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Abstract. Unrepresented model errors influence the estima-
tion of effective soil hydraulic material properties. As the
required model complexity for a consistent description of
the measurement data is application dependent and unknown
a priori, we implemented a structural error analysis based
on the inversion of increasingly complex models. We show
that the method can indicate unrepresented model errors and
quantify their effects on the resulting material properties.
To this end, a complicated 2-D subsurface architecture (AS-
SESS) was forced with a fluctuating groundwater table while
time domain reflectometry (TDR) and hydraulic potential
measurement devices monitored the hydraulic state. In this
work, we analyze the quantitative effect of unrepresented
(i) sensor position uncertainty, (ii) small scale-heterogeneity,
and (iii) 2-D flow phenomena on estimated soil hydraulic
material properties with a 1-D and a 2-D study. The results
of these studies demonstrate three main points: (i) the fewer
sensors are available per material, the larger is the effect of
unrepresented model errors on the resulting material prop-
erties. (ii) The 1-D study yields biased parameters due to
unrepresented lateral flow. (iii) Representing and estimat-
ing sensor positions as well as small-scale heterogeneity de-
creased the mean absolute error of the volumetric water con-
tent data by more than a factor of 2 to 0.004.

1 Introduction

Soil hydraulic material properties are essential to advance
quantitative understanding of soil water dynamics. Despite
decades of research, direct identification of these properties
is time-consuming and near to impossible at larger scales.
Therefore, indirect identification methods, such as inver-
sion (Hopmans et al., 2002; Vrugt et al., 2008a), have been
successfully applied to evaluate experiments starting from
lab-scale (e.g., Parker et al., 1985; Van Dam et al., 1994;
Šimůnek et al., 1998; Schneider et al., 2006) up to field-scale
studies (e.g., Wollschläger et al., 2009; Huisman et al., 2010).
Due to the multiscale heterogeneity of the soil hydraulic ma-
terial properties (Nielsen et al., 1973; Gelhar, 1986; Cush-
man, 1990; Vogel and Roth, 2003), effective material prop-
erties have to be identified directly at the scale of interest.
Yet, most studies focus on 1-D subsurface architectures with
homogeneous layers, e.g., Abbaspour et al. (2000); Ritter
et al. (2003); Mertens et al. (2006); Wöhling et al. (2008);
Wollschläger et al. (2009). Only a few studies, e.g., Abbasi
et al. (2004); Palla et al. (2009); Huisman et al. (2010), es-
timate material properties of effectively 2-D subsurface ar-
chitectures. Abbasi et al. (2004) conducted an irrigation ex-
periment to estimate soil hydraulic and solute transport prop-
erties for a 2-D furrow architecture. Palla et al. (2009) esti-
mated effective soil hydraulic properties for a 2-D layered
coarse-grained green roof based on hydrographs. Huisman
et al. (2010) estimated soil hydraulic properties of a homo-
geneous dike exploiting flat wire time domain reflectome-
try (TDR) and electrical resistance tomography (ERT) data
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recorded during a fluctuating groundwater table experiment.
With increasing computational power in recent years, 1-D
subsurface architectures were analyzed with ensemble-based
parameter estimation methods reaching from Markov chain
Monte Carlo (MCMC; e.g., Vrugt et al., 2008b; Scharnagl
et al., 2011; Wöhling and Vrugt, 2011) and data assimilation
(e.g., Wu and Margulis, 2011; Li and Ren, 2011; Erdal et al.,
2014) to data-driven modeling (e.g., Over et al., 2015).

Most of these studies describe the given data with models
chosen upfront with restricted complexity and a minimum
number of parameters. If the models are too simple, critical
uncertainties and processes may be neglected, leading to sub-
optimal results. If the models are too complex, the resulting
material properties are likely to be application dependent. In
general, the required model complexity is unknown a priori
(Vereecken et al., 2015). Quantitative learning about compli-
cated systems is an iterative process (Gupta et al., 2008; Box
et al., 2015). It starts from the current understanding of the
system that is represented with a model (Clark et al., 2011;
Gupta et al., 2012). The optimal experimental design is then
based on the model and the resulting data are, figuratively
speaking, the answer of reality to the questions asked through
the experiment. Disagreement between the model and the
data reveals incorrect understanding of the system. Conse-
quently, the concepts, decisions, and hypotheses integrated
into the model (including evaluation procedures of the data)
and the data themselves are revised. If the model predicts the
data accurately and precisely enough, the research objectives
are expanded, such that the data cover a larger part of the
state space. Ultimately, this iterative procedure leads to data
covering the whole state space and a statistical model–data
mismatch corresponding to the data error model. In general,
such data are not available and the application merely re-
quires a limited accuracy and precision. Hence, the crux is
to determine the sufficient complexity of both the model and
the data for the required accuracy and precision.

This problem can be quantified with a Bayesian total er-
ror analysis (BATEA; Kavetski et al., 2002, 2006) investi-
gating the total uncertainty space which includes uncertainty
in the observed input and responses as well as uncertainty
in the model hypothesis. However, this analysis is computa-
tionally intensive if the number of uncertainties is large and
required models may not be available, e.g., for hysteresis. For
instance, Bauser et al. (2016) categorized the uncertainties a
priori and estimated the most important ones along with ef-
fective material properties using an ensemble Kalman filter
(EnKF) aiming for a consistent representation of reality. The
temporal fluctuation of the estimated hydraulic parameters
was used to identify a situation in which the representation
of the dynamics is inconsistent. Hence, measurement data ac-
quired during this period of time were merely used for state
estimation and excluded from parameter estimation to pre-
vent the incorporation of uncertainties in the dynamics into
the estimated parameters.

Table 1. The grain size distribution in percent by weight displays
the different granularity of the materials A, B, and C of ASSESS
(G. Schukraft, personal communication, Institute of Geography,
Heidelberg University, 2010). Whereas the composition of the ma-
terials B and C is similar, material A features a higher percentage
of fine sand. Since the mechanical wet analysis is time-consuming
and laborious, only material B was sampled twice. Thus, 80g out of
approximately 400Mg were sampled. Due to rounding, the sum of
the values is not always 100.

Grain size range A B1 B2 C

Gravel total 2–63 mm (%) 2 5 4 5
Sand total 63–2000 µm (%) 97 96 95 95

coarse 630-2000 µm (%) 10 24 20 17
medium 200–630 µm (%) 65 64 68 72
fine 63–200 µm (%) 22 8 7 6

Silt total 2 –63 µm (%) 0 0 0 0
Clay total < 2 µm (%) 0 0 0 0

In this work, we change the perspective and associate the
model with our quantitative understanding of reality that is
tested against the given measurement data. To analyze the
required model complexity, we prescribe temporally constant
material properties, calculate the maximum likelihood of in-
creasingly complex models and analyze the corresponding
structural model–data mismatch. We show that this structural
error analysis indicates limitations of these models and quan-
tifies the effect of the respective unrepresented model errors
on the inversely estimated material properties. Specifically,
we analyze measurement data acquired at the test site (AS-
SESS) while it as forced with a fluctuating groundwater table
which ensures a high dynamical range of the hydraulic state.
We set up a basic representation accounting for uncertain-
ties of the hydraulic material properties and the forcing. Fol-
lowing an uncertainty analysis, we additionally estimate the
sensor position and small-scale heterogeneity. These increas-
ingly complex models are applied to (i) three 1-D profiles in
ASSESS with an increasing number of sensors per material
and (ii) the full 2-D profile to additionally analyze the impli-
cations of the restriction to a 1-D subsurface architecture and
to few sensors per material.

2 Methods

2.1 ASSESS

The approximately 2m × 20m× 4 m large test site (AS-
SESS; Fig. 1) is located near Heidelberg, Germany, and con-
sists of three different kinds of sand (materials A, B, and
C) which are arranged in an effective 2-D subsurface archi-
tecture (Fig. 2). The grain size distributions of these materi-
als are presented in Table 1. A geotextile separates the sand
from an approximately 0.1m thick gravel layer below, which
ensures a rapid water pressure distribution and connects a
groundwater well with the rest of the test site. Below this
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Figure 1. View of ASSESS site with tensiometer access tube,
weather station, and groundwater well along the left boundary. The
jump in color reveals different sands that crop out at the surface
(figure adapted from Jaumann, 2012).

gravel layer, a concrete layer confines the site. As the test
site is built into a former fodder silo, a concrete L element
serves as additional wall. In order to stabilize the material
during the construction, it was compacted. In addition to the
compaction interfaces shown in Fig. 2, ground-penetrating
radar (GPR) measurements indicate even more compaction
interfaces (Klenk et al., 2015, Figs. 1b and 6).

The test site is equipped with a weather station, a ten-
siometer (UMS T4-191), and 32 soil temperature and TDR
sensors. Each TDR sensor has three cylindrical rods (length:
0.20m, diameter: 0.004m) which are separated by 0.03m.
They are operated by a Campbell Scientific TDR100.

2.2 Representation

For representing the soil water dynamics in ASSESS during
the experiment, we follow Bauser et al. (2016) and define the
representation of a system as a set consisting of dynamics
(mathematical description), subscale physics (material prop-
erties), forcing (superscale physics), and states. The repre-
sentation of the hydraulic system also comprises its imple-
mentation. In order to separate the more general theoretical
considerations from the application-dependent details, these
are not directly given in this section but are gathered in Ap-
pendix A1.

2.2.1 Dynamics

The Richards equation (Richards, 1931) is the standard
model to describe soil water dynamics:

∂tθ −∇ ·
[
K(θ)[∇hm(θ)− ez]

]
= 0, (1)

with the time t (s), volumetric water content θ (−), matric
head hm (m), unit vector in z direction ez indicating the di-
rection of gravity, soil water characteristic θ(hm), and hy-
draulic conductivity function K(θ). The material properties
θ(hm) and K(θ) are required to solve this partial differential
equation. Generally, these material properties are non-linear
and vary over many orders of magnitude.

2.2.2 Subscale physics

We choose the Brooks–Corey parameterization (Brooks and
Corey, 1966) for the soil water characteristic θ(hm), since
it has been found to describe the materials in ASSESS well
(Dagenbach et al., 2013). This parameterization has four pa-
rameters: a scaling parameter h0 (m) related to the air en-
try pressure (h0 < 0m), the saturated water content θs (−),
the residual water content θr (−), and a shape parameter
λ (−) related to the pore size distribution (λ > 0). In general,
θ(hm) shows hysteretic behavior (Topp and Miller, 1966).
Neglecting hysteresis, the parameterization may be inverted
for θr ≤ θ ≤ θs. This leads to

hm(θ)= h0

(
θ − θr

θs− θr

)−1/λ

. (2)

Inserting the Brooks–Corey parameterization into the hy-
draulic conductivity model of Mualem (1976) yields the pa-
rameterization

K(θ)=Ks

(
θ − θr

θs− θr

)τ+2+2/λ

(3)

for the hydraulic conductivity function, where Ks (ms−1) is
the saturated hydraulic conductivity and τ (−) a heuristic tor-
tuosity factor.

Small-scale heterogeneities, i.e., the texture of the porous
medium, can be represented with Miller scaling if the pore
spaces at any two points are assumed geometrically simi-
lar (Miller and Miller, 1956). Scaling the macroscopic ref-
erence state h∗m(θ), K

∗(θ) with a local ratio of characteris-
tic lengths ξ (−), leads to locally scaled material functions
(Roth, 1995):

hm(θ)= h
∗
m(θ) · ξ, K(θ)=K

∗(θ)/ξ2. (4)

2.2.3 Forcing

The hydraulic state was forced with a fluctuating ground-
water table by pumping water in or out of a groundwater
well. The experiment was arranged in three different phases:
(i) initial drainage phase, (ii) multistep imbibition phase, and
(iii) multistep drainage phase. The detailed forcing is pre-
sented in Table 2. Throughout the forcing, equilibration steps
were included in between, such that the relaxation of the cap-
illary fringe happened within the measurement volume of
the TDR sensors where possible. We neglect evaporation in
the following, since the experiment took place at the end of
November and the weather was cloudy with 2–7 ◦C air tem-
perature. The last precipitation was measured approximately
10 days before the experiment.

2.2.4 State

The hydraulic state was monitored in particular with hy-
draulic potential and water content measurements during the
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Figure 2. ASSESS features an effective 2-D architecture with three different kinds of sand (A, B, and C). The hydraulic state can be manip-
ulated with a groundwater well (white square, at 18.2m) and is automatically monitored with 32 TDR sensors (dots) and one tensiometer
(black square, at 4.0m). The color of the dots associates some of the TDR sensors with different cases of the 1-D study discussed in Sect. 3.1.
The gravel layer at the bottom of the site ensures a rapid water pressure distribution over the site. An L element (black polygon, at 0.4m) and
compaction interfaces (white lines) were introduced during the construction. Note the different scales on the horizontal and vertical axes.
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Figure 3. The position of the groundwater table was measured manually in the groundwater well and automatically with the tensiometer
(Fig. 2) during three different phases (initial drainage, multistep imbibition, and multistep drainage – separated by the vertical black lines in
the figure) of the experiment. Note that the discrete measurement steps reflect the resolution of the tensiometer.

experiment. The hydraulic potential was assessed via the po-
sition of the fluctuating groundwater table. This position was
measured (i) manually in the groundwater well and (ii) au-
tomatically with the tensiometer (Fig. 3). The gradient be-
tween the hydraulic potential in the groundwater well and the
hydraulic potential in the test site drives the water flux. The
largest part of this gradient equilibrates approximately within
5 min. Afterwards, the position of the groundwater table still
changes due to the long-term equilibration of the hydraulic
state.

The water content data are based on measured TDR
traces which yield the relative permittivity of the soil εb
(Sect. A1.3). This permittivity is converted to water content θ
using the Complex Refractive Index Model (CRIM; Birchak
et al., 1974):

εb(θ,T ,φ)
α
= θ · εw(T )

α
+ (φ− θ) · εαa + (1−φ) · ε

α
s , (5)

with the geometry parameter α = 0.5. In order to apply the
CRIM, the porosity φ, the relative permittivity of water εw,

the relative permittivity of air εa, and the relative permittivity
of the soil matrix εs have to be known. The relative permit-
tivity of air εa was set to 1.0. Assuming that the sand matrix
consists mainly of quartz (SiO2) grains, the relative permit-
tivity of the soil matrix εs was set to 5.0 (Carmichael, 1989).
Core samples of the materials A, B, and C yielded the porosi-
ties 0.41, 0.36, and 0.38, respectively. These values will be
assumed for the saturated water content θs of the respective
materials in the remainder of this paper. Following Kaatze
(1989), we parameterize the dependency of the relative per-
mittivity of water εw on the soil temperature T (◦C) with

εw(T )= 10.01.94404−T ·1.991·10−3
(6)

and use soil temperature measurements near each TDR sen-
sor to determine the according εw.

The evaluated water content data of those TDR sensors
that were desaturated during the experiment are displayed
in Fig. 4. The data show that the experiment exhibits com-
plicated flow phenomena. The measured water content in-
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Figure 4. The measured water content data for the three different phases (initial drainage, multistep imbibition, and multistep drainage –
separated by the solid vertical black lines in the figure) show a high variability up to and beyond the validity limits of the Richards equation
due to the fluctuating groundwater table (Fig. 3). Hence, in order to avoid effects related to entrapped air and two-phase flow phenomena,
we neglect all data with a volumetric air content smaller than 0.1 (all values above the dashed horizontal lines) based on measured porosities
from core samples. The colored solid lines show the results of the Miller and position setup of the 2-D study (Sect. 3.2). The data measured
before 12:50 UTC are only used for the initial state estimation (Sect. A1.6).

creases quickly during the imbibition steps as the groundwa-
ter table reaches the TDR sensor because of the narrow tran-
sition zone of sandy materials during imbibition (Dagenbach
et al., 2013; Klenk et al., 2015) and the small measurement
volume of the TDR sensors (Robinson et al., 2003). During
the equilibration phases, for example, after the last drainage
phase (19:15 UTC), the measured water content in the unsat-
urated material either decreases (e.g., sensor 27) or increases
(e.g., sensor 2), depending on the hydraulic state at this posi-
tion with respect to static hydraulic equilibrium. This effect
is used in the following evaluation (Sect. 3.1.3).

We attribute the spread of the water content during satura-
tion mainly to small-scale heterogeneity and quasi-saturation
due to entrapped air (Christiansen, 1944). In order to avoid
effects related to entrapped air and also two-phase flow, all
TDR data with an air content below 0.1 (Faybishenko, 1995)
are neglected subsequently.

2.3 Structural error analysis

As outlined in Sect. 1, the structural error analysis rests on a
basic representation and a general assessment of its represen-
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Table 2. During the experiment, ASSESS was forced with a fluctuating groundwater table. Therefore, 17.8m3 of water were pumped in and
14.7m3 were pumped out of the groundwater well. For the calculation of the according flux and equivalent height of the water column1heq,
the surface area of ASSESS was approximated with 80m2. All times are given in UTC.

Phase Start time End time Duration Water volume Flux 1heq
(min) (m3) (10−6 ms−1) (m)

Initial drainage 12:55:00 13:20:00 25 −0.7649 −6.4 −0.01

Multistep imbibition 14:20:00 18:50:00 270 −8.3900 −6.4 −0.10
20:35:00 23:10:00 155 −4.7809 −6.4 −0.06
07:25:00 09:55:00 150 −4.6361 −6.4 −0.06

Multistep drainage 12:35:00 14:00:00 85 −3.9970 −9.8 −0.05
15:00:00 16:10:00 70 −3.1709 −9.4 −0.04
16:40:00 19:15:00 155 −6.7299 −9.0 −0.08

tation errors. Some of those representation errors are param-
eterized and included in the parameter estimation process.
This allows to set up a number of distinct representations
with increasing complexity. Using inversion to estimate op-
timal parameters for each of these representations facilitates
analyzing (i) the resulting residuals to improve the represen-
tations and (ii) the effect of unrepresented model errors on
the resulting material properties.

Preparing the tools for the method, we start this sec-
tion with the Levenberg–Marquardt algorithm (Sect. 2.3.1)
and discuss the assessment of the representation errors
(Sect. 2.3.2) as well as the analysis of the resulting residu-
als (Sect. 2.3.3) afterwards.

2.3.1 Levenberg–Marquardt

We employ the Levenberg–Marquardt algorithm for parame-
ter estimation. Our implementation is based on Moré (1978),
Press (2007), and Transtrum and Sethna (2012) together with
some further modifications.

Assuming (i)M data pointsmµ (1, . . .,M) measured at po-
sition xµ featuring a white Gaussian measurement error with
standard deviation σµ and (ii) a model f with P parameters
pπ (1, . . .,P ), the χ2 cost function is defined as

χ2(p)=
1
2

M∑
µ=1

(
mµ− f (xµ,p)

σµ

)2

=
1
2

M∑
µ=1

rµ(p)
2. (7)

This cost function assumes statistically independent residu-
als rµ that are normally distributed with zero mean and stan-
dard deviations σµ (perfect model assumption). These resid-
uals can be expanded as

rµ(p+ δp)≈ rµ(p)+

P∑
π=1

Jµπδpπ (8)

with the Jacobi matrix Jµπ = ∂rµ/∂pπ . The Jacobi matrix
is assembled numerically with the finite differences method.
Following Press (2007), the Hessian is approximated (H≈

J>J), assuming that the second term in the derivative cancels
out as f (xµ,p)→mµ with an increasing number of iter-
ations. Hence, for the Gauss–Newton algorithm, it follows
that

δp =−(J>J)−1
· ∇χ2(p). (9)

Since J>J does not always have full rank, the inversion may
be ill-conditioned, leading to uncontrolled large steps. One
possibility to cope with this issue is to regularize J>J by
adding a diagonal damping matrix D>D.

We follow Transtrum and Sethna (2012) and choose this
damping matrix, such that the diagonal entry for pπ contains
the corresponding maximal diagonal entry of J>J from all
previous iterations if this value is larger than a predefined
minimal value (1.0) which is used otherwise. The resulting
damping matrix is scaled with a parameter λ which tunes
both the amount of regularization and the step size of the
parameter update.

Finally, the parameter update δp is calculated via

δp =−(J>J+ λ ·D>D)−1
· ∇χ2(p), (10)

where the linear problem is solved with a singular value de-
composition (SVD). If the condition number of the sensitiv-
ity matrix S = J>J+λ·D>D is larger than a threshold (1012),
the linear problem is solved approximately with the conju-
gate gradient algorithm by choosing the maximal number of
iterations smaller than the number of parameters P . The pro-
posed parameters at iteration i are given as

pi+1
= pi + δpi . (11)

The convergence path of the Levenberg–Marquardt algo-
rithm is influenced by both the size of the scaling parameter
λinitial and the choice how to adapt λ after each iteration. In
this work, we choose λinitial = 5.0 and apply the delayed grat-
ification strategy proposed by Transtrum and Sethna (2012).
According to this strategy, λ is decreased by a previously
chosen factor (2.0) if the parameter update is successful and
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Table 3. This overview includes specification whether the consid-
ered model error is represented and explicitly estimated within the
scope of this study.

Model error Represented Estimated

Local non-equilibrium × ×

Hysteresis × ×

Numerical error × ×

Orientation of ASSESS X ×

Initial state X ×

Entrapped air X ×

Boundary condition X X
Sensor position X X
Small-scale heterogeneity X X
Material properties X X

increased by a larger factor (3.0) if the update is not success-
ful.

The described gradient-based algorithm heuristically bal-
ances performance and stability. Expanding the stability
measures, we introduce a damping vector d with entries
∈ (0,1] to decrease the correction of particular parameters
via

pi+1
= pi + d � δpi, (12)

where � denotes the element-wise Hadamard product. Gen-
erally, the entries of the damping vector are set to 1. In order
to delay the improvement for parameters which represent ad-
ditional model components, we choose the according entries
to be less than 1. We use this approach in particular to esti-
mate sensor positions and Miller scaling factors along with
effective soil hydraulic properties (Sect. A1.4). First, these
parameters are initialized to neutral values: the modeled sen-
sor positions are initialized to the measured sensor positions
and the Miller scaling factors to 1.0. Subsequently, the damp-
ing vector for the associated parameters is set to 0.1, reduc-
ing the applied correction of these parameters to 10 % of the
proposed correction by the Levenberg–Marquardt algorithm.
Hence, the main focus of the algorithm is to estimate con-
sistent effective soil hydraulic properties, whereas the sensor
positions and Miller scaling factors are adjusted more gradu-
ally.

2.3.2 Assessment of representation errors

By applying the χ2 cost function (Eq. 7), it is implicitly as-
sumed that the model is perfect aside from white Gaussian
noise. This corresponds to complete quantitative understand-
ing of reality and a Gaussian error model for the measure-
ment data. Structural model–data mismatch indicates that
this assumption is invalid. In our case, a Bayesian analysis
of the total uncertainty space is not feasible, primarily due to
a lack of models, e.g., for hysteresis. Hence, we have to ne-

glect such representation errors and trust that the structural
model–data mismatch will reveal any inadequacy. Table 3
gives an overview over the treatment of the representation
errors considered in this work. The contribution of repre-
sentation errors, which could not be quantified or excluded
from the measurement data a priori, is parameterized and ex-
plicitly estimated. The remaining structural model–data mis-
match or deviation from the prior for the parameters hints at
representation errors which should be corrected in the subse-
quent iteration of the analysis.

The structural error analysis and the assessment of un-
certainties result from iterative evaluations. To illustrate the
method, we present an iteration where the orientation of AS-
SESS was not yet compensated by rotating the geometry and
the gravitation vector (Sect. A1.2). Considering the struc-
tural error analysis, we parameterized and estimated uncer-
tain components in the representation. Hence, not only the
Mualem–Brooks–Corey parameters, an offset to the Dirichlet
boundary condition (Sect. A1.5) and the saturated hydraulic
conductivity of the gravel layer, but also the position of the
TDR sensors were estimated (Sect. A1.4). The results pre-
sented in Fig. 5 show that the estimated TDR positions dis-
play a consistent deviation from the positions, which were
measured relative to the site’s walls, as they compensate for
the orientation of ASSESS. Thus, the position of most TDR
sensors on the right is estimated to be higher and the position
of most TDR sensors on the left is estimated to be lower than
that of the measured ones. By estimating the TDR sensor po-
sition, we also incorporated other representation errors into
the resulting parameters, such as small-scale heterogeneities
and eventually a non-represented evaporation front mostly
affecting the estimated position of the upper TDR sensors
(3, 11, 18, and 25). Hence, this analysis (i) demonstrates the
difficulty to separate representation errors and (ii) is able to
identify representation errors which have to be improved sub-
sequently.

2.3.3 Residual analysis

A visual analysis of the standardized residual increases the
intuitive understanding of the model–data mismatch (e.g.,
Legates and McCabe, 1999; Ritter and Muñoz-Carpena,
2013). We analyze the standardized residual in two ways:
(i) the visualization over time highlights the temporal de-
velopment of the structural model–data mismatch. (ii) The
visualization over theoretical quantiles corresponding to a
Gaussian distribution with the standard deviation of the mea-
surement data facilitates the comparison of the standardized
residual distribution to the expected Gaussian distribution of
the measurement data. Hence, if the perfect model assump-
tion is true, the probability plot will show a straight line with
slope 1. Yet, probability plots often show a characteristic S
shape (e.g., Fig. 7f): the slope of less than 1 for small resid-
uals indicates that these residuals are smaller than expected
for a Gaussian distribution with the standard deviation of the
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Figure 5. The subsurface architecture of ASSESS (Fig. 2) is shown with a comparison of measured and estimated TDR sensor positions
based on a first evaluation of the hydraulic measurement data. The consistent deviation of the estimated TDR sensor positions reveals an
unrepresented model error: the orientation of ASSESS (Sect. A1.2).

measurements. The slope of greater than 1 for large residu-
als shows that these residuals are larger than expected for the
presumed Gaussian distribution. Since in this work the the-
oretical quantiles are based on a Gaussian distribution, the S
shape generally indicates non-Gaussian distributions.

In addition to the visual analysis of the standardized resid-
ual, statistical measures help to quantify the model–data mis-
match. As a single measure might be misleading (Legates
and McCabe, 1999), we calculate the root mean square error
(eRMS) and the mean absolute error (eMA).

2.4 Setup

The setup of the parameter estimation is explained in Fig. 6.
For each of the three materials, we estimate the Mualem–
Brooks–Corey parameters h0, λ, Ks, τ , and θr (Sect. 2.2.2).
The saturated water content θs is assumed to be equal
to an estimate for the porosity φ based on core samples
(Sect. 2.2.4). In order to avoid parameter bias due to rep-
resentation errors, we (i) neglect measurement values with
volumetric air content smaller 0.1 (Sect. 2.2.4), (ii) esti-
mate a constant offset to the Dirichlet boundary condition
(Sect. A1.5) and the saturated hydraulic conductivity of the
gravel layer, and (iii) developed a method to estimate the ini-
tial water content distribution based on TDR measurement
data (Sect. A1.6), because a spin-up phase would increase
the computation time by up to a factor of 17. The details
concerning the implementation of the TDR sensors and the
small-scale heterogeneity with Miller scaling factors at the
position of the TDR sensors are explained in Sect. A1.4.

In order to analyze the effect of the uncertainty of the sen-
sor position, small-scale heterogeneity, and lateral flow on
the estimated material properties along the lines presented in
Sect. 2.3, we implemented a 1-D and a 2-D study with four
different setups.

i. In the basic setup, we estimated the hydraulic material
properties, an offset to the Dirichlet boundary condition,

and the saturated hydraulic conductivity of the gravel
layer.

ii. With the position setup, we estimated the sensor posi-
tions in addition to the parameters in the basic setup.

iii. For the Miller setup, we estimated one Miller scaling
factor for each TDR sensor in addition to the parameters
in the basic setup.

iv. Finally, in the Miller and position setup, we estimated
both the sensor positions and one Miller scaling factor
for each TDR sensor in addition to the parameters in the
basic setup.

2.4.1 1-D study

In order to investigate the extent to which the experiment at
ASSESS can be described with a 1-D model, we set up three
different cases with an increasing number of TDR sensors
per material (Table 4): case I includes the measurement data
of sensor 1 in material C and sensor 2 in material A, and
thus comprises one sensor per material. Case II includes two
sensors per material: sensors 10 and 11 in material C and sen-
sors 12 and 13 in material B. Case III includes three sensors
per material: sensors 25, 26, 27 in material A and sensors 28,
29, 30 in material B. Note (i) that the cases are located at dif-
ferent positions in ASSESS (Fig. 2) and (ii) that since the hy-
draulic potential is not measured in the domain covered with
these 1-D studies, the respective inversions are only based on
the TDR water content measurements.

As described above, the analysis is organized in four dif-
ferent setups (basic, position, Miller, and Miller and posi-
tion). The basic setup is adjusted for the 1-D studies, such
that not only the material functions of the materials with sen-
sors but also the saturated conductivity of the third material
(material A in case II and material C in case III) are esti-
mated for case II and case III. The other setups remain ac-
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– 

Figure 6. The available hydraulic potential hwt is measured at the
bottom of the groundwater well xλ and at the position of the ten-
siometer xτ . The data set, which is measured in the groundwater
well, is split according to the measurement times: the data measured
during the equilibration phases tε enter the Levenberg–Marquardt
algorithm (Sect. 2.3.1) directly, whereas the data measured during
the forcing phases tϕ are only used as a boundary condition for
the Richards equation (Sect. 2.2.1). The bulk relative permittivity
εb(xµ, tν) and the bulk soil temperature Tb(xµ, tν) are measured
at the position of the TDR sensors xµ at times tν . Additionally us-
ing the porosity φ(xµ), the bulk permittivity is transferred to wa-
ter content (Sect. 2.2.4). The water content data enter the initial
state estimation (Sect. A1.6) yielding an initial water content dis-
tribution and optional initial parameter values for the Levenberg–
Marquardt algorithm. The water content data are also directly used
in the Levenberg–Marquardt algorithm. Dashed grey arrows repre-
sent one-time preparation steps, whereas solid orange arrows repre-
sent the iterative steps of the Levenberg–Marquardt algorithm yield-
ing the final material parameters pfinal.

cordingly. Further details concerning the implementation of
the 1-D study are given in Sect. A2.1.

For each of the different setups, we ran an ensemble of
20 inversions, starting from Latin hypercube sampled initial
parameter sets in order to analyze the convergence behav-
ior. The sampling algorithm was implemented with the help
of the pyDOE package (https://github.com/tisimst/pyDOE).
For each setup, we only analyze the ensemble member with
minimal χ2 in the subsequent discussion (Sect. 3.1).

2.4.2 2-D study

In this study, we expand the investigated domain to two di-
mensions and analyze the performance of the improved rep-
resentation. To this end, we set up four different setups (ba-
sic, position, Miller, and Miller and position) as described
above. Since the positions of both the tensiometer and the
groundwater well are in the modeled domain, we use the
hydraulic potential measurement data as well as the TDR

Table 4. The 1-D study comprises three different cases which inves-
tigate the three materials with an increasing number of TDR sensors
per material at different locations in ASSESS (Fig. 2). Note that
each material is covered twice.

Case Sensors Materials Position (m)

I 1 and 2 C, A 16.16
II 10, 11 and 12, 13 C, B 10.95
III 25, 25, 27 and 28, 29, 30 A, B 1.26

measurement data in this study. Thus, the position setup is
adjusted such that both the positions of TDR sensors and
the tensiometer are estimated. All inversions for the 2-D
study are initialized with the initial state material functions
(Sect. A1.6) in order to bring out the quantitative effect of
the different representations on the resulting material prop-
erties. Further details concerning the implementation of the
2-D study are given in Sect. A2.2.

3 Results and discussion

In order to improve the quantitative understanding of the hy-
draulic behavior of ASSESS (Sect. 2.1), we evaluate a ba-
sic representation (Sect. 2.2) with a structural error analysis
(Sect. 2.3) that is implemented as outlined in Sect. 2.4. The
discussion of the results is done separately for the 1-D study
(Sect. 3.1) and the 2-D study (Sect. 3.2).

3.1 1-D study

3.1.1 Objectivity of the measurement data

The standardized residual for each case is presented in Fig. 7,
combining the resulting data of all applied TDR sensors. In-
vestigating them for case I, it is striking that all setups de-
scribe the data qualitatively equally well. Since the estima-
tion of the material properties is only based on one sensor
per material in this case, the parameterization offers enough
freedom to describe the data. Hence, it also accommodates
unrepresented model errors, such as the sensor position and
small-scale heterogeneities. Therefore, additional represen-
tation and estimation of TDR sensor positions or Miller scal-
ing factors do not lead to further improvement. The largest
residuals occur during highly transient phases. Compared to
the data, the simulated imbibition phase is too slow for sen-
sor 1 and too fast for sensor 2. Also the simulated drainage
phase is too slow for sensor 1 and drainage behavior of
sensor 2 is consistently wrong. This structural model–data
mismatch hints at unrepresented model errors due to the
restriction to a 1-D domain, which is further discussed in
Sect. 3.1.3. Still, the residuals of all setups are smaller than
5 standard deviations, which translates to a volumetric water
content of 0.035.
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Table 5. In order to analyze the results of the 1-D study, the per-
formance of the best ensemble members for each case and for each
setup are benchmarked with statistical measures. With increasing
numbers of included TDR sensors per material, the statistical mea-
sures for the basic setup indicate a worse description of the measure-
ment data. However, estimating the position and the Miller scaling
factor for each TDR sensor improves the description of the mea-
surement data significantly according to the statistical measures.

Case Setup eRMS eMA

I Basic 0.004 0.003
Position (P) 0.004 0.003
Miller (M) 0.005 0.004
M & P 0.004 0.003

II Basic 0.007 0.003
Position (P) 0.005 0.003
Miller (M) 0.004 0.003
M & P 0.004 0.003

III Basic 0.009 0.006
Position (P) 0.006 0.004
Miller (M) 0.005 0.003
M & P 0.004 0.002

The large residuals are not random and preferably occur
in transient phases. We attribute them to missing processes
in the dynamics or to biased parameters. As the curves in
the probability plot are basically centered at the origin, a sig-
nificant constant bias in the residuum can be excluded. The
according statistical measures are given in Table 5.

The eMA of the basic setup increases in case II, because
there are two sensors per material and the effective ma-
terial parameterization can not completely compensate for
the small-scale heterogeneity at the position of both sen-
sors simultaneously. Consequently, representing the small-
scale heterogeneity improves the description of the data. As
before, the largest residuals occur during highly transient
phases, especially during the drainage phase. Except for two
outliers, the residuals stay smaller than 5 standard deviations
here as well. Considering three sensors per material in case
III, the eMA increases even further in the basic setup. Conse-
quently, representing small-scale heterogeneities and uncer-
tainties in the sensor position in the Miller and position setup
improves the eMA by more than a factor of 2.

3.1.2 Separation of uncertain model components

Comparing the resulting material properties of the evaluated
ensemble members for the different cases and setups (Fig. 8),
we notice that the resulting soil water characteristic functions
are shifted within each material. During static phases, and
if only few measurement sensors are available, the parame-
ters for the estimated uncertain model components (Sect. 2.4)
can be correlated. However, during transient phases and if
a larger number of measurement sensors are available, the

distinct properties of these uncertain model components are
more clearly pronounced (Fig. 9 and Sect. 3.2.3).

We also ran the inversions without estimating the offset
to the Dirichlet boundary condition (Sect. A1.5), which are
not shown here. Besides destabilizing the convergence of the
Levenberg–Marquardt algorithm, this fully transfers the un-
certainty in the boundary condition to the sensor position.
Hence, setups that estimate the sensor position clearly out-
perform the others. Additionally, this does not remove the
shift of the soil water characteristics.

3.1.3 Lateral flow

The three cases cover the three materials at different loca-
tions in ASSESS and are based on distinct data with respect
to both quantity and data range.

This is most evident for material A which is located at the
bottom of ASSESS and nearly saturated in case I, whereas it
is at the top and rather dry in case III (colored dots in Fig. 2).
To illustrate that this leads to a different sensitivity on the un-
represented model errors, we highlight one example which
is most pronounced during the final equilibration phase. In
case III, the water content at the position of TDR sensors 25,
26, and 27 is higher than that in static hydraulic equilibrium,
leading to a drainage flux and a decrease in water content
(Fig. 4). However, in case I, at the position of TDR sensor 2,
the water content increases as the sensor monitors the relax-
ation of the capillary fringe. Due to the different hydraulic
properties of the materials in ASSESS, this relaxation also
includes unrepresented lateral flow.

In order to minimize the structural model–data mismatch
during this equilibration phase, the parameter estimation al-
gorithm increases the hydraulic conductivity to compensate
for the non-represented lateral flow with additional vertical
flow from above the sensor. Hence, the hydraulic conductiv-
ity of case I is larger than the hydraulic conductivity for both
case III and the 2-D study, which is discussed in Sect. 3.2.4.

The measurement data of material B used in the inversions
of case II and case III do not emphasize the relaxation of
the capillary fringe strongly. Hence, we expect that the ef-
fect of the unrepresented lateral flow is not as significant as
for material A, leading to relatively congruent resulting ma-
terial functions. This expectation is confirmed by the results,
except for those setups of case II, in which no Miller scaling
factor was estimated. These setups show a larger curvature of
the soil water characteristic and of the hydraulic conductiv-
ity function which is explained in Sect. 3.2.4 in more detail.
Additionally, we can identify the previously discussed shift
of the soil water characteristic (Sect. 3.1.2).

Similarly as for material B, the inversions for material C
are not strongly influenced by the relaxation of capillary
fringe. The large uncertainty in the saturated hydraulic con-
ductivity reflects the low sensitivity of the measurement data
on this parameter due to the lack of measurements influenced
by the saturated material C.
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Figure 7. For the 1-D study, the standardized residuals of the best ensemble member are visualized over time (a, c, e) and over the theoretical
quantiles of a Gaussian with the estimated standard deviation of the TDR measurements (0.007; b, d, f). The cases are analyzed with four
setups: basic, position, Miller, and Miller and position. The more sensors per material are used in the inversion, the worse the representation
of the basic setup gets. In this case, representing uncertainties with respect to the sensor position and small-scale heterogeneities improves
the representation substantially. The decreasing slope of a linear fit (thin lines in the probability plots), which is based on the standardized
residuals within [−2,2] theoretical quantiles, also indicates this improvement.

3.1.4 Quality of the initial state material functions

The curvature of the soil water characteristic for the inver-
sion results is reasonably close the initial state material func-
tions (Sect. A1.6), although the initial parameter sets for the
1-D inversions were obtained with Latin hypercube sam-
pling. This allows to use the initial state material functions
to initialize gradient-based inversion methods. The estimate
of the initial state material function for material C deviates
strongest from the inversion results compared to the other
two materials, since in material C only few sensors are avail-
able to assess the form of the capillary fringe. Naturally, the
better the available number of TDR sensors is spread over
the water content range, the better the fit of the initial state
parameters gets. Iteratively restarting the inversion using the
previous inversion results as initial state material functions is
likely to improve the representation. Since Ks and τ are not
estimated along with the initial water content distribution but
prescribed a priori, the hydraulic conductivity functions as-
sociated with the initial state show large deviations from the
inversion results.

3.2 2-D study

3.2.1 Objectivity of the measurement data

For the 2-D study, the number of sensors is comparable to the
number of hydraulic material parameters. Therefore, estimat-
ing sensor positions and Miller scaling factors increases the
total number of parameters and thus the computational cost
considerably (basic: 17, position: 41, Miller: 41, Miller and
position: 65). The total number of analyzed TDR sensors in-
creased to 25, corresponding to 5, 12, and 8 TDR sensors
for the materials A, B, and C, respectively. In the 1-D study,
the residuals increased considerably during transient phases
reaching up to 5 standard deviations in the Miller and posi-
tion setup (except for three outliers). Due to the larger num-
ber of considered TDR sensors in the 2-D study, the measure-
ment data cover more architectural situations and thus more
complicated flow phenomena. In particular, there are more
transient phases observed than in the 1-D studies. Therefore,
we expect that (i) the resulting parameters are more objective
(not shown, however), (ii) the standardized residuals at least
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Figure 8. The estimated material functions of the best ensemble member are shown for each of the three cases (case I, case II, and case III)
and the four setups of the 1-D study. Additionally, we present the material functions resulting from the initial state estimation (Sect. A1.6).
The plot range is adjusted to the available water content range for all inversion results. The number of water content measurements within
intervals of 0.05 is indicated with histogram bars for each case. The height of these bars is normalized over all figures in this work. The
main message of this figure is that unrepresented model errors may lead to biased hydraulic parameters. In particular, this can be seen by
comparing the hydraulic conductivity K of material A for cases I and III.

in the basic setup increase, and (iii) estimating sensor posi-
tions and Miller scaling factors improves the description of
the TDR data significantly. The standardized residuals con-
firm the last two expectations (Fig. 10). However, similar to
the 1-D study, even the residuals of the Miller and position
setup still reach more than 5 standard deviations for the 2-D
representation.

In order to understand this deviation in more detail, we in-
vestigate the remaining structural model–data mismatch dur-
ing the final drainage and equilibration phases between 30
and 40 h. The largest residuals occurring during the drainage
phase around 30h come from TDR sensors 6, 9, 13, and 17.
We identified that these sensors are located close to a com-
paction interface (Sect. A1.6). Hence, the large residuals in-
dicate that this horizontal compaction layer is not correctly
represented with a point-scale representation of the small-
scale heterogeneity.

The largest residuals during the final equilibration phase
between 30–40 h come from TDR sensors 2 and 22 close
to the capillary fringe. We attribute them to unrepresented
processes in the dynamics, such as hysteresis or 3-D flow
(Sect. 3.2.2).

Due to the persisting large residuals during transient
phases, the probability plot (Fig. 10b) displays a characteris-
tic S-shaped curve for the TDR data (Sect. 2.3.3). The large
residuals during transient phases are evidently different from
the small residuals during static phases. This is corroborated
by a linear fit based on the residuals within [−2,2] theoret-
ical quantiles. For both the Miller and the Miller and posi-
tion setups, the fits yield a slope of less than 1, indicating
that distribution of the small residuals is more narrow than
a Gaussian with a standard deviation of 0.007. This stan-
dard deviation is a measure that includes both precision and
accuracy. We calculated the precision of the evaluated mea-
surement data with a cubic spline fit yielding a precision of
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Figure 9. The estimation of uncertain model components can lead
to correlated estimated parameters, e.g., as an incorrect position of
the groundwater table (z0) can be compensated by changing h0 and
λ during static phases. During transient phases, however, the com-
ponents have distinct effects, e.g., as λ also changes the conductivity
function. Hence, the ability of the parameter estimation algorithm
to separate these uncertainties depends on the available measure-
ment data. Also, the more sensors are available, the fewer uncertain
model components can be compensated simultaneously by the pa-
rameterization.

0.001, 0.007, and 0.006m for the water content, tensiome-
ter, and manual groundwater position data, respectively. With
complete quantitative understanding (Sect. 2.3), the standard
deviation of the residuals would correspond to this precision.
Lacking ground truth, the accuracy of the measurement data
is unknown a priori and may depend on the hydraulic state.
In this study, its estimated contribution dominates the size of
the standard deviations. Our results show that the model can
represent static phases better than highly transient phases and
that the accuracy of the measurement data is higher than that
estimated a priori. The statistical measures for the water con-
tent data given in Table 6 reveal that the eMA of the basic
setup merely increases by less than a factor of 2 compared
to case III of the 1-D study. Estimating sensor positions and
Miller scaling factors improves the description of the TDR
measurement data by more than a factor of 2 leading to a
eMA of 0.004.

3.2.2 Hydraulic potential

The description of the hydraulic potential data only improves
in those setups in which the sensor position is estimated
(Fig. 10 and Table 6). Also, the temporal structure of the
model–mismatch does not change significantly with the dif-
ferent setups. The data show a gradient of the hydraulic pres-
sure between the tensiometer and the groundwater well dur-
ing the forcing phases (Fig. 3). Considering symmetry, we
also assume this gradient of the hydraulic potential in the ne-
glected third dimension. Hence, the forcing via the ground-
water well leads to a 3-D water flux during the experiment.
This makes a correct representation of the groundwater ta-
ble impossible in 2-D. Consequently, the simulation should

Table 6. For each setup of the 2-D study, the results are bench-
marked with statistical measures. Similar to the 1-D study, estimat-
ing the sensor position and the Miller scaling factors improves the
statistical measures related to the water content significantly. The
statistical measures for the position of the groundwater table in-
cluding both the tensiometer and the groundwater well data improve
only for setups in which the sensor positions are estimated.

Water content Water table

Setup eRMS eMA eRMS eMA

Basic 0.017 0.011 0.04 0.03
Position (P) 0.011 0.006 0.02 0.02
Miller (M) 0.008 0.005 0.03 0.03
M & P 0.006 0.004 0.02 0.02

predict a higher position of the groundwater table in the well
during imbibition phases and a lower groundwater table dur-
ing the drainage phases. This expectation is confirmed by
the standardized residuals shown in Fig. 10. Thus, the struc-
tural model–data mismatch of the tensiometer data indicates
that employing the groundwater table as a Dirichlet bound-
ary condition overestimates the forcing in the simulation.
Therefore, the simulated hydraulic pressure during the imbi-
bition is larger than the measured one which leads to neg-
ative residuals. As expected, this behavior reverses during
drainage phases.

3.2.3 Separation of uncertain model components

The 2-D study is based on a larger number of water con-
tent measurements, additional hydraulic potential measure-
ments, and more complicated flow phenomena compared to
the previously discussed 1-D study (Sect. 3.1). This improves
the ability of the Levenberg–Marquardt algorithm to separate
uncertain model components (Sect. 3.1.2) and decreases the
shift in the soil water characteristics of the different setups
compared to the 1-D study (Fig. 11).

3.2.4 Effect of unrepresented model errors

Each setup starts from the same initial material functions
(Sect. A1.6). Therefore, the difference between the resulting
material properties of the setups (Fig. 11) is a direct conse-
quence of the representation of uncertainties in the sensor
position and small-scale heterogeneities.

To investigate this, consider the initial state estimation for
material B shown in Fig. A2. The measurement data of sen-
sors 5, 12, and 29, which are approximately 0.6m above
groundwater table, deviate from the estimated function con-
siderably. In order to cope with this deviation, the least-
squares fit for the initial state draws the estimated soil water
characteristic to higher water contents. Due to the rigidity of
the Brooks–Corey parameterization, this causes an overesti-
mation of the water content at the positions of the sensors
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Figure 10. The standardized residuals of the 2-D study are visualized over time (a, c, e) and in a probability plot (b, d, f) for all TDR and
hydraulic potential sensors. The color associates the results with the four setups of the study (basic, position, Miller, and Miller and position).
Same as for the 1-D study, the standard deviation for the TDR measurement data is chosen as 0.007. We choose the standard deviation for
both the manual measurements in the groundwater well and the tensiometer measurement data as 0.025m. The representation of uncertainties
with respect to the sensor positions and small-scale heterogeneities improves the description of the TDR data quantitatively. The decreasing
slope of a linear fit (thin lines in the probability plots), which is based on the standardized residuals within [−2,2] theoretical quantiles, also
indicates this improvement. The structural model–data mismatch for the hydraulic potential data is mainly due to (i) uncertainties concerning
the position of the tensiometer and (ii) unrepresented 3-D flow phenomena.

Table 7. We present the effective hydraulic material parameters obtained with the Miller and position setup of the 2-D study. The formal
standard deviations of the parameter estimation are given with the understanding that these are specific to the applied algorithm and will
change for different algorithm parameters. The estimations for the saturated hydraulic conductivity of the gravel layer and for the offset to
the Dirichlet boundary condition are 10−0.728±0.006 ms−1 and −0.034 ± 0.001m, respectively.

Material h0 (m) λ (−) Ks (ms−1) τ (−) θr (−) θs (−)

A −0.184 ± 0.005 1.94 ± 0.07 10−4.212±0.004 0.33 ± 0.07 0.025 ± 0.004 0.41
B −0.174 ± 0.004 2.54 ± 0.06 10−3.77±0.02 0.78 ± 0.05 0.035 ± 0.001 0.36
C −0.159 ± 0.004 3.28 ± 0.02 10−3.70±0.02 0.74 ± 0.06 0.026 ± 0.002 0.38

0.8 and 1.4m above the groundwater table (sensors 28 and
18). If the uncertainty in sensor position and small-scale het-
erogeneities are represented in the model, the outlying mea-
surement data can be described without altering the effective
material properties.

It is worth noting that although the uncertainty of the mea-
sured grain size distribution (Table 1) is large, the resulting

material properties confirm the measurements, in that mate-
rial A is the finest and the properties of materials B and C are
similar. Our final best estimates for the effective hydraulic
material properties for the Miller and position setup are given
in Table 7.
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Figure 11. We show the resulting material functions for all three materials involved in the 2-D study which is analyzed with the four setups
(basic, position, Miller, and Miller and position). The plot range is adjusted to the available water content range for each material. The height
of the histogram bars denotes the number of available water content measurements and is normalized over all figures in this work. Since
the inversions for all setups are initialized with the material functions resulting from the initial state estimation (Sect. A1.6), the difference
between the results is directly linked to the estimation of sensor positions and small-scale heterogeneities. For direct comparison, the results
of the 1-D study are also shown.

4 Summary and conclusions

We applied a structural error analysis on a representation of
the effectively 2-D architecture ASSESS. This representa-
tion includes TDR and hydraulic potential measurement data
which were acquired during a fluctuating groundwater table
experiment. Based on the assumption that structural model–
data mismatch indicates incomplete quantitative understand-
ing of reality, we implemented a 1-D and a 2-D study orga-
nized in different setups with increasingly complex models.
We started with the estimation of effective hydraulic material
properties and we added the estimation of sensor positions,
small-scale heterogeneity, or both. It was demonstrated that
the structural error analysis can indicate significant unrepre-
sented model errors, such as the slope of the ASSESS test
site.

We showed that estimated material properties resulting
from a 1-D study are biased due to unrepresented lateral flow.
Analyzing representations with increasing data quantity, it

was also found that the fewer sensors are available per mate-
rial, the stronger is the influence of the unrepresented model
errors on the estimated material properties. We illustrated
that the more complicated flow phenomena are represented,
the better uncertain model components can be separated by
the parameter estimation algorithm leading to more reliable
material properties. Generally, representing sensor position
uncertainty and small-scale heterogeneity improved the de-
scription of the water content data quantitatively in setups
with many sensors. Yet, the residuals of the water content
data still reach more than 5 standard deviations during tran-
sient phases (Fig. 10). We attribute this to remaining repre-
sentation errors in the dynamics, forcing, and compaction in-
terfaces.

In order to minimize the error in the initial state, we devel-
oped a method to estimate the initial water content distribu-
tion based on TDR measurements and an approximation of
hydraulic head which additionally yields an approximation

www.hydrol-earth-syst-sci.net/21/4301/2017/ Hydrol. Earth Syst. Sci., 21, 4301–4322, 2017



4316 S. Jaumann and K. Roth: Effect of unrepresented model errors

of the soil water characteristic. We found that this approxi-
mation is reasonably close to inversion results and that the
according parameters can be used as initial parameters for
gradient-based optimization. Since all the inversions of the
2-D study are initialized with these parameters, the compar-
ison of the results directly displays the quantitative effect of
the according unrepresented model errors on the estimated
material properties.

Since the three approaches ((i) initial state estimation,
(ii) 1-D inversion, and (iii) 2-D inversion) allow to estimate
effective hydraulic material parameters, we finally discuss
their levels of improving the quantitative understanding of
soil water dynamics.

The initial state estimation requires at least three water
content measurements per material over the full water con-
tent range and the position of the groundwater table to es-
timate the parameters for soil water characteristic for one
specific equilibrated hydraulic state. Lacking direct measure-
ments of the unsaturated hydraulic conductivity, the method
cannot estimate the remaining parameters Ks and τ required
to model soil water dynamics. Additionally, it is highly sus-
ceptible to uncertainties related to the sensor position and
small-scale heterogeneities. Yet, the method is fast (a few
seconds on a local machine) and suitable for providing initial
parameters for gradient-based inversion methods.

The 1-D inversions are comparably fast (several minutes
up to several hours on a local machine) and can represent
transient states. In contrast to the initial state estimation, 1-D
inversions can estimate all parameters of the material func-
tions. However, more complicated flow phenomena includ-
ing lateral flow can not be represented. This leads to biased
parameters.

The unique characteristics of the 2-D inversions (days on a
cluster with same number of cores as parameters) is the abil-
ity to represent lateral flow phenomena which are typically
monitored with a high number of sensors. Hence, the consis-
tency of the representation is implicitly checked. Therefore,
we expect that of the three approaches discussed, this one
yields the most reliable material properties. Still, unrepre-
sented model errors including 3-D flow phenomena influence
the results.

Data availability. The underlying measurement data are available
at http://ts.iup.uni-heidelberg.de/data/jaumann-roth-2017-hess.zip.
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Appendix A: Details of the implementation

A1 Representation

A1.1 Richards equation solver

The Richards equation (Eq. 1) is solved numerically with
µϕ (muPhi, Ippisch et al., 2006) on a rectangular structured
grid using a cell-centered finite volume scheme with full up-
winding in space and an implicit Euler scheme in time. The
non-linear equations are linearized with an inexact Newton
method with line search and the linear equations are solved
with an algebraic multigrid solver.

A1.2 Orientation of ASSESS

ASSESS is not built completely rectangular. Most impor-
tantly, both the surface and the ground are not horizontal but
primarily inclined towards the groundwater well with a mean
slope of≈− 0.1

20 =−0.005. Since the applied Richards solver
µϕ demands a rectangular structured grid, the geometry was
rotated. This rotation was compensated by a counter-rotation
of the gravity vector g ≈ (0.0708,−9.8097)>.

A1.3 Evaluation of TDR traces

The volumetric water content is evaluated from measured
TDR traces (Fig. A1). As inflection points of the measured
signal can be chosen to mark the reflections at the probe head
and at the end of rods, the evaluation of the two-way signal
travel time is based on detecting the maxima of the first tem-
poral derivative of the recorded trace. To increase the pre-
cision of the evaluation, parabolas are fitted to the detected
maxima. Finally, the maxima of the parabolas are employed
to evaluate the two-way signal travel time. With the help of
individual calibration data for each sensor comprising mea-
surements in air and desalinated water, the travel time is con-
verted into the relative permittivity εb of the bulk.

A1.4 Sensor position and small-scale heterogeneity

The numerical solution of the Richards equation (Eq. 1)
is discretized in space with a rectangular structured grid
(Sect. A1.1). Generally, the simulated value for the modeled
position of a sensor is bilinearly interpolated from the simu-
lated values at the center of the surrounding grid cells. Due
to measurement uncertainties and subsidence after the con-
struction, Antz (2010) and Buchner et al. (2012) assess the
uncertainty concerning positions of sensors and material in-
terfaces in ASSESS to ±0.05m with respect to the model.
However, since imbibition fronts can be very steep in sandy
soils (Dagenbach et al., 2013; Klenk et al., 2015) and the
measurement volume of the applied sensors is small, fluctu-
ating groundwater table experiments are very sensitive to the
sensor position. Hence, we (i) enable the parameter estima-
tion algorithm (Sect. 2.3.1) to estimate the sensor positions

and (ii) implement the measurement volume of the TDR sen-
sors by averaging the simulation data within a measurement
radius of 0.015m.

In order to represent the heterogeneity of ASSESS which
is not covered by describing the different sand types with dis-
tinct material properties due to the small-scale variability of
the pore space, the center of each grid cell is associated with
a Miller scaling factor (Eq. 4) that is initialized to 1.0. As the
information about this small-scale heterogeneity only enters
via the TDR measurement data, the exact position of each
TDR sensor in the grid is also associated with a Miller scal-
ing factor. This scaling factor may be estimated with the pa-
rameter estimation algorithm (Sect. 2.3.1). The scaling fac-
tors in the neighborhood of the TDR sensor are determined
with a bivariate Gaussian distribution in horizontal and ver-
tical directions. This distribution is centered at the position
of the TDR sensor and its amplitude corresponds to the as-
sociated Miller scaling factor. With a standard deviation of
0.015m in both directions, it approaches 1.0 with increas-
ing distance from the TDR sensor. Finally, this distribution is
projected on each grid cell, yielding the applied scaling fac-
tors which are only different from 1.0 in the neighborhood of
the TDR sensors.

A1.5 Boundary condition

Generally, the boundary of the simulation is implemented
with a Neumann no-flow condition. However, during the
forcing phases, we prescribe the measured groundwater ta-
ble as a Dirichlet boundary condition at the position of
the groundwater well. In addition to the orientation of AS-
SESS (Sect. A1.2), the uncertainty of the sensor positions
(Sect. A1.4) directly translates to an uncertainty in the
Dirichlet boundary condition. Since representation errors of
the forcing have a large impact on the resulting parameters,
we implemented an optional offset to the Dirichlet boundary
condition which can be estimated (Sect. 2.4).

A1.6 Initial state estimation

Since we use an inversion method for parameter estimation
(Sect. 2.4), starting as close as possible to the measured ini-
tial state is key. Usually, this is achieved with a spin-up phase;
however, it is computationally very expensive.

Hence, we developed a method to estimate the initial water
content distribution based on TDR measurement data.

In the first step, we assume static hydraulic equilibrium
and approximate the matric potential at the measured posi-
tion of the TDR sensors with the negative distance of this
position to the groundwater table. Subsequently, the approxi-
mated matric potential is associated with the measured water
content for each sensor. Further, we assume spatially homo-
geneous and temporally constant material properties which
allow us to group the data of the TDR sensors by material,
together with the approximated matric potential and the mea-
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Figure A1. The evaluation of a TDR trace is based on the detection of the inflection points caused by the probe head and the end of the rod.
This is done automatically after calculating of the first temporal derivative of the trace. Parabolas are fitted to the maxima of the temporal
derivative to increase the precision of the evaluated signal travel time.

sured water content. For each material, we then fit the param-
eters h0, λ, and θr of the Brooks–Corey parameterization to
the approximated matric potential and the measured water
content (Fig. A2). The saturated water content θs is assumed
to be known from core samples. This yields an approxima-
tion for the initial water content distribution between the
TDR sensors. With the resulting parameter values for each
material, the subsurface material distribution, and the posi-
tion of the groundwater table, we can calculate an estimation
of the initial water content distribution in ASSESS (Fig. A3).

As the parameters for the Brooks–Corey parameteriza-
tion are derived from static measurement data, we may use
them as initial parameter values for computationally expen-
sive gradient-based inversions of dynamic measurement data
(Sect. 2.4.2). The missing initial parameter values τ = 0.5
and Ks = 8.3 · 10−5 ms−1 are taken from Carsel and Parrish
(1988). We refer to these parameter sets as initial state mate-
rial functions in this work.

In particular due to (i) a limited number of TDR sensors,
(ii) missing hydraulic potential measurements at the position
of the TDR sensors, and (iii) spatial small-scale heterogene-
ity present in the materials, structural deviations between the
estimation and the measurements occur, which indicate lim-
itations of describing ASSESS with effective soil hydraulic
material properties.

The water content measured by TDR sensors 5, 12, and
29 deviate structurally from the estimation of the initial state
for material B (Fig. A2). Klenk et al. (2015, Figs. 1b and 6)
presented GPR measurements which indicate that at least
TDR sensors 6, 9, 13, 17, and 22 are closely below a com-
paction interface. However, the position of this interface was
not measured during the construction process. Thus, these
TDR sensors are monitoring a compacted pore structure. In
contrast, TDR sensors 5, 12, and 29 are situated in rather
undisturbed areas. Hence, as most of the TDR sensors are
influenced by the compaction interfaces, the analysis of this
measurement data is likely to underestimate the effective wa-

ter content leading to a biased soil water characteristic for
material B. This is a typical situation encountered with point-
like sensors in heterogeneous media.

A2 Setup

A2.1 1-D study

The forward simulations were calculated with a grid reso-
lution of 0.005m and 10−8 as a limit of the Newton solver
(Sect. A1.1). Following Jaumann (2012), the standard devi-
ation of the TDR measurements is assumed as 0.007. We
use the manually measured groundwater table data as a
Dirichlet boundary condition. Uncertainties concerning the
position of the sensors and the subsurface material inter-
faces directly translate to uncertainties in the boundary con-
dition (Sect. A1.5). Accounting for the orientation of AS-
SESS (Sect. A1.2), we add a constant offset to the Dirichlet
boundary condition for each case (case I: −0.02m, case II:
−0.05m, case III: −0.12m). In order to minimize the input
error, we also estimate this offset in the inversion. If TDR
sensor positions are estimated, these are initialized to the
measured position. Similarly, the Miller scaling factors are
initialized to 1.0.

A2.2 2-D study

The 2-D simulations in this work are calculated with a grid
resolution of 0.2m× 0.02m. The limit of the Newton solver
is set to 10−8 (Sect. A1.1). Like for the 1-D studies, we
choose 0.007 as the standard deviation of the TDR measure-
ments. The standard deviation of the tensiometer (0.025m) is
assessed from the accuracy (±5hPa) as specified by the man-
ufacturer. In order to transfer the given uniform distribution
with range±5hPa≈ ±0.05m to a Gaussian distribution, we
associate this range with the 2σ interval of a Gaussian (5
to 95%). This leads to an approximate standard deviation of
(0.05m · 2)/4= 0.025m. Lacking an independent estimate
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Figure A3. The estimated initial water content distribution is based on the TDR measurement data (Fig. A2, shown as face color of the
circled dots). Since the saturated water content θs is fixed for each material a priori, only TDR sensors in unsaturated material are shown.
Due to the orientation of ASSESS (Sect. A1.2), the groundwater table is slightly slanted. The black lines indicate material interfaces, whereas
the white lines indicate compaction interfaces, which were introduced during the construction of ASSESS. Note the different scales on the
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for the accuracy of the manual groundwater table position
measurement, we employ the accuracy of material interfaces
in ASSESS (Sect. A1.5). Same as for the tensiometer, this
leads to a standard deviation of 0.025m. Some TDR sensors
are located close to or even below the groundwater table.
Therefore, the position and the Miller scaling factor could
not be estimated for TDR sensors. Hence, no position was
estimated for sensors 7, 8, 14, 15, 16, 23, 24, 31, and 32 and
no Miller scaling factor was estimated for sensors 8, 14, 15,
16, 17, 23, 24, 31, and 32.
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