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Abstract. In many semi-arid regions, multisectoral demands
often stress available water supplies. Such is the case in
the Elqui River valley of northern Chile, which draws on
a limited-capacity reservoir to allocate 25 000 water rights.
Delayed infrastructure investment forces water managers to
address demand-based allocation strategies, particularly in
dry years, which are realized through reductions in the vol-
ume associated with each water right. Skillful season-ahead
streamflow forecasts have the potential to inform managers
with an indication of future conditions to guide reservoir al-
locations. This work evaluates season-ahead statistical pre-
diction models of October–January (growing season) stream-
flow at multiple lead times associated with manager and user
decision points, and links predictions with a reservoir allo-
cation tool. Skillful results (streamflow forecasts outperform
climatology) are produced for short lead times (1 Septem-
ber: ranked probability skill score (RPSS) of 0.31, categor-
ical hit skill score of 61 %). At longer lead times, climato-
logical skill exceeds forecast skill due to fewer observations
of precipitation. However, coupling the 1 September statisti-
cal forecast model with a sea surface temperature phase and
strength statistical model allows for equally skillful categor-
ical streamflow forecasts to be produced for a 1 May lead,
triggered for 60 % of years (1950–2015), suggesting fore-
casts need not be strictly deterministic to be useful for wa-
ter rights holders. An early (1 May) categorical indication of
expected conditions is reinforced with a deterministic fore-
cast (1 September) as more observations of local variables
become available. The reservoir allocation model is skillful
at the 1 September lead (categorical hit skill score of 53 %);
skill improves to 79 % when categorical allocation prediction
certainty exceeds 80 %. This result implies that allocation

efficiency may improve when forecasts are integrated into
reservoir decision frameworks. The methods applied here ad-
vance the understanding of the mechanisms and timing re-
sponsible for moisture transport to the Elqui Valley and pro-
vide a unique application of streamflow forecasting in the
prediction of water right allocations.

1 Introduction

The sustainability of many water systems is challenged by
current climate variability and may come under additional
stress with changes in future climate and user demands. Con-
cerns over increasing water scarcity have prompted progres-
sive governments, institutions, water resource managers, and
end users to adopt a wide variety of conservation policies,
typically targeting supply augmentation or demand reduction
at the basin or jurisdictional boundary scale (Tanaka et al.,
2006). These decisions, which are ideally informed by a va-
riety of models, are inherently uncertain across timescales,
and produce numerous risks stemming from human activ-
ity and hydroclimatic variability/change (Narula and Lall,
2009). Advanced hydroclimatic information is often attrac-
tive to progressive water managers to support management
and planning of water systems (Barsugli et al., 2012). At
the seasonal scale, a skillful streamflow forecast may allow
more efficient water allocation and predictable trade-offs be-
tween flows for energy, irrigation, municipalities, environ-
mental services, etc. Such forecasts often provide the ability
to prepare for anticipated conditions and not simply react to
existing conditions, potentially reducing climate-related risks
and offering opportunities (Helmuth et al., 2007). This may
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be especially informative in years with extreme conditions
(floods, droughts). Further motivation stems from evidence
that indicates addressing climate variability as part of wa-
ter development is key for stabilizing and improving country
economies (Brown and Lall, 2006).

While improvements in seasonal climate forecast skill and
advocacy for integration into risk reduction strategies are
well documented (Barnston et al., 1994; Block, 2011; Block
et al., 2009; Dee et al., 2011; Hansen et al., 2004; Mason and
Stephenson, 2008), demonstrated use of forecasts in current
water allocation and policy strategies is limited (Barnston
et al., 1994; Christensen et al., 2004; Hamlet et al., 2002;
Sankarasubramanian et al., 2009; Stakhiv, 1998). This is par-
tially attributable to the widespread use of static operational
policies, which may be based on average streamflow or the
drought of record and established with minimal to no ac-
counting of uncertainty, thus limiting water system flexibil-
ity (You and Cai, 2008). Effectively translating emerging cli-
mate information into hydrology to support adaptable water
resources decision-making, and ultimately policy, warrants
further study.

The water system in the semi-arid Elqui Valley in north
central Chile’s region IV (Fig. 1) is contending with in-
creasing levels of water stress and demand, coupled with
insufficient investment in infrastructure, taxing its ability
to sufficiently meet multiple water uses and maintain en-
vironmental quality. The valley footprint is relatively small
(< 10 000 km2) but boasts elevation changes ranging from sea
level in the west to nearly 5000 m in the east along the An-
des in the span of less than 150 km. The Atacama Desert
lies just to the north. The valley is fed from a retreating
glacier to serve its 600 000 inhabitants and is very narrow,
with vineyards and plantations covering the floor and in-
creasingly moving up the valley sides; 43 % of the region’s
surface land area is devoted to agricultural activities (Cepeda
and Lopez-Cortes, 2004). Agricultural exports, particularly
grapes, fruits, and avocados, dominate the valley’s economy
(Young et al., 2009) and are maintained by an extensive ir-
rigation channel system latticing the valley, which diverts
water from the main Elqui River. The Puclaro reservoir is
the dominant storage facility in the valley, with a holding
capacity of 200 million m3 (Fig. 1). The reservoir provides
irrigation for about 21 000 ha of the Elqui Valley, as well as
small-scale hydropower (5.6 MW capacity), and it is a pop-
ular tourist destination, particularly for sailing and windsurf-
ing (Cepeda and Lopez-Cortes, 2004).

Chile uses a market-oriented approach to water allocation,
guided by its water code of 1981 (Donoso, 2006). The intent
is to allow for optimal allocation and efficiency through a po-
litically neutral mechanism via permanent trades or leasing
(Olmstead, 2010; Wheeler et al., 2013). Rights are granted
through the national water authority (Dirección General de
Aguas, hereafter DGA), while supervision, reservoir man-
agement, and issuance of annual per right allocation is left
to the privately held, local water authority, Junta de Vigi-

lancia del Rio Elqui (JVRE). Water rights along the Elqui
River are fully allocated, with 25 000 total rights valued at
1 L s−1 each. In years with above-normal precipitation and
snowpack, this value can be attained; however, near-normal
and below-normal precipitation years typically require a re-
duction in per right allocation, on the order of 0.5 L s−1. Pro-
longed periods of drought (2009–2015) have resulted in al-
locations as low as 0.2 L s−1 (JVRE, personal communica-
tion, 2016) All water rights are of equal standing; no pri-
oritization or junior/senior status exists. Thus, right holders
above and below Puclaro are guaranteed equal per right; sur-
plus supply cannot be allocated to users downstream of the
reservoir once the annual per right allocation has been offi-
cially issued. Approximately 92 % of water rights are held
by farmers, with half of those held by a small minority en-
gaged in large-scale viticulture. Municipalities and the min-
ing industry share the balance of water rights. Meeting tar-
gets for renewable energy through hydropower, ecosystem
services, specifically minimum instream flows, and reservoir
storage are also important competing, non-consumptive, or
non-water-right-holding priorities.

The decision framework driving water allocation and mar-
ket activity in the valley is complex and involves many ac-
tors. For the water year October–September, the local water
authority initially projects the annual per right allocation in
the preceding May and officially sets it in September. Water
rights holders (users) thus have two decision points, May and
September, to evaluate their allocation and weigh the need
to supplement through market activity (trade or lease). This
setting serves as an impetus for developing a framework to
advance streamflow and water allocation forecasts at those
decision points to better guide decision-making across the
valley.

Elqui hydroclimate characteristics

The Elqui Valley is one of the most sensitive areas to water
variability in all of South America, given its dryland ecosys-
tem nature, susceptible to even small changes in the water cy-
cle (Santibañez et al. 1992; Kalthoff et al., 2006). The climate
of the region is affected by three major factors that lead to its
semi-arid nature: the southeast Pacific anticyclone, the cold
Humboldt current along the Pacific coast, and the eastern lon-
gitudinal barrier created by the Andes Mountains (Kalthoff
et al., 2002). The majority of precipitation is frontal in na-
ture, falling in the austral winter (May–August, MJJA) as
rain in the valley and snow in the mountains; this leaves the
remaining months extremely dry (Fig. 2; Aceituno, 1988).
Annual rainfall totals approach 90 mm on average and ex-
press a high degree of variability (Young et al., 2009). The
El Niño–Southern Oscillation (ENSO) is well known to have
a role in this variability, with positive precipitation anoma-
lies during El Niño events, and below-normal precipitation
mostly associated with La Niña conditions (Fig. 3; Aceituno,
1988; Falvey and Garreaud, 2007; Garreaud et al., 2009;
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Figure 1. Location of Elqui River valley, Chile.

Figure 2. Annual cycle of average precipitation and streamflow
(1950–2015).

Montecinos and Aceituno, 2003). For Vicuña, a city located
in approximately the center of the valley, between 1950 and
2000, El Niño years produced average annual precipitation
of 134 mm, compared with 68 mm during La Niña years – a
stark difference (Young et al., 2009).

The Elqui River is predominantly fed through snowmelt
over the October–January (ONDJ) season, dictating the agri-
cultural calendar. Historical rates of average streamflow over
this season, however, indicate enormous interannual variabil-
ity, ranging from 2.2 to 89 m3 s−1 at the Algarrobal station
(Fig. 3; Santibañez et al., 1992), commonly considered as a
surrogate for inflow to the Puclaro reservoir (Fig. 1). Rec-

Figure 3. Total annual precipitation (dashed), streamflow (solid),
and May–August Niño 3.4 sea surface temperature anomalies
(bars).

ognizing that variable precipitation affects streamflow and
subsequently water right allocation values, this research tests
two hypotheses as a means of addressing the unique climate
conditions of the Elqui Valley, which may be applied more
broadly to water rights managed basins with limited water
resources:

1. Skillful season-ahead streamflow forecasts can be pro-
duced for existing water right allocation decision points.

2. Skillful streamflow forecasts coupled with reservoir
allocation decision tools can improve allocation effi-
ciency.

www.hydrol-earth-syst-sci.net/21/4711/2017/ Hydrol. Earth Syst. Sci., 21, 4711–4725, 2017



4714 J. Delorit et al.: Evaluation of model-based seasonal streamflow and water allocation forecasts

2 Modeling framework and performance metrics

Historically, water managers in the Elqui Valley have subjec-
tively considered simple analog prediction models for ONDJ
streamflow at Algarrobal, conditioned on the multivariate
ENSO index (MEI), for allocation decisions and reservoir
operations with limited success (JVRE, personal commu-
nication, 2016). Previous efforts to evaluate hydro-climate
forecast skill for the Elqui River have considered leads con-
sistent with the current water rights forecast structure: a pre-
liminary 1 May allocation forecast and 1 September alloca-
tion issuance (Robertson et al., 2014; Verbist et al., 2010).
Robertson et al. (2014) report a significant increase in fore-
cast skill, comparing September to May, but suggest further
investigation to more fully understand forecast skill with in-
creasing lead time.

This recommendation is addressed by building a model-
ing framework to evaluate potential improvement in predict-
ing ONDJ streamflow at multiple lead times, starting with a
1-month lead (1 September) and increasing at monthly in-
tervals (i.e., 1 August, 1 July) to 1 May, when the first wa-
ter allocation forecast is preliminarily issued. Both statistical
and dynamical prediction approaches are explored. Subse-
quently, the ability to effectively predict water rights alloca-
tions is investigated by coupling streamflow predictions with
a reservoir allocation model.

2.1 Statistical streamflow prediction models

2.1.1 Data and predictor selection

Statistical forecast methods rely on identification of spa-
tiotemporal patterns in historical data (Chambers et al.,
1971). A suite of potential predictor variables is evaluated
which have been shown to influence either streamflow or
precipitation, including global predictors: sea surface tem-
peratures (SSTs), specifically in the Niño 1.2 and Niño 3.4
regions, sea level pressure (SLP), geopotential height, vec-
tor (also referred to as wind vectors), meridional winds,
and the multivariate ENSO index (MEI) and local predic-
tors: precipitation, snow water equivalent, and soil mois-
ture (Montecinos and Aceituno, 2003; Wolter and Timlin,
1993). Global predictors, except MEI, are obtained at a
2.5× 2.5◦ grid resolution from the National Oceanic and
Atmospheric Administration’s Climate Diagnostics Center
(NOAA-CDC), which are based upon the National Cen-
ters for Environmental Prediction–National Center for Atmo-
spheric Research (NCEP–NCAR) reanalysis data, available
from 1949 to the present (Kalnay et al., 1996). Bimonthly
MEI data are available from NOAA’s Earth System Research
Laboratory (ESRL) (Wolter and Timlin, 1993, 1998). Local
predictors, valley-wide precipitation stations (daily, 1950–
present), and snow water equivalent (daily, 1950–2009) are
each readily available through the Chilean DGA. One of
DGA’s primary functions as regulator of surface water re-

sources for the Chilean Government is to collect, validate,
and perform quality control of hydrologic measurements.
Soil moisture data are obtained from NOAA’s Climate Pre-
diction Center’s (CPC) global monthly soil moisture dataset,
at 0.5×0.5◦ grid resolution, which is available from 1948 to
the present (Huang et al., 1996; Kalnay et al., 1996; Saha
et al., 2013). These variables can illustrate the mechanisms
controlling moisture transport to the basin and subsequent
interannual variability in streamflow, available through DGA
at Algarrobal (monthly, 1948–present). For example, in the
10 lowest ONDJ streamflow years (dry), vector winds follow
a weak, dissociated pattern in the preceding season, which
indicates that moisture transport from the Pacific Ocean is
inefficient (Fig. 4a). In the 10 highest ONDJ streamflow
years (wet), vector winds are anomalously strong, and follow
a coherent clockwise pattern off the coast of Chile, which
suggests more efficient moisture transport is possible from
the Pacific Ocean to the Elqui Valley (Fig. 4b).

Each variable is correlated with ONDJ streamflow at lead
times consistent with those discussed above (Fig. 5; not all
variables shown). Regions (gridded datasets) with statisti-
cally significant correlations in locations that have the po-
tential to affect moisture transport (Table 1) are spatially av-
eraged and retained for further evaluation. Spatial averaging
is warranted when the first principal component (PC) and
spatial average from the gridded variable region are highly
correlated. If the first PC does not correlate well with the
spatial average, the heterogeneity of the dataset is likely im-
portant, and adopting the spatial average as a predictor may
be insufficient. For example, the spatial average of SSTs
(Fig. 4c), a potentially significant predictor of streamflow
for the Elqui River, correlates highly (> 0.9) with the first
PC of the gridded SST data. This region of SSTs is closely
aligned with the quintessential ENSO pattern in the equato-
rial Pacific Ocean and is evident when correlating the entire
ONDJ streamflow record with SST anomalies in the preced-
ing MJJA, which suggests ENSO, in general, plays some role
in explaining streamflow variability within the Elqui Valley
(Fig. 4c). Thus, we select the Niño 3.4 index as a potential
predictor of streamflow, in lieu of the SST region initially
identified (Fig. 4c), as it is well known, well understood, and
well studied.

2.1.2 Statistical modeling approaches

Principal component regression (PCR) (Lins, 1985) is com-
monly applied in forecasting to decompose space–time
fields, which reduces both dimensionality and multicollinear-
ity of a set of variables. The result is a set of PCs repre-
senting the variance in the predictors. PCs with eigenvalues
greater than 1 are retained following Kaiser’s rule (Zwick
and Velicer, 1986). A leave-one-out cross-validated hindcast
is undertaken to produce a deterministic prediction of ex-
pected streamflow for each year (1950–2015) (Block and Ra-
jagopalan, 2007). A prediction distribution is generated us-

Hydrol. Earth Syst. Sci., 21, 4711–4725, 2017 www.hydrol-earth-syst-sci.net/21/4711/2017/



J. Delorit et al.: Evaluation of model-based seasonal streamflow and water allocation forecasts 4715

Figure 4. (a) Composite May–August (MJJA) vector wind anomaly preceding 10 lowest October–January (ONDJ) streamflow years. Panel
(b) is the same as (a) for 10 highest ONDJ streamflow years; panel (c) indicates the correlation of MJJA sea surface temperature anomaly
with ONDJ streamflow (1950–2015).

Table 1. List of potential predictors (bold predictors retained for statistical model).

Potential predictors Location MJJA Pearson’s
correlation with

ONDJ streamflow

Local

Precipitation 18 stations (valley wide) +0.80
Soil moisture 29–30◦ S, 70–71◦W +0.55
Snow water equivalent One station (La Laguna) +0.68

Global

Geopotential height (800 mbar) 45–60◦ S, 100–120◦W +0.43
Meridional wind 0–5◦ S, 160–180◦W +0.37
Multivariate ENSO index Tropical Pacific anomaly +0.35
Sea level pressure 60–70◦ S, 100–120◦W +0.22
Sea surface temperatures (Niño 1.2) 0–10◦ S, 80–90◦W +0.40
Sea surface temperatures (Niño 3.4) 5◦ N–5◦ S, 120–180◦W +0.49
Vector wind 20–60◦ S, 120–180◦W +0.47
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Figure 5. Temporal correlations of October–January streamflow
and potential predictors: (a) precipitation, (b) Niño 3.4 sea surface
temperatures, and (c) soil moisture.

ing prediction errors from the hindcast fit to a normal dis-
tribution with a mean of zero and added to the determinis-
tic hindcast prediction. In this work, the median and upper
80th percentile hindcasted flows from the ranked outputs are
analyzed to simulate potential risk aversion on the part of a
reservoir manager. Hereafter, the statistical principal compo-
nent regression approach is referred to as Stat-PCR.

In a separate statistical approach, a streamflow prediction
model based on ENSO phase and strength (Stat-P&S) is de-
veloped to provide categorical predictions of ONDJ stream-
flow. Using the Niño 3.4 index, NOAA has established weak
(±0.25 ◦C), moderate (±0.75 ◦C), and strong (±1.0 ◦C) cate-
gorical thresholds as a means of describing ENSO phase and
strength (Trenberth et al., 2002). Recent research has illus-
trated a potential relationship between streamflow and ENSO
phase and strength (Zimmerman et al., 2016). To qualify for
prediction using Stat-P&S, at least 1 month during a selected
Niño 3.4 index window must be at least moderate in strength
for a given phase, ≥+ 0.75 ◦C (El Niño) or ≤−0.75 ◦C
(La Niña), and is categorically predicted as above-normal
(A; highest 33 % of long-term streamflow observations) or
below-normal (B; lowest 33 % of long-term streamflow ob-
servations) ONDJ streamflow, respectively. Window selec-
tion determines hindcast date and may fall prior to or during
a phenomenon known as the spring barrier, when SSTs in
equatorial Pacific generally reset, losing predictive strength
(Webster and Hoyos, 2010). However, the effects of moder-
ate and strong ENSO events have some tendency to persist
(Balmaseda et al., 1995). When values from the Niño 3.4 in-
dex fail to exceed ±0.5 ◦C, ONDJ streamflow is predicted
to fall into the normal (N; middle 33 % of long-term stream-
flow observations) category. For years where the Niño 3.4

index values are [+0.5, +0.75 ◦C] or [−0.5, −0.75 ◦C], the
Stat-P&S model does not issue a forecast. For these ranges,
neither the magnitude (not weak or moderate, as defined by
NOAA) nor persistence of SST observations allows for pro-
duction of skillful categorical streamflow forecasts. For years
in which SSTs fall within these ranges at forecast leads prior
to the spring barrier, strength and phase are subject to rapid
transition, and categorical forecasts are typically not skillful.

2.2 Dynamical climate model informed statistical
streamflow prediction model

2.2.1 Data and predictor selection

General circulation models (GCMs) and regional climate
models (RCMs) are physically based, three-dimensional rep-
resentations of gridded atmospheric, oceanic, and land sur-
face processes, with typical spatial resolutions at or below
20 km resolution (Fowler and Ekström, 2009; Kendon et
al., 2014). The relatively coarse resolution of GCMs often
limits predictive ability for smaller-scale weather and cli-
mate phenomena, including precipitation (Bosilovich et al.,
2008). However, considering the National American Multi-
Model Ensemble (NMME; Kirtman et al., 2013) suite of
models, Verbist et al. (2010) demonstrate skillful prediction
of north central Chile precipitation based on equatorial Pa-
cific SSTs in the ENSO region using NOAA’s National Cen-
ters for Environmental Protection’s (NCEP) Climate Fore-
cast System version 2 GCM, available 1982–present (CFSv2;
Kalnay et al., 1996). Considering both the findings of Ver-
bist et al. (2010) and a strong Pearson’s correlation coef-
ficient between observed ONDJ streamflow and MJJA pre-
cipitation in the Elqui Valley (0.80), both precipitation and
SSTs outputs from CFSv2 are retained for further evaluation.
Specifically, the mean value of the 40-member ensemble of
outputs for gridded precipitation (29–30◦ S, 70–71◦W) and
the Niño 1.2 and 3.4 indices at leads between 1 January and
1 May is obtained and independently corrected using a sta-
tistical quantile mapping approach based on the cumulative
distribution functions of both predicted and observed data
(Maraun, 2013). For each lead, predicted values are replaced
with values from the observed distribution, based on match-
ing probabilities (Fig. 6; not all variables shown).

2.2.2 Dynamic model informed statistical modeling
approach

The same PCR framework as in the Stat-PCR approach is ap-
plied using GCM-corrected precipitation and SSTs to predict
ONDJ streamflow, referred to as the Stat-Dyn model. The
Stat-Dyn model is meant to provide streamflow forecasts at
extended leads, beyond what is possible with global and lo-
cal observed data used to inform the Stat-PCR model. Local
variables (e.g., precipitation, snow water equivalent and soil
moisture) hold the most predictive strength as observations
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Figure 6. (a) Quantile mapping of predicted and observed NOAA
NCEP CFSv2 Niño 3.4 sea surface temperature (SST) data; (b) ob-
served, predicted, and statistically corrected NOAA NCEP CFSv2
Niño 3.4 SST data.

during the season of peak precipitation (May–August) and
thus are only considered for the Stat-Dyn model for leads
beginning on 1 June (Fig. 5a and c).

2.3 Allocation forecast model

Allocation, as issued annually by JVRE, and storage out-
comes are hindcast in a cross-validated mode for the period
of record (1950–2015) by coupling the streamflow prediction
models to a simple reservoir balance model. As previously
mentioned, if allocations are reduced to less than the de-
fined maximum of 1 L s−1, all rights are reduced equivalently
across rights holders, per Chile’s water code. The Puclaro
operating rules adopted here focus on the end-of-water-year
(1 February) target reservoir volume, set at 100 million m3

(50 % capacity), which is consistent with current manage-
ment practices for Puclaro reservoir. To account for annual
deviation from the end-of-water-year storage target, alloca-
tion for ONDJ in year i+ 1 is adjusted by the difference be-

tween end-of-water-year storage and the target in year i. Al-
locations may be larger if end-of-year storage exceeds target
storage or smaller if there is a shortfall in end-of-year stor-
age, as shown by Eq. (1), where

Ai+1,ONDJprediction =
Qi+1prediction

WRu
WRD
+ 1

−

(
100Mm3

− Si,Febadjusted

)
. (1)

Ai+1,ONDJprediction is the predicted allocation for ONDJ in year
i+ 1. Qi+1prediction is the prediction of inflow in year i+ 1,
with streamflow predictions for the non-ONDJ months con-
structed by regressing median ONDJ streamflow predictions
onto February–September streamflow observations to pro-
duce predicted February–September streamflow. WRu and
WRD are the number of water rights upstream and down-
stream of Puclaro, respectively, and Si,Febadjusted is the previ-
ous end-of-water-year adjusted storage volume, as shown by
Eq. (2), where

Si,Febadjusted = Si,Sepprediction

−

(
Ai,ONDJprediction−Ai,ONDJobservation

)
. (2)

Si,Sepprediction is the predicted storage at the time of ONDJ
allocation issuance in year i, and Ai,ONDJprediction and
Ai,ONDJobservation are the forecast-based and observed alloca-
tion values in year i. This adjusted volume (predictions –
observations) accounts for storage deficit or surplus result-
ing from forecast-based allocations (forecasts never perfectly
match observations) and allows for adjustment of allocation
in the following year. Effectively, this accounts for the er-
ror in forecast-based allocations. The February storage short-
fall or surplus is applied to the subsequent October–January
per water right allocation value, as the storage target is non-
binding (can be violated by over- or under-allocation in the
previous year), but consequential, in the allocation model.
This functions as a mechanism to compensate for over- or
under-allocation in the previous year.

Annual per water right allocations based on forecasts of
1 September reservoir volume, probabilistic inflow predic-
tions, and end-of-water-year target reservoir volumes are
reported as a probability of falling into three allocation
categories: “moderate” (≥ 0.5 L s−1), “severe” (0.5 L s−1–
0.25 L s−1), and “extreme” (< 0.25 L s−1). The selected cat-
egories are consistent with those used by the US Drought
Monitor to describe similar ranges of industrial, social, and
environmental impacts expected due to reduced access to wa-
ter resources (Svoboda et al., 2002). Numerical thresholds
assigned to the categorical boundaries align approximately
with tercile values from the cumulative distribution of allo-
cations derived from observed inflow and storage data, us-
ing the same reservoir operating rules as forecast-based al-
locations. Further, the breaks in categories closely follow
decisions made by JVRE: a water right value of 0.5 L s−1

is not uncommon and approximately represents the lower
bound in normal years (Hearne and Easter, 1995); during the
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most recent severe drought (2009–2014), water right values
of 0.2 L s−1 were common (JVRE, personal communication,
2016)

2.4 Performance metrics

The performance of each cross-validated modeling approach
is assessed deterministically (Pearson’s correlation coeffi-
cient) and with a variety of categorical metrics to assess
model skill in the prediction of specific categories (Regonda
et al., 2006; Souza Filho and Lall, 2003). Two sets of cat-
egories are evaluated, as previously defined. The first is for
streamflow hindcast prediction, with above- (A), near- (N),
and below-normal (B) categories (ranges) based on a cli-
matological distribution of observed ONDJ streamflow, each
containing 33 % of observations. The second is for per wa-
ter right allocation hindcast prediction, applying the moder-
ate, severe, and extreme categories, as previously defined and
contingent on reservoir storage and forecast inflow. Categori-
cal outputs are illustrated with contingency tables, comparing
predicted vs. observed categorical occurrences. Model skill
occurs when the cross-validated predicted conditions match
or “hit” observed conditions, which describes the categorical
performance of the entire forecast in comparison to observa-
tions. A “miss” results when the predicted value does not fall
within the observed category. An “extreme miss” constitutes
a categorical prediction missing an observation by two cate-
gories (model predicts above normal while below normal is
observed, or vice versa).

Ranked probability skill score (RPSS) is a categorical
measure of an ensemble prediction of each modeling ap-
proach compared to a reference forecast, in this case cli-
matology (Saunders and Fletcher, 2004). The RPSS uses the
ranked probability score (RPS), a measure of the square dif-
ferences in the cumulative probability of a multi-categorical
ensemble. The RPSS ranges from −∞ to 1; values between
0 and 1 indicate greater skill than simply using climatology
(i.e., basing prediction on long-term averages), while RPSS
values less than 0 indicate that predictions are inferior to cli-
matology. An RPSS value is generated for each of year of the
hindcast using Eq. (3); the median RPSS value is reported.

RPSS=
RPS−RPSreference

0−RPSreference
= 1−

RPS

RPSreference
(3)

3 Model performance

3.1 Statistical and dynamical streamflow prediction
models

For each cross-validated streamflow modeling hindcast as-
sessment (Stat-PCR: 1950–2015; Stat-Dyn: 1982–present),
a unique set of predictors and principal components are se-
lected and evaluated with the categorical performance met-
rics (Pearson’s correlation coefficient, “hit score”, “extreme

miss score”, and RPSS; Table 2). As forecast lead increases,
both hit score and RPSS decrease, while extreme miss score
increases. This is not surprising, as less MJJA rainy season
observations are available with increasing lead, which is con-
sistent with decreased correlations between ONDJ stream-
flow and predictors (Fig. 5).

For the Stat-PCR set of models, the predictors for each
lead time follow a similar pattern, utilizing soil moisture and
SST from the month prior and precipitation for the 2 months
prior to the forecast date (e.g., 1 September forecast uses
August soil moisture and SST, and July–August precipita-
tion). Snow water equivalent (SWE) is not retained as a pre-
dictor as its May–August correlation with October–January
streamflow (Pearson’s correlation coefficient of 0.68) is not
as strong as the correlation between precipitation and stream-
flow for the same lead and arguably provides the same in-
formation to the model. As such, observations of precipita-
tion are retained for the Stat-PCR model. The 1 September
lead is promising; however, for longer leads this relation-
ship does not necessarily hold. A 1 August lead is approx-
imately equivalent to using climatology, and by 1 July it is
worse. For the Stat-Dyn modeling approach, using the mean
of CFSv2 ensemble forecasts for MJJA precipitation, Niño
3.4, and 1.2 SSTs at 1 June, 1 May, and 1 January lead times,
respectively, produces low hit, high extreme miss, and neg-
ative RPSS scores (Table 2), confirming the challenges of
predicting through the spring barrier.

The first principal component of the Stat-PCR 1 Septem-
ber forecast is highly correlated with SST in the Niño 3.4
region (0.88), which confirms that streamflow, and therefore
precipitation in the Elqui Valley, is at least partially charac-
terized by anomalous changes in SSTs. From a categorical
perspective, the statistical model is most skillful in predicting
above-normal streamflow years (hit score: 82 %; Table 3);
categorical outcomes for near- and below-normal streamflow
years were less successful (hit scores: 36 and 64 %, respec-
tively). The large disparity between above-, near-, and below-
normal categorical outcomes may be explained by evaluating
cross-validated global spatial correlation maps (1◦× 1◦) of
ONDJ streamflow with the MJJA MEI, following Zimmer-
man et al. (2016). The spatial correlation plots (1950–2015;
Fig. 7) illustrate that years with positive MEI generally cor-
respond with El Niño events and above-normal streamflow
conditions, while years with negative MEI generally corre-
spond with La Niña events and below-normal conditions.
This produces a strong positive correlation (0.65) between
streamflow and SST in the Niño 3.4 region during years with
positive MEI and a moderate positive correlation (0.29) dur-
ing years with negative MEI in the equatorial Pacific Ocean
but slightly outside the common ENSO index regions. Cor-
relation mapping between all years and streamflow produces
a moderate correlation (0.35) in the common ENSO region,
suggesting that El Niño years likely dominate this relation-
ship. However, ENSO is nonlinear, and the amount of mois-
ture transported to the basin during El Niño or La Niña years

Hydrol. Earth Syst. Sci., 21, 4711–4725, 2017 www.hydrol-earth-syst-sci.net/21/4711/2017/



J. Delorit et al.: Evaluation of model-based seasonal streamflow and water allocation forecasts 4719

Table 2. Stat-PCR and Stat-Dyn forecast model performance metrics.

Forecast Retained predictors PC1 PC2 Pearson’s Hit Extreme RPSS
correlation score miss
coefficient score

Statistical approach 1 Sep Aug SM JA Prcp Aug 3.4 89 % – 0.88 61 % 11 % 0.31
1 Aug Jul SM JJ Prcp Jul 3.4 63 % 24 % 0.63 50 % 12 % 0.02
1 Jul Jun SM MJ Prcp Jun 3.4 44 % 38 % 0.49 31 % 24 % −0.39

Dynamical approach 1 Jun JJA 1.2 JJA Prcp – 65 % 35 % 0.45 26 % 50 % −0.32
1 May JJA 3.4 JJA Prcp – 58 % 42 % 0.41 21 % 53 % −0.41
1 Jan JJA 3.4 – – – – 0.38 20 % 57 % −0.76

Table 3. September Stat-PCR model categorical streamflow results:
observed vs. forecast.

Forecast – Sep

B N A

Observed B 14 3 5
N 6 8 8
A 2 2 18

Below normal (B); near normal (n); above
normal (A).

will vary dependent upon strength (Meehl et al., 2001) and
other factors, as previously discussed and illustrated in Fig. 4.

3.2 ENSO phase and strength streamflow prediction
models

To evaluate ENSO phase-specific models, the Stat-P&S ap-
proach is adopted. While several forecast leads and Niño 3.4
index windows were evaluated, the Stat-P&S model per-
forms best for a 1 May forecast, when SSTs in the Niño
3.4 region are at least moderate in strength for a given phase
(≥+ 0.75 ◦C (El Niño) or ≤−0.75 ◦C (La Niña)) or rela-
tively neutral (within ±0.5 ◦C departure from the long-term
mean) for at least 1 month during January–April (JFMA; Ta-
ble 4). For 1950–2015, 60 % of years qualify, triggering the
1 May Stat-P&S categorical prediction model. For moderate
conditions (positive and negative), this produces categorical
hit scores of 75 % for above normal (El Niño) and 58 % for
below normal (La Niña). For moderate La Niña only condi-
tions, 7 of the 10 lowest ONDJ streamflow years on record
are captured. The remaining three years of lowest ONDJ
streamflow (1969, 1995, 2010) are predicted as above normal
by the Stat-P&S model due to JFMA Niño 3.4 SSTs greater
than 1.0 ◦C (strong El Niño conditions).

3.3 Coupled statistical prediction models

The Stat-P&S and Stat-PCR models each provide skillful
forecasts at different leads. While Stat-P&S performs best
for a 1 May forecast lead, particularly for predicting high

Table 4. Stat-P&S model categorical streamflow results: observed
vs. forecast.

Forecast – May

B N A DNF

Observed B 14 3 5 27
N 6 8 8
A 2 2 18

Model does not forecast (DNF).

and low ONDJ streamflow, forecasts are issued only cate-
gorically; deterministic predictions from the Stat-PCR and
Stat-Dyn models at this lead are relatively weak. That is,
the Stat-P&S model relinquishes forecast determinism and
in turn increases forecast lead in comparison to the Stat-PCR
and Stat-Dyn approaches. The Stat-P&S model is also trig-
gered for only 60 % of the period of record. The other 40 %
of years occur when Niño 3.4 SSTs, for at least 1 month dur-
ing JFMA, are [+0.5 ◦C, +0.75 ◦C] or [−0.5 ◦C, −0.75 ◦C].
These ranges are transitional and do not provide skillful cate-
gorical forecasts for the 1 May lead. For this reason, the cou-
pled statistical prediction model defers prediction in these
years to 1 September, when the Stat-PCR model is skillful in
producing deterministic forecasts of ONDJ streamflow.

To address the limitations of both the Stat-PCR and Stat-
P&S models, a coupled, sequential forecast approach is
adopted which utilizes both the Stat-P&S and Stat-PCR mod-
els in the following manner:

Step 1 The Stat-P&S model issues a 1 May categorical fore-
cast of ONDJ streamflow when the Niño 3.4 conditions
are met. Otherwise, no forecast is issued.

Step 2a If the Stat-P&S model issued a 1 May forecast,
the Stat-PCR model re-evaluates this prediction on the
1 September forecast, updating as necessary, and pro-
vides a deterministic forecast.

Step 2b If the Stat-P&S model did not issue a 1 May fore-
cast, the Stat-PCR model produces a deterministic fore-
cast on 1 September.
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Figure 7. May–August global multivariate ENSO index (MEI) correlated with October–January streamflow at Algarrobal for (a) positive
MEI years, (b) all MEI years, and (c) negative MEI years.

For performance evaluation, a categorical hit by Stat-P&S
model becomes a miss if the Stat-PCR model predicts a dif-
ferent (and wrong) category. The Stat-PCR model may also
correct a categorical miss by the Stat-P&S model. The 1
May Stat-P&S and 1 September Stat-PCR coupled forecast
model reveals a large degree of categorical forecast consis-
tency (change between Tables 3 and 4). The Stat-PCR model
only predicts a different category than the Stat-P&S model
in 2 of the 39 years evaluated, and for these two cases, it
changes extreme misses (least desirable outcome) to hits.
One such change was for the year 1995, one of the three low-
est years of ONDJ streamflow not correctly categorized by
the Stat-P&S model (initially predicted above-normal while
below-normal streamflow was observed). Thus, the coupling
of these two statistical models appears to perform superiorly
as compared to models individually by skillfully increasing
the prediction lead time and allowing for prediction updating,
as necessary.

3.4 Allocation prediction model

A streamflow prediction–reservoir water balance model sys-
tem is used to evaluate the performance of water right al-
locations, as compared with using streamflow observations
and streamflow climatology, for a 1 September issuance. Uti-
lizing streamflow observations is synonymous with a per-
fect forecast. The system is tested in hindcast mode using
streamflow median and 80th percentile streamflow predic-

tion scenarios of ONDJ streamflow separately. Both the me-
dian and 80th percentile approaches outperform climatol-
ogy, achieving hit scores of 53 %, as compared with only
a 30 % hit score using climatology (Table 5). Additionally,
the climatological median fails to predict any years with ex-
treme reductions (< 0.25 L s−1); the climatology-based ap-
proach over-allocates in 55 % of years, as opposed to only
27 % of years when applying the 80th percentile forecast
approach. This is noteworthy from a management perspec-
tive, as over-allocation is often considered more problematic
than under-allocation from a long-term, drought-focused per-
spective. The distributions of forecast-based allocations also
more closely match observations than climatology, with the
median and the 80th percentile forecast scenarios exceeding
observation-based allocations by only 0.06 and 0.04 L s−1,
respectively, on average (Fig. 8a) Over-allocation using cli-
matological streamflow is again evident, as the interquartile
range (IQR) of climatological allocations does not align with
observations. While the IQR of the forecast-based scenario
is larger than that of the observation-based scenario, it does
not systematically over-allocate (Fig. 8a). This can also be
illustrated by calculating the ratio of each approach (clima-
tology and forecasts) to observed allocations (Fig. 8b). In
this case, a perfect score would be a consistent value of 1,
as a climatological or forecast allocation would match each
observation-based allocation. The forecast-based allocation
ratios produce smaller IQRs and lower median values than
climatology-based allocations, implying that the forecasts
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Table 5. Categorical water right allocation results: observed vs.
forecast.

Median forecast Forecast – Sep

Hit score 53 % Extreme Severe Moderate
Extreme miss 5 % < 0.25 L s−1

≤ 0.5 L s−1
≥ 0.5 L s−1

Observed
Extreme 10 11 1
Severe 5 8 9
Moderate 2 3 17

80th percentile forecast Forecast – Sep

Hit score 53 % Extreme Severe Moderate
Extreme miss 5 % < 0.25 L s−1

≤ 0.5 L s−1
≥ 0.5 L s−1

Observed
Extreme 11 11 0
Severe 6 9 7
Moderate 2 5 15

Climatology Forecast – Sep

Hit score 30 % Extreme Severe Moderate
Extreme miss 2 % < 0.25 L s−1

≤ 0.5 L s−1
≥ 0.5 L s−1

Observed
Extreme 0 21 1
Severe 0 9 13
Moderate 0 11 11

Figure 8. Reservoir model-derived forecast allocations: (a) absolute
allocation values and (b) ratio of forecast allocations to observed
allocations.

are better aligned with observations and slightly more con-
servative.

The probabilistic modeling approach also allows for an
understanding of categorical forecast certainty and strength,
that is, the degree to which the model suggests a category
(Fig. 9). In this case, the forecast-based allocations more of-
ten indicate a stronger forecast tendency (higher probability)
toward one category, whereas the climatology-based alloca-
tions often indicate a weaker tendency to shift. While this is
not always the case, from a reservoir management perspec-

tive, climatology-based allocations provide less actionable
information, as the strength of the predicted categories is of-
ten not too dissimilar, even in years where correct predictions
are made. In contrast, for the 28 years where forecast-based
allocations of a category exceed 80 % (a strong prediction),
the hit score is 79 %, a high success rate, and further, no ex-
treme misses occur (moderate category predicted, extreme
category observed), avoiding over-allocation in dry years.

The effect of over- and under-allocation by both forecast-
and climatology-based approaches on end-of-year reservoir
storage is also evaluated. Large deviations from the 100 mil-
lion m3 target volume (1 February) are viewed as prob-
lematic for the JVRE and water rights holders (Fig. 10).
The prior analysis demonstrates the propensity for the
climatology-based approach to consistently over-allocate, re-
sulting in reservoir volumes consistently below the target.
The forecast-based scenarios have a smaller IQR with me-
dian values approaching the target value. The climatology-
based approach also allocates the full reservoir volume in
33 % of years (leaving the reservoir empty), which happens
in only 11 % of years under the forecast-based scenarios, due
to prediction error (Fig. 10).

4 Discussion

The framework developed here, although applied specifi-
cally to the Elqui Valley in Chile, can provide a broad path-
way for managers and rights holders in water rights man-
aged basins to benefit from streamflow forecast-informed
reservoir allocations. Although streamflow predictions hold
modest skill for the Elqui, the coupling of the Stat-
P&S and Stat-PCR models, and subsequent coupling of
forecasts with the human-managed allocation framework,
provides for increases in system efficiency as compared
with climatology-based forecasts. Specifically, the Stat-PCR
streamflow prediction–reservoir water balance model system
produces values closely matched with observations over the
historical period, and each forecast (median, 80th percentile)
outperforms climatology. Use of the 80th percentile Stat-
PCR forecast is intended to represent risk aversion; how-
ever, the probabilistic framework allows assessment for any
risk preference. Ensemble predictions illustrate the general
propensity of a climatology-based allocation to provide lim-
ited actionable information in contrast to forecast-based allo-
cations, which exhibit enhanced skill when the model issues
strong predictions (> 80 % categorical likelihood). However,
in years when the Stat-PCR forecast-based allocation model
issues a weak prediction (no dominant tendency toward any
specific category) other allocation decision frameworks may
be worth investigating (e.g., allocation based on existing stor-
age only as a hedge against inflow uncertainty). The develop-
ment and implementation of the probabilistic framework by
reservoir managers, as a mechanism to convert streamflow
forecasts into forecast allocations, may arguably necessitate
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Figure 9. Probabilistic water right allocation forecast using (a) 1 September PCR-Stat model 80th percentile and (b) long-term averages
(climatology).

Figure 10. End-of-year reservoir storage under three allocation ap-
proaches; 100 Mm3 is the target.

a higher level of communication with water rights holders.
Probabilistic forecasts can provide the option value to water
rights holders if the strength of the category predicted would
alter water rights holders’ decisions (e.g., change cropping
decisions, prompt water procurement or sales) acting un-
der the presumption of economic rationality. This hypothesis
may also be worth investigating.

Selection of categorical thresholds (three for this case
study) is based on equal distribution of observations and does
not necessarily represent the preferences of reservoir man-
agers or rights holders; however, these thresholds are easily
adjustable. For example, if only two categories are selected
as allocations above and below 0.75 L s−1, the hit score rises
to 92 %, which could be representative of some productiv-

ity threshold (e.g., crop water requirement). The framework
is thus sufficiently flexible to allow managers to select cate-
gories which reflect true differences in the utility of alloca-
tions to water rights holders.

While the approaches in this research are predominantly
a demonstration of concept, the model framework is consis-
tent with the current operations of Puclaro reservoir. How-
ever, it is not optimized to hedge against expected future
(multi-year) conditions. While the model may be informa-
tive over the long term, resulting in allocation and storage
values better matched with observations than climatology-
based allocations, it performs poorly in certain years, most
notably during the 2009–2015 hydrologic and meteorologi-
cal drought (Fig. 9a). While poor model performance during
this period is undoubtedly due in part to the limited reser-
voir operating rules, the Stat-PCR approach tends to under-
predict extremes, especially when they occur consecutively.
Further forecast model development will focus on improv-
ing predictive skill of extreme events, particularly dry peri-
ods, making use of non-parametric methods and additional
multi-model approaches, and dynamic rule structures and
simulation techniques. Even so, adoption of the approaches
presented here by water managers and rights holders bodes
well for improved economic efficiency and benefits across
the Elqui Valley.

5 Conclusions

The focus of this research is to develop an understanding of
the mechanisms contributing to austral summer streamflow
in the Elqui Valley, investigate model skill at varied forecast
leads, and produce forecast-based water right allocations to
inform water resources management decision-making. Like
many regions, the dynamic nature of ocean, atmosphere, and
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terrestrial interactions, which contribute to moisture trans-
port in the Elqui Valley, is undoubtedly complex and chal-
lenges hydrologic prediction models at increasing leads. The
mixed success of streamflow forecasts currently in use for
the Elqui reflects this. Here, a framework is established by
which streamflow forecasts can be produced and coupled
with human-managed allocation systems to promote equity
and efficiency in the use of limited water resources.

Correlation and composite mapping suggest moisture
transport to the Elqui Valley is dependent on the phase,
strength, and timing of many variables (Fig. 4). While austral
winter precipitation, SST, and soil moisture correlations with
ONDJ streamflow at varied leads are encouraging (Fig. 5),
the Stat-PCR approach, which makes use of these predictors,
is skillful only at a 1 September lead, as indicated by RPSS
scores and other forecast validation metrics (Table 2). The
Stat-Dyn approach, using precipitation and SSTs, results in
inferior outcomes compared with the Stat-PCR model. The
Stat-P&S model, however, provides skillful predictions of
ONDJ streamflow at a 1 May lead, albeit categorically, and
is triggered in only 60 % of the period 1950–2015.

The broader insight gained is in the coupling of the Stat-
P&S and Stat-PCR models to produce initial (1 May) and up-
dated (1 September) forecasts which may be valuable to both
reservoir managers and water rights holders. From a reservoir
management perspective, properly setting the per right wa-
ter allocation (1 September) is critically important to satisfy
rights holders and maintain adequate reservoir storage for the
uncertain future. The Stat-PCR component of the coupled
model provides skill superior to climatology and likely bet-
ter informs allocation decisions. Reservoir managers, how-
ever, are also expected to provide a non-binding 1 May allo-
cation forecast, allowing rights holders, specifically farmers
with crop choice flexibility and/or water right leasing poten-
tial, to supplement through the water market as necessary.
The Stat-P&S categorical forecast with a 1 May lead can in-
form these longer planning actions. The strong categorical
consistency between the 1 May Stat-P&S and 1 September
Stat-PCR forecasts may also serve to reinforce confidence in
the forecast outcomes; the two models only differ in predic-
tion categories twice in the 66 years evaluated. The conclu-
sion here is that coupled forecasts need not be strictly de-
terministic, and using early categorical forecasts to provide
an indication of expected conditions, and reinforcing the pre-
diction with a revised deterministic forecast as more observa-
tions of local variables (e.g., precipitation) become available,
may be useful for water rights holders. In addition, linking
the streamflow forecast with the human managed allocation
system is broadly relevant as a mechanism to promote effi-
ciency in the use of limited water resources. The framework
presented here addresses the unique set of circumstances in
water-rights-managed basins and represents an advancement
in linking season-ahead streamflow forecasts to water re-
sources systems.

Code availability. Should future reproduction of results become
necessary, any codes will be made available, by the corresponding
author, upon request.

Data availability. The data used to produce this research come
from open sources, including the Chilean Ministry of Public Works
– Dirrecion de Aguas (DGA) and the National Oceanic and Atmo-
spheric Administration. Through use of the International Research
Institute’s data library, all relevant datasets may be obtained.

Author contributions. JD, ECGO, and PB each contributed to the
hydroclimatological analysis, developed model code, and evaluated
simulations.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special issue
“Sub-seasonal to seasonal hydrological forecasting”. It is a result of
the HEPEX workshop on seasonal hydrological forecasting, Nor-
rköping, Sweden, 21–23 September 2015.

Acknowledgements. This work is partially funded by a scholarship
provided by the Air Force Institute of Technology.

Edited by: Fredrik Wetterhall
Reviewed by: Ángel G. Muñoz and one anonymous referee

References

Aceituno, P.: On the Functioning of the Southern Oscillation in the
South American Sector. Part I: Surface Climate, Mon. Weather
Rev., 116, 505–524, 1988.

Balmaseda, M. A., Davey, M. K., and Anderson, D. L. T.: Decadal
and Seasonal Dependence of ENSO Prediction Skill, J. Climate,
8, 2705–2715. 1995.

Barnston, A. G., van den Dool, H. M., Rodenhuis, D. R., Ro-
pelewski, C. R., Kousky, V. E., O’Lenic, E. A., Livezey, R. E.,
Zebiak, S. E., Cane, M. A., Barnett, T. P., Graham, N. E., Ji, M.,
and Leetmaa, A.: Long-Lead Seasonal Forecasts – Where Do We
Stand?, B. Am. Meteorol. Soc., 75, 2097–2114, 1994.

Barsugli, J. J., Vogel, J. M., Kaatz, L., Smith, J. B., Waage, M., and
Anderson, C. J.: Two Faces of Uncertainty: Climate Science and
Water Utility Planning Methods, J. Water Res. Pl.-ASCE, 138,
389–395, 2012.

Block, P.: Tailoring seasonal climate forecasts for hydropower
operations, Hydrol. Earth Syst. Sci., 15, 1355–1368,
https://doi.org/10.5194/hess-15-1355-2011, 2011.

Block, P. and Rajagopalan, B.: Interannual Variability and Ensem-
ble Forecast of Upper Blue Nile Basin Kiremt Season Precipita-
tion, J. Hydrometeorol., 8, 327–343, 2007.

www.hydrol-earth-syst-sci.net/21/4711/2017/ Hydrol. Earth Syst. Sci., 21, 4711–4725, 2017

https://doi.org/10.5194/hess-15-1355-2011


4724 J. Delorit et al.: Evaluation of model-based seasonal streamflow and water allocation forecasts

Block, P. J., Souza Filho, F. A., Sun, L., and Kwon, H.-H.: A
Streamflow Forecasting Framework using Multiple Climate and
Hydrological Models1, JAWRA J. Am. Water Resour. As., 45,
828–843, 2009.

Bosilovich, M. G., Chen, J., Robertson, F. R., and Adler, R. F.: Eval-
uation of Global Precipitation in Reanalyses, J. Appl. Meteorol.
Clim., 47, 2279–2299, 2008.

Brown, C. and Lall, U.: Water and economic development: The role
of variability and a framework for resilience, Nat. Resour. Forum,
30, 306–317, 2006.

Cepeda, J. and Lopez-Cortes, F.: Sistemas Naturales de La Hoya
Hidrografica del Rio Elqui: Variabilidad Climatica a Vulnerabil-
idad, 2004.

Chambers, J. C., Mullick, S. K., and Smith, D. D.: How to Choose
the Right Forecasting Technique, Harvard Business Review, Har-
vard University, Graduate School of Business Administration,
71403, 1971.

Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P., and
Palmer, R. N.: The Effects of Climate Change on the Hydrology
and Water Resources of the Colorado River Basin, Clim. Change,
62, 337–363, 2004.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Belijaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V.,
Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey,
C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
2011.

Donoso, G.: Water markets: case study of Chile’s 1981 Water Code,
Cien. Inv. Agr., 33, 157–171, 2006.

Falvey, M. and Garreaud, R.: Wintertime Precipitation Episodes in
Central Chile: Associated Meteorological Conditions and Oro-
graphic Influences, J. Hydrometeorol., 8, 171–193, 2007.

Fowler, H. J. and Ekström, M.: Multi-model ensemble estimates of
climate change impacts on UK seasonal precipitation extremes,
Int. J. Climatol., 29, 385–416, 2009.

Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.:
Present-day South American climate, Palaeogeogr. Palaeocl.,
281, 180–195, 2009.

Hamlet, A. F., Huppert, D., and Lettenmaier, D. P.: Economic Value
of Long-Lead Streamflow Forecasts for Columbia River Hy-
dropower, J. Water Res. Pl.-ASCE, 128, 91–101, 2002.

Hansen, J. W., Potgieter, A., and Tippett, M. K.: Using a general
circulation model to forecast regional wheat yields in northeast
Australia, Agr. Forest Meteorol., 127, 77–92, 2004.

Hearne, R. R. and Easter, K. W.: Water Allocation and Water Mar-
kets: An Analysis of Gains-from-trade in Chile, World Bank Pub-
lications, Washington D.C., 1995.

Helmuth, M. E., Moorhead, A., Thomson, M. C., and Williams, J.:
Climate Risk Management in Africa: Learning from practice, In-
ternational Research Institute for Climate and Society, The Earth
Institute at Columbia University, Palisades, New York, 2007.

Huang, J., van den Dool, H. M., and Georgarakos, K. P.: Analysis
of Model-Calculated Soil Moisture over the United States (1931–

1993) and Applications to Long-Range Temperature Forecasts, J.
Climate, 9, 1350–1362, 1996.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D.,
Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y.,
Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins,
W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R.,
and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project,
B. Am. Meteorol. Soc., 77, 437–471, 1996.

Kalthoff, N., Bischoff-Gauß, I., Fiebig-Wittmaack, M., Fiedler, F.,
Thürauf, J., Novoa, E., Pizarro, C., Castillo, R., Gallardo, L.,
Rondanelli, R., and Kohler, M.: Mesoscale Wind Regimes in
Chile at 30◦ S, J. Appl. Meteorol., 41, 953–970, 2002.

Kalthoff, N., Fiebig-Wittmaack, M., Meissner, C., Kohler, M., Uri-
arte, M., Bischoff-Gauss, I., and Gonzales, E.: The energy bal-
ance, evapo-transpiration and nocturnal dew deposition of an arid
valley in the Andes, J. Arid Environ., 65, 420–443, 2006.

Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S.
C., and Senior, C. A.: Heavier summer downpours with climate
change revealed by weather forecast resolution model, Nat. Clim.
Change, 4, 570–576, 2014.

Kirtman, B. P., Dughong Min, J. M. Infanti, Kinter, J. L., Paolino,
D. A., Zhang, Q., van den Dool, H., Saha, S., Mendez, M. P.,
Becker, E., Peng, P., Tripp, P., Huang, J., DeWitt, D. G., Tip-
pett, M. K., Barnston, A. G., Li, S., Rosati, A., Schubert, S.
D., Rienecker, M., Suarez, M., Li, Z. E., Marshak, J., Lim, Y.
K., Tribbia, J., Pegion, K., Merryfield, W. J., Densi, B., and
Wood, E. F.: The North American Multimodel Ensemble: Phase-
1 Seasonal-to-Interannual Prediction; Phase-2 toward Develop-
ing Intraseasonal Prediction, B. Am. Meteorol. Soc., 95, 585–
601, https://doi.org/10.1175/BAMS-D-12-00050.1, 2013.

Lins, H. F.: Interannual streamflow variability in the United States
based on principal components, Water Resour. Res., 21, 691–
701, 1985.

Maraun, D.: Bias Correction, Quantile Mapping, and Downscaling:
Revisiting the Inflation Issue, J. Climate, 26, 2137–2143, 2013.

Mason, D. S. J. and Stephenson, D. B.: How Do We Know Whether
Seasonal Climate Forecasts are Any Good? In Seasonal Climate:
Forecasting and Managing Risk, edited by: Troccoli, D. A., Har-
rison, D. M., Anderson, P. D. L. T., and Mason, D. S. J., Springer,
the Netherlands, 259–289, 2008.

Meehl, G. A., Gent, P. R., Arblaster, J. M., Otto-Bliesner, B. L.,
Brady, E. C., and Craig, A.: Factors that affect the amplitude of
El Nino in global coupled climate models, Clim. Dynam., 17,
515–526, 2001.

Montecinos, A. and Aceituno, P.: Seasonality of the ENSO-Related
Rainfall Variability in Central Chile and Associated Circulation
Anomalies, J. Climate, 16, 281–296, 2003.

Narula, K. K. and Lall, U.: Challenges in Securing India’s Water
Future, J. Crop Improv., 24, 85–91, 2009.

Olmstead, S. M.: The Economics of Managing Scarce Water Re-
sources, Rev. Environ. Econ. Policy, 4, 179–198, 2010.

Regonda, S. K., Rajagopalan, B., and Clark, M.: A new method
to produce categorical streamflow forecasts, Water Resour. Res.,
42, W09501, https://doi.org/10.1029/2006WR004984, 2006.

Robertson, A. W., Baethgen, W., Block, P., Lall, U., Sankarasubra-
manian, A., de Assis de Souza Filho, F., and Verbist, K. M. J.:
Climate risk management for water in semi–arid regions, Earth
Perspect., 1, 12, https://doi.org/10.1186/2194-6434-1-12, 2014.

Hydrol. Earth Syst. Sci., 21, 4711–4725, 2017 www.hydrol-earth-syst-sci.net/21/4711/2017/

https://doi.org/10.1175/BAMS-D-12-00050.1
https://doi.org/10.1029/2006WR004984
https://doi.org/10.1186/2194-6434-1-12


J. Delorit et al.: Evaluation of model-based seasonal streamflow and water allocation forecasts 4725

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Behringer, D., Hou, Y.-T., Chuang, H., Iredell, M., Ek, M., Meng,
J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang,
W., Chen, M., and Becker, E.: The NCEP Climate Forecast Sys-
tem Version 2, J. Climate, 27, 2185–2208, 2013.

Sankarasubramanian, A., Lall, U., Souza Filho, F. A., and
Sharma, A.: Improved water allocation utilizing probabilis-
tic climate forecasts: Short-term water contracts in a risk
management framework, Water Resour. Res., 45, W11409,
https://doi.org/10.1029/2009WR007821, 2009.

Santibañez, F., Romero, A. H., Peña, T. H., Gwynne, R., Ihl, M.,
and Riva, A.: Climate Change and Regional Development in
the Norte Chico, Government of Chile – Environmental Change
Unit, Research Report No. 10, 1992.

Saunders, M. A. and Fletcher, C.: Verification of Spring 2004 UK
city temperature seasonal forecasts, London’s Global University,
2004.

Souza Filho, F. A. and Lall, U.: Seasonal to interannual ensemble
streamflow forecasts for Ceara, Brazil: Applications of a multi-
variate, semiparametric algorithm, Water Resour. Res., 39, 1307,
https://doi.org/10.1029/2002WR001373, 2003.

Stakhiv, E. Z.: Policy implications of climate change impacts on
water resources management, Water Policy, 1, 159–175, 1998.

Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K.,
Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D.,
Miskus, D., and Stephens, S.: The drought monitor, B. Am. Me-
teorol. Soc. Boston, 83, 1181–1190, 2002.

Tanaka, S. K., Zhu, T., Lund, J. R., Howitt, R. E., Jenkins, M. W.,
Pulido, M. A., Tauber, M., Ritzema, R. S., and Ferreira, I. C.:
Climate Warming and Water Management Adaptation for Cali-
fornia, Clim. Change, 76, 361–387, 2006.

Trenberth, K. E., Caron, J. M., Stepaniak, D. P., and Worley, S.:
Evolution of El Nio-Southern Oscillation and Global Atmo-
spheric Surface Temperatures, J. Geophys. Res.-Atmos., 107,
AAC 5-1–AAC 5-17, https://doi.org/10.1029/2000JD000298,
2002.

Verbist, K., Robertson, A. W., Cornelis, W. M., and Gabriels, D.:
Seasonal Predictability of Daily Rainfall Characteristics in Cen-
tral Northern Chile for Dry-Land Management, J. Appl. Meteo-
rol. Clim., 49, 1938–1955, 2010.

Webster, P. J. and Hoyos, C. D.: Beyond the spring barrier?, Nat.
Geosci., 3, 152–153, 2010.

Wheeler, S., Garrick, D., Loch, A., and Bjornlund, H.: Evaluating
water market products to acquire water for the environment in
Australia, Land Use Policy, 30, 427–436, 2013.

Wolter, K. and Timlin, M. S.: Monitoring ENSO in COADS with a
seasonally adjusted principal component index, Proc. of the 17th
Climate Diagnostics Workshop, Vol. 5257, 1993.

Wolter, K. and Timlin, M. S.: Measuring the strength of ENSO
events: How does 1997/98 rank?, Weather, 53, 315–324, 1998.

You, J.-Y. and Cai, X.: Determining forecast and decision horizons
for reservoir operations under hedging policies, Water Resour.
Res., 44, W11430, https://doi.org/10.1029/2008WR006978,
2008.

Young, G., Zavala, H., Wandel, J., Smit, B., Salas, S., Jimenez, E.,
Fiebig, M., Espinoza, R., Diaz, H., and Cepeda, J.: Vulnerability
and adaptation in a dryland community of the Elqui Valley, Chile.
Clim. Change, 98, 245–276, 2009.

Zimmerman, B. G., Vimont, D. J., and Block, P. J.: Utilizing the
state of ENSO as a means for season-ahead predictor selection,
Water Resour. Res., 52, 3761–3774, 2016.

Zwick, W. R. and Velicer, W. F.: Comparison of five rules for deter-
mining the number of components to retain, Psychol. Bull., 99,
432–442, 1986.

www.hydrol-earth-syst-sci.net/21/4711/2017/ Hydrol. Earth Syst. Sci., 21, 4711–4725, 2017

https://doi.org/10.1029/2009WR007821
https://doi.org/10.1029/2002WR001373
https://doi.org/10.1029/2000JD000298
https://doi.org/10.1029/2008WR006978

	Abstract
	Introduction
	Modeling framework and performance metrics
	Statistical streamflow prediction models
	Data and predictor selection
	Statistical modeling approaches

	Dynamical climate model informed statistical streamflow prediction model
	Data and predictor selection
	Dynamic model informed statistical modeling approach

	Allocation forecast model
	Performance metrics

	Model performance
	Statistical and dynamical streamflow prediction models
	ENSO phase and strength streamflow prediction models
	Coupled statistical prediction models
	Allocation prediction model

	Discussion
	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	References

