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Abstract. The rainfall–runoff conceptual model as a cascade
of submerged linear reservoirs with particular outflows de-
pending on storages of adjoining reservoirs is developed. The
model output contains different exponential functions with
roots of Chebyshev polynomials of the first kind as expo-
nents. The model is applied to instantaneous unit hydrograph
(IUH) and recession curve problems and compared with the
analogous results of the Nash cascade. A case study is per-
formed on a basis of 46 recession periods. Obtained results
show the usefulness of the model as an alternative concept to
the Nash cascade.

1 Introduction

The significance of the rainfall–runoff relation conceptual
model introduced by Nash as a linear cascade of reservoirs
(Nash, 1957) and developed later as parallel cascades (Wit-
tenberg, 1975; Oben-Nyarko, 1976) known nowadays as the
Diskin model (Diskin et al., 1978; Diskin, 1980) cannot be
overestimated. These models have been widely applied in
the mathematical modeling of catchments for many years
and are still in use. Undoubtedly, one of the advantages of
these models is the simplicity related to the linearity, what
corresponds inter alia to the real baseflow features (Fenicia
et al., 2006). However, the Nash and Diskin models do not
represent many real hydrographs correctly enough, including
peak flows (Singh, 1976). Bárdossy (2007) noticed the great
uncertainty of the identified cascade parameters and related
difficulties in the determination of the optimum parameters
set for a particular catchment. These problems, together con-
sidered with the high diversity of real hydrographs shapes in-

cluding recession curves (Stoelzle et al., 2003), force a search
for new solutions. One of the modern tendencies are non-
linear models (e.g., Liu and Todini, 2002; Ding, 2011; Kim
and Georgakakos, 2014). This direction of research may be
perceived as an expression of disappointment due to unsat-
isfactory results of linear model applications. On the other
hand, it seems that the possibilities of linear models have not
been exploited enough. The linear model of cascaded reser-
voirs generating outputs different from the classical Nash hy-
drographs, which may be an alternative solution to standard
ones, is presented below.

2 Submerged cascade model

2.1 Theoretical considerations

The peculiarity of the model is replacing classical reservoirs
of the Nash cascade by submerged ones (Fig. 1), where out-
flows depend on storages of adjoining reservoirs (except the
last reservoir in a chain). Assuming the linearity of the sys-
tem, it is described by the set of constitutive equations:

Q1 = k1 · (S1− S2)

. . .

Qn−1 = kn−1 · (Sn−1− Sn)

Qn = kn · Sn,

(1)

and continuity equations:

dS1

dt
= P −Q1

dS2

dt
=Q1−Q2 (2)

. . .
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Figure 1. Conceptual model of submerged reservoirs.

dSn
dt
=Qn−1−Qn

Substituting Eq. (1) for Eq. (2) and introducing a commonly
used simplification,

k1 = k2 = . . .= kn = k, (3)

yields the following set of equations:

dQ1

dt
= k · (P − 2Q1+Q2)

dQ2

dt
= k · (Q1− 2Q2+Q3)

. . .
dQn−1

dt
= k · (Qn−2− 2Qn−1+Qn)

dQn

dt
= k · (Qn−1−Qn)

. (4)

To solve the non-homogeneous set of equations (Eq. 4), the
solution to a homogeneous set is necessary. At P = 0, the set
of equations (Eq. 4) generates a tridiagonal matrix:

An×n = k ·


−2 1 0 . . . . . . . . . 0
1 −2 1 0 . . . . . . 0
0 1 −2 1 0 . . . 0
. . .

0 . . . . . . 0 1 −2 1
0 . . . . . . . . . 0 1 −1

 . (5)

If all eigenvalues of the matrix An×n are different, the global
solution to the set (Eq. 4) with the condition P = 0 is

Qi =

n∑
j=1

Cjγij e
λj t for i = 1,2, . . .n, (6)

where λ is a vector of the matrix An×n
eigenvalues, γ the matrix of coefficients cre-
ating a fundamental set of solutions and

C a vector of coefficients depending on initial condi-
tions.

Determination of the eigenvalues’ vector requires the so-
lution to the following equation:

det(An×n− λ · In)= 0, (7)

where Inis the identity matrix of size n. After substituting
λ= k · δ, Eq. (7) may be written in the form

Wn (δ)= det


−2− δ 1 0 . . . . . . . . . 0

1 −2− δ 1 0 . . . . . . 0
0 1 −2− δ 1 0 . . . 0
. . .
0 . . . . . . 0 1 −2− δ 1
0 . . . . . . . . . 0 1 −1− δ


= 0. (8)

Values Wn(δ) may be determined by the recurrence formula:

W0 (δ)= 1
W1 (δ)=−(δ+ 1)
Wi (δ)=−(δ+ 2) ·Wi−1−Wi−2.

(9)

Figure 2 shows the Wn(δ) functions for different numbers
of reservoirs n. Due to Favard’s theorem (Favard, 1935), the
values Wi produce a sequence of orthogonal polynomials,
resulting from the three-term recurrence relation. However,
the roots of these polynomials of higher degrees are diffi-
cult to calculate. Therefore, the above concept of submerged
cascade requires modification, facilitating calculations of the
consecutive eigenvalues (as a consequence, also γ coeffi-
cients). This can be done by increasing the storage coefficient
k for the last reservoir in a chain twice (model SC2):

k1 = k2 = . . .= kn−1 = k, kn = 2k. (10)

It is worth noting that the concept of differentiating the k
value of the last reservoir in relation to the rest of the chain
is not new; in 2006, it was introduced by Szilagyi to a model
with fractional numbers of reservoirs (Szilagyi, 2006).

The matrix of equations set constituting the SC2 model
has the form

An×n = k ·


−2 1 0 . . . . . . . . . 0
1 −2 1 0 . . . . . . 0
0 1 −2 1 0 . . . 0
. . .

0 . . . . . . 0 1 −2 1
0 . . . . . . . . . 0 2 −2

 . (11)

Thus, analogously to Eqs. (7) and (8), the determination of
the eigenvalues’ vector requires the solution to the following
equation:

Wn (δ)= det


−2− δ 1 0 . . . . . . . . . 0

1 −2− δ 1 0 . . . . . . 0
0 1 −2− δ 1 0 . . . 0
. . .
0 . . . . . . 0 1 −2− δ 1
0 . . . . . . . . . 0 2 −2− δ


= 0, (12)
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Figure 2. GraphsWn(δ) at different numbers of reservoirs n; values
of k are the same for all reservoirs (model SC).

and the function Wn(δ) may be calculated recursively:

W0 (δ)= 2
W1 (δ)=−(δ+ 2)
Wn (δ)=−(δ+ 2) ·Wn−1−Wn−2

. (13)

Thus,

Wn = 2Tn

(
−
δ+ 2

2

)
, (14)

where Tn is a Chebyshev polynomial of the first kind and
nth degree. Functions Wn(δ) are shown in Fig. 3.

Roots of the Chebyshev polynomials of any degree satisfy
the relation

Tn (δ)= 0 for δj = cos
(

2j − 1
2n
·π

)
,

j = 1,2, . . .n, (15)

so the eigenvalues of the matrix in Eq. (11) yield

λj =
(
−2+ 2 ·βj,n

)
· k, where

βj,n =−cos
(

2j − 1
2n
·π

)
, j = 1,2, . . .n. (16)

The derivation of the coefficients γij is given in Appendix A.
Finally, the general solution of Eq. (6) for SC2 yields

Qi =

n∑
j=1

Cj (−1)n−i cos
[
(n− i)

2j − 1
2n
·π

]

e
−

[
2+2cos

(
2j−1

2n ·π
)]
kt
. (17)

In particular, for the last reservoir in a chain,

Qn =

n∑
j=1

Cj · e
−

[
2+2cos

(
2j−1

2n ·π
)]
kt
. (18)

Determination of the constants of integration to the SC2
model requires the following formula application:

C = γ−1
·Q(0) , (19)
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Figure 3. Graphs Wn(δ) at different numbers of reservoirs n; the
value of k for the last reservoir in a chain is doubled (model SC2).

where Q(0) is a vector of initial conditions, depending on
the analyzed problem. The derivation of the inverse matrix
γ−1 is given in Appendix A.

2.2 Physical interpretation of the SC2 model
assumptions

The conditions of the filling/emptying rates for cascades of
reservoirs is the basic feature differentiating (in a physical
sense) the SC2 and Nash models. In the SC2 model, this
rate depends on storages of both adjoining reservoirs (ex-
cept the last reservoir in a chain), while in the Nash one it
depends on the upper reservoir storage only. In other words,
the present state of the reservoir in the Nash model does not
affect the upper part of the cascade. This difference is anal-
ogous to the distinction between supercritical and subcritical
flows in open channels, where any action can affect the up-
per part of a stream in the subcritical flow only. It is worth
noting that the difference between storages of two neighbor-
ing reservoirs may be perceived analogously to the hydraulic
slope in the groundwater flow; therefore, the SC2 model is
a conceptual performance of the Darcy law. This analogy al-
lows anticipation of the usefulness of the SC2 application
first of all with regard to baseflow modeling.

Doubling of the storage coefficient for the last reservoir
is a measure to obtain a simple, transparent algorithm for
analytical solutions at any number of reservoirs; however,
in real catchments, the last phase of outflow transformation
takes place in watercourses and is characterized by distinctly
different features in relation to the previous phases, i.e., sur-
face, subsurface and baseflow. Similarly to the real condi-
tions, the last reservoir in an SC2 cascade shows higher abil-
ity to empty itself in comparison with the upper ones.

2.3 Solution to the IUH problem

Considering the instantaneous unit hydrograph (IUH) prob-
lem, the following initial conditions are introduced:

S1 = 1, S2 = . . .= Sn = 0. (20)
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Table 1. Numerical values of constants of integration to the instantaneous unit hydrograph (IUH) in the SC2 model (k = 1).

Constant n= 2 n= 3 n= 4 n= 5 n= 6

C1 −0.70711 0.33333 −0.19134 0.12361 −0.08627
C2 0.70711 −0.66667 0.46194 −0.32361 0.23570
C3 0.33333 −0.46194 0.40000 −0.32198
C4 0.19134 −0.32361 0.32198
C5 0.12361 −0.23570
C6 0.08627
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Figure 4. IUH at different numbers of reservoirs in the SC2 model (kSC2 = 1).

Hence,

Q1 (0)= k, Q2 (0)= . . .=Qn (0)= 0. (21)

Numerical values of the constants of integration Cj for IUH
in the SC2 model obtained from Eq. (19) with conditions of
Eq. (21) for n= 2 to n= 6 at k = 1 are given in Table 1.

Figure 4 shows the IUHs for consecutive reservoirs of the
SC2 cascade for number of reservoirs varying from n= 2 to
n= 6 (k = 1). The relatively small difference between IUH
values for Q5 and Q6 at n= 6 is apparent, which may sug-
gest the irrationality of increasing n above these numbers in
practical applications.

2.4 Solution to recession curves

Initial conditions for recession curves in the Nash model
may be determined by considering the equal storage for each
reservoir with no rainfall supply. Such assumption is rational
and justified in particular for long-lasting rainfall before the
recession period. However, in the SC2 model, such rainfall
does not lead to the situation of equal storage of reservoirs
since in that case no flows between adjoining reservoirs exist.
Therefore, the initial conditions for SC2 may be formulated
as

Q1 (0)=Q2 (0)= . . .=Qn (0)=Q0. (22)
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Figure 5. Recession curves at different numbers of reservoirs in SC2 model (kSC2 = 1).

Table 2. Numerical values of constants of integration to recession curves in the SC2 model (k = 1, Q0 = 1).

Constant n= 2 n= 3 n= 4 n= 5 n= 6

C1 −0.20711 0.08932 −0.04973 0.03168 −0.02194
C2 1.20711 −0.33333 0.16704 −0.10191 0.06904
C3 1.24402 −0.37415 0.20000 −0.12789
C4 1.25684 −0.39252 0.21720
C5 1.26275 −0.40237
C6 1.26596

This corresponds to the situation of permanent decrease of
storage for successive reservoirs. Figure 5 shows recession
curves for successive reservoirs of the SC2 cascade from
n= 2 to n= 6 (k = 1). Similarly to the IUH problem, the
difference between graphs for n= 5 and n= 6 may be per-
ceived as inconsiderable. Table 2 shows numerical values of
the constants of integration Cj for recession curves with ini-
tial conditions of Eq. (22) atQ0 = 1 and k = 1 from n= 2 to
n= 6.

3 Comparison of SC2 and Nash model hydrographs

IUHs and recession curves yielded by SC2 were compared
with analogous Nash model results. In order to ensure the
similarity of both cascades, the storage coefficient k for the
last reservoir in the Nash model was doubled. Additionally,
the following conditions were assumed:

QN (0)=QSC2 (0)= 1
∞∫
0
QNdt =

∞∫
0
QSC2dt . (23)

Lower indices in Eq. (16) represent values in Nash and SC2
models, respectively. To fulfill Eq. (23), the storage coeffi-
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Figure 6. Comparison of IUH in SC2 and Nash models (kSC2 = 1).

cient in the Nash model kN should be assumed as

kN = 2kSC2 ·
n− 1

2
n2 . (24)

Figure 6 allows comparison of IUHs for both models with
different numbers of reservoirs n. It should be noticed that
IUH of SC2 model attenuates at higher n values much more
than IUH of the Nash cascade, what may suggest a better
condition for this number identification for SC2. However,
the same feature can be a disadvantage of SC2, since this
model, in contrast to the Nash one, does not have the possi-
bility of a non-integer number of reservoirs application and
may create discretization of the solutions’ space that is too
large.

Figures 7 and 8 show peak flows (Fig. 7) and lag time
(Fig. 8) versus storage coefficient k for SC2 and Nash mod-
els. These functions are of the same type for both models
(peak flow – linear, lag time – hyperbolic), but SC2 shows
higher lag time variability in comparison to the Nash cas-
cade. Since the lag time is one of the most essential param-
eters being used for conceptual models’ calibration, this fea-
ture confirms the advantages of SC2.

Figure 9 shows recession curves for both models (in order
to obtain better comparativeness of all graph pairs, values
of storage coefficients for a particular number of reservoirs
are differentiated). Differences of both hydrographs’ shapes
are apparent; in particular, curves generated by SC2 in their
upper parts tend to decrease faster than the Nash ones. This
leads to the conclusion that SC2 can be a good alternative to
the Nash cascade at rapid transitions of hydrographs’ curva-
ture from a concave to convex one.

Figure 10 shows the reaction of both cascades to the pre-
cipitation occurring during the recession period. Rainfall
with constant intensity lasting one time unit was introduced

to the recessive scenario. Independently of the number of
reservoirs, the peak flow generated by the time-distributed
rainfall appears earlier and is more distinct in the SC2 cas-
cade than in the Nash one. This testifies the rationality of
further attempts of SC2 application not only to the baseflow
but to the surface flow as well.

4 Case study – recession curves for real catchments

To examine the usefulness of the SC2 model for practical
purposes, 12 catchments of the Vistula and Oder river basins
with areas of 500–1000 km2 were selected. Next, for the set
of 46 rainless periods lasting from 7 to 32 days, the recession
curves were distinguished. For each catchment, the condition
of the minimum number of recession curves equal to three
was applied. Flow values for these catchments were taken
from published records of the Polish Institute of Meteorology
and Water Management – National Research Institute and
were determined by the institute due to the stage–discharge
relations with the accuracy of three significant digits.

Since each of the selected periods was preceded by rainfall
of different height and intensity, application of initial condi-
tions neither relating to the equal storage of all reservoirs in
the Nash cascade nor to the condition of Eq. (22) in the SC2
model was possible. Therefore, the initial conditions defined
by vectorC were optimized for each recession curve together
with the storage coefficient k, assuming the Nash–Sutcliffe
efficiency index (Nash and Sutcliffe, 1970) as an objective
function. Calculations were carried out separately for both
models according to the following formulas:

– in the SC2 model: Eq. (18);
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Figure 7. IUH peak values in SC2 and Nash models versus storage coefficient k.
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Figure 8. IUH lag time in SC2 and Nash models versus storage coefficient k.

– in the Nash model:

Qn = e
−kt

n∑
j=1

Cj ·
(kt)j−1

(j − 1) !
. (25)

Figures 9 and 10 show the optimization results. Despite
the fact that the SC2 model does not allow application of a
non-integer number of reservoirs and the Nash model was not
analyzed from this point of view, graphs are presented as con-
tinuous lines, which facilitates the analysis of the variabil-
ity of the optimized values. Figure 11 shows exemplary re-

sults of the optimization for one of the catchments (Ścinawka
River, Gorzuchów gauge station) and Fig. 12 shows the av-
eraged values of storage coefficients k and Nash–Sutcliffe
indices Ef for particular catchments.

Comparison of graphs for both models leads to the follow-
ing regularities:

– In most cases, Ef values exceed 0.95 for both models,
in particular at high numbers of reservoirs, which shows
the quality of both models quite well.

– At low n, the value Ef in the SC2 model is generally
higher than in the Nash one, although at higher n the
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Figure 9. Comparison of recession curves in SC2 and Nash models (kSC2 = n).
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Figure 10. Comparison of the reaction of SC2 and Nash models to precipitation.

SC2 model does not show any significant growth of this
value, in contrast to the Nash model achieving the high-
est Ef at high n values. This may testify for the better
elasticity of the Nash model, i.e., better ability to fit the
modeled hydrographs’ shapes to the various recession
curves.

– Optimized values of storage coefficient k in the SC2
depend on the assumed n value insignificantly (except
the transition from n= 2 to n= 3). In the Nash model,
these values successively increase due to n. This regu-
larity may suggest the possibility of the SC2 model ap-

plication to determine the characteristic value of k for a
given catchment and, consequently, facilitate the model
calibration process by independent optimization of the
parameters k and n.

5 Conclusions

In this study, the rainfall–runoff conceptual model as a cas-
cade of submerged linear reservoirs is proposed. The supply
of each reservoir (except the first one in a chain) depends on
the storage of the upper reservoir and the considered one as
well. Additionally, to obtain the recurrence solution to the set
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Figure 12. Mean values of storage coefficient k (day−1) in the SC2 model (a) and Nash one (b), and Nash–Sutcliffe efficiency index Ef for
the SC2 model (c) and the Nash one (d) versus the number of reservoirs for particular catchments.

of equations describing water flow throughout the cascade,
the value of the storage coefficient k for the last reservoir
in the chain is doubled in relation to the previous reservoirs
(model SC2), which allows determination of the eigenvalues
of the equations set as roots of successive Chebyshev polyno-
mials of the first kind. Obtained output hydrographs contain

exponential functions with different exponents in contradis-
tinction to the Nash model, which generates hydrographs
with the singular exponent.

Comparison of features of IUHs and theoretical recession
curves generated by SC2 and Nash models suggests a pos-
sibility and even advisability of further attempts to replace
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the Nash model by the SC2 one, in particular with regards to
baseflow modeling. This is confirmed by the analysis of mea-
sured recession curves. Results of the analysis show that the
optimized values of storage coefficients k in the SC2 model
are practically constant for each curve and independent of
the number of reservoirs n, which can be useful considering
that the identification process carried on separately for both
calibrated parameters (n, k) as the possible correlation be-
tween values of identified storage coefficients and catchment
parameters. However, the lack of solutions at a non-integer
number of reservoirs can be a serious disadvantage of the
SC2 model. Thus, the applicability of SC2 requires further
analyses with a greater number of catchments. Application
of the SC2 model to one of the cascades representing base-
flow in the Diskin model may be an interesting experience as
well.

Data availability. Data can be accessed by contacting the corre-
sponding author.
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Appendix A: Derivation of the analytical formula for
the matrix γ and inverse matrix γ−1 in the SC2 model
equation

Determination of the matrix γ consists in the solution to the
following set of equations at successive values of j (j =
1,2,... n):

−2βj,n 1 0 . . . . . . . . . 0

1 −2βj,n 1 0 . . . . . . 0
0 1 −2βj,n 1 0 . . . 0
. . .
0 . . . . . . 0 1 −2βj,n 1
0 . . . . . . . . . 0 2 −2βj,n



·


γ1,j
γ2,j
. . .

γn,j

= 0

. (A1)

Theory of differential equations proves that the order of the
square matrix in Eq. (A1) equals n− 1; hence, one of the
equations depends on the others, which allows the assump-
tion of any value of one coefficient. Thus, by putting

γn,j = 1, (A2)

the remaining coefficients may be calculated from the rela-
tions

γn−1,j = βj,n
γn−2,j = 2βj,n · γn−1,j − γn,j

. (A3)

Hence,

γn−m,j = Tm
(
βj,n

)
or

γi,j = Tn−i
(
βj,n

)
. (A4)

Since for Chebyshev polynomials at any values p, x the fol-
lowing identities are satisfied:

Tp (−x)= (−1)pTp (x) (A5)

and

Tp (cosx)= cospx, (A6)

the coefficients γi,j may be calculated as

γi,j = (−1)n−i cos
[
(n− i)

2j − 1
2n

π

]
. (A7)

The elements of the inverse matrix γ−1 are

γ−1
i,j = (−1)n−j

2
n

cos
[
(n− j)

2i− 1
2n

π

]
for

j = 1,2, . . .n− 1 (A8)

and

γ−1
i,j =

1
n

for j = n. (A9)

The proof of Eqs. (A8) and (A9) requires proofs of the fol-
lowing two lemmas:

Lemma 1. For any natural numbersm, nwhilem> 0, n> 0
is

B =

n∑
j=1

cos
(
m

2j − 1
2n

π

)
= 0. (A10)

Proof: Let m
n
π = α. Then,

B = cos
α

2
+ cos

(α
2
+α

)
+ cos

(α
2
+ 2α

)
+ . . .

+ cos
[α

2
+ (n− 1)α

]
= cos

α

2
{1+ cosα+ cos(2α)

+. . .+ cos[(n− 1)α]}− sin
α

2
{sinα+ sin(2α)+ . . .

+sin[(n− 1)α]} . (A11)

After substituting Lagrange’s trigonometric identities (Jef-
frey and Dai, 2008),

N∑
j=1

cos(jα)=−
1
2
+

sin
[(
N + 1

2

)
α
]

2sin α2
,

N∑
j=1

sin(jα)=
1
2

cot
α

2
−

cos
[(
N + 1

2

)
α
]

2sin α2
, (A12)

the sum B is reduced to

B =
sin(nα)
2sin α2

. (A13)

Since sin(nα)= sin(mπ)= 0, then B = 0.
Lemma 2. For the matrix, γ n×n is

n∑
j=1

γi,j · γk,j = 0 for i 6= k, (A14)

which means that rows of the matrix γ n×n create a base of
orthogonal vectors, and

n∑
j=1

γ 2
i,j =

n

2
. (A15)

Proof: Applying well-known product-to-sum trigonometric
identities,

n∑
j=1

γi,j · γk,j =

n∑
j=1

(−1)2n−i−k cos
[
(n− i)

2j − 1
2n

π

]

· cos
[
(n− k)

2j − 1
2n

π

]
=

1
2
(−1)2n−i−k
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·

{ n∑
j=1

cos
[
(2n− i− k)

2j − 1
2n

π

]

+

n∑
j=1

cos
[
(i− k)

2j − 1
2n

π

]}
. (A16)

Thus, by Lemma 1, for i 6= k both sums are equal to 0, while
for i = k,

n∑
j=1

γ 2
i,j =

1
2
(−1)2(n−i)

n∑
j=1

{
cos

[
(2n− 2i)

2j − 1
2n

π

]

+ cos(0)
}
=
n

2
. (A17)

Evidently, for i = k = n ,

n∑
j=1

γ 2
n,j = n. (A18)

Lemma 2 entails the formula for the product of the matrix γ
and its transpose γ T :

γ γ T = diag
(n

2
,
n

2
, . . .,

n

2
,n
)
, (A19)

and consequently(
γ γ T

)−1
= diag

(
2
n
,

2
n
, . . .,

2
n
,

1
n

)
. (A20)

Since for any square invertible matrix

A−1
= AT

(
AAT

)−1
, (A21)

then

γ−1
= γ T ·diag

(
2
n
,

2
n
, . . .,

2
n
,

1
n

)
, (A22)

and in the shape of an array:

γ−1
=



(−1)n−1 2
n

cos
[
(n− 1)

1
2n
π

]
(−1)n−2 2

n
cos

[
(n− 2)

1
2n
π

]
· · · −

2
n

cos
(

1
2n
π

)
1
n

(−1)n−1 2
n

cos
[
(n− 1)

3
2n
π

]
(−1)n−2 2

n
cos

[
(n− 2)

3
2n
π

]
· · · −

2
n

cos
(

3
2n
π

)
1
n

· · · · · · · · · · · · · · ·

(−1)n−1 2
n

cos
[
(n− 1)

2n− 3
2n

π

]
(−1)n−2 2

n
cos

[
(n− 2)

2n− 3
2n

π

]
· · · −

2
n

cos
(

2n− 3
2n

π

)
1
n

(−1)n−1 2
n

cos
[
(n− 1)

2n− 1
2n

π

]
(−1)n−2 2

n
cos

[
(n− 2)

2n− 1
2n

π

]
· · · −

2
n

cos
(

2n− 1
2n

π

)
1
n


. (A23)
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