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Abstract. Global climate model (GCM) outputs feature sys-
tematic biases that render them unsuitable for direct use by
impact models, especially for hydrological studies. To deal
with this issue, many bias correction techniques have been
developed to adjust the modelled variables against obser-
vations, focusing mainly on precipitation and temperature.
However, most state-of-the-art hydrological models require
more forcing variables, in addition to precipitation and tem-
perature, such as radiation, humidity, air pressure, and wind
speed. The biases in these additional variables can hinder
hydrological simulations, but the effect of the bias of each
variable is unexplored. Here we examine the effect of GCM
biases on historical runoff simulations for each forcing vari-
able individually, using the JULES land surface model set
up at the global scale. Based on the quantified effect, we as-
sess which variables should be included in bias correction
procedures. To this end, a partial correction bias assessment
experiment is conducted, to test the effect of the biases of
six climate variables from a set of three GCMs. The effect of
the bias of each climate variable individually is quantified by
comparing the changes in simulated runoff that correspond to
the bias of each tested variable. A methodology for the classi-
fication of the effect of biases in four effect categories (ECs),
based on the magnitude and sensitivity of runoff changes, is
developed and applied. Our results show that, while globally
the largest changes in modelled runoff are caused by pre-
cipitation and temperature biases, there are regions where
runoff is substantially affected by and/or more sensitive to
radiation and humidity. Global maps of bias ECs reveal the
regions mostly affected by the bias of each variable. Based
on our findings, for global-scale applications, bias correction
of radiation and humidity, in addition to that of precipitation

and temperature, is advised. Finer spatial-scale information
is also provided, to suggest bias correction of variables be-
yond precipitation and temperature for regional studies.

1 Introduction

In recent years, there has been a strong consensus on the
changes in climate caused by increased concentrations of
anthropogenic greenhouse gas emissions (King et al., 2015;
O’Neill et al., 2017; Stocker et al., 2013). Under the pressing
circumstances of a warming world, scientific research has fo-
cused on estimating the range of changes in the future climate
and the effectiveness of different adaptation strategies. The
main tool for the investigation of future climate is the utiliza-
tion of global climate models (GCMs). GCMs are based on
physical principles that describe the components of the cli-
mate system, such as cloud formation and water and energy
flux exchanges.

Although each generation of GCMs shows improvements
compared to its predecessor (Koutroulis et al., 2016), cli-
mate model outputs still contain substantial biases that are
expressed as deviations of the modelled climate variables
from respective historical observations. These inherent bi-
ases can emanate from misrepresentations of physical atmo-
spheric processes (Maraun, 2012), from uncertainties regard-
ing the boundary and initial model conditions (Bromwich et
al., 2013), and from the relatively coarse resolution employed
by the GCMs (Katzav and Parker, 2015). As a result, out-
comes of hydrological climate change impact studies have
been reported to become unrealistic without a prior adjust-
ment of climate forcing biases (Ehret et al., 2012; Hansen
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et al., 2006; Harding et al., 2014; Sharma et al., 2007). To
overcome this limitation, various bias correction techniques
have been developed to post-process climate model data to
statistically match observations. Bias correction methods are
calibrated based on a historical time period for which obser-
vations are available. The adjustment is then applied to both
the modelled historical period and to the period beyond the
time frame of the observations.

Bias correction procedures have mainly focused on ad-
justing the biases of precipitation and/or temperature (Chris-
tensen et al., 2008; Li et al., 2010; Miao et al., 2016; Pho-
tiadou et al., 2016; Piani et al., 2010). These variables have
traditionally been prioritized for bias correction as they are
considered the most important driving variables of hydrolog-
ical processes in modelling applications – even though from
a physical perspective radiation is the driving force of the
hydrological cycle. However, many state-of-the-art regional
and global hydrological models (GHMs) and land surface
models (LSMs) require – apart from precipitation and tem-
perature – additional meteorological forcing, such as solar
radiation, air humidity, surface air pressure, and wind speed
(a summary of the input variables needed by various hydro-
logical models can be found in the Supplement of Hatter-
mann et al., 2017). For this reason, biases in variables like
radiation, humidity, and wind speed can hinder the represen-
tation of hydrological fluxes such as runoff, evapotranspira-
tion (ET), snow accumulation, and snowmelt by the impact
models (Hagemann et al., 2011; Haddeland et al., 2012), in-
dicating that bias correction should be extended to include
more input variables.

Bias correction itself also has limitations, as it is a de-
manding process in terms of both computational cost and the
involved methodological development. Moreover, the use of
bias correction is challenged by conceptual pitfalls such as
the disruption of the physical consistency of climate vari-
ables, the mass–energy balance and the omission of correc-
tion feedback mechanisms to other climate variables (Ehret
et al., 2012). For these reasons, it is worth examining whether
the effect of biases of input variables on hydrological outputs
justifies the use of bias correction. Even though this informa-
tion would be key for making informed decisions on the vari-
ables that should be bias corrected for a specific model ap-
plication, few relevant studies can be found in the literature.
Some insight is given by Haddeland et al. (2012), who inves-
tigate the combined effect of bias correcting radiation, hu-
midity, and wind speed in addition to precipitation and tem-
perature on hydrological simulations. However, the extent to
which individual forcing variable biases affect hydrological
simulations and the way that this effect varies spatially are
important research questions that remain open.

Here we investigate the effect of the biases in GCM cli-
mate variables on the historical runoff output of a large-scale
LSM. To this end, we firstly quantify the improvements in
the representation of historical modelled runoff when bias
corrected variables are used as forcing. Secondly, we exam-

ine the individual effect that the bias of each climate variable
can have on runoff simulations. This way we can provide
an assessment of the variables beyond precipitation and tem-
perature that may be considered “priority” variables for bias
correction, due to their possible pronounced effect on hydro-
logical simulations.

2 Methods

2.1 The JULES land surface model

Hydrological simulations were performed with the Joint UK
Land Environment Simulator (JULES) model (Best et al.,
2011). JULES is a physically based model that calculates
water, energy, and carbon exchanges between the land sur-
face and the atmosphere. The science modules that comprise
the model are surface energy fluxes, snow cover and sur-
face hydrology, soil moisture and temperature, soil carbon,
vegetation dynamics, and plant physiology. The model re-
quires seven climate variables as forcing, namely, precipita-
tion, temperature, longwave and shortwave radiation, specific
humidity, surface pressure, and wind speed. Runoff produc-
tion in JULES has two components. The first one is surface
runoff, produced by the infiltration excess mechanism. The
second one is subsurface runoff (or drainage from the bot-
tom of the soil column), which is calculated as a Darcian flux
under the assumption of zero gradient of matric potential.
Calculation of potential evaporation follows the Penman–
Monteith approach (Monteith, 1965). Water held at the plant
canopy evaporates at the potential rate, while restrictions of
canopy resistance and soil moisture are applied for the sim-
ulation of evaporation from soil and plant transpiration from
potential evaporation (Best et al., 2011). For a detailed de-
scription of JULES, the reader can refer to the model de-
scription papers of Best et al. (2011) and Clark et al. (2011).
Examples of recent model applications to climate change im-
pact assessments can be found in the studies of Papadimitriou
et al. (2016), where JULES is used to investigate future wa-
ter availability in Europe, and Grillakis et al. (2016), who
estimated the climate-induced changes in soil temperature
regimes.

2.2 Model set-up and outputs

JULES was run at the global scale, with a spatial resolution
of 0.5◦. A daily time step was employed for all the model
runs. To warm up the model, 10 spin-up cycles from 1973 to
1978 were performed before each main run. The main runs
span from 1978 to 2010, but only the time period of 1981
to 2010 is used for the analysis. The model outputs are pro-
duced with a daily time resolution.
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2.3 Hydrological evaluation

This study focuses on the runoff production output of
JULES, hereafter denoted RF. For the assessment of model
performance, RF is aggregated at the basin level to allow
for comparison with discharge observations. To this end, RF
is converted to discharge at the basin outlet (denoted Q)
through a delay algorithm proposed by Zulkafli et al. (2013)
and the use of the TRIP river routing scheme (Oki and Sud,
1998) to determine the grid boxes upstream of the basin’s
outlet.

For the evaluation of JULES’ hydrological performance,
three metrics are used: Nash–Sutcliffe efficiency (NSE), per-
cent bias (PBIAS), and the coefficient of determination (R2).
The formulas for the calculation of NSE and PBIAS are
given in Eqs. (1) and (2):

NSE= 1−
[ ∑

(Qsim−Qobs)
2∑

(Qobs−Qmean)2

]
, (1)

PBIAS=
[∑

(Qsim−Qobs) · 100∑
Qobs

]
%, (2)

where Qsim is simulated discharge, Qobs is observed dis-
charge, and Qmean is the mean of observed discharge
data. Discharge observations were obtained from the Global
Runoff Data Centre (GRDC) database for nine large-scale
basins shown in Fig. 1. Information on the basin stations for
model evaluation is presented in Table S1 in the Supplement
of this paper.

The evaluation metrics are calculated from monthly dis-
charge data. These are the monthly averages of daily dis-
charge for simulations, while observations were obtained in
monthly time steps. Model evaluation was based on the his-
torical period from 1981 to 2010. The months missing from
the observed discharge time series were neglected from the
calculation of the evaluation metrics.

2.4 Climate data

The climate dataset used for bias correction of the GCM
data and as a baseline for comparison of the results is the
WATCH Forcing Data methodology applied to ERA-Interim
data (WFDEI; Weedon et al., 2014). WFDEI data span from
1979 to 2012, but here only the time period from 1981 to
2010 was used. The WFDEI dataset is based on its prede-
cessor WFD (WATCH Forcing Data; Weedon et al., 2010),
which was derived from the ERA-40 reanalysis product (Up-
pala et al., 2005). For detailed information on the derivation
of the WFDEI dataset, the reader is referred to Weedon et
al. (2014).

Data from three GCMs participating in the fifth phase of
the Coupled Model Intercomparison Project (CMIP5; Taylor
et al., 2012) were used as forcing. Information on the ensem-
ble members can be found in Table 1. Climate model outputs
were interpolated to the 0.5◦ spatial resolution of the WFDEI
dataset, using the nearest-neighbour method.

2.5 Bias correction method

The bias correction methodology presented by Grillakis et
al. (2013), namely multi-segment statistical bias correction
(MSBC), is used to adjust the biases in precipitation. MSBC
follows the principles of quantile mapping correction tech-
niques and was originally designed and tested for GCM pre-
cipitation adjustment. According to the method, the cumu-
lative distribution function (CDF) space is split into discrete
segments and then the individual quantile mapping correc-
tion is applied to each segment, achieving a better fit of the
parametric equations on the data and thus better correction,
especially on the CDF edges. The optimal number of seg-
ments is estimated by the Schwarz Bayesian information
criterion to balance between complexity and performance.
A modification of the methodology is used for bias adjust-
ment of the rest of the variables that were used. The modi-
fied methodology uses linear functions instead of the gamma
functions that were used in the original methodology. This
change allows for the facilitation of negative variable val-
ues that the gamma functions cannot simulate. Hence, the
methodology becomes more universal, to be used in different
variable types and distributions. An additional methodologi-
cal change is performed to the highest and lowest segments’
corrections, which are explicitly corrected using only the dif-
ference between the historical period model data and the ob-
servations. This provides rigidity to the correction, avoid-
ing unrealistic temperature values at the edges of the cor-
rected data CDF. A detailed description and technical details
of the modification can be found in Grillakis et al. (2017).
As MSBC methodology belongs to the parametric quantile
mapping techniques, it shares their advantages and draw-
backs. A comprehensive analysis of advantages and disad-
vantages of the methods that follow the quantile mapping
compared to others can be found in Maraun et al. (2010)
and Themeßl et al. (2012). The methodology has already
been used in in the framework of the ECLISE FP7 (265240)
and HELIX FP7 (603864) projects and in a number of cli-
mate change impact studies (Grillakis et al., 2016; Papadim-
itriou et al., 2016). In addition, MSBC has participated in the
Bias Correction Intercomparison Project (BCIP) (Nikulin et
al., 2015), where it was found to compare well to the other
methodologies and was ranked high in performance.

As the bias adjustment involves only the reference period
of the GCM data using the same period’s observations, its
effect is simply limited to the equalization of the cumulative
density functions of the raw GCM data towards the WFDEI
data. A number of parameter checks were performed on the
corrected data, such as prevention of unrealistic values (e.g.
negative values to positively constrained variables) and the
avoidance of extreme values beyond or below the historical
record of WFDEI. The correction was performed separately
for each calendar month, keeping physical coherence of the
bias adjusted variables, as they are adjusted for their season-
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Figure 1. Outlines of study focus regions and hydrological basins and locations of the GRDC gauging stations. With red colour are denoted
the regions selected for more detailed analysis. The hydrological basins have been numbered in decreasing order according to their area:
(1) Amazon, (2) Congo, (3) Mississippi, (4) Lena, (5) Volga, (6) Ganges, (7) Danube, (8) Elbe, and (9) Kemijoki.

Table 1. Information on the GCMs used for this study.

Modelling group Institute ID Model name ◦Lon× ◦Lat Key reference

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR 3.75× 1.88 Dufresne et al. (2013)

Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and the Na-
tional Institute for Environmental Studies

MIROC MIROC-ESM-
CHEM

2.81× 2.81 Watanabe et al. (2011)

US Dept. of Commerce/NOAA/Geophysical
Fluid Dynamics Laboratory

GFDL-NOAA GFDL-ESM2M 2.50× 2.00 Dunne et al. (2012)

ality in a coherent way according to the observational dataset
that is used.

2.6 Experimental design

In order to examine the effect of each forcing variable’s bias
on runoff we designed and implemented an experiment com-
prised of two parts (bias assessment and partial correction
bias assessment) and nine sets of JULES’ runs in total. A
graphical description of the performed experiment is shown
in Fig. 2. Climate data from three GCMs and the WFDEI
dataset are used as JULES’ forcing. The sets of runs forced
with GCM data include three model runs – one per GCM.
Then the analysis progresses using the ensemble mean. The
time span of this analysis is the historical period 1981–2010.
This is also the time span of the period used for bias correc-
tion of the GCM output.

2.7 Bias assessment

The first part of the experiment is to assess initial and re-
maining biases in the forcing data and in simulated runoff.
Initial bias refers to the difference between raw GCM vari-
ables and the respective WFDEI variables. Remaining bias
is the bias in the forcing variables after the bias correction,
i.e. the difference between bias corrected GCM variables and
the respective WFDEI variables. Referring to runoff, “initial”
and “remaining” biases are defined as the difference between
runoff simulations forced with raw and bias corrected forc-
ing respectively from simulations forced with the WFDEI
dataset. This definition is employed to shorten and simplify
the expressions used in this paper (i.e. “initial bias in runoff”
instead of “the difference between runoff forced with raw
GCM data and WFDEI data”). In this part of the experiment,
three sets of JULES’ runs were conducted:

i. forced with WFDEI (WFDEI);

ii. forced with uncorrected climate data (raw); and

Hydrol. Earth Syst. Sci., 21, 4379–4401, 2017 www.hydrol-earth-syst-sci.net/21/4379/2017/



L. V. Papadimitriou et al.: The effect of GCM biases on global runoff simulations 4383

Figure 2. Graphical description of the performed experiment.

iii. forced with bias corrected climate data (BC).

2.8 Partial correction bias assessment

For the second part of the experiment – the partial correction
bias assessment – six more sets of JULES’ runs were per-
formed. In each of these runs, one of the six forcing variables
(precipitation, temperature, radiation, humidity, surface pres-
sure, and wind speed) is used in its raw form, while the rest of
the input forcing is bias corrected. The partial correction as-
sessment runs are symbolized as NobcV (NOt Bias Corrected
variable V ), where V is one of the six forcing variables: pre-
cipitation (P ), temperature (T ), radiation (R), specific hu-
midity (H ), surface pressure (Ps), and wind (W ). It has to be
noted here that downward longwave radiation (Rl) and down-
ward shortwave (Rs) were examined together; hence, in the
respective NobcR run, both downward shortwave and down-
ward longwave radiation were forced in uncorrected form.
Partial correction assessment is composed as a tool to quan-
tify the individual effect of each forcing variable on runoff,
but is not designed to suggest and assess run formats.

The simulated runoff of each partially corrected input is
compared to the respective simulation in which all input vari-
ables are bias corrected (denoted as BC). This comparison
allows us to assess the “loss” of the performance of simula-
tions when a variable is neglected from the bias correction
procedure. It must be noted however that the “loss of perfor-
mance” concept bears the assumption that the BC simulation
is closer to the WFDEI simulation compared to a partially
corrected set.

2.9 Categorization of individual variable bias effects

A new framework for the classification of the effects of forc-
ing variables’ biases on modelled runoff is developed and
implemented. The classification employs the comparison of
the bias in each forcing variable (1V ) and the correspond-
ing relative effect in simulated runoff (1RF), discretizing
four different categories (Fig. 3). To facilitate the compari-
son among the different forcing variables, 1V and 1RF are
expressed as percentages. More specifically, 1V and 1RF
are defined as follows.

1V is the difference between the raw and bias corrected
variable value, divided by the bias corrected variable value.
1V is estimated by Eq. (3).

1V =
raw variable − BC variable

BC variable
· 100% (3)

As an exception, for temperature 1V refers to the abso-
lute difference between raw and bias corrected temperature
(in K).

1RF expresses the effect of a variable’s bias on runoff
and is calculated from the difference between runoff forced
with all bias corrected variables except for the examined vari-
able V (NobcV) and runoff forced with all bias corrected
variables (BC), divided by the runoff of all bias corrected
variables (BC). 1RF is estimated by Eq. (4).

1RF=
RF from NobcV − RF from BC

RF from BC
· 100% (4)

Sensitivity of runoff to changes in forcing variables (S) is
the fraction of runoff change over the forcing variable change
and serves as a measure to assess the relative magnitude of
1RF compared to 1V . When 1RF is sensitive to 1V , rela-
tively smaller changes in the variable should cause relatively
larger changes in runoff and vice versa. Sensitivity is in gen-
eral dimensionless, but for temperature has units of K−1. S

is estimated by

S =1RF/1V. (5)

In total, there are six sets of 1Vs and six sets of 1RFs,
one for each examined variable and experiment respectively,
and six sets of sensitivities (S). The absolute values of 1V ,
1RF, and S denoted |1V |, |1RF|, and |S| are used to avoid
dealing with the sign of the changes and rather focus on their
magnitude.
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Figure 3. Categorization of the effect of changes in forcing vari-
ables (V ) on runoff (RF). The four areas correspond to the four de-
fined effect categories. The x axis corresponds to relative changes
in forcing variables and the y axis to relative changes in runoff. For
all changes, the absolute value is considered.

As shown in Fig. 3, the effect of each variable’s bias
(|1V |) on runoff (|1RF|) is separated into four different
categories according to two rules. The first rule is the char-
acterization of |1RF| among all the experiments as “low”
or “high” relative to its median value, shaping the ordinate
y=median(|1RF|). Median(|1RF|) is derived considering
the |1RF| values of all land grid boxes and for all the ex-
periments. The second rule is the characterization of sensi-
tivity |S| as high or low relative to its median value. The
latter forms a bisectrix s=median(|S|). Median(|S|) is, ac-
cordingly to median(|1RF|), derived from the |S| values of
all grid boxes and for all the experiments apart from tem-
perature. In the case of temperature, median(|S|) is explicitly
recalculated from the values of all the land grid boxes of this
specific experiment. These two rules form the four categories
of Fig. 3. Combinations of the two rules result in four differ-
ent effect categories (ECs) presented in decreasing order of
the effect of a variable’s bias on runoff:

i. High change and high sensitivity (ECI);

ii. high change and low sensitivity (ECII);

iii. low change and high sensitivity (ECIII); and

iv. low change and low sensitivity (ECIV).

2.10 Regional-scale bias assessment

Regional focus is given in 24 regions and 9 hydrological
basins. The regions were selected from the 26 regions pre-

Table 2. 24 regions of the globe, selected from Giorgi and
Bi (2005).

Region name Abbreviation

North Europe NEU
Mediterranean Basin MED
Northeast Europe NEE
North Asia NAS
Central Asia CAS
Tibet TIB
Eastern Asia EAS
Southeast Asia SEA
Northern Australia NAU
Southern Australia SAU
Sahara SAH
Western Africa WAF
Eastern Africa EAF
East Equatorial Africa EQF
South Equatorial Africa SQF
Southern Africa SAF
Western North America WNA
Central North America CNA
Eastern North America ENA
Central America CAM
Amazon AMZ
Central South America CSA
Southern South America SSA
South Asia SAS

sented in Giorgi and Bi (2005) (in our study Alaska and
Greenland are excluded from the analysis). The hydrolog-
ical basins were selected to cover different hydro-climatic
regimes, in conjunction with GRDC data availability. The se-
lected regions and basins are shown in Fig. 1. The abbrevia-
tions of the regions’ names can be found in Table 2.

3 Results and discussion

3.1 Long-term annual biases in forcing variables at the
global scale

Global maps of the initial and remaining annual biases of the
forcing variables are shown in Fig. 4. Respective informa-
tion on the seasonal biases is presented in Figs. S1 and S2 of
the Supplement of this paper. In general terms the remaining
annual biases are smaller than the initial ones by 1 to 2 or-
ders of magnitude. For precipitation (Fig. 4a), the largest ini-
tial wet biases are observed for regions with high mountain
ranges (the Andes in South America, the Alaska Range and
the Rocky Mountains in North America, and the Himalayas
in Asia) and for the tropical African and Indonesian regions.
Only a very small percentage (0.75 %) of the land surface
has small biases (−0.01 to 0.01 mm day−1), while the largest
biases (> 5 or <−5 mm day−1) occupy 31.18 % of the land
surface. The remaining biases in precipitation are small (up
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Figure 4. Difference maps, showing initial (raw-WFDEI) and remaining (BC-WFDEI) biases of the GCM ensemble forcing variables:
(a) precipitation, (b) temperature, (c) longwave downward radiation, (d) shortwave downward radiation, (e) specific humidity, (h) surface
pressure, and (g) wind. Differences are calculated between the long-term annual averages (ANN) of the 1981–2010 period.

to 0.01 mm day−1 in absolute terms, for 80.32 % of the land
surface) and located in the tropics. The initial biases in tem-
perature are cold biases for 57.82 % of the land surface, while
warm biases (mainly found in the Alaskan, Greenland, and
northern and central Asia regions, as well as in the Mediter-
ranean and the Andes) occupy 42.12 % of the land surface
(Fig. 4b). Initial biases greater than 2 K in absolute terms
cover approximately one-third of the land surface (34.74 %).
After bias adjustment, the remaining temperature bias is less
than 0.1 K for the vast majority of the land surface (97.27 %).

The initial biases of longwave and shortwave radiation
(Fig. 4c and d respectively) exhibit similar spatial variations
but have different signs. Shortwave radiation shows a greater
extent of large biases (> 50 W m−2 in absolute terms) com-
pared to longwave radiation (8.16 % as opposed to 2.95 %
of the land surface). Initial biases in specific humidity are
greater than 10−3 kg kg−1 (1 g kg−1), in absolute terms, for
one-quarter of the land surface (23.65 %) (Fig. 4e). The
largest biases in surface pressure (> 50 or <−50 HPa) occupy
10.01 % of the land surface and are found in the areas where
high mountain ranges are located (Rocky Mountains, Andes,
Himalayas) (Fig. 4f). The remaining bias in surface pressure
is less than 0.1 HPa (in absolute terms) for most of the land

surface (96.50 %). For more than half of the land surface
(55.79 %), the wind’s initial biases are larger than 0.5 m s−1

or smaller than −0.5 m s−1 (Fig. 4g). The remaining biases
of the wind variable range between−0.01 and 0.01 m s−1 for
the majority of the land surface (87.71 %).

Generally, the initial GCM biases in precipitation and tem-
perature are more pronounced over high mountainous re-
gions and the tropics. Recent studies argue for a depen-
dency between biases and altitude. According to the study of
Haslinger et al. (2013), temperature and precipitation biases
of a GCM tested over the Alpine region both show increas-
ing trends with height. Regarding the tropics, various stud-
ies show increased GCM biases in these regions compared
to model performance in other climate zones (Koutroulis et
al., 2016; Randall et al., 2007; Solman et al., 2013). The ini-
tial surface pressure biases are also linked to altitude, as sur-
face pressure heavily depends on elevation. Initial biases in
surface pressure have a similar elevation pattern and could
be a result of the different spatial resolutions of the eleva-
tion model in the GCMs and WFDEI. The WFDEI dataset
resolution is 0.5◦, while the original GCM spatial resolution
is considerably lower (around 2.5◦). GCM surface pressure
is simulated taking into account a relatively low-resolution
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elevation model. Although GCM surface pressure is inter-
polated to the WFDEI resolution, this does not correct the
elevation-induced error in the GCM simulations.

The remaining biases in precipitation in the tropical re-
gions were also identified and discussed extensively by Gril-
lakis et al. (2013) and are related to the error in the CDF
approximation during bias correction. For the rest of the vari-
ables, the remaining bias, although not actually zero, is very
close to zero (well below the smallest positive and above the
smallest negative rank in the legend, e.g. below −0.1 K and
below 0.1 K for temperature). The colour scale in Fig. 4 was
selected with the intention of showing the remaining biases,
but this does not mean that their values are accountable. They
are rather trace errors occurring due to truncation numerical
errors during the bias correction process. Hence the remain-
ing biases (except for precipitation) could not be attributed to
a specific mechanism.

3.2 Regional and seasonal biases in forcing variables

Figure 5 illustrates the initial biases of the GCM ensemble,
spatially aggregated over 24 regions of the globe. To account
for possible seasonality variations, the biases are calculated
for the annual mean (ANN) and for the December–January–
February (DJF) and June–July–August (JJA) means. The re-
maining biases are not shown because their regionally aggre-
gated values are negligible and would be indistinguishable in
the figure. Additionally, an insight into the behaviour of each
ensemble member, in comparison to the ensemble mean and
WFDEI, is given by Table S2. Table S2 provides the values
of raw input variables for each ensemble member, the ensem-
ble mean value, and the respective WFDEI value, averaged
for the 24 study regions.

Precipitation biases are less pronounced in Europe (NEU,
MED, and NEE) and in central and northern Asian regions
(CAS and NAS). The wettest precipitation biases are encoun-
tered in equatorial and southern Africa (EQF, SQF, and SAF)
and concern DJF precipitation (Fig. 5). The driest biases are
found for the CAM, AMZ, and SAS regions, for JJA precip-
itation. Temperature displays cold biases in most regions. A
notable exception is the warm bias in DJF temperature in the
NAS region, which is the most pronounced temperature bias
found. Generally the DJF temperature biases are the largest,
followed by ANN, while the JJA season has the smallest tem-
perature biases.

The two radiation components, longwave (Rl) and short-
wave (Rs) radiation, show an inverse behaviour in their bi-
ases (Fig. 5). That is to say, in regions where Rl has negative
biases, Rs exhibits positive biases and vice versa. According
to Demory et al. (2014), overestimation of shortwave radia-
tion is a common issue amongst the GCMs. Negative biases
are dominant for Rl, in contrast to the Rs variable, which
mostly shows positive biases. Specific humidity has negative
biases over the northern part of the African continent (SAH,
WAF, EAF, and EQF), Central and South America (CAM,

AMZ, and CSA), and South Asia (SAS). Positive humidity
biases are identified in the southern part of Africa (SQF and
SAF) and North America (WNA, CNA, and ENA).

Surface pressure shows almost exclusively positive biases
(Fig. 5). The regions that distinguish for the largest biases
are MED, SEA, SAH, SAF, CAM, CSA, and SSA. The most
dominant negative wind speed bias is found in NAU. Most
of the African continent (SAH, WAF, EAF, EQF, and SQF)
and of South America (AMZ and CSA) also have negative
biases in wind. The largest positive biases are encountered in
the southern part of South America (SSA) for the JJA season
and for the DJF season in regions of North America (WNA
and CAM), Europe (MED), and Asia (CAS, TIB, and SEA).

3.3 Model evaluation

In order to assess JULES’ performance, we compare dis-
charge modelled with WFDEI and with the raw GCM dataset
to discharge observations for nine study basins. Figure 6
shows the seasonality of observed and modelled discharge
and the evaluation metrics of the two sets of simulations
(WFDEI and raw GCM) are presented in Table 3.

For seven out of the nine basins (Amazon, Congo, Volga,
Ganges, Danube, Elbe, and Kemijoki) seasonality is captured
well by the WFDEI simulation (Fig. 6). In contrast, the raw
GCM simulation exhibits significant positive and negative bi-
ases for these seven basins. For the two remaining basins,
however (Mississippi and Lena), seasonality is better cap-
tured by the raw GCM simulation. The WFDEI run results
in positive NSE values (0.24 to 0.94) for all the basins. By
contrast, the raw GCM run results in negative NSE values
for six out of the nine basins. PBIAS indicates that the raw
GCM simulation exhibits greater deviations from observa-
tions than the WFDEI run for most basins (exceptions are
the Mississippi, Lena, Ganges, and Danube). Finally, the R2

metric shows that the linear correlation between simulations
and observations is stronger for the WFDEI run for seven out
of the nine basins (exceptions are the Mississippi and Elbe).
For both simulations the lowest R2 value is reported for the
Congo basin (0.45 and 0.2 for the WFDEI and raw GCM
runs respectively). The best correlations per simulation are
found for the Ganges for the WFDEI run (0.99) and for the
Amazon for the raw GCM run (0.94).

The shown persistent departure from the mean climatol-
ogy of discharge could include three types of errors. The first
is the error stemming from the insufficient description of the
runoff processes by the land surface model and from the rout-
ing algorithm (Blyth et al., 2011). The second type of error
is a result of errors in the forcing datasets (either observa-
tional or GCM output) with regards to depicting the real cli-
matic drivers (Elsner et al., 2014; Mizukami et al., 2014). A
third possible error comes from the comparison of natural-
ized discharge of the simulations with measured discharge
due to influences like abstractions and dams regulating the
natural river flow (Müller Schmied et al., 2014). An extra
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Figure 5. Initial biases (raw-WFDEI) of the GCM ensemble forcing variables, spatially averaged for 24 Giorgi regions. Biases are calculated
between long-term annual averages (ANN) and December–January–February (DJF) and June–July–August (JJA) averages of the period
1981–2010.
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Table 3. Evaluation metrics derived from monthly discharge data. Metrics are calculated for JULES’ simulations from WFDEI data (WFDEI)
and the ensemble mean of raw GCM data (raw EM).

Indices NSE PBIAS R2

Basins WFDEI Raw EM WFDEI Raw EM WFDEI Raw EM

Amazon 0.48 −2.66 −18.68 −51.84 0.96 0.94
Congo 0.39 −36.40 4.06 116.77 0.45 0.20
Mississippi 0.24 0.90 21.56 −4.46 0.73 0.92
Lena 0.56 0.82 −39.32 32.14 0.98 0.89
Volga 0.82 −1.42 −17.09 35.12 0.95 0.66
Ganges 0.94 0.80 19.48 −9.51 0.99 0.91
Danube 0.28 −1.51 15.20 1.14 0.88 0.19
Elbe 0.67 −26.04 8.28 179.83 0.81 0.86
Kemijoki 0.91 −0.98 8.55 66.50 0.94 0.89

error component, which is not considered here, could result
from the uncertainty in discharge measurements (Coxon et
al., 2015).

The model evaluation has revealed two basins (Missis-
sippi and Lena) for which raw GCM forced discharge sim-
ulations outperform the WFDEI simulations. For the Missis-
sippi, the WFDEI run gives higher discharge than the ob-
servations throughout the year, revealing a deficiency of the
model in capturing the water balance of this basin. Most of
the Mississippi extent is in the CNA region, where negative
precipitation biases have been documented (Fig. 5). Thus, the
raw GCM run is forced with less precipitation compared to
WFDEI and less discharge is produced, masking the model
deficiency in this basin and improving the metrics of model
performance. It is also important to note that the range of the
raw GCM simulations is quite broad, especially for a three-
member ensemble. The upper range of the GCM ensemble
exceeds the WFDEI-simulated runoff during almost half the
seasonal cycle. This indicates that the individual ensemble
members would not necessarily outperform the WFDEI run
and that, for this specific basin, the ensemble averaging has
possibly produced a “false positive” in model performance.
In this particular basin, model performance may also be hin-
dered due to the comparison of naturalized and actual dis-
charge, as the Mississippi is a heavily regulated river. For the
Lena, the WFDEI run underestimates measured discharge by
about 40 %. The Lena basin falls into the extent of the NAS
region, for which positive precipitation biases have been doc-
umented (Fig. 5). The extra water in the raw GCM run coun-
teracts the tendency of the model to underestimate discharge
in the Lena basin, resulting in an improved model perfor-
mance. In the context of the present study we are not able
to identify the exact reasons why model performance is hin-
dered in some basins. It is unrealistic for a global LSM to
achieve top performance around the world (Hattermann et al.,
2017), as, due to its global nature, some fixes in some regions
could result in deteriorations in performance in other parts
of the land surface. Thus, the interpretation of the following

analysis of the present study should consider the model defi-
ciencies revealed in this section.

3.4 Long-term biases in runoff at the global scale

Figure 7 shows the initial and remaining biases in runoff, de-
rived from ANN, DJF, and JJA long-term means. As with
the biases in the input forcing variables, the remaining bias
in runoff is 1 to 2 orders of magnitude smaller than the ini-
tial bias. Hence, the use of bias corrected data led to an im-
proved representation of runoff by the model, compared to
the baseline of the WFDEI run. Accordingly, the studies of
Teutschbein and Seibert (2012) and Rojas et al. (2011) found
that hydrological simulations are substantially improved with
the use of bias corrected forcing.

Regarding the raw GCM run, the largest runoff underes-
timation biases (<−5 mm day−1) are encountered in Central
and North America, the central–eastern part of South Amer-
ica, and East Asia. The most pronounced runoff overestima-
tion biases are found in the western part of North and South
America, in equatorial and southern Africa, northern Europe,
the Tibetan region, and Indonesia. Initial runoff biases are
larger than 1 mm day−1 in absolute terms for 16.26, 14.85,
and 20.18 % of the land surface respectively for ANN, DJF,
and JJA. The differences between the seasonal means (DJF,
JJA) and the annual mean (ANN) are in general subtle. How-
ever, the increases in runoff overestimation biases in DJF in
southern equatorial Africa and in JJA in the Tibetan plateau
are worth noting. Large initial biases (> 5 mm day−1 in ab-
solute terms) in seasonal means occupy a greater percentage
of the land surface compared to the annual mean (0.70 % for
ANN, compared to 1.25 and 1.97 % for DJF and JJA respec-
tively).

The remaining biases in runoff range from −0.1 to
0.1 mm day−1 for the majority of the land surface (95.19,
87.40, and 80.30 % for ANN, DJF, and JJA respectively).
Negligible biases (smaller than 0.01 mm day−1 in absolute
terms) are found for more than one-third of the land surface
(specifically for 38.06 % of the land area for ANN, 37.60 %
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Figure 6. Discharge seasonality (m3 s−1) derived from the period 1981–2010 for nine study basins. Each panel shows observed discharge
(GRDC measurements) compared to JULES’ simulated discharge from WFDEI data and raw GCM data (the mean and the range of the
ensemble are shown).

for DJF, and 34.42 % for JJA). The (negative) remaining bias
in ANN runoff is more pronounced in the western Amazo-
nian region. This probably corresponds to the remaining bias
in precipitation identified for the Amazonian region (Fig. 4).
In addition to the significant reduction of the biases in runoff
forced with bias corrected data, it can be observed that the
remaining biases have switched signs compared to the ini-
tial biases. This means that in regions where the initial bias
in runoff is positive (negative), the raw GCM forced runoff
is larger (smaller) than runoff forced with WFDEI, and the
use of bias corrected forcing results in runoff slightly lower

(higher) than WFDEI runoff. A respective behaviour was not
observed in the initial and remaining biases of the most im-
pacting forcing variables (P and T ), but it was, to an extent,
present for other variables (Rl, Rs, and H ). Thus, the “over-
correction” manifested for bias corrected runoff compared to
WFDEI runoff cannot be attributed to remaining biases in
precipitation and temperature. Instead, it could plausibly be
associated with the compound effect of the remaining biases
in some (or in all other) forcing variables.
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Figure 7. Runoff (mm day−1) from WFDEI data (left column). Initial (raw-WFDEI) and remaining (BC-WFDEI) biases in runoff are shown
in the middle and right columns respectively. Results are shown for long-term annual averages (ANN) and for December–January–February
(DJF) and June–July–August (JJA) averages of the 1981–2010 period.

3.5 Effect of each forcing variable’s bias on runoff

The effect that the bias of each forcing variable can have on
runoff is investigated here, by comparing runoff from the bias
corrected run to the partial correction assessment runs. The
results are shown in Fig. 8, for ANN, DJF, and JJA averages.

First, we discuss the runoff differences calculated from
the ANN period. Precipitation and temperature are the
only two variables that cause runoff differences larger than
5 mm day−1 (in absolute terms) when neglected from bias
correction. However, these differences regard a very small
percentage of the land surface: 0.61 % for precipitation and
only 0.02 % for temperature. Moreover, precipitation bias
causes changes in runoff greater than 1 mm day−1 (in abso-
lute terms) for 14.28 % of the land area. Such changes for the
other variables occupy a significantly smaller fraction of the
land area (ranging from 1.21 % for temperature to 0.05 % for
wind). Based on the above it can be stated that precipitation
is the variable that most affects runoff response. Precipita-
tion bias causes both wet and dry biases in different regions
of the land surface, with a pattern that closely resembles the
effect of the initial GCMs’ biases on runoff (Fig. 7). A similar
pattern between precipitation and runoff biases was also ob-
served by Teng et al. (2015), who noted that precipitation er-
rors are magnified in modelled runoff. Temperature biases re-
sult in runoff overestimation for around 60 % of the land sur-
face (e.g. over western and eastern North America, the Ama-
zon region, equatorial Africa, northern Europe, and parts of
Asia) and runoff underestimation for around 40 % (example

regions: parts of Central and South America and of central
Asia). Temperature biases correspond to small changes in
runoff (up to 0.01 mm day−1 in absolute terms) over about
one-third of the land area. Excluding the radiation compo-
nents from the bias correction procedure produces negative
runoff changes for the majority of the land surface (67.60 %),
while for around 80 % of the land surface the differences in
runoff range between −0.1 and 0.1 mm day−1. The bias in
the specific humidity variable corresponds to runoff overes-
timations for 64 % of the land area. The areas of runoff over-
estimation are mainly located at the higher latitudes (north-
ern part of North America, Europe, and northern Asia). For
36.43 % of the land surface, changes in runoff due to specific
humidity biases span between 0.1 and 0.5 in absolute terms.
Surface pressure and wind are the variables that show the
smaller effect on the hydrological output, as their exclusion
from bias correction corresponds to small changes in runoff
(less than 0.1 mm day−1 in absolute terms) for the vast ma-
jority of the land surface (around 94 and 92 % of the land sur-
face respectively for surface pressure, and wind speed). The
most pronounced differences in runoff due to surface pres-
sure biases are negative and are encountered over the high
mountain range regions of South America and Asia (Andes
and Himalayas respectively).

The patterns of runoff changes due to the biases of the
forcing variables derived from annual (ANN) and seasonal
(DJF, JJA) averages show only subtle variations. In general
the above analysis of the ANN runoff differences applies also
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Figure 8. (Top row) Runoff (mm day−1) from bias corrected GCM ensemble forcing (BC) and (second to last row) runoff differences
between the bias corrected run (BC) and the partially corrected runs (NobcV, where V is one of the forcing variables P , T , R, H , Ps, or W ).
Results are shown for long-term annual averages (ANN) and for December–January–February (DJF) and June–July–August (JJA) averages
of the 1981–2010 period.
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to the seasonal values, with small variations on the land frac-
tions that show a specific response to forcing biases.

From this analysis it can be deduced that apart from the
main hydrological cycle drivers (precipitation and temper-
ature), radiation and specific humidity can also have a sub-
stantial effect on runoff, especially for specific regions. These
findings will be further investigated and discussed in the fol-
lowing sections. Other studies also advocate the considerable
effect that biases in radiation (Mizukami et al., 2014) and hu-
midity (Masaki et al., 2015) can have on hydrological fluxes.

3.6 Runoff sensitivities to forcing variables

Sensitivity of runoff changes to the biases of the forcing vari-
ables is examined by exploring the relationship between the
input forcing biases (1V ) and the corresponding changes in
runoff (1RF). The regional variation of this relationship is
also investigated. Figure 9 shows scatterplots of 1RF versus
1V for each examined variable, for 10 selected regions. The
dots in each scatterplot correspond to the land grid boxes of
each region. The presented regions are selected as represen-
tative of different parts of the land surface, as the number of
the regions shown in the manuscript had to be reduced for
clarity of the results. Scatterplots of the 24 examined regions
can be found in the Supplement of this paper (Fig. S3). The
median values of 1V , 1RF, and S of the land grid boxes
of each region, for the 24 examined regions, are shown in
Table 4.

The correlation between the six 1Vs and respective 1RFs
differs substantially between the examined regions. Gener-
ally, the correlations show a non-uniform behaviour, identi-
fied by the highly scattered data clouds. This implies a high
spatial variability of runoff sensitivity to the examined vari-
ables.

For precipitation, the 1RF over 1P relationship exhibits
a non-linear behaviour, indicating that the relative change
in runoff is not proportional to precipitation bias, but also
depends on the magnitude of precipitation bias. Renner et
al. (2012) also identified non-linearities in the relationship
between relative changes in streamflow and changes in pre-
cipitation, and argued that non-linear behaviour is a result of
the combined effects of water and energy balances. Temper-
ature biases have an inversely proportional and highly non-
linear relationship with changes in runoff. The 1RF over 1T

relationship is also variant for different regions. For example,
the scatterplots for NEU and WNA indicate that small tem-
perature biases may correspond to large changes in runoff.
In contrast, the scatterplot for CAM indicates that larger
temperature biases correspond to smaller changes in runoff
compared to the other regions. Radiation biases are small
but can correspond to high changes in runoff for some re-
gions (WNA, SAS, WAF, and AMZ). For specific humidity
it can be observed that small positive biases correspond to
high changes in runoff for some regions (NEU, MED, WNA,
and ENA). A different behaviour is observed for CAM, SAS,

AMZ, and CSA, where the data cloud is more scattered
on the x axis (meaning larger biases in specific humidity)
and less scattered on the y axis (i.e. changes in runoff are
smaller). Surface pressure has smaller biases compared to
the other forcing variables and its effect on runoff also ap-
pears reduced. Wind has a wide range of both positive and
negative biases which, however, do not seem to affect runoff
accordingly.

The variation of the 1RF over 1V relationships across
the different regions can be attributed to a number of factors.
First, it depends on the magnitude and signal of the biases in
the forcing variables. As previously shown, these can have
significant spatial variations (Fig. 4). For example, according
to the median values of relative changes in Table 3, some re-
gions are dominated by negative precipitation biases (MED,
SAS, AMZ, and CSA) and others by positive biases (NEU,
WNA, ENA, CAM, WAF, and SAU). Second, it reflects the
climatology of each region. The same biases would affect
differently regions with different runoff (and evapotranspira-
tion) fractions of each region. The precipitation partitioning
to runoff and evapotranspiration is a climate characteristic
and is controlled by either water or energy limitations, de-
pending on the region. Additionally, we should consider that
although we assess the effect of long-term annual biases on
long-term annual runoff, the results are still dependent on
the seasonal cycles of the variables and/or runoff, especially
if the seasonality of precipitation in the region is strong. For
example, the same annual bias in temperature would trans-
late differently to runoff changes in a region with precipita-
tion evenly dispersed throughout the year and in another re-
gion where most of the annual precipitation happens during
the summer months. Finally, as this is a model-based experi-
ment, we should consider whether high sensitivities of some
variables for specific regions are a result of over-sensitivity
of the model. Vano et al. (2012) documented considerable
differences in the spatial distribution of sensitivities to pre-
cipitation modelled by five LSMs.

3.7 Spatial distribution of bias effect categories

Figure 10 shows global maps of bias ECs for each forcing
variable, derived according to the methodology described in
Sect. 2.8. The land area fraction corresponding to each EC is
tabulated in Table 5.

Precipitation is the variable whose biases have the largest
effect on runoff, with the vast majority of the land sur-
face (92 %) corresponding to the high change categories
ECI (67.80 %) and ECII (24.20 %). Radiation has the sec-
ond largest land fraction in ECI, but temperature has the sec-
ond largest land fraction in the high change categories (ECI
and ECII). Radiation also has the largest land fraction in the
high sensitivity categories (ECI and ECIII). As discussed in
Sect. 3.6, this is possibly a result of combining shortwave
and longwave radiation for the calculation of the radiation
biases. For specific humidity, the most affected areas (ECI)
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Figure 9. Scatterplots of relative changes in the forcing variable (1V , x axis) and corresponding relative changes in runoff (1RF, y axis),
for all the forcing variables and for selected regions. In each panel, each dot represents the 1RF / 1V relationship of each land grid box in
the examined region.

show a significant spatial coherence and are clustered at the
higher latitudes of the globe. Surface pressure biases belong
to ECI for around one-tenth of the land surface. The highly
affected areas mainly correspond to regions with high moun-
tain ranges. For wind the majority of the land surface corre-
sponds to ECIV. Still, around one-quarter of the land surface
belongs to the high change categories (ECI and ECII).

3.8 Discussion of runoff sensitivities

Here we compare our findings to the respective literature to
assess the realism of JULES’ sensitivity. We use the median
sensitivity value of the grid boxes of each region (Table 4) as
the representative sensitivity S for each region. Moreover, we
discuss issues of possible model over-sensitivity in particular
regions and the caveats of this study.

3.8.1 Sensitivity of runoff to precipitation

Most studies have examined the sensitivity (also reported as
elasticity) of runoff (or discharge) to precipitation. A num-
ber of studies have examined sensitivity to precipitation for
regions or basins in the United States. Values of runoff sensi-

tivity (S) to precipitation between 1.5 and 2.5 were reported
by Sankarasubramanian and Vogel (2003) for the US (WNA,
CNA, and ENA). Fu et al. (2007) reported values of 1.5 to
1.67 for the Spokane River basin (located in WNA). Vano et
al. (2012) found that S to precipitation ranged from 2.2 to 3.3
for different LSMs for the Colorado River basin (also located
in WNA). For the Mississippi River basin (mainly located
in CNA), Renner et al. (2012) found that S of streamflow
to precipitation is 2.38 and 2.55 using two different meth-
ods for sensitivity estimation. For another basin located in
CNA, Brikowski (2015) reported runoff S to precipitation to
be 2.64. For the US region, the S values found in this study
compare very well with the literature values. Runoff S to pre-
cipitation is 2.12 for WNA, 2.54 for CNA, and 1.69 for ENA.
Many studies report S to precipitation for regions or basins
of China. Reported values of runoff S to precipitation in the
Yellow River basin (located in EAS) are 1.4 to 1.69 (Fu et al.,
2007), 1.6 to 3.9 for 89 catchments of the EAS region (Yang
and Yang, 2011), and 1.71 and 1.74 (estimates of two differ-
ent methods) for the headwaters of the Yellow River (Renner
et al., 2012). Again, the value found in our study is in good
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Table 4. Relative change (%) in forcing variable (1V ), corresponding relative change (%) in runoff (1RF), and sensitivities (S =1RF/1V )
per region, for each variable. For each region, the median of the 1V , 1RF, and S values of all land grid boxes is shown.

Variables P T ∗ R H Ps W

GLOBAL 1V 14.46 −0.57 1.73 0.91 −0.02 −5.86
1RF 2.49 3.38 −3.71 2.04 −0.04 0.21
S 1.76 −0.05 −2.12 0.81 1.18 −0.06

NEU 1V 14.6 −0.46 1.86 4.1 −0.05 −9.79
1RF 27.97 22.68 −5.25 25.49 −0.02 3.62
S 2.10 −0.31 −3.31 5.24 2.90 −0.36

MED 1V −14.39 −0.15 0.55 −1.34 0.41 14.94
1RF −58.56 1.55 −1.51 4.07 0.44 −0.47
S 2.02 −0.04 −2.52 0.77 1.08 −0.08

NEE 1V 4.89 −1.44 2.44 3.32 0.1 −11.77
1RF 5.75 47.11 −5.39 32.73 0.26 5.98
S 2.28 −0.32 −2.64 9.58 3.31 −0.50

NAS 1V 26.05 0.67 3.53 8.05 −0.06 −1.08
1RF 59.36 11.8 −10.08 63.98 0.02 4.06
S 2.35 −0.07 −2.95 7.58 2.43 −0.29

CAS 1V 6.44 −0.03 1.37 −13.00 −0.41 8.09
1RF −9.94 1.31 −0.44 −0.19 −0.36 −1.29
S 2.49 −0.05 −3.50 0.31 0.88 −0.09

TIB 1V 128.47 −2.94 −1.14 7.69 −0.12 12.59
1RF 1017.17 5.38 0.97 0.81 0.02 0.06
S 7.27 −0.02 −2.07 0.18 0.40 0.00

EAS 1V 19.25 −0.94 2.51 2.92 −0.2 −3.55
1RF 4.36 5.54 −2.96 3.66 −0.05 0.76
S 1.70 −0.06 −1.53 0.82 1.07 −0.09

SEA 1V 19.76 −0.87 1.11 0.89 0.23 34.57
1RF 43.92 5.97 −3.2 1.66 0.32 −1.04
S 2.07 −0.08 −2.68 1.16 1.54 −0.05

NAU 1V 41.15 −0.04 1.43 7.71 0.1 −28.46
1RF −5.13 1.02 −1.16 1.38 0.09 −0.44
S 0.37 −0.03 −0.75 0.31 0.56 0.00

SAU 1V 18.92 −0.28 0.85 2 −0.13 −11.2
1RF −9.29 1.07 −0.11 1.4 0.06 −0.49
S 0.82 −0.05 −0.88 0.67 1.00 −0.03

SAH 1V 54.11 −2.73 −0.47 −8.96 0.22 −13.59
1RF −2.59 −0.68 0.64 −0.32 0 0.08
S 0.94 0.00 −0.25 0.04 0.04 −0.01

WAF 1V 26.74 −1.51 −0.88 −5.79 −0.1 −15.13
1RF 58.24 5.61 −1.57 −0.71 −0.13 0.09
S 2.78 −0.04 −2.61 0.22 1.28 −0.04

EAF 1V 23.22 −1.68 −0.06 −5.76 −0.25 −12.11
1RF 42.13 7.24 −1.51 −3.74 −0.28 0.09
S 2.12 −0.05 −1.95 0.48 0.95 0.00

EQF 1V 5.64 −1.55 −0.25 −2.15 −0.2 −10.09
1RF −0.14 6.21 0.92 −1.29 0 0.07
S 2.26 −0.05 −1.73 0.49 0.92 −0.01
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Table 4. Continued.

Variables P T ∗ R H Ps W

SQF 1V 36.45 −0.9 0.9 0.89 −0.03 −15.6
1RF −73.18 −82.26 −85.07 −84.68 −84.2 −84.18
S 2.94 −0.07 −1.91 0.59 1.10 −0.04

SAF 1V 89.8 −1.41 −0.38 14.28 0.68 −4.74
1RF 85.47 5.5 0.54 5.33 0.42 −0.02
S 1.35 −0.04 −1.66 0.45 0.72 −0.05

WNA 1V 65.92 −1.75 −1.23 13.55 0.14 10.23
1RF 112.66 17.94 −0.48 9.85 0.16 −2.5
S 2.12 −0.13 −2.01 0.77 0.98 −0.17

CNA 1V −12.84 0.11 1.68 2.29 −0.08 −14.79
1RF −50.86 1.53 −2.06 6.57 −0.05 1.96
S 2.54 −0.07 −1.47 1.08 1.09 −0.13

ENA 1V 4.08 0.49 2.71 13.4 0.1 5.47
1RF −0.38 −0.38 −5.18 39.72 0.13 0.86
S 1.69 −0.07 −1.92 3.17 1.54 −0.11

CAM 1V 11.43 −0.98 −0.4 −6.16 0.15 25.27
1RF −7.73 3.65 −0.1 −2.55 0.14 −0.52
S 1.32 −0.04 −1.58 0.49 0.77 −0.02

AMZ 1V −26.58 −0.35 4.06 −13.19 −0.19 −4
1RF −40.52 4.88 −9.34 −6.01 −0.23 0.03
S 1.42 −0.05 −2.37 0.53 1.44 −0.04

CSA 1V −32.8 0.7 3.05 −11.53 −0.23 −7.5
1RF −63.21 −1.49 −3.22 −5.75 −0.13 0.38
S 1.59 −0.04 −1.16 0.53 0.83 −0.04

SSA 1V 72.07 −1.22 −1.77 5.07 0.08 9.91
1RF 84.32 10.06 −0.47 12.05 0.34 −2.44
S 1.53 −0.09 −0.50 1.48 1.29 −0.04

SAS 1V −9.19 −1.08 1.39 −13.11 −0.05 −6.81
1RF −26.35 5.2 −4.07 −2.53 −0.09 0.51
S 1.62 −0.05 −2.46 0.29 0.90 −0.05

*1V for temperature is the absolute change in temperature.

Table 5. Percent of land area (%) under each of the four effect cat-
egories (ECs).

Variables/ I II III IV
ECs

P 67.80 24.20 1.82 6.18
T 45.15 22.03 2.46 30.35
R 48.74 1.30 26.16 23.80
H 40.80 13.76 5.58 39.86
Ps 12.17 1.83 38.48 47.52
W 6.09 19.19 2.35 72.37

agreement with the literature (S to precipitation for EAS is
1.70).

3.8.2 Sensitivity of runoff to temperature and other
variables

A number of studies have examined runoff sensitivity to tem-
perature changes. Vano et al. (2012) reported S to tempera-
ture values ranging from −2 to −9 C−1 between five LSMs
for the Colorado River basin (WNA) and Brikowski (2015)
reported a value of−0.41 C−1 for S to temperature in a basin
in CNA. Our values for these regions are substantially lower
(−0.13 K−1 for WNA and −0.07 K−1 for CNA). This diver-
gence could be attributed to two factors. First, to an extent it
could be connected to possible non-sensitivities of our model
to temperature changes for these regions. Second, the differ-
ences could arise from the inclusion (or not) of the physical
link between temperature and other variables in the analysis.
Vano et al. (2012) use different LSMs to calculate sensitiv-
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Figure 10. Global maps of bias effect categories (ECs) for each forcing variable.

ities by perturbing daily temperature maxima and minima.
These changes also affect the downward longwave radiation
and humidity, which are then used by the evapotranspiration
routines of the LSMs. In our case, the change in temperature
does not interact with radiation and humidity, as those are
read as input variables by the model. When temperature is
allowed to interact with humidity, increased temperature will
increase the water vapour capacity of the air, and more wa-
ter will be evaporated. The lack of this physical link in our
simulations could, to an extent, explain the decreased sen-
sitivity of runoff to temperature changes compared to Vano
et al. (2012). In the analysis of Brikowski (2015), sensitiv-
ities of runoff to precipitation and temperature are derived
from the respective historical data. Thus, sensitivity to tem-
perature will also include the changes caused by the interac-
tion of temperature with other meteorological variables. In a
study with a different approach, Yang and Yang (2011) sep-
arated the effect of precipitation, temperature, net radiation,
relative humidity, and wind speed on runoff and calculated
sensitivities for each variable. They reported values of S to
temperature ranging from −0.11 to −0.02 C−1 between 89
catchments of the EAS region. For the same region, we have
computed S to temperature as −0.06 K−1, which is included
in the stated range in the literature. Moreover, our S val-

ues for radiation, humidity, and wind speed are also in good
agreement with Yang and Yang (2011). According to Yang
and Yang (2011), S to radiation ranges from −1.9 to −0.3,
S to humidity from 0.2 to 1.9, and S to wind speed from
−0.8 to −0.1. The range refers to values computed for 89
catchments in the EAS region. Our respective values for this
region are −1.53 for radiation, 0.82 for humidity, and −0.09
for wind speed. This supports the argument that the large de-
viations of the sensitivity to temperature between our study
and the studies of Vano et al. (2012) and Brikowski (2015)
result from interactions in the forcing variables included in
the referenced studies.

3.8.3 Sensitivity of runoff to radiation

The reported S to radiation values are higher in absolute
terms than S to precipitation values for many of the exam-
ined regions and also globally (Table 4). However, according
to the findings presented in Sect. 3.5, precipitation and tem-
perature correspond to higher changes in runoff compared to
radiation. That is because high S to radiation results from rel-
atively low 1V values, rather than from relatively high 1RF
values (compared e.g. to precipitation). Small 1V for radia-
tion is possibly the consequence of combining shortwave and
longwave radiation to calculate the total bias in radiation, as
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Figure 11. (a) Latitudinal means of raw and bias corrected specific
humidity (g kg−1), (b) latitudinal means of JULES’ runoff forced
with raw and bias corrected specific humidity (mm day−1), and
(c) percent differences of the latitudinal means in (a) H and (b) RF.
The latitudinal means are calculated from the 1981–2010 period.

the two radiation components have inverse signs for most re-
gions (Fig. 5).

3.8.4 Sensitivity of runoff to specific humidity in
high-latitude regions

Although S to humidity for EAS compares well with the lit-
erature, unexpectedly high values of S to humidity are found
for other regions (5.24 for NEU, 9.58 for NEE, and 7.58 for
NAS). We performed an extra analysis to investigate this is-
sue and the basic findings are included in Fig. 11 and the
Supplement of this paper. Figure 11 examines the differences
between the latitudinal mean of raw and bias corrected spe-
cific humidity and the resulting runoff. Very high sensitiv-
ity of runoff to H is observed for a specific area, the zone
between 70 and 40◦ N latitudes. In that zone, a difference
of about 10 % in H corresponds to an increase of 40 to
60 % in runoff. Investigation of the different fluxes related
to runoff production in the model revealed two mechanisms

that explain this behaviour. First, due to higher humidity, the
water vapour deficit of the air is reduced and evapotranspi-
ration is decreased, thus allowing more of the precipitated
water available as runoff. This mechanism explains around
one-third of the magnitude of reported changes in runoff
(Fig. S4). The second mechanism happens due to supersat-
uration of the air, especially during the colder months of
the year when the dew point is lower, and includes the con-
densation and deposition of water vapour (direct transition
from vapour to ice). Depositioned water accumulates as snow
mass. Snow mass is higher for the raw H run (H has posi-
tive biases), which results in increased snowmelt and thus
increased runoff (Fig. S5).

A comparison of supersaturated air conditions for the dif-
ferent sets of data (WFDEI, raw, BC, and NobcH) can help us
identify the origin of the aforementioned behaviour. From the
input specific humidity H , we estimated the respective rela-
tive humidity (this transformation also requires temperature
T and surface pressure Ps as input to the Clausius–Clapeyron
equation). Then we calculated the fraction of time (based on
a daily time step) in which supersaturated conditions occur,
for the historical period 1981–2010. The estimation was per-
formed for (a) the WFDEI H , T , and Ps, (b) the raw H , T ,
and Ps, (c) the bias corrected H , T , and Ps, and (d) for a
combination of data corresponding to the NobcH run (raw H

combined with bias corrected T and Ps). The results are pre-
sented in Fig. 6 of the Supplement of this paper. The analy-
sis reveals that the higher-latitude regions – that display high
sensitivity of runoff to H – are under supersaturated condi-
tions for more than 10 % of the time (Fig. S6). The length of
supersaturated conditions estimated for the WFDEI, raw, or
BC data do not exhibit a respective spatial pattern, although
supersaturation is found in all three datasets (Fig. S6). Thus,
the high runoff sensitivity over the high-latitude regions is
not a result of supersaturated conditions in the raw GCM
H , and it rather stems from (1) raw GCM H being higher
than BC H and (2) the calculation of relative humidity within
JULES, done by combining raw GCM H with bias corrected
T and Ps. This inconsistency strengthens the argument for
the need for bias correction of more forcing variables – in
addition to P and T . Specific humidity is a variable that is
often left uncorrected, a practice that could possibly result in
runoff overestimations at the northern latitudes based on our
findings, in cases where hydrological models which account
for deposition and condensation are used.

Since this experiment was performed with a single LSM,
it cannot be concluded whether this behaviour is common
between the LSMs or is an over-sensitivity of the JULES
model. However, it highlights the importance of bias correc-
tion for specific humidity for specific regions, where runoff
would have been highly overestimated using raw specific hu-
midity as forcing.
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3.9 Study caveats

An issue that must be considered for the interpretation of the
results of this study is that they have been based on a sin-
gle impact model. As the uncertainty stemming from the se-
lection of the impact model is large (Gudmundsson et al.,
2012; Hagemann et al., 2013), it is preferable to use mul-
tiple models in order to capture a wide range of possible re-
sults. The effect of the meteorological forcing on a hydrolog-
ical output is heavily model dependent, as different models
employ different concepts and/or equations for the represen-
tation of key hydrological processes. This concern has also
been discussed by other single model studies on meteorolog-
ical variables’ effects on hydrological outputs (Mizukami et
al., 2014; Masaki et al., 2015). Nonetheless, the results of
single model studies are useful in giving indicative answers
on the issues they examine and set a basis for the methodol-
ogy needed for the respective multi-model applications.

4 Summary and conclusions

The present study examined the effect of the biases in GCM
output variables on historical runoff simulations, using the
JULES LSM. The effects of biases were studied for each
forcing variable separately, for a total of six meteorologi-
cal variables (precipitation, temperature, radiation, specific
humidity, surface pressure, and wind speed). Biases of each
variable and the respective effect of runoff were quantified at
the global and regional scales. A framework for the catego-
rization of the effects of biases of the different variables was
developed and implemented, leading to global maps of bias
ECs.

We found that bias correction of GCM outputs results
in substantially improved representation of historical runoff.
For this reason, our study adds to the numerous studies that
advocate the use of some kind of bias correction of GCM
data prior to their use as impact model forcing. Precipitation
and temperature biases were identified as causing the largest
changes in runoff. Radiation and specific humidity can also
have a substantial effect on runoff, especially for specific re-
gions. The sensitivity of runoff to the different forcing vari-
ables exhibits a high spatial variability. Depending on the re-
gion, runoff can be more sensitive to radiation or humidity
compared to precipitation or temperature. The produced EC
maps show that all variables can potentially affect runoff to
a high extent, depending on the region. The fraction of the
land surface occupied by the high effect category ECI (high
changes in runoff and high sensitivity of runoff to the vari-
able’s changes) ranges between the variables from 67.80 %
for precipitation to 6.09 % for wind.

The produced maps of ECs aid the identification of the re-
gions most affected by the bias of each variable. Thus, they
could serve as a decision tool in cases when an informed de-
cision needs to be made on the variables that would need to

be bias corrected or could be neglected from bias correction,
according to the planned model application. Moreover, when
raw forcing is used in model applications, EC maps could
provide guidance towards the areas where the results would
need more careful interpretation.

Based on the findings of this study, we suggest that the
widely used concept of bias correcting precipitation and tem-
perature should be extended to include more input variables.
Radiation and specific humidity should be added to the prior-
ity variables for bias correction in hydrological applications,
along with precipitation and temperature.

Due to the heavily model-dependent nature of runoff sen-
sitivity to forcing variables, generalized conclusions for the
behaviour of other impact models to GCM biases cannot be
drawn from the present single model assessment. Neverthe-
less, this study aims to initiate a discussion of the effect of
GCM biases on hydrological output, as the consideration of
these sensitivities is crucial to understanding the uncertainty
spectrum of hydrologically relevant climate change assess-
ments.

Data availability. The WFDEI.GPCC datasets treated as obser-
vations in the present study were provided in the framework of
the ISIMIP project (http://www.isimip.org/) and obtained through
the vre2.dkrz.de server. Raw climate model data (IPSL-CM5A,
MIROC-ESM-CHEM, GFDL-ESM2M) of the CMIP5 project
have been downloaded through the Earth System Grid Federa-
tion (ESGF) (https://esgf-node.llnl.gov/search/cmip5/).
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