br>n.s.<br>$5.2 \pm 0.6$<br>$6.9 \pm 2.3$<br>$5.5 \pm 0.4$                                                                                                                                                                                                                               | 101.2 = 131.4 = 125.1 = 125.1 = 108.5 = 108.5 = 166.3 = 178.8 = 222.3 = 233.1 = 237.7 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1 = 108.1  | ± 12.2 ± 29.8 1 ± 33.2  6.9 1 ± 11.5 = 9.5 ± 30 2. ± 25.7 2 ± 12.8 2 ± 10.7 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n.s.<br>$33.6 \pm 9.9$<br>n.s.<br>$22.7 \pm 5.8$<br>n.s.<br>n.s.<br>$40.0 \pm 85.6$<br>$330.7 \pm 2.6$<br>$338.8 \pm 3.4$<br>$440.3 \pm 4.7$                                                              | $131.5 \pm 14$ $175.1 \pm 46$ $172.1 \pm 61$ $124.2 \pm 11$ $151.6 \pm 17$ $156.7 \pm 1$ $263.6 \pm 61$ $294.4 \pm 47$ $358 \pm 31$                                                                                                                                          | 4.4<br>4.9 168<br>1.0 1.5 192<br>1.5 192<br>1.5 192<br>1.6 1.2 446.<br>1.2 446.<br>1.4 382<br>1.9 373<br>1.8 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7<br>.4 ± 22.7<br>.4 ± 56.8                                                                                                                                 |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water; seasonal frost                                                                                                                               | RW03 RW29 RW30 RW24 RW25 RW26 RW08 RW10 QW02 QW03 QW04                                                                                      | 15<br>15<br>17<br>15<br>19<br>19<br>19<br>20<br>20<br>20<br>20                                                                                                                                             | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4<br>4<br>4<br>4                                                                                 | $31.2 \pm 8.9$ $45.3 \pm 16.6$ $46.8 \pm 27.1$ $28.7 \pm 8.4$ $41.4 \pm 10.1$ $44.7 \pm 10.6$ $92 \pm 30$ $106.4 \pm 23.8$ $126.1 \pm 27.7$ $137.3 \pm 43.6$ $150.1 \pm 34.1$                                                                                                                                                                                       | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  207.9 ± 10  246.1 ± 71  162.1 ± 31  152.7 ± 26  156.0 ± 26                                                                                                    | 2.6 ± 0.9<br>2 2.9 ± 1<br>3 ± 1.2<br>8 2.7 ± 0.0<br>3.1 ± 0.7<br>3.2 ± 0.7<br>7.0 3.9 ± 1.2<br>0.0 4 ± 1.1<br>1 4.2 ± 1.4<br>8 4.1 ± 1.6<br>0 4.2 ± 1.4<br>1 4.2 ± 1.4                                                                                                                                                | n.s. 1.7±0.4 n.s. 1.9±0.4 n.s. 1.9±0.4 n.s. 2.1±0.7 n.s. 2.1±0.7 2.8±0.4 2.6±0.7 2.8±0.4 2.6±0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $3.3 \pm 0.2$ $3.4 \pm 0.4$ $3.5 \pm 0.2$ $3.7 \pm 0.2$ $3.6 \pm 0.3$ $3.7 \pm 0.4$ $4 \pm 0.4$ $4.9 \pm 0.5$ $5 \pm 0.7$ $5.6 \pm 0.6$                                                                            | n.s.<br>$6.6 \pm 0.0$<br>n.s.<br>$3.9 \pm 0.2$<br>n.s.<br>n.s.<br>$5.2 \pm 0.6$<br>$6.9 \pm 2.3$<br>$5.5 \pm 0.4$<br>$5.3 \pm 0.7$<br>$5.4 \pm 0.4$                                                                                                                                                                                             | 101.2 = 131.4 = 125.1 = 125.1 = 108.5 = 108.5 = 166.3 = 178.8 = 222.3 = 233.1 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2 = 109.2  | ± 12.2 ± 29.8 1 ± 33.2  6.9 1 ± 11.5 = 9.5 ± ± 30 2 ± 25.7 2 ± 12.8 2 ± 10.7 2 ± 11.2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n.s.<br>33.6±9.9<br>n.s.<br>22.7±5.8<br>n.s.<br>n.s.<br>40.0±85.6<br>330.7±2.6<br>330.7±2.6                                                                                                               | $131.5 \pm 14$ $175.1 \pm 44$ $172.1 \pm 61$ $124.2 \pm 11$ $151.6 \pm 17$ $156.7 \pm 1$ $263.6 \pm 61$ $294.4 \pm 47$ $358 \pm 31$ $381.2 \pm 56$ $401.9 \pm 3$                                                                                                             | 4.4<br>4.9 168<br>1.0 1.5 192<br>7.6 18<br>1.2 446.7.5 516<br>4.4 382<br>3.7 383<br>3.7 387<br>3.8 3788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7<br>.4 ± 22.7<br>.4 ± 56.8<br>.2 ± 48.6                                                                                                                    |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water; seasonal frost                                                                                                                               | RW03 RW29 RW30 RW24 RW25 RW26 RW08 RW10 QW02 QW03 QW04 QW05                                                                                 | 15<br>15<br>17<br>15<br>19<br>19<br>19<br>20<br>20<br>20<br>20<br>20                                                                                                                                       | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4<br>4<br>4<br>4<br>4                                                                            | $31.2 \pm 8.9$<br>$45.3 \pm 16.6$<br>$46.8 \pm 27.1$<br>$28.7 \pm 8.4$<br>$41.4 \pm 10.1$<br>$44.7 \pm 10.6$<br>$92 \pm 30$<br>$106.4 \pm 23.8$<br>$126.1 \pm 27.7$<br>$137.3 \pm 43.6$<br>$150.1 \pm 34.1$<br>$150.9 \pm 34.2$                                                                                                                                     | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  207.9 ± 10  246.1 ± 71  162.1 ± 31  152.7 ± 26  156.0 ± 26  147.7 ± 35                                                                                        | 2.6 ± 0.9<br>2 2.9 ± 1<br>3 ± 1.2<br>8 2.7 ± 0.0<br>3.1 ± 0.7<br>3.2 ± 0.7<br>7.0 3.9 ± 1.2<br>0.0 4 ± 1.1<br>1 4.2 ± 1.4<br>8 4.1 ± 1.6<br>0 4.2 ± 1.4<br>1 4.2 ± 1.4                                                                                                                                                | n.s. 1.7±0.4 n.s. 1.9±0.4 n.s. 1.9±0.4 n.s. 2.1±0.7 n.s. 2.1±0.7 2.8±0.4 2.6±0.7 2.8±0.4 2.6±0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.3 ± 0.2<br>3.4 ± 0.4<br>3.5 ± 0.2<br>3.7 ± 0.2<br>3.6 ± 0.3<br>3.7 ± 0.4<br>4± 0.4<br>4.9 ± 0.5<br>5± 0.7<br>5.6 ± 0.6<br>5.5 ± 0.6                                                                              | n.s. $6.6 \pm 0.0$ n.s. $3.9 \pm 0.2$ n.s.       n.s. $5.2 \pm 0.6$ $6.9 \pm 2.3$ $5.5 \pm 0.4$ $5.3 \pm 0.7$ $5.4 \pm 0.4$ $5.3 \pm 0.8$                                                                                                                                                                                                       | 101.2 = 131.4 = 125.1 = 105.1 = 106.3 = 108.5 = 108.5 = 166.3 = 178.8 = 222.3 = 233.1 = 237.7 = 243.4 = 243.4 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1 = 105.1  | ± 12.2<br>± 29.8 1<br>± 33.2 1<br>± 33.2 1<br>± 11.5 1<br>= 9.5 1<br>± 25.7 2<br>± 12.8 2<br>± 13.9 2<br>± 10.7 2<br>± 11.2 2<br>± 14.1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n.s.<br>33.6 $\pm$ 9.9<br>n.s.<br>22.7 $\pm$ 5.8<br>n.s.<br>n.s.<br>40.0 $\pm$ 85.6<br>338.0 $\pm$ 4.5<br>338.8 $\pm$ 3.4<br>40.3 $\pm$ 4.7<br>48.7 $\pm$ 5.5                                             | $131.5 \pm 14$ $175.1 \pm 44$ $172.1 \pm 61$ $124.2 \pm 11$ $151.6 \pm 17$ $156.7 \pm 1$ $263.6 \pm 61$ $294.4 \pm 47$ $358 \pm 31$ $381.2 \pm 56$ $401.9 \pm 3$ $408.4 \pm 37$                                                                                              | 4.4<br>4.9 168<br>1.0 1.5 192<br>7.6 18<br>1.2 446.7.5 516<br>4.4 382<br>3.7 383<br>3.7 387<br>3.8 3788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7<br>.4 ± 22.7<br>.4 ± 56.8<br>.2 ± 48.6<br>.3 ± 53.8                                                                                                       |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water; seasonal frost zone                                                                                                                          | RW03 RW29 RW30 RW24 RW25 RW26 RW08 RW10 QW02 QW03 QW04 QW05 QW08                                                                            | 15<br>15<br>17<br>15<br>19<br>19<br>19<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                 | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4<br>4<br>4<br>4<br>4<br>4                                                                       | $31.2 \pm 8.9$<br>$45.3 \pm 16.6$<br>$46.8 \pm 27.1$<br>$28.7 \pm 8.4$<br>$41.4 \pm 10.1$<br>$44.7 \pm 10.6$<br>$92 \pm 30$<br>$106.4 \pm 23.8$<br>$126.1 \pm 27.7$<br>$137.3 \pm 43.6$<br>$150.1 \pm 34.1$<br>$150.9 \pm 34.2$<br>$95.4 \pm 33.2$                                                                                                                  | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  207.9 ± 10  246.1 ± 71  152.7 ± 26  156.0 ± 26  147.7 ± 35  107.5 ± 37                                                                                        | 2.6 ± 0.9<br>2 2.9 ± 1<br>3 ± 1.2<br>8 2.7 ± 0.6<br>3.1 ± 0.7<br>3.2 ± 0.7<br>7.0 3.9 ± 1.2<br>1.1 4.2 ± 1.4<br>8 4.1 ± 1.6<br>1.2 ± 1.4<br>1.4 4.2 ± 1.4<br>1.4 4.2 ± 1.5<br>1.5                                                                                                                                     | n.s. 1.7±0.4 n.s. 1.9±0.4 n.s. 1.9±0.4 n.s. 2.9±0.4 n.s. 1.9±0.4 n.s. 1.9±0.7 n.s. 2.8±0.4 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0±0.7 1.0 | 3.3 ± 0.2<br>3.4 ± 0.4<br>3.5 ± 0.2<br>3.7 ± 0.2<br>3.6 ± 0.3<br>3.7 ± 0.4<br>4± 0.4<br>4± 0.4<br>4.9 ± 0.5<br>5± 0.7<br>5.6 ± 0.6<br>4.4 ± 0.5                                                                    | n.s. $6.6 \pm 0.0$ n.s. $3.9 \pm 0.2$ n.s.       n.s. $5.2 \pm 0.6$ $6.9 \pm 2.3$ $5.5 \pm 0.4$ $5.3 \pm 0.7$ $5.4 \pm 0.4$ $5.3 \pm 0.8$ $4.6 \pm 0.7$                                                                                                                                                                                         | 101.2 = 131.4 = 125.1 = 125.1 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3  | ± 12.2<br>± 29.8 1<br>± 33.2 1<br>± 11.5<br>= 9.5 1<br>± 12.8 2<br>± 12.8 2<br>± 10.7 2<br>± 11.2 2<br>± 14.1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n.s.<br>33.6±9.9<br>n.s.<br>22.7±5.8<br>n.s.<br>n.s.<br>40.0±85.6<br>338.0±4.5<br>30.7±2.6<br>338.8±3.4<br>440.3±4.7<br>48.7±5.5                                                                          | $131.5 \pm 14$ $175.1 \pm 44$ $172.1 \pm 61$ $124.2 \pm 11$ $151.6 \pm 17$ $156.7 \pm 1$ $263.6 \pm 61$ $294.4 \pm 47$ $358 \pm 31$ $381.2 \pm 50$ $401.9 \pm 3$ $408.4 \pm 37$ $340.8 \pm 40$                                                                               | 4.4<br>4.9 168<br>1.0 1.5 192<br>7.6 18<br>1.2 446.6<br>7.5 516<br>4 382<br>3.9 373<br>88 378<br>7.2 387<br>7.2 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7<br>.4 ± 22.7<br>.4 ± 56.8<br>.2 ± 48.6<br>.3 ± 53.8<br>.5 ± 61.1                                                                                          |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water; seasonal frost zone  Well water;                                                                                                             | RW03 RW29 RW30 RW24 RW25 RW26 RW08 RW10 QW02 QW03 QW04 QW05 QW08 WW04 (24.3 m)                                                              | 15<br>15<br>17<br>15<br>19<br>19<br>19<br>20<br>20<br>20<br>20<br>20<br>1                                                                                                                                  | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                  | $31.2 \pm 8.9$<br>$45.3 \pm 16.6$<br>$46.8 \pm 27.1$<br>$28.7 \pm 8.4$<br>$41.4 \pm 10.1$<br>$44.7 \pm 10.6$<br>$92 \pm 30$<br>$106.4 \pm 23.8$<br>$126.1 \pm 27.7$<br>$137.3 \pm 43.6$<br>$150.1 \pm 34.1$<br>$150.9 \pm 34.2$<br>$95.4 \pm 33.2$<br>64.7                                                                                                          | n.s. 57.6 ± 14 n.s. 73.3 ± 14 n.s. 207.9 ± 10 246.1 ± 71 152.7 ± 26 156.0 ± 26 147.7 ± 35 107.5 ± 37 n.s.                                                                                             | 2.6 ± 0.9<br>2 2.9 ± 1<br>3 ± 1.2<br>8 2.7 ± 0.6<br>3.1 ± 0.7<br>3.2 ± 0.7<br>7.0 3.9 ± 1.2<br>1.1 4.2 ± 1.4<br>8 4.1 ± 1.6<br>1.2 ± 1.4<br>1.4 4.2 ± 1.4<br>1.4 4.2 ± 1.5<br>1.5                                                                                                                                     | n.s. 1.7±0.4 n.s. 1.9±0.4 n.s. 1.9±0.4 n.s. 2.7±0.7 2.8±0.4 2.6±0.7 2.8±0.4 2.6±0.7 2.8±0.4 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3.3±1.0 3. | 3.3 ± 0.2<br>3.4 ± 0.4<br>3.5 ± 0.2<br>3.7 ± 0.2<br>3.6 ± 0.3<br>3.7 ± 0.4<br>4± 0.4<br>4± 0.4<br>4.9 ± 0.5<br>5.5 ± 0.6<br>4.4 ± 0.5<br>17.6                                                                      | n.s. $6.6 \pm 0.0$ n.s. $3.9 \pm 0.2$ n.s.       n.s. $5.2 \pm 0.6$ $6.9 \pm 2.3$ $5.5 \pm 0.4$ $5.3 \pm 0.7$ $5.4 \pm 0.4$ $5.3 \pm 0.8$ $4.6 \pm 0.7$ n.s.                                                                                                                                                                                    | 101.2 = 131.4 = 125.1 = 125.1 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3 = 126.3  | ± 12.2<br>± 29.8 1<br>± 33.2<br>6.9 1<br>± 11.5<br>= 9.5<br>± 30 2<br>± 25.7 2<br>± 12.8 2<br>± 13.9 2<br>± 10.7 2<br>± 11.2 2<br>± 14.1 2<br>5.5 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n.s.<br>33.6 ± 9.9<br>n.s.<br>22.7 ± 5.8<br>n.s.<br>n.s.<br>40.0 ± 85.6<br>338.0 ± 4.5<br>330.7 ± 2.6<br>338.8 ± 3.4<br>440.3 ± 4.7<br>48.7 ± 5.5<br>46.1 ± 6.0<br>n.s.                                   | 131.5 ± 1 <sup>2</sup> 175.1 ± 4 <sup>2</sup> 172.1 ± 6 <sup>1</sup> 124.2 ± 11 151.6 ± 17 156.7 ± 1 263.6 ± 6 <sup>1</sup> 294.4 ± 4 <sup>2</sup> 358 ± 31 381.2 ± 5 <sup>0</sup> 401.9 ± 3 408.4 ± 4 <sup>2</sup> 302.9                                                    | 4.4<br>4.9 168<br>1.0 1.5 192<br>7.6 18<br>1.2 446.6<br>1.2 446.6<br>1.3 382<br>1.4 382<br>1.5 387<br>1.7 387 | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7<br>.4 ± 22.7<br>.4 ± 56.8<br>.2 ± 48.6<br>.3 ± 53.8<br>.5 ± 61.1<br>n.s.                                                                                  |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water; seasonal frost zone  Well water;                                                                                                             | RW03 RW29 RW30 RW24 RW25 RW26 RW08 RW10 QW02 QW03 QW04 QW05 QW08 WW04 (24.3 m) WW04 (12 m)                                                  | 15<br>15<br>17<br>15<br>19<br>19<br>20<br>20<br>20<br>20<br>20<br>20<br>1<br>1                                                                                                                             | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>0<br>2                                                        | $31.2 \pm 8.9$ $45.3 \pm 16.6$ $46.8 \pm 27.1$ $28.7 \pm 8.4$ $41.4 \pm 10.1$ $44.7 \pm 10.6$ $92 \pm 30$ $106.4 \pm 23.8$ $126.1 \pm 27.7$ $137.3 \pm 43.6$ $150.1 \pm 34.1$ $150.9 \pm 34.2$ $95.4 \pm 33.2$ $64.7$ n.s.                                                                                                                                          | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  207.9 ± 10  246.1 ± 71  162.1 ± 31  152.7 ± 26  156.0 ± 26  147.7 ± 35  n.s.  4.1 ± 0.0                                                                       | 2.6 ± 0.9 2                                                                                                                                                                                                                                                                                                           | n.s.  1.7±0.4  n.s.  1.9±0.4  n.s.  1.9±0.4  n.s.  2.7±0.7  2.8±0.4  2.6±0.7  2.8±0.4  2.4±1.0  n.s.  0.2±0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.3 ± 0.2<br>3.4 ± 0.4<br>3.5 ± 0.2<br>3.7 ± 0.2<br>3.6 ± 0.3<br>3.7 ± 0.4<br>4± 0.4<br>4± 0.4<br>4± 0.5<br>5± 0.7<br>5.6 ± 0.6<br>5.5 ± 0.6<br>4.4 ± 0.5<br>17.6<br>n.s.                                          | n.s. $6.6 \pm 0.0$ n.s.       3.9 ± 0.2       n.s.       n.s. $5.2 \pm 0.6$ $6.9 \pm 2.3$ $5.5 \pm 0.4$ $5.3 \pm 0.7$ $5.4 \pm 0.4$ $5.3 \pm 0.8$ $4.6 \pm 0.7$ n.s. $106.4 \pm 10.4$                                                                                                                                                           | 101.2 = 131.4 = 125.1 = 125.1 = 126.3 = 108.5 = 108.5 = 166.3 = 126.3 = 222.3 = 233.1 = 237.7 = 243.4 = 254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 237.4 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254.8 = 1254. | ± 12.2 ± 29.8 1 ± 33.2  6.6.9 1 ± 11.5 = 9.5 ± 30 2. ± 25.7 2 ± 11.2 2 ± 11.2 2 ± 14.1 2 7.5 8. 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n.s.<br>33.6 ± 9.9<br>n.s.<br>22.7 ± 5.8<br>n.s.<br>n.s.<br>40.0 ± 85.6<br>338.0 ± 4.5<br>330.7 ± 2.6<br>338.8 ± 3.4<br>440.3 ± 4.7<br>48.7 ± 5.5<br>46.1 ± 6.0<br>n.s.<br>n.s.                           | 131.5 ± 14<br>175.1 ± 44<br>172.1 ± 61<br>124.2 ± 11<br>151.6 ± 17<br>156.7 ± 1<br>263.6 ± 61<br>294.4 ± 47<br>358 ± 31<br>381.2 ± 56<br>401.9 ± 3<br>408.4 ± 43<br>302.9<br>n.s.                                                                                            | 4.4 4.9 168 1.0 1.5 192 7.6 18 1.2 446.7.5 516 4 382 0.9 373 88 378 378 379 383 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7<br>.4 ± 22.7<br>.4 ± 56.8<br>.2 ± 48.6<br>.3 ± 53.8<br>.5 ± 61.1<br>n.s.                                                                                  |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water; seasonal frost zone  Well water; permafrost zone  Well water;                                                                                | RW03 RW29 RW30 RW24 RW25 RW26 RW08 RW10 QW02 QW03 QW04 QW05 QW08 WW04 (24.3 m) WW04 (12 m) WW04 (1.5 m) WW03 (30 m)                         | 15<br>15<br>17<br>15<br>19<br>19<br>20<br>20<br>20<br>20<br>20<br>20<br>1<br>1<br>10<br>19<br>19<br>19<br>20<br>20<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10     | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>0<br>2<br>0<br>0                                              | $31.2 \pm 8.9$<br>$45.3 \pm 16.6$<br>$46.8 \pm 27.1$<br>$28.7 \pm 8.4$<br>$41.4 \pm 10.1$<br>$44.7 \pm 10.6$<br>$92 \pm 30$<br>$106.4 \pm 23.8$<br>$126.1 \pm 27.7$<br>$137.3 \pm 43.6$<br>$150.1 \pm 34.1$<br>$150.9 \pm 34.2$<br>64.7<br>n.s.<br>$10.2 \pm 5.5$<br>$115 \pm 16.8$                                                                                 | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  1.s.  207.9 ± 10  246.1 ± 71  162.1 ± 31  152.7 ± 26  147.7 ± 35  107.5 ± 37  n.s.  4.1 ± 0.6  n.s.  74.9 ± 24                                                | 2.6 ± 0.9 2                                                                                                                                                                                                                                                                                                           | n.s.  1.7±0.4  n.s.  1.9±0.4  n.s.  1.9±0.4  n.s.  2.7±0.7  2.8±0.4  2.6±0.7  2.8±0.4  2.4±1.0  n.s.  0.2±0.2  n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3 ± 0.2<br>3.4 ± 0.4<br>3.5 ± 0.2<br>3.7 ± 0.2<br>3.6 ± 0.3<br>3.7 ± 0.4<br>4± 0.4<br>4± 0.4<br>4± 0.5<br>5± 0.7<br>5.6 ± 0.6<br>5.5 ± 0.6<br>4.4 ± 0.5<br>17.6<br>n.s.<br>6.1 ± 1.1<br>4.5 ± 0.9                | n.s. $6.6 \pm 0.0$ n.s.       3.9 ± 0.2       n.s.       n.s. $5.2 \pm 0.6$ $6.9 \pm 2.3$ $5.5 \pm 0.4$ $5.3 \pm 0.7$ $5.4 \pm 0.4$ $5.3 \pm 0.8$ $4.6 \pm 0.7$ n.s. $106.4 \pm 10.$ n.s. $4.9 \pm 0.3$                                                                                                                                         | 101.2 = 131.4 = 125.1 = 125.1 = 126.3 = 108.5 = 108.5 = 166.3 = 178.8 = 222.3 = 233.1 = 237.7 = 243.4 = 254.8 = 237.4 = 1294.3 = 243.8 = 243.8 = 243.8 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 = 125.1 | ± 12.2 ± 29.8 1 ± 33.2  6.6.9 1 ± 11.5 = 9.5 ± 30 2 ± 25.7 2 ± 11.2 2 ± 11.1 2 ± 11.1 2 ± 11.1 2 ± 12.8 3 5 ± 25.7  ± 24.9 2 1 ± 24.9 2 1 ± 25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n.s.<br>33.6 ± 9.9<br>n.s.<br>22.7 ± 5.8<br>n.s.<br>n.s.<br>40.0 ± 85.6<br>338.0 ± 4.5<br>330.7 ± 2.6<br>338.8 ± 3.4<br>40.3 ± 4.7<br>448.7 ± 5.5<br>446.1 ± 6.0<br>n.s.<br>82.4 ± 14.7                   | 131.5 ± 1 <sup>2</sup> 175.1 ± 4 <sup>2</sup> 172.1 ± 6 <sup>1</sup> 124.2 ± 1 <sup>1</sup> 151.6 ± 17 156.7 ± 1 263.6 ± 6 <sup>1</sup> 294.4 ± 4 <sup>2</sup> 358 ± 31. 381.2 ± 5 <sup>2</sup> 401.9 ± 3 408.4 ± 37 340.8 ± 4 <sup>2</sup> 302.9 n.s. 264.6 ± 18 356.4 ± 25 | 4.4 4.9 168 1.0 1.5 192 7.6 18 1.2 446.7.5 516 4 382 3.9 373 388 378 378 379 387 389 389 389 389 389 389 389 389 389 389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7<br>.4 ± 22.7<br>.4 ± 56.8<br>.2 ± 48.6<br>.3 ± 53.8<br>.5 ± 61.1<br>n.s.                                                                                  |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water; seasonal frost zone  Well water; permafrost zone  Well water; the top of the sloping plain,                                                  | RW03 RW29 RW30 RW24 RW25 RW26 RW08 RW10 QW02 QW03 QW04 QW05 QW08 WW04 (24.3 m) WW04 (12 m) WW04 (1.5 m)                                     | 15<br>15<br>17<br>15<br>19<br>19<br>19<br>20<br>20<br>20<br>20<br>20<br>20<br>1<br>1                                                                                                                       | 0<br>2<br>0<br>3<br>0<br>0<br>0<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>0<br>2                                                   | $31.2 \pm 8.9$ $45.3 \pm 16.6$ $46.8 \pm 27.1$ $28.7 \pm 8.4$ $41.4 \pm 10.1$ $44.7 \pm 10.6$ $92 \pm 30$ $106.4 \pm 23.8$ $126.1 \pm 27.7$ $137.3 \pm 43.6$ $150.1 \pm 34.1$ $150.9 \pm 34.2$ $64.7$ $n.s.$ $10.2 \pm 5.5$                                                                                                                                         | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  1.s.  207.9 ± 10  246.1 ± 71  162.1 ± 31  152.7 ± 26  156.0 ± 20  147.7 ± 35  107.5 ± 37  n.s.  4.1 ± 0.6  n.s.  74.9 ± 24                                    | 2.6 ± 0.9 2                                                                                                                                                                                                                                                                                                           | n.s.  1.7 ± 0.4  n.s.  1.9 ± 0.4  n.s.  n.s.  2.8 ± 0.4  2.8 ± 0.4  5.3 ± 6.6  2.4 ± 1.0  n.s.  0.2 ± 0.2  n.s.  0.1 ± 0.1  2.4 ± 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3 ± 0.2<br>3.4 ± 0.4<br>3.5 ± 0.2<br>3.7 ± 0.2<br>3.6 ± 0.3<br>3.7 ± 0.4<br>4± 0.4<br>4± 0.4<br>4± 0.5<br>5± 0.7<br>5.6 ± 0.6<br>5.5 ± 0.6<br>4.4 ± 0.5<br>17.6<br>n.s.                                          | n.s. $6.6 \pm 0.0$ n.s.       3.9 $\pm 0.2$ n.s.       n.s. $5.2 \pm 0.6$ $6.9 \pm 2.3$ $5.5 \pm 0.4$ $5.3 \pm 0.7$ $5.4 \pm 0.4$ $5.3 \pm 0.8$ $4.6 \pm 0.7$ n.s. $106.4 \pm 10.$ n.s.                                                                                                                                                         | 101.2 = 131.4 = 125.1 = 125.1 = 126.3 = 108.5 = 108.5 = 166.3 = 178.8 = 222.3 = 233.1 = 237.7 = 243.4 = 254.8 = 237.4 = 1294.3 = 294.3 = 294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 1294.3 = 12 | ± 12.2 ± 29.8 1 ± 33.2  6.9 1 ± 11.5 = 9.5 ± ± 30 2 ± 25.7 2 ± 12.8 2 ± 11.9 2 ± 14.1 2 2.5 8 8 ± 25.7  ± 24.9 2 ± ± 31.4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.s.<br>33.6 ± 9.9<br>n.s.<br>22.7 ± 5.8<br>n.s.<br>n.s.<br>40.0 ± 85.6<br>338.0 ± 4.5<br>330.7 ± 2.6<br>338.8 ± 3.4<br>40.3 ± 4.7<br>448.7 ± 5.5<br>46.1 ± 6.0<br>n.s.<br>n.s.                           | 131.5 ± 1 <sup>2</sup> 175.1 ± 4 <sup>2</sup> 172.1 ± 6 <sup>1</sup> 124.2 ± 1 <sup>1</sup> 151.6 ± 17 156.7 ± 1 263.6 ± 6 <sup>1</sup> 294.4 ± 4 <sup>2</sup> 358 ± 31. 381.2 ± 5 <sup>2</sup> 401.9 ± 3 408.4 ± 37 340.8 ± 4 <sup>2</sup> 302.9 n.s. 264.6 ± 18            | 4.4<br>4.9 168<br>1.0 1.5 192<br>7.6 18<br>1.2 446.<br>1.2 446.<br>1.3 382<br>1.3 387<br>1.3 382<br>1.3 382<br>1.3 382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7<br>.4 ± 22.7<br>.4 ± 56.8<br>.2 ± 48.6<br>.3 ± 53.8<br>.5 ± 61.1<br>n.s.                                                                                  |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water; seasonal frost zone  Well water; permafrost zone  Well water; the top of the sloping plain, seasonal frost zone                              | RW03 RW29 RW30 RW24 RW25 RW26 RW08 RW10 QW02 QW03 QW04 QW05 WW04 (12 m) WW04 (1.5 m) WW03 (20 m) WW03 (20 m) WW03 (20 m)                    | 15<br>15<br>17<br>15<br>19<br>19<br>20<br>20<br>20<br>20<br>20<br>20<br>1<br>1<br>19<br>9<br>20<br>20<br>20<br>20<br>6<br>6                                                                                | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>0<br>2<br>0<br>0<br>4<br>0<br>0                          | $31.2 \pm 8.9$<br>$45.3 \pm 16.6$<br>$46.8 \pm 27.1$<br>$28.7 \pm 8.4$<br>$41.4 \pm 10.1$<br>$44.7 \pm 10.6$<br>$92 \pm 30$<br>$106.4 \pm 23.8$<br>$126.1 \pm 27.7$<br>$137.3 \pm 43.6$<br>$150.1 \pm 34.1$<br>$150.9 \pm 34.2$<br>64.7<br>n.s.<br>$10.2 \pm 5.5$<br>$115 \pm 16.8$<br>$116.2 \pm 31.7$<br>$122.4 \pm 64.2$                                         | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  207.9 ± 10  246.1 ± 71  162.1 ± 31  152.7 ± 26  156.0 ± 20  147.7 ± 35  n.s.  4.1 ± 0.6  n.s.  74.9 ± 24  148.8 ± 26  n.s.                                    | 2.6 ± 0.5 2 2.9 ± 1 3 ± 1.2 8 2.7 ± 0.6 3.1 ± 0.7 7.0 3.9 ± 1.2 1.4 ± 1.1 1.4.2 ± 1.4 1.1 4.2 ± 1.4 1.1 4.2 ± 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.7 1.7 1.7 1.7 1.8 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.8 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 | n.s.  1.7 ± 0.4  n.s.  1.9 ± 0.4  n.s.  1.9 ± 0.4  n.s.  2.7 ± 0.7  2.8 ± 0.4  2.6 ± 0.7  2.8 ± 0.4  5.3 ± 6.6  2.4 ± 1.0  n.s.  0.2 ± 0.2  n.s.  0.1 ± 0.1  2.4 ± 0.4  n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3 ± 0.2<br>3.4 ± 0.4<br>3.5 ± 0.2<br>3.7 ± 0.2<br>3.6 ± 0.3<br>3.7 ± 0.4<br>4± 0.4<br>4.9 ± 0.5<br>5 ± 0.7<br>5.6 ± 0.6<br>5.5 ± 0.6<br>4.4 ± 0.5<br>17.6<br>ns.<br>6.1 ± 1.1<br>4.5 ± 0.9<br>4 ± 0.5<br>5 ± 1.1 | $\begin{array}{c} \text{n.s.} \\ 6.6 \pm 0.0 \\ \text{n.s.} \\ 3.9 \pm 0.2 \\ \text{n.s.} \\ \text{n.s.} \\ \text{n.s.} \\ 5.2 \pm 0.6 \\ 6.9 \pm 2.3 \\ \\ 5.5 \pm 0.4 \\ 5.3 \pm 0.7 \\ 5.4 \pm 0.4 \\ 5.3 \pm 0.8 \\ 4.6 \pm 0.7 \\ \text{n.s.} \\ 106.4 \pm 10. \\ \text{n.s.} \\ 4.9 \pm 0.3 \\ 5.1 \pm 0.4 \\ \text{n.s.} \\ \end{array}$ | 101.2 = 131.4 = 125.1 = 96 ± 108.5 = 108.5 = 166.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ± 12.2 ± 29.8 1 ± 33.2 6.9 1 ± 11.5 = 9.5 ± 30 2 ± 25.7 2 ± 13.9 2 ± 11.2 2 ± 14.1 2 7.5 8.5 8.5 ± 25.7 ± 24.9 2 ± 31.4 2 ± 136.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n.s.<br>33.6 ± 9.9<br>n.s.<br>22.7 ± 5.8<br>n.s.<br>n.s.<br>40.0 ± 85.6<br>338.0 ± 4.5<br>30.7 ± 2.6<br>33.8 ± 3.4<br>40.3 ± 4.7<br>48.7 ± 5.5<br>46.1 ± 6.0<br>n.s.<br>82.4 ± 14.7<br>50.2 ± 9.0<br>n.s. | 131.5 ± 14<br>175.1 ± 44<br>172.1 ± 61<br>124.2 ± 11<br>151.6 ± 17<br>156.7 ± 1<br>263.6 ± 61<br>294.4 ± 47<br>358 ± 31<br>381.2 ± 56<br>401.9 ± 3<br>408.4 ± 3<br>302.9<br>n.s.<br>264.6 ± 18<br>336.4 ± 18<br>336.4 ± 19<br>336.4 ± 19<br>340.8 ± 44                       | 4.4<br>4.9 168<br>1.0 168<br>1.1.5 192<br>7.6 18<br>8 1.2 446.<br>7.5 516<br>4 382<br>9.9 373<br>387<br>387<br>387<br>387<br>387<br>387<br>387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7<br>.4 ± 22.7<br>.4 ± 56.8<br>.2 ± 48.6<br>.3 ± 53.8<br>.5 ± 61.1<br>n.s.<br>.6 ± 52.1<br>.3 ± 42.1<br>n.s.                                                |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water; seasonal frost zone  Well water; permafrost zone  Well water; the top of the sloping plain,                                                  | RW03 RW29 RW30 RW24 RW25 RW26 RW08 RW10 QW02 QW03 QW04 QW05 WW04 (24.3 m) WW04 (1.5 m) WW03 (30 m) WW03 (10 m) WW03 (25 m)                  | 15<br>15<br>17<br>15<br>19<br>19<br>19<br>20<br>20<br>20<br>20<br>20<br>20<br>1<br>1<br>17<br>19                                                                                                           | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>0<br>2<br>0<br>0<br>0                                         | $31.2 \pm 8.9$<br>$45.3 \pm 16.6$<br>$46.8 \pm 27.1$<br>$28.7 \pm 8.4$<br>$41.4 \pm 10.1$<br>$44.7 \pm 10.6$<br>$92 \pm 30$<br>$106.4 \pm 23.8$<br>$126.1 \pm 27.7$<br>$137.3 \pm 43.6$<br>$150.1 \pm 34.1$<br>$150.9 \pm 34.2$<br>64.7<br>n.s.<br>$10.2 \pm 5.5$<br>$115 \pm 16.8$<br>$116.2 \pm 31.7$<br>$122.4 \pm 64.2$<br>$158.9 \pm 51.6$                     | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  207.9 ± 10  246.1 ± 71  162.1 ± 31  152.7 ± 26  156.0 ± 20  147.7 ± 35  107.5 ± 37  n.s.  4.1 ± 0.6  n.s.  74.9 ± 24  148.8 ± 26  n.s.  92.4 ± 22             | 2.6 ± 0.9  2                                                                                                                                                                                                                                                                                                          | n.s.  1.7 ± 0.4  n.s.  1.9 ± 0.4  n.s.  1.9 ± 0.4  n.s.  2.1 ± 0.7  2.8 ± 0.4  2.8 ± 0.4  2.8 ± 0.4  2.4 ± 1.0  n.s.  0.2 ± 0.2  n.s.  0.1 ± 0.1  2.4 ± 0.4  n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.3 ± 0.2<br>3.4 ± 0.4<br>3.5 ± 0.2<br>3.7 ± 0.2<br>3.6 ± 0.3<br>3.7 ± 0.4<br>4± 0.4<br>4± 0.4<br>4± 0.5<br>5± 0.6<br>17.6<br>n.s.<br>6.1 ± 1.1<br>4± 0.5<br>5± 1.1<br>5.2 ± 2.7                                   | n.s. $6.6 \pm 0.0$ n.s.       3.9 ± 0.2       n.s.       n.s.       5.2 ± 0.6 $6.9 \pm 2.3$ 5.5 ± 0.4       5.3 ± 0.7       5.4 ± 0.4       5.3 ± 0.8       4.6 ± 0.7       n.s.       106.4 ± 10.       n.s.       4.9 ± 0.3       5.1 ± 0.4       n.s.       5.1 ± 0.4                                                                        | 101.2 = 131.4 = 125.1 = 96 ± 108.5 = 108.5 = 166.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ± 12.2<br>± 29.8 1<br>± 33.2<br>66.9 1<br>± 11.5<br>= 9.5<br>± 30 2<br>± 25.7 2<br>± 12.8 2<br>± 13.9 2<br>± 11.2 2<br>± 14.1 2<br>2.5<br>5 8.<br>± 25.7 2<br>± 30. 2<br>± 13.9 2<br>± 14.1 2<br>± 15.5 8.<br>± 25.7 2<br>± 15.5 8.<br>± 25.7 2<br>± 25.7 2<br>± 15.5 8.<br>± 25.7 2<br>± 25.7 2<br>± 15.5 8.<br>± 25.7 2<br>± 25.7 2<br>± 25.7 2<br>± 15.5 8.<br>± 25.7 2<br>± 25.7 2<br>± 25.7 2<br>± 15.8 2<br>± 15 | n.s.<br>33.6 ± 9.9<br>n.s.<br>22.7 ± 5.8<br>n.s.<br>n.s.<br>40.0 ± 85.6<br>338.0 ± 4.5<br>330.7 ± 2.6<br>338.8 ± 3.4<br>40.3 ± 4.7<br>448.7 ± 5.5<br>46.1 ± 6.0<br>n.s.<br>82.4 ± 14.7<br>55.2 ± 9.0      | 131.5 ± 1 <sup>2</sup> 175.1 ± 4 <sup>3</sup> 172.1 ± 61 124.2 ± 11 151.6 ± 17 151.6 ± 17 263.6 ± 61 294.4 ± 4 <sup>3</sup> 358 ± 31 381.2 ± 50 401.9 ± 3 408.4 ± 37 302.9 n.s. 264.6 ± 18 356.4 ± 25 349.7 ± 41                                                             | 4.4<br>4.9 168<br>1.0 1.5 192<br>7.6 18<br>1.2 446.<br>7.5 516<br>4 382<br>9.09 373<br>388 3788<br>387.2 387<br>9.3 319<br>1059<br>3.2 46.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7<br>.4 ± 22.7<br>.4 ± 56.8<br>.2 ± 48.6<br>.3 ± 53.8<br>.5 ± 61.1<br>n.s.<br>.6 ± 52.1<br>.3 ± 42.1                                                        |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water; seasonal frost zone  Well water; permafrost zone  Well water; the top of the sloping plain, seasonal frost zone  Well water;                 | RW03 RW29 RW30 RW24 RW25 RW26 RW08 RW10 QW02 QW03 QW04 QW05 WW04 (12 m) WW04 (1.5 m) WW03 (20 m) WW03 (20 m) WW03 (20 m)                    | 15<br>15<br>17<br>15<br>19<br>19<br>20<br>20<br>20<br>20<br>20<br>20<br>1<br>17<br>19<br>19                                                                                                                | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>0<br>2<br>0<br>0<br>4<br>0<br>0<br>4<br>0<br>0<br>0<br>0<br>0 | $31.2 \pm 8.9$<br>$45.3 \pm 16.6$<br>$46.8 \pm 27.1$<br>$28.7 \pm 8.4$<br>$41.4 \pm 10.1$<br>$44.7 \pm 10.6$<br>$92 \pm 30$<br>$106.4 \pm 23.8$<br>$126.1 \pm 27.7$<br>$137.3 \pm 43.6$<br>$150.1 \pm 34.1$<br>$150.9 \pm 34.2$<br>64.7<br>n.s.<br>$10.2 \pm 5.5$<br>$115 \pm 16.8$<br>$116.2 \pm 31.7$<br>$122.4 \pm 64.2$                                         | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  207.9 ± 10  246.1 ± 71  162.1 ± 31  152.7 ± 26  147.7 ± 35  107.5 ± 37  n.s.  4.1 ± 0.6  n.s.  74.9 ± 24  148.8 ± 26  n.s.  92.4 ± 22  212.3 ± 76             | 2.6 ± 0.9 2 2.9 ± 1 3 ± 1.2 8 2.7 ± 0.0 3.1 ± 0.7 3.2 ± 0.7 7.0 3.9 ± 1.2 1.1 4.2 ± 1.4 8 4.1 ± 1.6 0.0 4.2 ± 1.4 1.1 4.2 ± 1.5 1.5 1.5 1.6 0.3 ± 1.1 0.3 ± 1.1 0.3 ± 1.2 0.3 ± 1.3 0.4 ± 1.5 0.3 ± 1.6 0.3 ± 1.7 0.3 ± 1.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                   | n.s.  1.7±0.4  n.s.  1.9±0.4  n.s.  1.9±0.4  n.s.  2.1±0.7  2.8±0.4  2.8±0.4  2.8±0.4  2.8±0.4  2.8±0.4  2.8±0.4  2.8±0.4  1.0  n.s.  0.2±0.2  n.s.  0.1±0.1  2.4±0.4  n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.3 ± 0.2<br>3.4 ± 0.4<br>3.5 ± 0.2<br>3.7 ± 0.2<br>3.6 ± 0.3<br>3.7 ± 0.4<br>4± 0.4<br>4.9 ± 0.5<br>5 ± 0.7<br>5.6 ± 0.6<br>5.5 ± 0.6<br>4.4 ± 0.5<br>17.6<br>ns.<br>6.1 ± 1.1<br>4.5 ± 0.9<br>4 ± 0.5<br>5 ± 1.1 | $\begin{array}{c} \text{n.s.} \\ 6.6 \pm 0.0 \\ \text{n.s.} \\ 3.9 \pm 0.2 \\ \text{n.s.} \\ \text{n.s.} \\ \text{n.s.} \\ 5.2 \pm 0.6 \\ 6.9 \pm 2.3 \\ \\ 5.5 \pm 0.4 \\ 5.3 \pm 0.7 \\ 5.4 \pm 0.4 \\ 5.3 \pm 0.8 \\ 4.6 \pm 0.7 \\ \text{n.s.} \\ 106.4 \pm 10. \\ \text{n.s.} \\ 4.9 \pm 0.3 \\ 5.1 \pm 0.4 \\ \text{n.s.} \\ \end{array}$ | 101.2 = 131.4 = 125.1 = 96 ± 108.5 = 108.5 = 166.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ± 12.2 ± 29.8 1 ± 33.2  66.9 1 ± 11.5 = 9.5 ± 30 2 ± 25.7 2 ± 12.8 2 ± 13.9 2 ± 11.2 2 ± 14.1 2 2.5 8. 8. ± 25.7  ± 24.9 2 ± 31.4 2 ± 31.4 2 2 4.42.2 2 2 4.42.2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n.s. $33.6 \pm 9.9$ n.s. $22.7 \pm 5.8$ n.s. n.s. $40.0 \pm 85.6$ $38.0 \pm 4.5$ $30.7 \pm 2.6$ $338.8 \pm 3.4$ $40.3 \pm 4.7$ $48.7 \pm 5.5$ $46.1 \pm 6.0$ n.s. $33.6 \pm 30.2$ n.s. $12.1 \pm 32.5$    | 131.5 ± 1 <sup>2</sup> 175.1 ± 4 <sup>2</sup> 172.1 ± 61 124.2 ± 11 151.6 ± 17 156.7 ± 1 263.6 ± 61 294.4 ± 47 358 ± 31. 381.2 ± 50 401.9 ± 3 408.4 ± 43 302.9 n.s. 264.6 ± 18 356.4 ± 25 349.7 ± 41 409.5 ± 19                                                              | 4.4 4.9 168 1.0 1.1.5 192 7.6 18 1.2 446. 7.5 516 4 382 9.9 373 388 378 7.2 387 7.3 319 1059 3.2 6.4 45.9 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7<br>.4 ± 22.7<br>.4 ± 56.8<br>.2 ± 48.6<br>.3 ± 53.8<br>.5 ± 61.1<br>n.s.<br>.6 ± 52.1<br>.3 ± 42.1<br>n.s.                                                |
| periglacial zone  Stream water; east tributary, seasonal frost zone  Stream water; west tributary, seasonal frost zone  Stream water; catchment outlet, seasonal frost zone  Spring water; seasonal frost zone  Well water; permafrost zone  Well water; the top of the sloping plain, seasonal frost zone  Well water; the base of the | RW03 RW29 RW30 RW24 RW25 RW26 RW08 RW10 QW02 QW03 QW04 QW05 QW08 WW04 (24.3 m) WW04 (1.5 m) WW03 (20 m) WW03 (20 m) WW01 (25 m) WW01 (15 m) | 15<br>15<br>17<br>15<br>19<br>19<br>19<br>20<br>20<br>20<br>20<br>20<br>20<br>1<br>1<br>19<br>19<br>20<br>20<br>20<br>6<br>7<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19 | 0<br>2<br>0<br>3<br>0<br>0<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>0<br>0<br>2<br>0<br>0<br>4<br>0<br>0<br>4<br>0<br>0<br>0<br>0 | $31.2 \pm 8.9$<br>$45.3 \pm 16.6$<br>$46.8 \pm 27.1$<br>$28.7 \pm 8.4$<br>$41.4 \pm 10.1$<br>$44.7 \pm 10.6$<br>$92 \pm 30$<br>$106.4 \pm 23.8$<br>$126.1 \pm 27.7$<br>$137.3 \pm 43.6$<br>$150.1 \pm 34.1$<br>$150.9 \pm 34.2$<br>64.7<br>n.s.<br>$10.2 \pm 5.5$<br>$115 \pm 16.8$<br>$116.2 \pm 31.7$<br>$122.4 \pm 64.2$<br>$158.9 \pm 51.6$<br>$162.4 \pm 33.6$ | n.s.  57.6 ± 14  n.s.  73.3 ± 14  n.s.  207.9 ± 10  246.1 ± 71  162.1 ± 31  152.7 ± 26  147.7 ± 35  107.5 ± 37  n.s.  4.1 ± 0.0  n.s.  74.9 ± 24  148.8 ± 26  n.s.  92.4 ± 22  212.3 ± 76  267.7 ± 26 | 2.6 ± 0.9 2 2.9 ± 1 3 ± 1.2 8 2.7 ± 0.0 3.1 ± 0.7 3.2 ± 0.7 7.0 3.9 ± 1.2 1.1 4.2 ± 1.4 8 4.1 ± 1.6 0.0 4.2 ± 1.4 1.1 4.2 ± 1.5 1.5 1.5 1.6 0.3 ± 1.1 0.3 ± 1.1 0.3 ± 1.2 0.3 ± 1.3 0.4 ± 1.5 0.3 ± 1.6 0.3 ± 1.7 0.3 ± 1.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                   | n.s.  1.7±0.4  n.s.  1.9±0.4  n.s.  1.9±0.4  n.s.  2.8±0.4  2.8±0.4  2.8±0.4  2.8±0.4  2.8±0.4  2.8±0.4  2.8±0.4  2.8±0.4  1.0  n.s.  0.2±0.2  n.s.  0.1±0.1  2.4±0.4  n.s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.3 ± 0.2<br>3.4 ± 0.4<br>3.5 ± 0.2<br>3.7 ± 0.2<br>3.6 ± 0.3<br>3.7 ± 0.4<br>4± 0.4<br>4± 0.4<br>4± 0.5<br>5± 0.6<br>17.6<br>n.s.<br>6.1 ± 1.1<br>4.5 ± 0.9<br>4± 0.5<br>5± 1.1<br>5.2 ± 2.7<br>4.8 ± 1.1         | n.s. $6.6 \pm 0.0$ n.s.       3.9 ± 0.2       n.s.       n.s.       5.2 ± 0.6 $6.9 \pm 2.3$ 5.5 ± 0.4       5.3 ± 0.7       5.4 ± 0.4       5.3 ± 0.8       4.6 ± 0.7       n.s.       106.4 ± 10.       n.s.       5.1 ± 0.4       n.s.       5.1 ± 0.4       5.0 ± 0.2                                                                        | 101.2 = 131.4 = 125.1 = 96 ± 108.5 = 108.5 = 166.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ± 12.2 ± 29.8 1 ± 33.2  6.6.9 1 ± 11.5 = 9.5 ± 30 2 ± 25.7 2 ± 12.8 2 ± 13.9 2 ± 11.2 2 ± 14.1 2 2.5 8 8 8 ± 25.7 2 ± 31.4 2 ± 31.4 2 ± 31.4 2 ± 42.2 2 ± 54.6 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n.s.<br>33.6±9.9<br>n.s.<br>122.7±5.8<br>n.s.<br>n.s.<br>10.0±85.6<br>338.0±4.5<br>30.7±2.6<br>338.8±3.4<br>40.3±4.7<br>48.7±5.5<br>46.1±6.0<br>n.s.<br>133.6±3.0.2<br>n.s.<br>133.6±3.0.2<br>n.s.        | 131.5 ± 1 <sup>2</sup> 175.1 ± 4 <sup>2</sup> 172.1 ± 61 124.2 ± 11 151.6 ± 17 156.7 ± 1 263.6 ± 61 294.4 ± 47 358 ± 31 381.2 ± 50 401.9 ± 3 408.4 ± 47 302.9 n.s. 264.6 ± 18 356.4 ± 25 349.7 ± 41 409.5 ± 19 439.2 ± 92 425.9 ± 78                                         | 4.4 4.9 168 1.0 1.1.5 192 7.6 18 1.2 446. 7.5 516 4 382 9.9 373 388 378 7.2 387 7.3 381 105: 3.2 9.6 302 1.3 382 6.4 491.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n.s.<br>.6 ± 44.4<br>n.s.<br>.5 ± 34.0<br>n.s.<br>n.s.<br>8 ± 218.8<br>.1 ± 89.7<br>.4 ± 22.7<br>.4 ± 22.7<br>.4 ± 56.8<br>.2 ± 48.6<br>.3 ± 53.8<br>.5 ± 61.1<br>n.s.<br>.6 ± 52.1<br>.3 ± 42.1<br>n.s.<br>.5 ± 61.0<br>.3 ± 42.1<br>n.s. |

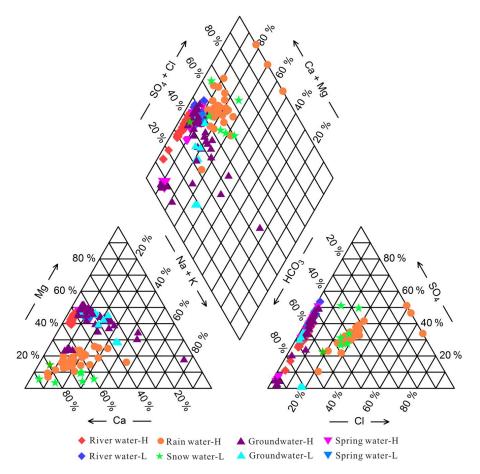
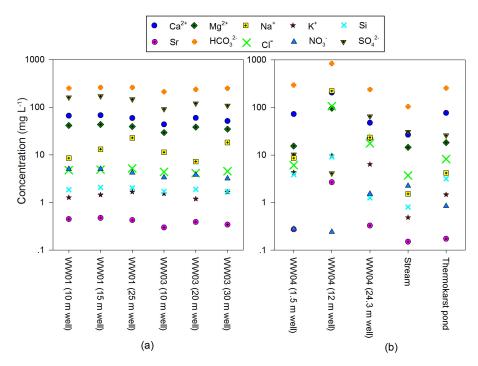




Figure 6. The piper diagram for groundwater, stream water, precipitation, and glacier and snow meltwater in the study area. "H" refers to high flows in the warm season; "L" refers to low flows in cold season.

**Table 2.** The  $^3$ H,  $^{13}$ C and  $^{14}$ C isotopic composition of groundwater samples and  $^{14}$ C ages corrected using the  $\delta^{13}$ C-mixing model modified by Clark and Fritz (1997); "n.d." means not determined, and "n.c." means not calculated.

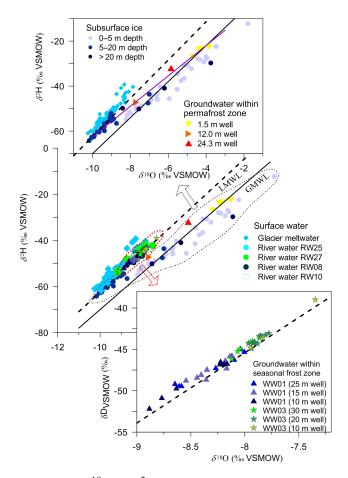
| Sample site        | <sup>3</sup> H<br>(TU) | δ <sup>13</sup> C (‰) |                   | <sup>14</sup> C activity (pmC) |                   | Uncorrected <sup>14</sup> C age |                   | Corrected <sup>14</sup> C age |                |
|--------------------|------------------------|-----------------------|-------------------|--------------------------------|-------------------|---------------------------------|-------------------|-------------------------------|----------------|
|                    |                        | δ <sup>13</sup> C     | Error $(1\sigma)$ | <sup>14</sup> C<br>activity    | Error $(1\sigma)$ | Age<br>(years)                  | Error $(1\sigma)$ | q                             | Age<br>(years) |
| WW04 (24.3 m well) | n.d.                   | -16.77                | 0.51              | 76.43                          | 0.32              | 2159                            | 34                | 0.90                          | 1637           |
| WW04 (1.5 m well)  | 15.11                  | -13.60                | 0.57              | 96.34                          | 0.31              | 299                             | 26                | 0.76                          | -2009 (modern) |
| WW03 (30 m well)   | 19.38                  | -8.79                 | 0.57              | 51.77                          | 0.22              | 5288                            | 33                | 0.49                          | -483 (modern)  |
| WW03 (20 m well)   | 16.22                  | n.d.                  | n.d.              | n.d.                           | n.d.              | n.c.                            | n.c.              | n.c.                          | n.c.           |
| QWIP01 (spring)    | 20.69                  | -8.31                 | 0.61              | 35.51                          | 0.17              | 8317                            | 39                | 0.46                          | 2170           |
| QWIP02 (spring)    | 17.33                  | -8.05                 | 0.55              | 49.60                          | 0.20              | 5632                            | 32                | 0.45                          | -856 (modern)  |
| WW01 (25 m well)   | 16.95                  | -5.92                 | 0.53              | 44.38                          | 0.18              | 6525                            | 33                | 0.33                          | -2477 (modern) |
| WW01 (15 m well)   | 24.18                  | n.d.                  | n.d.              | n.d.                           | n.d.              | n.c.                            | n.c.              | n.c.                          | n.c.           |
| WW01 (10 m well)   | 16.20                  | n.d.                  | n.d.              | n.d.                           | n.d.              | n.c.                            | n.c.              | n.c.                          | n.c.           |
| QW02 (spring)      | 27.83                  | n.d.                  | n.d.              | n.d.                           | n.d.              | n.c.                            | n.c.              | n.c.                          | n.c.           |
| QW03 (spring)      | 13.84                  | n.d.                  | n.d.              | n.d.                           | n.d.              | n.c.                            | n.c.              | n.c.                          | n.c.           |
| QW05 (spring)      | 43.59                  | n.d.                  | n.d.              | n.d.                           | n.d.              | n.c.                            | n.c.              | n.c.                          | n.c.           |
| QW04 (spring)      | 13.61                  | -5.09                 | 0.70              | 43.05                          | 0.19              | 6770                            | 34                | 0.28                          | -3475(modern)  |
| QW08 (spring)      | 18.58                  | n.d.                  | n.d.              | n.d.                           | n.d.              | n.c.                            | n.c.              | n.c.                          | n.c.           |



**Figure 7. (a)** Groundwater chemistry at different depths of the two clusters within the seasonal frost zone and **(b)** chemistry of groundwater, stream water and thermokarst pond water within the permafrost zone. WW01, WW03 and WW04 are symbols for clusters. The number in brackets means the specific screen depth of wells. Note the log scale on the *y* axis.

Cl<sup>-</sup>, HCO<sub>3</sub><sup>-</sup> and TDS concentrations and the lowest  $SO_4^{2-}$  and  $NO_3^-$  concentrations. The groundwater in the 24.3 m well had the higher K<sup>+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup>, Sr, Cl<sup>-</sup>,  $SO_4^{2-}$ , NO<sub>3</sub><sup>-</sup> and TDS concentrations but lower Ca<sup>2+</sup> and HCO<sub>3</sub><sup>-</sup> concentrations than in the 1.5 m well. The groundwater in permafrost zones generally had lower  $SO_4^{2-}$ , Mg<sup>2+</sup> and TDS concentrations but higher Cl<sup>-</sup> and K<sup>+</sup> concentrations than groundwaters in the seasonal frost zone. Other chemical parameters were similar between the groundwaters within the two zones.

# 4.5 Stable isotopes


A local meteoric water line (LMWL) fitted to the  $^2$ H and  $^{18}$ O isotopic compositions of precipitation at the study area is  $\delta^2$ H =  $8.5\delta^{18}$ O+22.6 ( $r^2$  = 0.9886, n = 120; Fig. 8), similar to that ( $\delta^2$ H =  $8.3\delta^{18}$ O+17.1) reported by Tong et al. (2016) at a weather station near the Hulugou catchment outlet. The  $\delta^{18}$ O of glacier meltwater samples was between -10 and -7.6% $\epsilon$ , while the  $\delta^2$ H was between -60 and -35% $\epsilon$ . The stream waters had  $\delta^{18}$ O values between -12.3 and -6.7% $\epsilon$  and  $\delta^2$ H values between -88.5 and -31.6% $\epsilon$ , most of which overlapped with those of groundwaters from the seasonal frost zone (Fig. 8).

The water and/or ice extracted from sediment cores at depths < 5 m belowground at cluster WW04 exhibited relatively enriched  $^2$ H and  $^{18}$ O, with compositions between -50 and -10% and between -8 and -2%, respectively (Fig. 9). All samples from these depths fell below the LMWL and

could be statistically defined by the regression line  $\delta^2 H = 6.17\delta^{18} O + 2.99$  ( $r^2 = 0.98$ , n = 35) with the slope less than that of LMWL (Fig. 8), indicating the occurrence of evaporation. By comparison, the  $\delta^2 H$  and  $\delta^{18} O$  of extracted water and ice at depths between 5 and 20 m were relatively depleted, with average values of -50 and -9.5%, respectively (Fig. 9), which were similar to those of glacier meltwater. Most of the samples at these depths fell on the LMWL, indicating a precipitation origin without significant evaporation (Fig. 8). At the depth > 20 m, the  $^2 H$  and  $^{18} O$  isotopes became enriched again in the extracted water and ice, with  $\delta^2 H$  values between -55 and -25%0 and  $\delta^{18} O$  values between -8 and -2%0. These samples fell on a line with a slope of 5.1.

The change of  $\delta^2H$  and  $\delta^{18}O$  in groundwaters with depth at cluster WW04 was similar to that in extracted water and ice from sediments. The  $^2H$  and  $^{18}O$  were most enriched in the groundwater from the 1.5 m well, less enriched in the groundwater from the 24.3 m well and most depleted in the groundwater from the 12 m well (Fig. 8). All groundwater samples at cluster WW04 fell below the LMWL and the  $\delta^2H$  and  $\delta^{18}O$  values of groundwater from the 12 m well were similar to those of the glacier meltwaters.

The groundwater samples collected from clusters WW01 and WW03 fell along the LMWL, and their  $\delta^{18}O$  and  $\delta^{2}H$  values were similar to those in the glacier meltwaters (Fig. 8). The groundwater samples at cluster WW01 exhibited more negative  $\delta^{2}H$  and  $\delta^{18}O$  values than those at cluster WW03.



**Figure 8.** The  $\delta^{18}$ O and  $\delta^{2}$ H relationship for different water types collected from September 2014 to August 2015, as well as for water and ice extracted from sediment cores at cluster WW04.

The  $\delta^2 H$  and  $\delta^{18} O$  values were close at different depths from late July to October, but had a general depletion trend with depth at both clusters for the rest of the year (Fig. 10). Both the magnitude and seasonal variation of  $\delta^{18} O$  and  $\delta^2 H$  were similar between the groundwater and stream water. However, spring water showed much smaller variation in  $\delta^{18} O$  and  $\delta^2 H$  compared to the groundwater and stream water.

#### 4.6 Radioactive isotopes and groundwater age

The  $^3$ H concentrations were 15.11 TU in the groundwater from the 1.5 m well at cluster WW04, between 16.20 and 24.18 TU in the groundwater at clusters WW01 and WW03, and between 13.61 and 43.59 TU in the springs in the sloping plain (Table 2). Except for one spring sample (QW05), the  $^3$ H concentrations of all samples were < 30 TU, indicating that the groundwater was recharged by recent precipitation and some "bomb" related  $^3$ H is possibly presented (Zhai et al., 2013). Along with flow path, the  $\delta^{13}$ C<sub>DIC</sub> in groundwaters increased from the permafrost zone with values between -13.6 and -16.77%0 to the top of the sloping plain with a

value of  $-8.79\,\%_o$ , and further to the base of the sloping plain with a value of  $-5.09\,\%_o$  (Table 2). Opposite to the  $^{13}\mathrm{C}_{DIC}$  trend, the  $^{14}\mathrm{C}$  activity decreased from permafrost zone with values between 76.43 and 96.34 pmC to the top of the sloping plain with a value of 51 pmC, and further to the base of the sloping plain with a value of 44 pmC (Table 2). The groundwater in the 24.3 m well at cluster WW04 had a relatively old corrected  $^{14}\mathrm{C}$  age of 1627 yr. The other groundwaters exhibited negative corrected  $^{14}\mathrm{C}$  ages, indicating that they were derived from modern precipitation (Clark and Fritz, 1997).

#### 5 Discussion

# 5.1 Exchange and pathways of groundwater in the permafrost zone

The groundwater in the 1.5 m well at cluster WW04 occurred within the active layer and thus was recognized as supraper-mafrost groundwater, which was previously reported in the study area (Cao, 1977). Within the permafrost layer with a thickness of 20 m (2–22 m belowground), the groundwater was found in a talik at the depths between 12 and 12.2 m (in the 12 m well). It was considered as intrapermafrost groundwater. The underlying subpermafrost groundwater in the 24.3 m well was observed in the field, which was further evidenced by the slightly increased temperature and the distinct hydrogeochemistry. The intra- and subpermafrost groundwater had not been reported before this study.

## 5.1.1 Suprapermafrost groundwater

The  $\delta^2 H$  and  $\delta^{18} O$  values,  $^3 H$  concentration, and shallow groundwater depth suggest that suprapermafrost groundwater was mainly recharged by recent local precipitation via vertical seepage. The widespread thermokarst ponds and organic cover with high porosity favor water entry into the suprapermafrost reservoir. The  $\delta^2 H$  and  $\delta^{18} O$  values at the intersection between the evaporation line of suprapermafrost groundwater and LMWL were similar to those of glacier and snow meltwater was another recharge source (Fig. 8). Given that cluster WW04 is located on the lowest of three ladder-like terraces, the suprapermafrost groundwater may also be recharged by the lateral flow from the aquifer located on a higher terrace.

The terrace on which cluster WW04 is located adjoins two opposite hill slopes to the west and east, respectively, and a hill slope connecting to the northern plain (Fig. 1c). At the shoulder of the three slopes, the moraine and fluvioglacial sediments become thinner and finally end at the upper slope. Thus, except for evapotranspiration, much of the suprapermafrost groundwater flowed to the adjacent slopes covered by thin weathered residues, and was mainly discharged into streams as baseflow, or onto the surface as seeps and springs and from there into streams. This not only explains why many springs and seeps were found on the up-

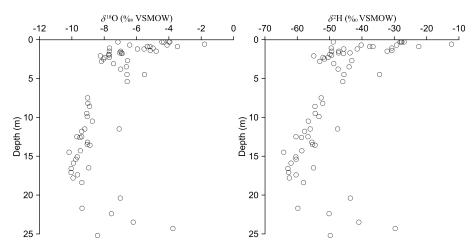
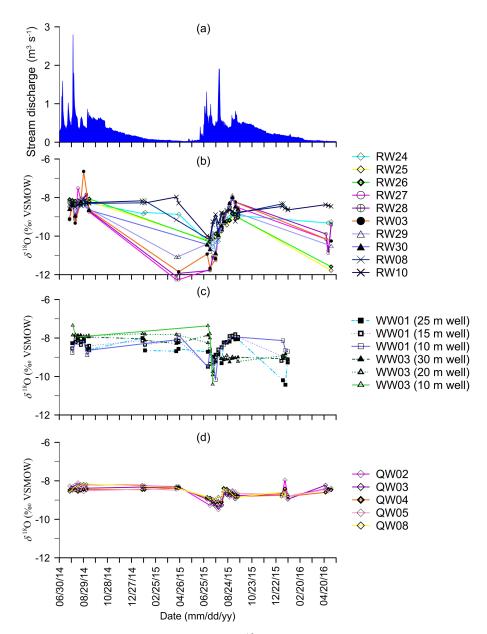




Figure 9. The variation of  $\delta^{18}$ O and  $\delta^{2}$ H in water and ice extracted from sediment cores with depth at cluster WW04.

per slopes of the hills whose upper planation surfaces were covered with moraine and fluvioglacial sediments, but also was one of major reasons why streams increased progressively in volume from headwaters to the sloping plain. Where weathered residues are continuous along the slope and have a coarse grain size, the suprapermafrost groundwater can be discharged into these residues, then flow through them to the talus fan at the base of the hill and, finally, drain into the aquifers in the sloping plain. Our field investigation demonstrated that another discharge way of suprapermafrost groundwater was leakage to the subpermafrost aquifer through sinkholes created by thawing and collapse of the permafrost (Fig. 11).

The low TDS, Cl<sup>-</sup> and Na<sup>-</sup> concentrations and the HCO<sub>3</sub>-Ca water type suggest that the suprapermafrost groundwater had experienced insufficient water-rock interaction, probably caused by a relatively short residence time or flow path. This is further supported by the highest <sup>14</sup>C activity in the suprapermafrost groundwater among all samples (Table 2), which is 96.34 pmC, and by a 15.11 TU <sup>3</sup>H concentration which is close to the atmospheric value and thus an indicator of modern water (Zhai et al., 2013). Though occurring on a relatively flat planation surface, the suprapermafrost groundwater was actually easy to drain because the planation surface adjoins the lower slopes in three directions. In addition, the suprapermafrost aquifer is fairly thin and rich in organic matter with high permeability. Therefore, the suprapermafrost groundwater may have a high renewal rate. The enriched <sup>2</sup>H and <sup>18</sup>O isotopes indicate that suprapermafrost groundwater had also experienced a certain degree of evaporation (Fig. 8). These two conclusions are not contradictory given the high local evaporation and shallow suprapermafrost groundwater depth. The shallow groundwater depth may also result in very short flow paths for the majority of the waters and relatively short contact time for chemical reactions between the water and the soils (Frey et al., 2007; Stotler et al., 2009; Vonk et al., 2015).

The recharge of suprapermafrost groundwater varied seasonally. It mainly occurred during the warm season because glacier melting and precipitation were concentrated during this period. Meanwhile, the active layer underwent thawing. Recharge was limited in the cold season because recharge sources were frozen and active layer freezing obstructed infiltration (Woo, 2012). The discharge of suprapermafrost groundwater exhibited a corresponding seasonal cycle. An examination of groundwater depth and temperature data indicates that the storage of suprapermafrost groundwater also varied significantly throughout the warm seasons. This was not only a result of variation in the thawed depth of the active layer, but also related to the frequent conversion of the recharge-discharge interrelationship. During the late spring when the active layer was beginning to thaw and the storage capacity of suprapermafrost reservoir was still small, the water table was close to the surface though the recharge was limited. In the summer, though the seasonal thaw moved downward and thus the storage capacity of suprapermafrost reservoir increased, the groundwater rose further and exfiltrated over the land surface to support bogs and thermokarst ponds. This is because the recharge was so intensive that it exceeded the discharge capacity of the aquifer. The water table began to decline in October and dropped to 1.2 m belowground by December, leading to the drying of bogs and thermokarst ponds. This was caused by a reverse of the recharge-discharge interrelationships: by late October, glaciers were frozen and local precipitation was also minimal, but the discharge passages of suprapermafrost aquifer, located on hill slopes at relatively lower altitudes, remained unfrozen. Consequently, the discharge exceeded the recharge during this period, resulting in the drainage of suprapermafrost groundwater and the decline of water table.



**Figure 10.** Time series of the Hulugou stream discharge (a) and the  $\delta^{18}$ O in stream water (b), well water (c) and spring water (d).

# 5.1.2 Subpermafrost groundwater

The recharge from superficial water pools such as suprapermafrost aquifer and thermokarst ponds to the subpermafrost aquifer was suggested by the similar seasonal change in temperature between the supra- and subpermafrost groundwaters, although the amplitude of temperature change in subpermafrost groundwater was much smaller (Fig. 5). Our field investigation revealed that the sinkholes resulting from thawing and collapse of permafrost serve as passages between supra- and subpermafrost aquifers (Fig. 11a). However, the recharge amount from suprapermafrost aquifer should be limited since the subpermafrost groundwater had different geochemical characteristics, more depleted <sup>2</sup>H and <sup>18</sup>O isotopes and older <sup>14</sup>C age in comparison with suprapermafrost groundwater.

The weaker evaporation and stronger water–rock interaction for subpermafrost groundwater, inferred by more depleted  $^2\mathrm{H}$  and  $^{18}\mathrm{O}$  compositions and higher TDS and major ion concentrations than in suprapermafrost groundwater, suggest a second recharge source. This source should occur in a colder environment and thus be depleted in isotope composition and experience a longer flow path and residence time for chemical reactions. On the  $\delta^2\mathrm{H}$  vs.  $\delta^{18}\mathrm{O}$  plot, the subpermafrost groundwaters fell between meltwater and suprap-

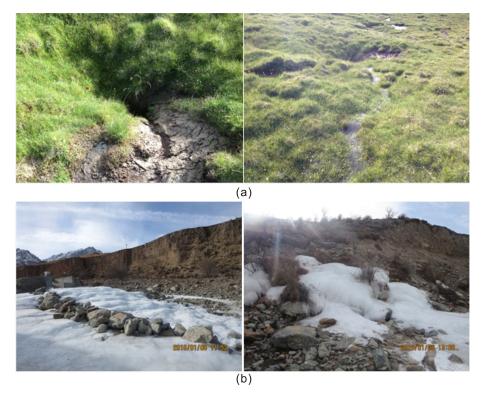



Figure 11. Pictures showing (a) sinkholes in the permafrost zone, (b) stream icing within the gorge (left) and spring icing on the hill slope (right) during cold season.

ermafrost groundwater samples, suggesting that this second recharge source was glacier and snow meltwater (Fig. 8).

The thick unconsolidated sediment, consisting of highly permeable moraine and fluvioglacial sediments, was continuously deposited from the front of glacier to the lowest terrace on the top of the hill, and a continuous, slightly sloping subpermafrost porous aguifer is expected. Thus, we hypothesize that glacier meltwater recharged to the subpermafrost aquifer mainly at localized water bodies such as glacier-fed headwater streams and lakes on the moraines and then traveled for a long horizontal distance in the aquifer to the lowest terrace where cluster WW04 is located. Although the subpermafrost aquifer underlies the 20 m thick permafrost, the water table below the bottom of permafrost indicated that the subpermafrost groundwater was unconfined, which is an indicator of poor recharge and/or good discharge of groundwater (Zhang et al., 2011). As the hydrogeological setting is relatively favorable for the recharge of subpermafrost groundwater in the warm season, it must have a comparable discharge capacity. The sediment and ground temperatures data show that the subpermafrost aguifer is mainly composed of unconsolidated sandy gravels and pebbles with high permeability (Figs. 3 and 5), facilitating fast flow and thus groundwater discharge. In addition, the interface between unconsolidated sediments and underlying bedrock may also serve

as an efficient passage for subpermafrost groundwater discharge (Woo, 2012).

There is a distinct break in sediment composition and thickness between the planation surface and the adjacent three hill slopes. With the thinning of the moraine and fluvioglacial sediments, the subpermafrost porous aquifer disappears over the impermeable bedrock or thin residues at the upper slopes. Thus, like the suprapermafrost groundwater, the subpermafrost groundwater was mainly discharged directly into streams as baseflow, or onto the surface as seeps and springs at the upper portions of the hill slopes and then into streams. This is probably why several ground and spring icings can be found on the slopes during cold seasons (Fig. 11b).

The recharge and discharge of the subpermafrost ground-water mainly occurred in the warm season, and were limited in the cold season. However, the starting time of discharge was earlier than the recharge time whereas the end times were reversed due to the altitude difference between recharge sources and discharge exits. This would reduce subpermafrost groundwater storage in early autumn and later spring and illuminate why the subpermafrost groundwater table declined significantly in cold season.

#### **5.1.3** Intrapermafrost groundwater

The ground temperatures in the talik where intrapermafrost groundwater occurred were similar to those in the adjacent permafrost, being  $\sim 0$  °C throughout the year (Fig. 5). Thus, the localized presence of this unfrozen cold groundwater may be related to its high mineralization ( $\sim 1059 \,\mathrm{mg}\,\mathrm{L}^{-1}$ in TDS). The TDS and the concentrations of major cations, minor elements (Si and Sr), HCO<sub>3</sub> and Cl<sup>-</sup> in intrapermafrost groundwater were much higher than in sub- and suprapermafrost groundwater and thermokarst pond water (Fig. 7b), excluding the mixture of these water sources. However, the intrapermafrost groundwater was depleted in <sup>2</sup>H and <sup>18</sup>O and fell near the LMWL on the  $\delta^2$ H vs.  $\delta^{18}$ O plot (Fig. 8), indicating a modern meteoric water origin without significant evaporation. These results suggest that intrapermafrost groundwater experienced a long-term water-rock interaction in a closed environment. The well logs show that this talik was rich in organic matter. Given the very low  $SO_4^{2-}$  (4.1 mg L<sup>-1</sup>) and much higher HCO<sub>3</sub> concentration  $(833.6\,\text{mg}\,L^{-1})$  in the intrapermafrost groundwater, sulfurization may have occurred in the reservoir (Domenico and Schwartz, 1998). The hydrochemical and isotopic data prove that this talik was closed and possessed strong reducibility, and also suggest that the intrapermafrost groundwater had a poor hydraulic connection with supra- and subpermafrost groundwaters.

# 5.2 Exchange and pathways of groundwater in seasonal frost zone

# 5.2.1 Groundwater at the top of the piedmont sloping plain

The water table was always higher in the 20 m well than in the 30 m well within cluster WW03, and in both wells it fluctuated in response to heavy rainfall events and stream discharge pulses during the warm season. This suggests that the groundwater at the top of the piedmont sloping plain was recharged by local stream infiltration since the deep water table excluded the possibility of vertical rainfall infiltration. This conclusion was confirmed by the concave upward profiles of temperature at cluster WW03 in the warm season (Fig. 5). However, the  $\delta^2 H$  and  $\delta^{18} O$  values of groundwater were relatively constant over time and showed little response to rainfall or stream discharge pulses (Fig. 10c), indicating that the isotopic signals might be diluted by lateral inflows from high mountain and hill areas to the groundwater at the top of the plain.

The combined groundwater table, temperature, and hydrogeochemical and isotopic data suggest that three sources may contribute to the lateral inflows. Two sources, supraand subpermafrost groundwater, occurred in deposits on the planation surfaces of the higher hills which connect to the southeastern top of the piedmont sloping plain. As discussed above, they discharged onto hill slopes as seeps and springs and flowed down the slopes as surface runoff or flowed through the weathered slope residues as subsurface runoff and, finally, moved as lateral flow into the aquifer at the top of the sloping plain. The third source was the suprapermafrost groundwater and surface runoff generated in the bedrock mountains which are connected to the southern top of the piedmont sloping plain. In the bedrock mountains, suprapermafrost groundwater occurred only within the surficial fissures and weathered zones, and the amounts were limited (Cao, 1977), whereas surface runoff was assumed to be abundant due to the steep slopes and low permeability of the area (Chen et al., 2014). Much of this shallow subsurface and surface runoff flowed into streams while a small fraction of it may flow through talus fans at the base of mountains and, finally, into the aquifer at the top of the sloping plain. The limited storage and rapid flow of this recharge source resulted in significant responses of the water table at the top of the plain to heavy rainfall events, while the mixture of runoff generated at different altitudes minimized the fluctuation of  $\delta^2$ H and  $\delta^{18}$ O values in groundwater.

The lateral inflows into the plain occurred mainly during the warm season, as indicated by ground temperature and water table data. As talus consists of gravel and boulders that are more permeable than mud-bearing pebble gravels in the plain (Xu et al., 1989), the lateral flow from the mountains may accumulate at the top of the plain, leading to the increase in the water table and thus decreased the difference in the water table between the talus of the mountain and the top of the plain. As a result, the aquifer at the top of the plain was dominated by lateral flow with a small vertical component. It addresses the distinct peaks in the water table several days after heavy rainfall events and the small difference in groundwater hydraulic head between the 20 and 30 m wells within cluster WW03 during the warm season (Fig. 4). Over the cold season from November to June, the lateral inflow decreased and even ceased, but the groundwater stored during the warm season was still released slowly to the base of the plain. As a consequence, the water table at the top of the plain declined dramatically and the phreatic surface between mountain foot talus and the top of the plain became steeper. Therefore, the groundwater flow had a larger vertical downward component, explaining the increased difference in water head between the 20 and 30 m wells within cluster WW03 during the cold season (Fig. 4). The lateral recharge from permafrost groundwater was probably continuous until October, as suggested by the water table change. The switch of the water table dynamic in cluster WW03 from falling to rising in May marked the beginning of lateral recharge in a new annual cycle. This is consistent in time with the thaw of the active layer indicated by ground temperature data at cluster WW04 (Fig. 5).

# 5.2.2 Groundwater at the base of the piedmont sloping plain

The almost invariable groundwater table at cluster WW01 during either the warm or cold season was the typical characteristic of groundwater in discharge areas. Along the flow path from cluster WW03 to WW01, major ions and TDS concentrations increased, and the enrichment of <sup>2</sup>H and <sup>18</sup>O isotopes in groundwater was expected (Clark and Fritz, 1997). However, the groundwater had more negative  $\delta^2 H$  and  $\delta^{18} O$ values at cluster WW01 than at cluster WW03 (Fig. 8), which suggests the mix of an isotopically depleted water source when groundwater flowed through the plain. The local rainfall infiltration can be excluded according to the recent research on water balance in the plain, which reported that the thick vadose zone and high transpiration prevented precipitation from entering the aquifer (Chen et al., 2014). From June to September when the stream water was fed by isotopically depleted glacier meltwater and thus had more negative  $\delta^2$ H and  $\delta^{18}$ O values, groundwater exhibited the similar depleted trend in <sup>2</sup>H and <sup>18</sup>O, strongly suggesting the recharge from stream infiltration (Figs. 8 and 10). The recharge of this "new" water source also explains the very young age of groundwater at cluster WW01, inferred by <sup>3</sup>H concentration (Table 2).

As described above, the piedmont sloping plain is funnelshaped, with only a narrow gorge at the base leading to the Heihe River. The eastern and western tributaries converged into the main Hulugou stream in front of the gorge, which then was contained within the gorge (Fig. 1b). Since the gorge is surrounded by hills that are composed of less permeable shales and sandstones, and unconsolidated deposits were only found on the bottom of the gorge, groundwater was blocked in front of the gorge with the narrowing of the flow cross section and discharged mainly as baseflow along the main stream or as springs at the foot of the hills (Fig. 1b). This is similar to the "fill and spill" mechanism in hillslope hydrology (Spence and Woo, 2003; Tromp-van Meerveld and McDonnell, 2006) and addresses the relatively high and stable water table in the warm season at cluster WW01 (Fig. 5). The water tables in the 5 and 10 m wells at cluster WW01 were close to each other in the warm season and higher than those in the 15 and 25 m wells. This may be related to the continuous clay layer at depth of 13-18 m and suggests two flow paths in the aquifer. Given that the groundwater flow within the gorge was consistent with the streamflow in the horizontal direction, the shallow groundwater was discharged into the upper portions of the main Hulugou stream, while the deep groundwater drained into the lower portions (Fig. 12).

The discharge of groundwater to the stream was indicated by the similar chemical compositions between the stream water and groundwater during the cold season, and the discharge process was complicated by the development of stream icing and seasonal frost. Our data show that all trib-

utaries were dry throughout the cold season and river icing was only found in the main Hulugou stream channel within the gorge (Fig. 11b). Icing was initially formed in the upper reaches of the stream channel in early winter, followed by continued thickening and downstream expansion in winter and early spring. Meanwhile, icing was also formed at the spring near the plain-hill border. Field investigation in January 2015 showed that the upper reaches of the stream channel were completely filled with ice and no water was flowing under it. The frozen streambed exerted hydrostatic pressure on the groundwater. The maximum depth of the seasonal frost in the gorge should be 3 m, deduced from the temperature data at cluster WW01 (Fig. 5). Considering that the main stream was sustained completely by baseflow in winter, the groundwater depth along the stream channel (bottom of the gorge) should be shallow and probably < 1 m. Thus, the seasonal freezing would reach the water table in early winter and also exerted pressure on groundwater, resulting in the confined condition in the unconsolidated sediment aquifer within the gorge. When groundwater flowed from the phreatic aquifer in the open plain to this tilted confined aquifer, it would have a larger vertical downward component, causing the larger difference in the water head between the 5, 10, 15 and 20 m wells within cluster WW01 in the cold season (Fig. 4). At the lower reaches of the stream channel with water flowing under ice, the icing constricted the channel cross section and exerted hydrostatic pressure on stream water, also significantly reducing groundwater discharge into the channel (Kane, 1981). This may be another reason for the relatively stable water table at the base of the open plain in the winter. The more negative  $\delta^2 H$  and  $\delta^{18} O$ values in the stream water compared to its source groundwater indicates a strong isotopic fractionation between the river icing and stream water (Souchez and Jouzel, 1984).

# 5.3 Conceptual model of the groundwater exchange and pathways

Based on the geochemical, thermal, isotopic and hydrological results, a conceptual model of the hydrological connectivity in the mountain-hill-plain complex was developed (Fig. 12). Groundwater in the high mountains mainly occurred as suprapermafrost groundwater within either moraine and scree deposits or surficial fissures in bedrock outcrop areas. In the moraine and fluvioglacial deposits on the planation surfaces of higher hills (about > 3500 m a.s.l.), supra-, intra- and subpermafrost groundwaters cooccurred. There were three hydrological passages through which glacier and snow meltwater and precipitation were transported from the high mountains to the plain. The first and fastest one was the stream channel, which generally originated at the glacier front and was fed by glacier and snow meltwater in its head. Then it was recharged by overland flow and suprapermafrost groundwater over its course from the mountains to the piedmont sloping plain, and also probably by subpermafrost

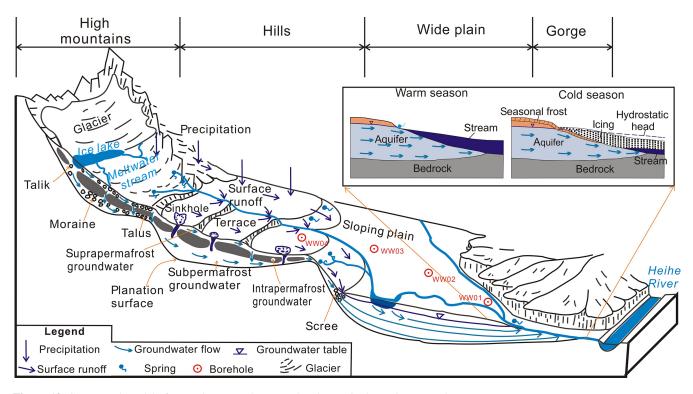



Figure 12. Conceptual model of groundwater exchange and pathways in the Hulugou catchment.

groundwater at the foot of hill slopes. The stream percolated partly down into the aquifers when flowing through the open plain, and was recharged by groundwater when flowing through the gorge. This passage was available only during the warm season and dried up during the cold season. The second passage was the slope surface and suprapermafrost aquifer, which collected precipitation over a large area, then transported much of it as overland flow and suprapermafrost groundwater into talus fans at the foot of mountains or hills, and finally into the aquifer at the top of the plain. Where the moraine and scree deposits in high mountains adjoin the moraine and fluvioglacial deposits on higher hills, the glacier and snow meltwater may also be transported through this passage after flowing through moraine and scree deposits at the lower margin of cirques. This passage was also seasonal. The third passage was the subpermafrost aquifer occurring on the planation surface, through which the recharged glacier and snow meltwater that percolated down over the moraines within cirques flowed to the hill slopes, and finally into the aguifer at the top of the plain. The water within the second passage also added into this passage through supra- and subpermafrost connections on the planation surface. The third passage was the slowest one, but also the only one that was available during the cold season.

The porous aquifer in the piedmont plain was mainly recharged by the lateral flow from the southern mountains and hills and the seepage of streams, and discharged mainly as baseflow to the stream in the northern gorge. The water table dynamics at the top of the plain were characterized by sharp rises and recessions in response to heavy rainfall events but a gradual decline during the cold season, while those at the base of the plain exhibited a stable trend confined to a narrow range. This behavior indicates a rapid transfer of groundwater from the southern top to the northern base of the plain during the warm season and a slow release of stored groundwater during the cold season. It suggests that the groundwater in the plain not only contributed significantly to streamflow during the warm season, but also maintained streamflow over the cold season. We propose two mechanisms involved in the significant seasonal variation of the aquifer in waterconduction capacity, which were surface drainage through the stream channel and subsurface drainage to an artesian aquifer confined by stream icing and seasonal frost (Fig. 12). The first mechanism was similar to "fill and spill" in hillslope hydrology (Spence and Woo, 2003; Tromp-van Meerveld and McDonnell, 2006) and involved the funnel-shaped distribution of unconsolidated permeable deposits in the plain. When groundwater flowed from the wide plain to the gorge, the cross section narrowed down, leading to a decrease in transmissivity and an uplifted water table. This kept the water table in front of the gorge from dropping below the channel bed, thus maintaining continuous flowing in the downstream channel throughout the year. However, the unchecked surface drainage through the stream channel prevented the water table from rising too high after storms in the rainy season. This mechanism explains the rapid transfer of groundwater from the top to the base of the plain and the stable water table in front of the gorge during the warm season. The second mechanism worked only during the cold season, when the stream icing and seasonal frost converted the aquifer in the gorge from unconfined to a confined condition. The rise of the downstream groundwater head reduced the hydraulic gradient between the wide plain and the gorge, resulting in decreased discharge. In addition, the increased icing constricted the channel cross section while the descending frost reduced the effective thickness of saturated soil, significantly decreasing groundwater discharge into the channel. This mechanism illuminated the slow release of stored groundwater from the plain and thus the gradual decline of the water table at the top of the plain during the cold season.

#### 6 Conclusions

Groundwater studies in permafrost areas are challenging because of limited infrastructure and a short field season. These conditions favor the use of geochemical and isotopic tracers in baseflow and perennial springs to supplement hydrogeological data to elucidate recharge conditions and flow paths. By selecting a representative catchment in the headwater regions of the Heihe River in the Qinghai–Tibet Plateau as a study site, this research employed the groundwater head, temperature, geochemical and isotopic information to determine the roles of groundwater in permafrost and seasonal frost zones in hydrologically connecting the waters originating from glaciers in the high mountains to the lower elevation streams.

Our field measurements show the cooccurrence of supra-, intra- and subpermafrost groundwaters in the headwater regions of the Heihe River. To the best of our knowledge, this is the first report of the occurrence of sub- and intrapermafrost groundwaters in this region. The moraine and fluvioglacial deposits on the planation surfaces of higher hills, which are commonly distributed in the headwater regions of the Heihe River, provide a major reservoir for the storage and flow of sub- and intrapermafrost groundwater. The subpermafrost groundwater on the planation surface was interconnected to the surface hydrological processes and recharged by suprapermafrost groundwater and glacier and snow meltwater. The results of this study could shed new light on the understanding of the groundwater flow and its interaction with surface water in other catchments, as well as improve the evaluation and management of water resources in the headwater regions of the Heihe River.

Glacier and snow meltwater were transported from the high mountains to the plain through stream channels, slope surfaces, and supra- and subpermafrost aquifers. The groundwater in the piedmont plain within seasonal frost zones was mainly recharged by the lateral flow from the supra- and subpermafrost aquifers and the seepage of streams, and was discharged as baseflow into the Hulugou stream in the northern

gorge. A rapid transfer of groundwater from the southern top to the northern base of the plain occurred during the warm season, while the stored groundwater was slowly released during the cold season. This seasonal variation of the aquifer in water-conduction capacity was interpreted by two mechanisms. The first is surface drainage via the stream channel, analogous to the "fill and spill" mechanism in hillslope hydrology. The narrowing of aquifer from the wide plain to the gorge led to a relatively high water table near the gorge, preventing it from dropping below the channel bed and maintaining a perennial flow in the downstream. This addresses the rapid transfer of groundwater from the top to the base of the plain and the stable water table in front of the gorge during the warm season. The second is subsurface drainage to an ephemeral artesian aquifer confined by stream icing and seasonal frost. The stream icing and seasonal frost not only blocked the groundwater discharge, but also changed the bottom of the gorge into a confined aquifer during the cold season, leading to an increase in the downstream groundwater head and a decrease in the hydraulic gradient between the wide plain and the narrow gorge. The second mechanism elucidates the slow release of stored groundwater from the plain and the low baseflow in channel throughout the cold season.

Data availability. The data of geology, precipitation, air temperature, hydrogeochemistry, isotope, monthly groundwater table depth and temperature are available at the WestDC database (http://westdc.westgis.ac.cn/). The hourly water table depth and groundwater temperature data are available on request.

Competing interests. The authors declare that they have no conflict of interest.

*Acknowledgements*. This research was financially supported by the National Natural Science Foundations of China (no. 91325101, 91125009, and 41521001).

Edited by: Bill Hu

Reviewed by: Sihai Liang and two anonymous referees

# References

Anderson, L., Birks, J., Rover, J., and Guldager, N.: Controls on recent Alaskan lake changes identified from water isotopes and remote sensing, Geophys. Res. Lett., 40, 3413–3418, 2013.

Bense, V. F. and Person, M. A.: Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles, J. Geophys. Res.-Earth, 113, F04005, https://doi.org/10.1029/2007JF000969, 2008.

Bense, V. F., Ferguson, G., and Kooi, H.: Evolution of shallow groundwater flow systems in areas of degrading permafrost, Geophys. Res. Lett., 36, L22401, https://doi.org/10.1029/2009GL039225, 2009.

- Cao, J.: The Report of Regional Hydrogeological Survey in Ye'niutai (J-47-(16)) (1:200,000), Unit 00926 of the Chinese People's Liberation Army (CPLA), 70 pp., 1977.
- Carey, S. K. and Quinton, W. L.: Evaluating runoff generation during summer using hydrometric, stable isotope and hydrochemical methods in a discontinuous permafrost alpine catchment, Hydrol. Process., 19, 95–114, 2005.
- Carey, S. K. and Woo, M. K.: The role of soil pipes as a slope runoff mechanism, Subarctic Yukon, Canada, J. Hydrol., 233, 206–222, 2000.
- Chen, R. S., Song, Y. X., Kang, E. S., Han, C. T., Liu, J. F., Yang, Y., Qing, W. W., and Liu, Z. W.: A cryosphere-hydrology observation system in a small alpine watershed in the Qilian Mountains of China and its meteorological gradient, Arct. Antarct. Alp. Res., 46, 505–523, 2014.
- Cheng, G. and Jin, H.: Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China, Hydrogeol. J., 21, 5–23, 2013.
- Clark, I. D. and Fritz, P.: Environmental Isotopes in Hydrogeology, CRC Press/Lewis Publishers, Boca Raton, Florida, USA, 1997.
- Domenico, P. A. and Schwartz, F. W.: Physical and Chemical Hydrogeology, John Wiley and Sons, Inc., New York, USA, 1998.
- Evans, S. G., Ge, S. M., and Liang, S. H.: Analysis of groundwater flow in mountainous, headwater catchments with permafrost, Water Resour. Res., 51, 9564–9576, 2015.
- Frey, K. E., Siegel, D. I., and Smith, L. C.: Geochemistry of west Siberian streams and their potential response to permafrost degradation, Water Resour. Res., 43, W03406, https://doi.org/10.1029/2006WR004902, 2007.
- Ge, S. M., McKenzie, J., Voss, C., and Wu, Q. B.: Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation, Geophys. Res. Lett., 38, L14402, https://doi.org/10.1029/2011GL047911, 2011.
- Gran, G.: Determination of the equivalent point in potentiometric titrations. Part II, Analyst, 77, 661–671, 1952.
- Han, D. M., Kohfahl, C., Song, X. F., Xiao, G. Q., and Yang, J. L.: Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay, China, Appl. Geochem., 26, 863–883, 2011.
- Jones, B. M., Grosse, G., Arp, C. D., Jones, M. C., Anthony, K. M. W., and Romanovsky, V. E.: Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska, J. Geophys. Res.-Biogeo., 116, G00M03, https://doi.org/10.1029/2011JG001666, 2011.
- Kane, D. L.: Physical mechanics of aufeis growth, Can. J. Civil. Eng., 8, 186–195, 1981.
- Kane, D. L., Yoshikawa, K., and McNamara, J. P.: Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA), Hydrogeol. J., 21, 41–52, 2013.
- Li, Z. X., Feng, Q., Liu, W., Wang, T. T., Cheng, A. F., Gao, Y., Guo, X. Y., Pan, Y. H., Li, J. G., Guo, R., and Jia, B.: Study on the contribution of cryosphere to runoff in the cold alpine basin: A case study of Hulugou River Basin in the Qilian Mountains, Global Planet. Change, 122, 345–361, 2014.
- Minsley, B. J., Abraham, J. D., Smith, B. D., Cannia, J. C., Voss, C. I., Jorgenson, M. T., Walvoord, M. A., Wylie, B. K., Anderson, L., Ball, L. B., Deszcz-Pan, M., Wellman, T. P., and Ager, T. A.: Airborne electromagnetic imaging of dis-

- continuous permafrost, Geophys. Res. Lett., 39, L02503, https://doi.org/10.1029/2011GL050079, 2012.
- Mook, W. G.: Carbon-14 in hydrogeological studies, in: The Terrestrial Environment, A, edited by: Fritz, P. and Fontes, J. C., Handbook of Environmental Isotope Geochemistry, Elsevier, Amsterdam, the Netherlands, 1980.
- O'Donnell, J. A., Jorgenson, M. T., Harden, J. W., McGuire, A. D., Kanevskiy, M. Z., and Wickland, K. P.: The effects of Permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland, Ecosystems, 15, 213–229, 2012.
- Pearson, F. J. and Hanshaw, B. B.: Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating, in: Proceedings of A Symposium on Isotope Hydrology, International Atomic Energy Agency, Vienna, Austria, 1970.
- Plug, L. J., Walls, C., and Scott, B. M.: Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk Peninsula, western Canadian Arctic, Geophys. Res. Lett., 35, L03502, https://doi.org/10.1029/2007GL032303, 2008.
- Smith, S. D., Wellington, A. B., Nachlinger, J. L., and Fox, C. A.: Functional responses of riparian vegetation to streamflow diversion in the Eastern Sierra Nevada, Ecol. Appl., 1, 89–97, 1991.
- Souchez, R. A. and Jouzel, J.: On the Isotopic Composition in Delta-D and Delta-O-18 of Water and Ice during Freezing, J. Glaciol., 30, 369–372, 1984.
- Spence, C. and Woo, M.-k.: Hydrology of subarctic Canadian shield: soil-filled valleys, J. Hydrol., 279, 151–166, 2003.
- Sternberg, L. D. L., Deniro, M. J., and Savidge, R. A.: Oxygen isotope exchange between metabolites and water during biochemical reactions leading to cellulose synthesis, Plant Physiol., 82, 423–427, 1986.
- Stotler, R. L., Frape, S. K., Ruskeeniemi, T., Ahonen, L., Onstott, T. C., and Hobbs, M. Y.: Hydrogeochemistry of groundwaters in and below the base of thick permafrost at Lupin, Nunavut, Canada, J. Hydrol., 373, 80–95, 2009.
- Tamers, M. A.: Validity of radiocarbon dates on groundwater, Surv. Geophys., 2, 217–239, 1975.
- Tong, J., Zhou, M., Sun, Z., Chang, Q., and Li, J.: Water vapor sources of precipitation in the upper reaches of Heihe River: Evidence from stable water isotopes and air mass trajectory model (in Chinese), J. Arid Land Resour. Environ., 30, 151–156, 2016.
- Tromp-van Meerveld, H. J. and McDonnell, J. J.: Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis, Water Resour. Res., 42, W02411, https://doi.org/10.1029/2004WR003800, 2006.
- Utting, N., Lauriol, B., Mochnacz, N., Aeschbach-Hertig, W., and Clark, I.: Noble gas and isotope geochemistry in western Canadian Arctic watersheds: tracing groundwater recharge in permafrost terrain, Hydrogeol. J., 21, 79–91, 2013.
- Vogel, J. C.: Investigation of groundwater flow with radiocarbon, in: Proceedings of A Symposium on Isotope in Hydrology, International Atomic Energy Agency, Vienna, Austria, 1967.
- Vogel, J. C.: Carbon-14 dating of groundwater, in: Proceedings of A Symposium on Isotope Hydrology, International Atomic Energy Agency, Vienna, Austria, 1970.
- Vogel, J. C. and Ehhalt, D.: The use of carbon isotopes in groundwater studies, in: Proceedings of A Symposium on Radioisotopes in Hydrology, International Atomic Energy Agency, Vienna, Austria, 1963.

- Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., Amyot, M., Billet, M. F., Canario, J., Cory, R. M., Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J., MacMillan, G., Rautio, M., Anthony, K. M. W., and Wickland, K. P.: Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems, Biogeosciences, 12, 7129–7167, 2015.
- Walvoord, M. A. and Striegl, R. G.: Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen, Geophys. Res. Lett., 34, L12402, https://doi.org/10.1029/2007GL030216, 2007.
- Walvoord, M. A., Voss, C. I., and Wellman, T. P.: Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States, Water Resour. Res., 48, W07524, https://doi.org/10.1029/2011WR011595, 2012.
- White, D., Hinzman, L., Alessa, L., Cassano, J., Chambers, M., Falkner, K., Francis, J., Gutowski, W. J., Holland, M., Holmes, R. M., Huntington, H., Kane, D., Kliskey, A., Lee, C., McClelland, J., Peterson, B., Rupp, T. S., Straneo, F., Steele, M., Woodgate, R., Yang, D., Yoshikawa, K., and Zhang, T.: The arctic freshwater system: Changes and impacts, J. Geophys. Res.-Biogeo., 112, G04S54, https://doi.org/10.1029/2006JG000353, 2007.

- Woo, M.-K.: Permafrost Hydrology, Springer, Berlin, 2012.
- Woo, M.-K., Kane, D. L., Carey, S. K., and Yang, D.: Progress in permafrost hydrology in the new millennium, Permafrost Periglac., 19, 237–254, 2008.
- Xu, Z., Liu, S., and Chen, Y.: The Report of Geological Survey in the Dalangnongsi Brigade (J-47-68-B) and Qilian County (J-47-69-A) (1:50,000), The 5th Unit of No.2 Geological Team of Qinghai Province, the People's Republic of China, 211 pp., 1989.
- Yoshikawa, K. and Hinzman, L. D.: Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska, Permafrost Periglac., 14, 151–160, 2003.
- Zhai, Y., Wang, J., Guo, H., Cao, Y., and Teng, Y.: Reconstruction and optimization of tritium time series in precipitation of Beijing, China, Radiocarbon, 55, 67–79, 2013.
- Zhang, R., Liang, X., Jin, M., Wan, L., and Yu, Q.: Fundamentals of Hydrogeology, Geological Publishing House, Beijing, 2011.
- Zhang, X., He, J., Zhang, J., Polyakov, I., Gerdes, R., Inoue, J., and Wu, P.: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend, Nature Clim. Change, 3, 47–51, 2013.