



## Supplement of

## **Recent changes in terrestrial water storage in the Upper Nile Basin:** an evaluation of commonly used gridded GRACE products

M. Shamsudduha et al.

Correspondence to: Mohammad Shamsudduha (m.shamsudduha@ucl.ac.uk)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

## **Supplementary Table:**

**Table S1.** In each sub sections (LVB and LKB) of the table below, mean annual (2003–2012) amplitudes (first row) and variance (second row) in bottom-up  $\Delta$ TWS (timeseries variance in LVB: 120 cm<sup>2</sup> and LKB: 24 cm<sup>2</sup>) explained in linear regression ( $R^2$ ) by individual signals (third row) such as various GRACE-derived  $\Delta$ TWS, simulated  $\Delta$ SMS, in situ  $\Delta$ SWS and in situ  $\Delta$ GWS in both and the relative proportion of variability (fourth row) in bottom-up  $\Delta$ TWS as explained by  $\Delta$ SMS,  $\Delta$ SWS and  $\Delta$ GWS.

| Lake Victoria Basin (LVB) |                     |                        |                     |                     |                    |
|---------------------------|---------------------|------------------------|---------------------|---------------------|--------------------|
| GRACE<br>Ensemble<br>∆TWS | GRGS<br>∆TWS        | JPL-<br>MASCON<br>∆TWS | ΔSMS                | ΔSWS                | ΔGWS               |
| 11.7 cm                   | 20.6 cm             | 27.3 cm                | 7.9 cm              | 14.8 cm             | 2.9 cm             |
| $23.5 \text{ cm}^2$       | $92.6 \text{ cm}^2$ | $136.9 \text{ cm}^2$   | $10.4 \text{ cm}^2$ | $62.8 \text{ cm}^2$ | $1.5 \text{ cm}^2$ |
| 75%                       | 90%                 | 83%                    | 54%                 | 92%                 | 54%                |
| -                         | -                   | -                      | 6.5%                | 92.6%               | 0.66%              |
| Lake Kyoga Basin (LKB)    |                     |                        |                     |                     |                    |
| 8. cm                     | 16.2 cm             | 16.5 cm                | 7.3 cm              | 3.8 cm              | 2.9 cm             |
| $11.2 \text{ cm}^2$       | $58.3 \text{ cm}^2$ | $47.8 \text{ cm}^2$    | $7.4 \text{ cm}^2$  | $4.5 \text{ cm}^2$  | $2.1 \text{ cm}^2$ |
| 62%                       | 56%                 | 57%                    | 62%                 | 48%                 | 76%                |
| -                         | -                   | -                      | 48.5%               | 47.9%               | 3.6%               |

## **Supplementary Figures:**



**Figure S1.** The general outline of Lake Victoria Basin (LVB) and Lake Kyoga Basin (LKB) within the Upper Nile Basin and the gridded  $(1^{\circ} \times 1^{\circ})$  scaling coefficients for *GRCTellus* solutions derived from CLM4.0 land surface model (Landerer and Swenson, 2012).



**Figure S2.** The general outline of Lake Victoria Basin (LVB) and Lake Kyoga Basin (LKB) within the Upper Nile Basin and the gridded  $(0.5^{\circ} \times 0.5^{\circ})$  scaling coefficients for JPL-Mascons derived from CLM4.0 land surface model (Wiese et al., 2016).



**Figure S3.** Observed groundwater-level monitoring records (January 2003 to December 2012) at 6 monitoring boreholes: Entebbe, Rakai and Nkokonjeru from Late Victoria Basin (LVB) and Apac, Palissa and Soroti from Lake Kyoga Basin (LKB).



**Figure S4.** Time-series records of various GRACE  $\Delta$ TWS solutions, sum of in-situ  $\Delta$ SWS and ensemble mean of  $\Delta$ SMS signals and in-situ  $\Delta$ GWS for Lake Victoria Basin. The graph illustrates that combined signals of  $\Delta$ SWS+ $\Delta$ SMS clearly exceed GRACE  $\Delta$ TWS anomalies (positive and negative sides of the y-axis) in several monthly instances over the period of 2003 to 2012.



**Figure S5.** Pearson correlation coefficients among the time-series variables collated over the Lake Victoria Basin for the period of 2003 to 2012. Statistically significant correlated variables are marked with asterisks where the significance asterisks represent *p*-values < 0.05 (1 asterisk), <0.01 (2 asterisks) and <0.001 (3 asterisks). Histograms with kernel density overlays and bivariate scatterplots of variables are shown. The fitted curve lines in bivariate scatterplots represent locally-weighted polynomial regression (i.e., Lowess) lines.



**Figure S6.** Pearson correlation coefficients among the time-series variables collated over the Lake Victoria Basin for the period of 2003 to 2006. Statistically significant correlated variables are marked with asterisks where the significance asterisks represent *p*-values < 0.05 (1 asterisk), <0.01 (2 asterisks) and <0.001 (3 asterisks). Histograms with kernel density overlays and bivariate scatterplots of variables are shown. The fitted curve lines in bivariate scatterplots represent locally-weighted polynomial regression (i.e., Lowess) lines.



**Figure S7.** Pearson correlation coefficients among the time-series variables collated over the Lake Victoria Basin for the period of 2007 to 2012. Statistically significant correlated variables are marked with asterisks where the significance asterisks represent *p*-values < 0.05 (1 asterisk), <0.01 (2 asterisks) and <0.001 (3 asterisks). Histograms with kernel density overlays and bivariate scatterplots of variables are shown. The fitted curve lines in bivariate scatterplots represent locally-weighted polynomial regression (i.e., Lowess) lines.



**Figure S8.** Pearson correlation coefficients among the time-series variables collated over the Lake Kyoga Basin for the period of 2003 to 2012. Statistically significant correlated variables are marked with asterisks where the significance asterisks represent *p*-values < 0.05 (1 asterisk), <0.01 (2 asterisks) and <0.001 (3 asterisks). Histograms with kernel density overlays and bivariate scatterplots of variables are shown. The fitted curve lines in bivariate scatterplots represent locally-weighted polynomial regression (i.e., Lowess) lines.



**Figure S9.** Pearson correlation coefficients among the time-series variables collated over the Lake Kyoga Basin for the period of 2003 to 2006. Statistically significant correlated variables are marked with asterisks where the significance asterisks represent *p*-values < 0.05 (1 asterisk), <0.01 (2 asterisks) and <0.001 (3 asterisks). Histograms with kernel density overlays and bivariate scatterplots of variables are shown. The fitted curve lines in bivariate scatterplots represent locally-weighted polynomial regression (i.e., Lowess) lines.



**Figure S10.** Pearson correlation coefficients among the time-series variables collated over the Lake Kyoga Basin for the period of 2007 to 2012. Statistically significant correlated variables are marked with asterisks where the significance asterisks represent *p*-values < 0.05 (1 asterisk), <0.01 (2 asterisks) and <0.001 (3 asterisks). Histograms with kernel density overlays and bivariate scatterplots of variables are shown. The fitted curve lines in bivariate scatterplots represent locally-weighted polynomial regression (i.e., Lowess) lines.



**Figure S11.** Time-series records of various GRACE  $\Delta$ TWS signals, in-situ  $\Delta$ TWS, in-situ  $\Delta$ SWS, simulated  $\Delta$ SMS and in-situ  $\Delta$ GWS in LVB and linear trends (red line) for the period of 2003 to 2006. Figure (blue) on top of each panel indicates the estimated storage change in km<sup>3</sup>.



**Figure S12.** Time-series records of various GRACE  $\Delta$ TWS signals, in-situ  $\Delta$ TWS, in-situ  $\Delta$ SWS, simulated  $\Delta$ SMS and in-situ  $\Delta$ GWS in VNB and linear trends (red line) for the period of 2003 to 2006. Figure (blue) on top of each panel indicates the estimated storage change in km<sup>3</sup>.



**Figure S13.** Results of scaling experiments on *GRCTellus* GRACE and in situ  $\Delta$ TWS over LVB. Panel (a) shows the comparison between *GRCTellus* GRACE-derived  $\Delta$ TWS and bottom-up  $\Delta$ TWS where a scaled down (scaling factor of 0.77 bottom-up  $\Delta$ TWS-1; scaling factor of 0.11 bottom-up  $\Delta$ TWS-2)  $\Delta$ SWS signal is applied; on bottom panel (b) shows comparison between *GRCTellus* GRACE-derived  $\Delta$ TWS and bottom-up  $\Delta$ TWS where the GRACE- $\Delta$ TWS signal is scaled up by a factor of 1.7 based on the lowest RMSE of 5.76 cm with the bottom-up  $\Delta$ TWS.



**Figure S14.** Estimates of in situ  $\Delta$ GWS and GRACE-derived  $\Delta$ GWS time-series records (2003–2012) in LKB show a substantial variations among themselves. No scaling experiments were applied for LKB in the disaggregation of  $\Delta$ GWS using *GRCTellus* (ensemble mean of CSR, GFZ, and JPL) and JPL-Mascons GRACE products.



**Figure S15.** Simulated terrestrial water storage anomaly from 10 LSMs for the Lake Victoria Basin. Note that not all LSMs simulate groundwater storage; for example, latest versions of the Community Land Model (CLM4.0 and 4.5) simulate groundwater storage.