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Abstract. Satellite-based rainfall estimates over land have
great potential for a wide range of applications, but their
validation is challenging due to the scarcity of ground-based
observations of rainfall in many areas of the planet. Recent
studies have suggested the use of triple collocation (TC) to
characterize uncertainties associated with rainfall estimates
by using three collocated rainfall products. However, TC re-
quires the simultaneous availability of three products with
mutually uncorrelated errors, a requirement which is difficult
to satisfy with current global precipitation data sets.

In this study, a recently developed method for rainfall
estimation from soil moisture observations, SM2RAIN, is
demonstrated to facilitate the accurate application of TC
within triplets containing two state-of-the-art satellite rain-
fall estimates and a reanalysis product. The validity of differ-
ent TC assumptions are indirectly tested via a high-quality
ground rainfall product over the contiguous United States
(CONUS), showing that SM2RAIN can provide a truly inde-
pendent source of rainfall accumulation information which
uniquely satisfies the assumptions underlying TC. On this
basis, TC is applied with SM2RAIN on a global scale in an
optimal configuration to calculate, for the first time, reliable
global correlations (vs. an unknown truth) of the aforemen-
tioned products without using a ground benchmark data set.

The analysis is carried out during the period 2007–2012
using daily rainfall accumulation products obtained at 1◦×1◦

spatial resolution. Results convey the relatively high perfor-
mance of the satellite rainfall estimates in eastern North and
South America, southern Africa, southern and eastern Asia,
eastern Australia, and southern Europe, as well as comple-
mentary performances between the reanalysis product and
SM2RAIN, with the first performing reasonably well in the

Northern Hemisphere and the second providing very good
performance in the Southern Hemisphere.

The methodology presented in this study can be used to
identify the best rainfall product for hydrologic models with
sparsely gauged areas and provide the basis for an optimal
integration among different rainfall products.

1 Introduction

Thanks to the combined use of microwave and infrared sen-
sors, the quality of available satellite rainfall estimates over
land has significantly increased in the few last decades. This
strategy – also known as multi-sensor approach – has pro-
duced a number of different satellite rainfall products that
either map infrared (IR) radiances to more direct passive mi-
crowave (PMW) retrievals (generally termed “blended” al-
gorithms) or morph PMW rainfall using IR measurements
(generally termed “morphing” algorithms). The new Global
Precipitation Measurement Mission (GPM; Hou et al., 2014)
has successfully expanded the concept of multi-sensor inte-
gration. Through the Integrated Multi-satellitE Retrievals for
GPM (IMERG) algorithm, rainfall estimates from the var-
ious precipitation-relevant satellite PMW and IR missions
are intercalibrated, merged and interpolated with the GPM
Combined Core Instrument product to produce rainfall accu-
mulation estimates with an unprecedented accuracy. Despite
these technical advancements, the precipitation community
still struggles to show a clear picture of the actual increased
accuracy of satellite rainfall estimates in many areas of the
world because validation studies rely upon the availability
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of high-quality (and sufficiently dense) ground-based rainfall
instrumentation (e.g. rain gauge and radars).

Many studies (e.g. Ebert et al., 2007; Sapiano and Arkin,
2009; Tian et al., 2007; Stampoulis and Anagnostou, 2012)
have investigated error associated with remotely sensed pre-
cipitation products by comparing their estimates with those
collected by ground-based observations assuming they rep-
resent the zero-error rainfall. However, the physical char-
acteristics of precipitation, particularly at finer spatial and
temporal resolutions, necessitate frequent, systematic and
sufficiently dense validation measurements – requirements
that are often not met within data-scarce regions of Africa,
Asia and South America. Indeed, despite their relative accu-
racy, the distribution of available gauges significantly varies
around the world. Much of the land surface (representing 25–
30 % of the Earth’s surface) have measurement networks, al-
though those networks with good gauge densities are limited
(Kidd et al., 2017).

The current networks of surface observations are therefore
often insufficient for the quantitative assessment of the error
associated with satellite rainfall estimates. Moreover, despite
the relatively higher accuracy of rainfall estimates that can
be obtained by rain gauges, they are not error-free (Peter-
son et al., 1998; Villarini et al., 2008). Therefore, evaluating
the performance of different satellite rainfall products with
ground-based observations is challenging due to the scarcity
of such observations and of the inherent error contained in
their estimates.

Based on the work of Adler et al. (2009), Tian and Peters-
Lidard (2010) estimated the uncertainties of satellite rainfall
estimates by using the measurement spread of coincidental
and collocated estimates from an ensemble of six different
satellite-based data sets, thus providing a globally consistent
methodology that does not require ground-based validation
data. The analysis yielded a lower bound estimate of the un-
certainties, and a consistent global view of the error charac-
teristics and their regional and seasonal variations. However,
the authors showed that the analysis is able to provide only a
relative estimation of the measurement uncertainties because
these data sets are not entirely independent measurements.

An alternative approach for assessing the quality of satel-
lite rainfall products was proposed by Roebeling et al. (2012)
and Alemohammad et al. (2015) based on the triple collo-
cation (TC) method (Stoffelen, 1998). The first applications
of TC concerned geophysical variables such as ocean wind
speed and wave height (Stoffelen, 1998). More recently, it
has been used extensively to estimate errors in soil mois-
ture (SM) products (Crow and Van Den Berg, 2010; Miralles
et al., 2010; Dorigo et al., 2010; Draper et al., 2013; Su et al.,
2014; Gruber et al., 2016). Given three estimates of the same
variable, the main assumptions of the method are the (i) sta-
tionarity of the statistics, (ii) linearity between the three esti-
mates (vs. the same target) across all timescales and (iii) ex-
istence of uncorrelated error between the three estimates.

In the work of Roebeling et al. (2012), the authors deter-
mined the spatial and temporal error characteristics of three
precipitation data sets over Europe (a visible/near-infrared
data set, a weather radar data set and gridded rain gauge
products) showing that it can provide realistic error esti-
mates. The authors ensured a Gaussian distribution of the
error by averaging the data set over a sufficiently long pe-
riod (10 days) and re-gridding to a sufficiently low spatial
resolution (0.25× 0.25◦). Alemohammad et al. (2015) ap-
plied TC to 14-day cumulated rainfall estimates derived from
satellite, gauges, radars and models in order to retrieve the er-
ror and the correlation of each data set in the United States.
They also proposed the use of a logarithmic (i.e. multiplica-
tive) error model which almost certainly provides a more
realistic description of rainfall accumulation errors at fine
space/timescales. In addition, they calculated the theoretical
correlation of each product with the unknown truth by using
the extended TC (ETC) (McColl et al., 2014) by analysing
the covariance matrix of the three data sets.

TC can theoretically provide error and correlations of three
products (a triplet) without use of ground-based observations
– provided that each of the three products is afflicted by mu-
tually independent errors. However, given that state-of-the-
art satellite rainfall products use a highly overlapping set of
common sensors for the retrieval of rainfall (see Sect. 2.1,
for further details), there is an inherent difficulty in obtaining
triplets with mutually independent errors. Therefore, addi-
tional – highly independent – sources of rainfall accumula-
tion estimates are needed.

Recently, Brocca et al. (2014) developed a method for es-
timating rainfall accumulation amounts directly from satel-
lite SM observations based on the principle that the soil
can be treated as a “natural rain gauge”. In contrast with
classical satellite rainfall products, this new bottom-up ap-
proach attempts to measure rainfall by calculating the dif-
ference between two successive SM measurements derived
from a satellite SM product. In this respect, SM2RAIN of-
fers a unique opportunity for applying the TC analysis be-
cause, being wholly independent of any other rainfall esti-
mate, it can be used in place of a ground-based product. This
opportunity has not yet been explored and could provide an
appropriate basis for applying TC on a global scale without
requiring the availability of ground-based rainfall accumula-
tion data.

In this study, TC is applied to the rainfall accumula-
tion estimates derived from (1) ERA-Interim (Dee et al.,
2011), (2) SM2RAIN (Brocca et al., 2014) via inver-
sion of Advanced SCATterometer (ASCAT; Wagner et al.,
1999, SM data, (3) the NOAA Climate Prediction Cen-
ter morphing (CMORPH, raw version) (Joyce et al., 2004)
and (4) the TRMM Multi-satellite Precipitation Analysis
(TMPA) 3B42RT (Huffman et al., 2007) product over the
CONUS (note that 3B42RT and CMORPH do not include
gauge information in their retrieval algorithms). Thanks to
the ability of TC to provide the correlation against the “un-
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Figure 1. CPC gauge coverage during 2007–2012 expressed as average number of working rain gauges per day within each 0.25◦ spatial
grid cell.

known” truth (ETC; McColl et al., 2014), the assessment of
the products will be carried out in terms of correlation against
“true” rainfall values. As a result, the word “performance”
and “TC results” will be hereinafter referred to this correla-
tion (additional clarification is provided in Sect. 2.3).

An assessment of the reliability of subsequent TC results
is conducted by direct comparison with the analogous eval-
uation results obtained via direct comparisons with the Cli-
mate Prediction Center (CPC) Unified Gauge-Based Analy-
sis of Global Daily Precipitation (hereafter as CPC) product.
These assessments will be carried out with and without the
use of SM2RAIN rainfall accumulation products to isolate
the value of SM-based rainfall estimates for the evaluation of
global rainfall products. Note that, given the number of com-
mon sensors shared by CMORPH and TMPA 3B42RT, the
application of TC to the triplet containing both products will
serve to demonstrate the difficulties of using both of them
in the same triplet within the TC analysis and evaluate the
potential benefits of utilizing SM2RAIN-based accumulation
products in a TC analysis.

The paper is organized as follows. Section 2 contains data
and methods; in particular, the products used for the analysis
are described in Sect. 2.1, the theoretical background for TC
is in Sect. 2.2 and 2.2.1, the description of the performance
scores used for the evaluation of the results is discussed in
Sect. 2.3, and Sects. 2.4 and 2.5 describe SM2RAIN and
the experiment setup. Results are presented and discussed in
Sect. 3 and final remarks are presented in Sect. 4.

2 Data and methods

2.1 Rainfall and soil moisture products

2.1.1 CPC

The 0.5◦× 0.5◦ gauge-based CPC product is used to evalu-
ate the satellite-based rainfall estimates over the CONUS and
verify evaluations provided by TC. Given the high rain gauge
density associated with this product across CONUS (Fig. 1),
along with the common practice of using ground-based rain-
fall data to validate satellite-based rainfall retrievals (Huff-
man et al., 1997), CPC is expected to provide a reasonable
proxy of true rainfall accumulation over the CONUS. Never-
theless, this assumption will be verified below. Figure 1 illus-
trates that the spatial density of CPC gauge coverage (calcu-
lated as average number of rain gauge observations per day)
during 2007–2012 is high in the Eastern CONUS and along
the western coast of CONUS but relatively lower in many
parts of the central CONUS. CPC rainfall observations are
aggregated to a 1◦× 1◦ spatial resolution by simple averag-
ing.

2.1.2 ASCAT data

ASCAT (Bartalis et al., 2007) is a real-aperture radar in-
strument onboard the MetOp satellites which measures radar
backscatter at C band (5.255 GHz) and VV polarization. It
has a spatial resolution of 25 km (resampled at 12.5 km) and
is available since 2007. The surface SM product (equiva-
lent to a depth of 2–3 cm of the soil) is calculated from
the backscatter measurements through the time-series-based
change detection approach described in Wagner et al. (1999).
The SM is measured in relative terms (degree of satura-
tion) with respect to historical minimum and maximum val-
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ues. Here, we used the ASCAT data set produced using the
Soil Water Retrieval Package (WARP) (Naeimi et al., 2009)
(v5.5) from Vienna University of Technology (TU-Wien),
and distributed as SM product H109 by the EUMETSAT
Satellite Application Facility on Support to Operational Hy-
drology and Water Management (H-SAF). Prior to the ap-
plication of SM2RAIN to ASCAT data, the points character-
ized by a surface state flag (SSF) of the ASCAT product that
indicates frozen (SSF= 2), temporary melting/water on the
surface (SSF= 3) or permanent ice (SSF= 4) were excluded
from the analysis. For further details about the application of
SM2RAIN to ASCAT, the reader is referred to Sect. 2.4.

2.1.3 TMPA 3B42RT

TMPA 3B42RT, version 7 (http://trmm.gsfc.nasa.gov), com-
bines rainfall estimates from various satellite sensors. The
multisatellite platform uses the TRMM Microwave Imager
(TMI) on board of TRMM satellite, the Special Sensor Mi-
crowave Imager (SSM/I) on board the Defense Meteoro-
logical Satellite Program (DMSP) satellites, the Advanced
Microwave Scanning Radiometer for Earth observing sys-
tem (AMSRE) on board the National Aeronautic and Space
Administration (NASA) AQUA satellite, the Advanced Mi-
crowave Sounding Unit-B (AMSU-B) on board the National
Oceanic and Atmospheric Administration (NOAA) satellite
series and GEO IR rainfall estimates. The TMPA 3B42RT
estimates are produced in three steps: (1) the PMW esti-
mates are calibrated with sensor-specific versions of the God-
dard Profiling Algorithm (GPROF; Kummerow et al., 1996)
and combined, (2) IR rainfall estimates are created using the
PMW estimates for calibration, and (3) PMW and IR esti-
mates are then combined. The 3B42RT product is provided
by NASA with a temporal resolution of 3 h and a spatial reso-
lution of 0.25◦. The cumulated daily rainfall, available from
March 2000, is obtained by simply summing the eight 3 h
time windows for each day. The global coverage of the prod-
uct is+50◦/−50◦ latitude. To match the CPC spatial resolu-
tion, collocated TMPA 3B42RT estimates are aggregated to
1◦ spatial resolution by simple averaging.

2.1.4 CMORPH

CMORPH uses a Lagrangian approach to construct high-
resolution global precipitation maps from the satellite IR and
PMW observations (Joyce et al., 2004). This technique uses
precipitation estimates that have been derived from PMW ob-
servations exclusively, and whose features are transported via
spatial propagation information which is obtained entirely
from IR data. It incorporates precipitation estimates derived
from the PMW on board of the DMSP 13, 14 and 15 (SSM/I)
and NOAA-15, 16, 17 and 18 (AMSU-B) satellites as well as
AMSR-E and TMI aboard NASA’s Aqua and TRMM space-
craft, respectively. Precipitation estimates are obtained as fol-
lows. First, advection vectors of cloud and precipitation sys-

tems are computed using consecutive geostationary IR im-
ages in 30 min intervals. These advection vectors are then ap-
plied to propagate the precipitating cloud systems observed
by the PMW measurements along the advection vectors in
both forward and backward directions toward the target time
of the precipitation analysis. The final precipitation analysis
value at a grid box is defined as the weighted mean of the
estimates from the forward and backward propagations with
the weights inversely proportional to the time separation be-
tween the target analysis time and the PMW observations. In
this study, we used the daily (derived from 3-hourly aggre-
gation) estimates of precipitation at 0.25◦ latitude/longitude
resolution, distributed over the globe (+60◦/− 60◦ of lati-
tude) by the NOAA Center for Weather and Climate Predic-
tion. Note that the CMORPH version used in this study is the
raw version which does not use gauge information. To match
the CPC spatial resolution, collocated CMORPH estimates
are aggregated to 1◦ spatial resolution.

2.1.5 ERA-Interim

The European Centre for Medium-Range Weather Fore-
casts (ECMWF) produces the ERA-Interim atmospheric,
ocean and land reanalysis. ERA-Interim provides medium-
range global forecasts for environmental variables including
soil temperature, evaporation, SM and rainfall. Products are
available from 1 January 1979 to now. The forecast model
incorporated in the ERA-Interim reanalysis is based on
the ECMWF Integrated Forecast System (Cy31r2) forecast
model (Dee et al., 2011), with a spectral horizontal resolution
of about 80 km and 60 vertical levels. The ERA-Interim fore-
cast precipitation is the sum of two components which are
computed separately in the model: large-scale stratiform pre-
cipitation (Tompkins et al., 2007) and smaller-scale precip-
itation which originates solely from the parameterization of
convection (Bechtold et al., 2004). Further information can
be found at the ECMWF website (http://www.ecmwf.int). In
this study, daily precipitation values are obtained from the
temporal aggregation of ERA-Interim 12-hourly precipita-
tion accumulation estimates (http://apps.ecmwf.int/datasets/)
while co-location with CPC observations is determined by
the nearest-neighbour method. Note that we considered only
liquid precipitation in the analysis. Solid precipitation were
excluded by masking out periods experiencing snowfall (us-
ing the “large-scale snowfall” variable of ERA-Interim).

2.2 TC analysis: general concepts

Here we apply the method of McColl et al. (2014) to robustly
estimate the correlation of a particular rainfall measurement
system with the truth. Suppose we have three systems Xi ,
measuring the true variable t and afflicted by additive random
error

Xi =X
′

i + εi = αi +βi t + εi, (1)
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where Xi (i = 1, 2, 3) are collocated measurement systems
linearly related to the true underlying value t with additive
random errors εi , and αi and βi are the ordinary least squares
intercepts and slopes. Assuming that the errors from each
system have zero mean (E(εi)= 0), are mutually uncorre-
lated (Cov(εi,εj )= 0, with i 6= j ) and orthogonal with re-
spect to t (Cov(εi, t)= 0), the covariance between Xi is

Qij = Cov(Xi,Xj )=
{
βiβjσ

2
t , for i 6= j

β2
i σ

2
t + σ

2
εi
, for i = j.

(2)

By defining the new variable θi = βiσt , known as the sen-
sitivity of the variable Xi , Eq. (2) becomes

Qij =

{
θiθj , i 6= j

θ2
i + σε2

i
, for i = j, (3)

which is a system of six equations in six unknowns from
which we derive (McColl et al., 2014):

σ ε =



√
Q11−

Q12Q13

Q23√
Q22−

Q12Q23

Q13√
Q33−

Q12Q23

Q12

 . (4)

From Eq. (2), using the definition of the correlation and
covariance we can write

θi = ρt,Xi

√
Qii, (5)

where ρt,Xi is the correlation coefficient between t and Xi .
Since

√
Qii is already estimated from the data, and we can

solve for θi using Eq. (4), ρt,Xi (McColl et al., 2014):

ρt,X =±



√
Q12Q13

Q11Q23

sign(Q13Q23)

√
Q12Q23

Q13Q22

sign(Q12Q23)

√
Q13Q23

Q12Q33

 , (6)

which provides the temporal correlation of each product with
the unknown truth. Hereinafter, when talking about ρt,Xi or
its squared value ρt,Xi

2, we will refer to the correlation of
the product Xi with the unknown truth. ρ will be also used
to refer to this variable but in more general terms.

2.2.1 Rainfall error model

It is generally accepted that a multiplicative model is more
appropriate for describing errors in rainfall estimates (Hos-
sain and Anagnostou, 2006; Tian et al., 2013). Based on this
assumption, Alemohammad et al. (2015) proposed the appli-
cation of TC to the rainfall by introducing a multiplicative
error model:

Ri = aiT
βi eεi , (7)

in which R is the rainfall intensity estimate from product i,
T is the true rainfall intensity and ai is a multiplicative error.
By transforming Eq. (7) in the log space we obtain an equa-
tion equivalent to Eq. (1), whereX = log(R), t = log(T ) and
αi = log(ai). In this way, the development of TC expressed
in Eqs. (2)–(6), can be applied to the – potentially more rel-
evant – case of multiplicative rainfall accumulation errors.
The resulting log RMSE can then be back-transformed into
linear rainfall accumulation errors by exploiting a Taylor se-
ries expansion of the logarithm operator (see Alemohammad
et al., 2015 for further details).

The main difficulty of this approach is its inability to con-
sider the presence of zero values in the rainfall time series.
To reduce their presence, Alemohammad et al. (2015) con-
sidered fortnightly rainfall estimates and simply removed re-
maining zeros in this time series. This has two implications.
First, the fortnightly rainfall error may differ from the error of
a shorter accumulation period (e.g. daily) because the daily
signal has a substantially different character with respect to
the fortnightly one due to the higher presence of zero values.
Second, the method may not be appropriate in very dry cli-
mates, where even fortnightly values of rainfall can contain
a significant number of zero accumulation values.

For the reasons mentioned above, we apply TC in two dif-
ferent ways: (i) to the rainfall time series using an additive er-
ror model and (ii) to log-transformed rainfall estimates using
the multiplicative error model (by first removing rainfall ac-
cumulation values equal to zero). Comparisons of these two
different approaches will provide insights regarding the ap-
propriateness of various error model assumptions for rainfall
estimates at a daily accumulation timescale.

2.3 Performance scores

In Sect. 2.2, it has been demonstrated that TC can provide
both error variances and correlation against an unknown truth
for three collocated estimates of the same variable. When
dealing with error variances, the products have to be rescaled
to a common reference data space. However, such a rescal-
ing imposes spatial patterns within the derived error metric
which reflects the climatology of the chosen reference (Gru-
ber et al., 2016). To this end, McColl et al. (2014) noted that
correlation coefficients can provide important new informa-
tion about the performance of the measurement systems with
respect to the absolute error variances obtained via Eq. (4)
with the added advantage of not requiring the arbitrary def-
inition of one system as a scaling reference. Indeed, ρ2 rep-
resents the unbiased signal to noise ratio, scaled between 0
and 1, which provides a measure of the relative similarity
between two signals, independently from their phase differ-
ences. This was also underlined by Gruber et al. (2016), who
showed that ρ2 is the complement of the fRMSE= σ 2

ε /σ
2

introduced by Draper et al. (2013) (ρ2
= 1−fRMSE), which

was used previously to remove the dependency of the error
variance pattern on the spatial climatology of the chosen ref-
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erence. Gruber et al. (2016) also pointed out that the absolute
error variance provides only limited information about the
true data set quality because a certain amount of noise can be
either acceptable or unacceptable depending on the strength
of the underlying signal (i.e. its variance). Therefore, we fo-
cus here only on ρ2 or, analogously, on its root square ρ, i.e.
Eq. (6).

As discussed above, a key goal is determining the rela-
tive accuracy of TC correlations obtained with and without
the use of SM2RAIN-based rainfall accumulation products.
Assuming that RXi (or simply R) is the Pearson correlation
coefficient between the product Xi and CPC, the main ques-
tion is, how accurately can (TC-based) ρt,Xi , which utilize
no ground observations, reproduce spatial patterns in (CPC-
based) RXi ? We should expect a bias between the two (i.e.
RXi ≤ ρt,Xi ) because – while relatively accurate – CPC es-
timates still contain representativeness errors (due to limita-
tions in rain gauge density) and measurement errors due to
wind and instrument inaccuracies. In contrast, Eq. (6) pro-
vides the correlations with an error-free truth. Nevertheless,
if the TC hypothesis holds, the relative rank between the
products predicted by TC should accurately reflect that ob-
tained via direct comparisons with ground observations.

In order to evaluate the similarity between correlation-
based maps of ρt,Xi and RXi a spatial correlation index SC
was calculated as the spatial Pearson correlation coefficient
between maps of RXi and ρt,Xi . The closer SC is to 1, the
more spatially similar the two maps are and the more satis-
fied the assumptions of TC. In addition, based on the values
of ρt,Xi and RXi , we are able to sort the products according
to their relative performance for each pixel in the analysis.
That is, considering three products Xi , the rank value to be
assigned to each product i will be 1 if ρt,Xi is the highest,
3 if it is the lowest and 2 if it is neither. If the same is done
with RXi , the consistency of the resulting rank maps for each
product provide feedback regarding the validity of assump-
tions underlying the application of TC. For the quantification
of the discrete maps, we also calculate the number of pixels
providing equivalent relative sorting of the products based on
RXi vs. ρt,Xi .

2.4 SM2RAIN and its application to ASCAT data

SM2RAIN (Brocca et al., 2014) is a method of rainfall esti-
mation which uses two successive SM retrievals to estimate
the rainfall accumulated between the two retrievals. It ex-
ploits the soil water balance equation with appropriate sim-
plifications valid only for liquid precipitation (Tian et al.,
2014):

Z∗ds(τ )/dτ = p(τ)− r(τ )− e(τ )− g(τ), (8)

where Z∗ is the soil water capacity (soil depth times soil
porosity), s(τ ) is the relative saturation of the soil or rela-
tive SM; τ is the time; and p(τ), r(τ ), e(τ ) and g(τ) are
the rainfall, surface runoff, evapotranspiration and drainage

rates, respectively. Under unsaturated soil conditions, and as-
suming negligible evapotranspiration rate during rainfall and
Dunnian runoff, solving Eq. (8) for rainfall yields

p(τ)= Z∗ds(τ )/dτ + as(τ )b. (9)

Note that in Eq. (9) the drainage rate has been expressed
with a power law function of the type g = asb (Famiglietti
and Wood, 1994), where a and b are two model parameters.
When the soil is fully saturated, no rainfall can be estimated
from SM; however, at the scale of satellite pixel, the soil is
rarely saturated (except in some exceptional places like trop-
ical forests).

The SM2RAIN parameters a, b and Z∗ can be estimated
either by using a rainfall data set as a reference or assigned
based on soil properties. In this study, in order to maximize
the independence of SM2RAIN predictions, SM2RAIN pa-
rameters were not calibrated and were instead assumed con-
stant in space as in Koster et al. (2016). In particular, the
drainage rate (the second term in Eq. 9) was assumed lin-
early related with SM (b = 1) and a = 3.7 mm day−1 and
Z∗ = 62 mm based on results obtained in previous studies
(Brocca et al., 2014). Note that Z∗ does not have a significant
influence on the results because we are using a correlation-
based metric. In addition, it should be noted that, while maxi-
mizing the independence of SM2RAIN rainfall accumulation
estimates, the use of this default calibration approach results
in sub-optimal SM2RAIN performance. Superior SM2RAIN
can easily be obtainable via calibration against existing satel-
lite rainfall accumulation products.

Daily rainfall estimates from SM2RAIN were obtained
by using linearly interpolated (at 00:00 UTC) ASCAT data
with a maximum allowable data gap of 5 days. The obtained
0.25◦× 0.25◦ rainfall estimates were then aggregated to the
1◦× 1◦ spatial resolution through simple averaging of the
collocated pixels with CPC. Finally, 1◦× 1◦ grid cells were
masked if more than 50% of their sub-grid areas consisted
of ASCAT observations characterized by a SSF equal to 2, 3
or 4. Hereinafter, the thus obtained product is referred to as
SM2RAIN for simplicity.

2.5 Experimental setup

A TC analysis was carried out using five different
daily rainfall accumulation triplets: (1) ERA-Interim-
SM2RAIN-3B42RT (Triplet A in the following), (2) ERA-
Interim-SM2RAIN-CMORPH (Triplet B), (3) ERA-Interim-
3B42RT-CMORPH (Triplet C), (4) ERA-Interim-3B42RT-
CPC (Triplet D) and (5) ERA-Interim-CMORPH-CPC
(Triplet E). Triplets A and B are used to assess the ability of
SM2RAIN to provide meaningful TC results. Triplet C pro-
vides an alternative to triplets A and B which contains two
rainfall satellite products (with potentially cross-correlated
errors). Triplets D and E serve only to evaluate the general
performance of the CPC product (within CONUS) and to
provide alternative triplets to A and B which use SM2RAIN.
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Table 1. Mean correlation with CPC (R) and TC-based correlation (ρ) for various triplets assuming additive and multiplicative error models.
The “Triplet” column refers to the naming convention applied in the text.

Additive error

ERA-Interim SM2RAIN 3B42RT CMORPH CPC

Correlation with CPC 0.68 0.57 0.52 0.57 –

Triplet Products Triple collocation

A ERA – SM2RAIN – 3B42RT 0.79 0.57 0.57 – –
B ERA – SM2RAIN – CMORPH 0.73 0.63 – 0.58 –
C ERA – 3B42RT – CMORPH 0.43 – 0.68 0.76 –
D ERA – 3B42RT – CPC 0.79 – 0.57 – 0.87
E ERA – CMORPH – CPC 0.76 – – 0.60 0.91

Multiplicative error

ERA-Interim SM2RAIN 3B42RT CMORPH CPC

Correlation with CPC 0.53 0.43 0.38 0.50 –

Triplet Products Triple collocation

A ERA – SM2RAIN – 3B42RT 0.63 0.53 0.43 – –
B ERA – SM2RAIN – CMORPH 0.68 0.55 – 0.62 –
C ERA – 3B42RT – CMORPH 0.43 – 0.68 0.76 –
D ERA – 3B42RT – CPC 0.65 – 0.42 – 0.84
E ERA – CMORPH – CPC 0.66 – 0.57 0.79

As a result, they will only be used for initial considerations
about TC robustness and to evaluate the relative quality of
the CPC product. Triplets A, B and C will be then used in the
remainder of the paper to demonstrate the potential utility of
SM2RAIN.

The analysis was carried out first across CONUS and
then on a global scale using only ERA-Interim, 3B42RT,
CMORPH and SM2RAIN during the period 2007–2012.
Over CONUS it was confirmed that the available sample size
was sufficient (about 500) over the entire study domain (Gru-
ber et al., 2016), while for the global analysis, grid cells with
inadequate sample size were individually masked out of the
analysis. The extended TC analysis was applied for both ad-
ditive and multiplicative error model assumptions. For the
latter, we first removed days with zero rainfall constituting
about 80 % of daily values and leaving approximately 450
non-zero daily values in the 2007–2012 time series and then
applied a log transformation to the remaining daily rainfall
estimates. This reduction in sample size may affect TC re-
sults by making the analysis with log-precipitation estimates
statistically less robust.

3 Results and discussion

In this section, we present the results obtained from the appli-
cation of TC (for both additive and multiplicative error mod-
els) by following the subsequent methodological steps: (1)
calculating TC-based correlations (ρt,Xi ) for Triplets A, B,

C, D and E over the CONUS and providing an assessment
of the CPC product (Sect. 3.1), (2) understanding the ade-
quacy of TC results based on the spatial similarity between
(TC-based) ρt,Xi and (CPC-based) RXi (along with their rel-
ative rank) over the CONUS in order to identify the optimal
configuration for applying TC and (3) applying the optimal-
configured TC on a global scale to calculate ρt,Xi globally
for the selected rainfall products (Sect. 3.3).

3.1 Assessment of the CPC product

As described above, our first goal is to assess the relative
performance of the CPC product. Table 1 shows mean ρt,Xi
(obtained via the spatial average of 0.25◦ CONUS grid cells).
Regardless of the triplet or error model applied, the TC anal-
ysis summarized in Table 1 indicates that CPC is the most
accurate product (mean TC-based correlation close to 0.9
for the additive error model and close to 0.8 for the multi-
plicative one), which strengthens our assumption that within
CONUS, CPC can be used as a benchmark to evaluate the
optimal TC configuration for rainfall product evaluation. In
addition, its correlation spatial pattern (not shown) provides
very good performance almost everywhere except in the cen-
tral US, where the spatial density of available rain gauges
shown in Fig. 1 is relatively lower. Based on this, in the next
section we will consider the CPC product as an appropriate
benchmark for the selection of an optimal TC configuration
which does not utilize a gauge-based precipitation product
(and is therefore potentially applicable at a global scale).
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Figure 2. CPC-based (a–d) and TC-based (e–o) correlation coefficient obtained for the triplets: (i) ERA-Interim-SM2RAIN-3B42RT (Triplet
A: e–g), (ii) ERA-Interim-SM2RAIN-CMORPH (Triplet B: h–l) and (iii) ERA-Interim-3B42RT-CMORPH (Triplet C: m–o) during the
period 2007–2012 using an additive error model.

3.2 Optimal TC configuration

Figure 2a–d plot CPC-based Pearson correlation coeffi-
cients (i.e. RXi ) for ERA-Interim, 3B42RT, CMORPH and
SM2RAIN obtained with the assumption of additive error
model (for multiplicative error model results the reader is
referred to Fig. S1 of the Supplement). A comparison of
these results with TC-based correlations (i.e. ρt,Xi ) shows
that ρt,Xi are biased high with respect to RXi . This is ex-
pected given that CPC is not free of errors, whereas TC
should theoretically provide the correlation with respect to
an error-free truth.

The spatial agreement between ρt,Xi and RXi is exam-
ined in Table 2 and Fig. 2. In particular, Fig. 2 shows that
Triplets A (panels e, f, g) and B (panel h, i, l) accurately
reproduce CPC-based results plotted in Fig. 2a–d, although
they are characterized by higher values as underlined above
(see Sect. 2.3 for further details). This similarity is higher in
the eastern and western US and lower in the central US es-
pecially for ERA-Interim and SM2RAIN. This lower agree-
ment in the central US is likely due to the lower rain gauge
density of CPC here (see Fig. 1), which degrades the quality
of the CPC product as benchmark. However, in contrast, TC
results based on Triplet C predicts a substantial different be-
haviour with correlation patterns which differ substantially
relative to CPC-based benchmark results in Fig. 2a–d. This

suggests those triplets not containing SM2RAIN (or CPC)
provide unreliable results. In particular, the simultaneous use
of two satellite-based rainfall products in Triplet C leads
to an overly optimistic assessment of their performance.
This is likely due to cross-correlated errors in 3B42RT and
CMORPH rainfall accumulation products which cause TC to
misinterpret their mutual consistency as an indication of high
accuracy (Yilmaz and Crow, 2014).

It is often important to understand which is the best rainfall
product among those available in a specific location. As de-
scribed in Sect. 2.3, we ranked the products based upon how
well they compare relative to each other using both R and ρ.
Figure 3 shows the distribution – three products at time (pan-
els d–f, k–m, r–t) – of the relative rank based on comparisons
with the (CPC-based) RXi of each triplet, while panels a–c,
g–i, and n–p of the same figure provide similar information
except that the relative rank is based on TC (i.e. ρ). The lat-
ter shows a very similar pattern with respect to CPC-based
rank for Triplets A and B; however, Triplet C yields again
a distinct pattern with ERA-Interim being the worst product
and 3B42RT and CMORPH providing complementary per-
formances. As in the comparisons discussed in Fig. 2, this
implies that triplets containing SM2RAIN (i.e. Triplets A and
B) provide more robust evaluation information than triplets
utilizing 3B42RT and CMORPH together.
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Table 2. Spatial correlation between ρt,Xi and RXi and percentage of rank correctly identified obtained for various triplets considered in the
study. The “Triplet” column refers to the naming convention applied in the text.

Spatial correlation

Triplet Products ERA-Interim 3B42RT CMORPH SM2RAIN

Additive error model

A ERA – 3B42RT – SM2RAIN 0.79 0.74 – 0.84
B ERA – CMORPH – SM2RAIN 0.86 – 0.61 0.84
C ERA – 3B42RT – CMORPH 0.96 0.28 0.07 –

Multiplicative error model

A ERA – 3B42RT – SM2RAIN 0.380 0.751 – 0.648
B ERA – CMORPH – SM2RAIN 0.265 – 0.798 0.570
C ERA – 3B42RT – CMORPH 0.508 0.508 0.706 -

% rank identified

Triplet Products ERA-Interim 3B42RT CMORPH SM2RAIN

Additive error model

A ERA – 3B42RT – SM2RAIN 80 % 81 % – 72 %
B ERA – CMORPH – SM2RAIN 65 % – 74 % 65 %
C ERA – 3B42RT – CMORPH 6 % 10 % 41 % –

Multiplicative error model

A ERA – 3B42RT – SM2RAIN 65 % 71 % – 60 %
B ERA – CMORPH – SM2RAIN 48 % – 51 % 67 %
C ERA – 3B42RT – CMORPH 11 % 15 % 50 % –

The same analysis carried out with the assumption of mul-
tiplicative error model (see Fig. S2 in the Supplement) shows
similar findings but larger differences between the spatial dis-
tribution of the rank obtained with CPC and the one with
TC, especially for Triplet B. To quantity this agreement, we
have calculated the percentage of pixels which are ranked the
same in both TC-band CPC results (% of rank identified in
Table 2). The table confirms the patterns observed in Figs. 3
and S2 of the Supplement with Triplets A and B yielding
the highest percentage of pixels with a common rank – rang-
ing from 65 to 81 % for the additive error model, and 48 to
71 % for the multiplicative error model. As discussed above,
inferior results are obtained in both cases for Triplet C (per-
centage of correct ranking between 5 and 60 %).

A quantification of the agreement between the spatial vari-
ations of the correlations both for additive and multiplicative
error models was also derived by the use of the spatial cor-
relation SC in Table 2. The table shows that for Triplets A
and B, when TC is used with the assumption of additive er-
ror model, SC is relatively high with values ranging from
0.61 to 0.84 while for Triplet C provides substantially lower
SC for 3B42RT and CMORPH. A slightly different situation
can be observed for the multiplicative error model. Here, SC
values are generally lower than those obtained by TC (based
on an assumed additive error model), likely due to the neces-

sity of removing zero-rain days, which modifies the original
precipitation time series and reduces the sample size of TC
calculations. In particular, ERA-Interim provides the worst
score. This is not clearly evident in the spatial distribution of
R and ρ (see Fig. S1 in the Supplement for further details)
which show some similarities at least for Triplets A and B.

In summary, the application of TC to the different triplets
shows the following:

1. CPC product performs relatively well over the CONUS
with a TC-derived correlation vs. truth of 0.9 (assum-
ing an additive error model) demonstrating its relatively
high quality here and supporting its application as a
benchmark data set within CONUS.

2. TC-based correlations are similar among the triplets
except for Triplet C (i.e. ERA-Interim, 3B42RT and
CMORPH). This is likely due to the existence of non-
negligible cross-correlated errors between 3B42RT and
CMORPH.

3. A comparison between ρt,Xi and RXi shows that ρt,Xi
are biased high with respect to RXi . In addition, the pat-
tern of ρt,Xi and RXi is similar for all triplets except for
Triplet C, which shows inconsistencies relative to the
CPC benchmark for both the additive and multiplicative
error model assumptions. The agreement, measured in
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Figure 3. Rank based on CPC-based correlation (CPC-based rank in the figure) and TC-based correlation (TC-based rank in the figure) of the
triplets: (i) ERA-Interim-SM2RAIN-3B42RT (Triplet A: a–c for TC-based rank and d–f for CPC-based rank) , (ii) ERA-Interim-SM2RAIN-
CMORPH (Triplet B: g–i for TC-based rank and k–m for CPC-based rank) and (iii) ERA-Interim-3B42RT-CMORPH (Triplet C: n–p for
TC-based rank and r–t for CPC-based rank) during the period 2007–2012 using an additive error model.

terms of spatial correlation (Table 2), provides higher
scores for an additive error model assumption relative
to a multiplicative one. This is likely due to a reduction
of sampling power associated with the removal of daily
rainfall accumulations equal to zero, which are not ac-
ceptable in the log-transformation process. Therefore, it
is possible that the observed differences in TC perfor-
mance may shrink for larger sample sizes.

4. Retrieved spatial patterns of ρt,Xi for the triplets con-
taining SM2RAIN (Fig. 2) show a higher degree of sim-
ilarity with (CPC-based) RXi when we assume an ad-
ditive (vs. multiplicative) error model for daily rainfall
accumulations.

On this basis, we can conclude that (i) TC results are un-
reliable unless SM2RAIN is used in the triplets and (ii) the
assumption of multiplicative error model in the application
of TC at a daily timescale does not appear necessary.

3.3 Application of optimized TC approach

Based on the superior performance for Triplets A and B un-
der the assumption of additive error model, we will apply
this particular TC configuration approach to assess the per-
formance (in terms of ρ) of daily rainfall accumulation es-
timates derived from 3B42RT, CMORPH, SM2RAIN and
ERA-Interim first over the CONUS (Sect. 3.3.1 and Fig. 2)
and then on a global scale (Sect. 3.3.2 and Fig. 4).

3.3.1 CONUS

Over CONUS, ERA-Interim shows relatively better perfor-
mance in western and eastern US with respect to the cen-
tral US, where SM2RAIN is slightly superior. 3B42RT and
CMORPH perform reasonably well in eastern and along the
west coast of the US while demonstrating worse performance
in the central US. In contrast, SM2RAIN performs worse in
northern US probably due to the lower accuracy of the AS-
CAT data at high latitudes. The spatial pattern of these corre-

Hydrol. Earth Syst. Sci., 21, 4347–4361, 2017 www.hydrol-earth-syst-sci.net/21/4347/2017/



C. Massari et al.: Performance of global rainfall estimates 4357

Figure 4. Global correlation of the 3B42RT (a), CMORPH (b), SM2RAIN (c) and ERA-Interim (d) products obtained by TC using Triplet
A (ERA-Interim-SM2RAIN-3B42RT) for 3B42RT, ERA-Interim and SM2RAIN and Triplet B (ERA-Interim-SM2RAIN-CMORPH) for
CMORPH.

lations is similar to those found in Gottschalck et al. (2005)
and Ebert et al. (2007), who showed a generally lower level
of correlation of satellite-only rainfall products in the central
US due to the effects of snow cover and frozen surface condi-
tions. This corroborates results presented in Alemohammad
et al. (2015) using TC, who found a similar pattern of correla-
tion of 3B42RT in a box covering a large part of southeastern
US (however, the authors here assumed a multiplicative error
model and fortnightly rainfall accumulation estimates).

3.3.2 Global

On a global scale, 3B42RT (Fig. 4a) shows relatively good
performances in eastern and central South America, south-
ern and central Africa, southern and eastern Asia, eastern
Australia, and southern Europe, while it performs relatively
worse in central Asia, western Australia and in the southern
part of the Sahel. The performance of CMORPH (Fig. 4b) is
similar to 3B42RT with slightly lower correlations in Aus-
tralia, in the Horn of Africa and in southern Asia. SM2RAIN
(Fig. 4c) performs reasonably well in Africa (except in the
tropical forest), Australia, Mexico, eastern South America
and India and generally in the Southern Hemisphere, while
worse results are obtained in the Northern Hemisphere, in
the tropical forests and at high latitudes. In contrast, ERA-
Interim (Fig. 4d) provides much better results in the North-
ern Hemisphere with respect to the south of the planet (e.g.
South America and southern Africa) and performs relatively

poorly in central and northern Africa as well as in the tropical
forests.

The results for 3B42RT and SM2RAIN are similar to those
obtained in Brocca et al. (2014) who calculated the Pearson
correlation coefficient with the Global Precipitation Clima-
tology Center (GPCC; Schamm et al., 2014) data set. Sim-
ilar findings are also presented in Yong et al. (2015) (Ta-
ble 2 of their study), who compared different versions of
the 3B42RT product against global CPC observations in the
US, East Asia, Europe and Australia. In their study, the best
results were obtained in Australia and in East Asia (Eu-
rope showed slightly lower performance) while lower perfor-
mances were obtained in the US as in our analysis. Further
comparisons can be also considered with the recent work of
Beck et al. (2017), who, in attempting to create a high-quality
rainfall product specifically tailored for hydrological mod-
elling, compared different satellite and modelled products
globally with the Global Historical Climatology Network-
Daily (GHCN-D; Menne et al., 2012) database. Their results
(in terms of spatial pattern of correlation) are consistent with
those obtained in our study over the US, East Asia and the
Middle East for CMORPH and 3B42RT, while less agree-
ment is observed in Australia. For ERA-Interim, the results
agree with our study in the US, Europe and generally are
better in the Northern Hemisphere, whereas they show some
differences with SM2RAIN results in Australia, Africa and
in South America, although in these areas the low number
of available rain gauges cannot provide a clear picture of the
real performance of the analysed products. Substantial dif-
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ferences between our study and the studies of Beck et al.
(2017) and Yong et al. (2015) can likely be attributed to the
quality of the benchmark data set used for the evaluations.
This is the main limitation of rainfall validation studies re-
lying upon ground-based observations for assessment. With
our proposed TC-based approach, this issue can be overcome
because ground observations are no longer required.

An interesting feature of the global evaluation of the prod-
ucts (Fig. 4a–d), but also over the CONUS between 3B42RT
(or CMORPH) and SM2RAIN (Fig. 2 triplets A and B), is the
complementary nature of the products. Especially for Fig. 4c
and d, it can be seen that ERA-Interim performs very well in
the Northern Hemisphere and worse in the Southern Hemi-
sphere, whereas SM2RAIN is relatively good in the south
and worse in the Northern Hemisphere. Similar findings can
be seen between the two state-of-the-art satellite rainfall
products (i.e. 3B42RT and CMORPH) and SM2RAIN over
the CONUS with the first performing better in eastern US
and the second in the central and western US. This opens up
new possibilities for the integration of multiple products to
obtain a higher-quality merged rainfall estimate – as outlined
in Ciabatta et al. (2015) and in Beck et al. (2017).

4 Summary and conclusions

The assessment of the performance of satellite rainfall prod-
ucts on a global scale is challenging due to significant limita-
tions in the spatial coverage of high-quality, ground-based
rain gauge observations. Provided that its underlying as-
sumption are respected (see Sect. 2.2), TC provides an alter-
native approach for evaluating global rainfall products with-
out reliance on ground-based observations. Here, we de-
scribe how a new method for rainfall estimation based on
SM observations (i.e. SM2RAIN) provides a rainfall prod-
uct that is uniquely suited to satisfy the error independent
assumptions at the heart of the TC approach.

The extended version of TC introduced by McColl et al.
(2014) was applied to provide the correlation with the
(unknown error-free) truth for each of the products ap-
plied within a particular triplet. To assess the robustness of
correlated-based results obtained with TC, we used an area
characterized by a high-quality rainfall product (CPC data
set over the CONUS; see Fig. 1) with the assumption that it
represents a good proxy of the true rainfall field. Therefore, if
TC assumptions hold, Pearson correlation coefficients com-
puted against CPC should match those of TC – at least in
terms of their relative values. Since we have two different
error model options (i.e. additive and multiplicative) for the
application of TC to rainfall data, we explored both.

Results demonstrate that daily rainfall accumulations pro-
vided by the CPC product are indeed relatively high quality
compared to competing products (Table 1), thus supporting
the assumption that it provides an acceptable proxy of the
true rainfall field. Once it is established as a credible bench-

mark, CPC is used to evaluate (1) what type of triplets can
be considered for a robust application of TC, and (2) which
model error assumption can be considered more appropri-
ate. Triplets containing SM2RAIN and assuming an addi-
tive error model (Table 2) appear to provide the most ro-
bust TC results. Based on this, an optimal TC configuration
was applied (for the first time) to globally evaluate daily rain-
fall accumulation derived from the 3B42RT and CMORPH,
ERA-Interim and SM2RAIN products (Fig. 4a–d) without
the use of any ground-based data. Results demonstrate the
relatively high performance of daily rainfall accumulations
derived from the satellite rainfall products (i.e. 3B42RT and
CMORPH) in eastern North and South America, southern
Africa, southern and eastern Asia, eastern Australia, and
southern Europe, as well as complementary performances
between ERA-Interim and SM2RAIN, with the first perform-
ing reasonably well in the Northern Hemisphere and the sec-
ond providing very good performance in the Southern Hemi-
sphere.

Based on the results obtained, we can therefore conclude
the following:

1. Despite the abundance of satellite rainfall estimates,
their relative dependency impedes their use within the
same triplet for the TC analysis, thus alternative inde-
pendent products must be used for obtaining meaningful
TC results. In particular, the use of two remotely sensed
rainfall products in a single triplet entails significant risk
of a biased TC analysis.

2. Wholly independent daily rainfall accumulation prod-
ucts obtained from SM2 RAIN are uniquely valuable for
obtaining robust global evaluation statistics in absence
of ground-based gauge observations. This is important
not only for simple validation purposes but also for hy-
drological studies and applications within developing
countries, where ground-based rain gauge networks are
often limited or absent and an alternative product has to
be chosen.

3. At the time/space scales examined here, the assump-
tion of additive error model provides reasonable and
robust results and no advantage is observed for a log
transformation of the time series (which allows for the
consideration of a multiplicative error model). However,
this result is likely to be scale dependent and implies at
the timescale resolution of this analysis is sufficiently
coarse such that averaging produces approximate ad-
ditive/Gaussian distributions (via the central limit the-
orem). Therefore, different results may be obtained at
finer timescales.

4. Both state-of-the-art satellite rainfall estimates (i.e.
3B42RT and CMORPH) and SM-based rainfall esti-
mates (i.e. SM2RAIN) performances are affected by the
presence of snow cover and frozen soil conditions – thus
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these rainfall estimates may be unreliable at high lati-
tudes and in mountainous regions. In these areas, a re-
analysis product (i.e. ERA30 Interim) provides higher-
quality rainfall estimates and should be considered in
place of satellite-based estimates. SM-based rainfall es-
timates also work reasonably well in semi-arid climates
(e.g. Sahel, central Australia and Mexico) where the
state-of-the-art satellite products report problems due
to sub-cloud evaporation of hydrometeors (Ebert et al.,
2007). Conversely, in wet climates (e.g. tropical forests)
3B42RT and CMORPH seem to be the only reliable op-
tion given that neither SM2RAIN nor ERA-Interim pro-
vide reasonable results.

5. Given the existence of complementary performances
among the products, TC can potentially be a valuable
tool for the characterization of their relative perfor-
mances so as to be used for data fusion and assimilation
experiments for obtaining more accurate rainfall esti-
mates.

The question of whether this analysis is valid for differ-
ent spatio-temporal scales remains to be addressed and will
be addressed in future studies. Also, removing zeros for ob-
taining log-transformed rainfall may not be ideal for testing
the validity of the model error assumptions since it shortens
the sample size, thus providing less robust TC results. Other
strategies should be considered.

Data availability. This study is based on third-party data. The ci-
tations to the data sets along with the data providers can be found
in the data description section (Sect. 2). The reader can find nec-
essary information for downloading the data in the website of the
providers.
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