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Abstract. Unconsolidated sediment cover thickness (D)
above bedrock was estimated by using a publicly available
well database from Norway, GRANADA. General challenges
associated with such databases typically involve clustering
and bias. However, if information about the horizontal dis-
tance to the nearest bedrock outcrop (L) is included, does
the spatial estimation of D improve? This idea was tested
by comparing two cross-validation results: ordinary kriging
(OK) where L was disregarded; and co-kriging (CK) where
cross-covariance between D and L was included. The anal-
ysis showed only minor differences between OK and CK
with respect to differences between estimation and true val-
ues. However, the CK results gave in general less estimation
variance compared to the OK results. All observations were
declustered and transformed to standard normal probabil-
ity density functions before estimation and back-transformed
for the cross-validation analysis. The semivariogram analy-
sis gave correlation lengths for D and L of approx. 10 and
6 km. These correlations reduce the estimation variance in
the cross-validation analysis because more than 50 % of the
data material had two or more observations within a radius
of 5 km. The small-scale variance of D, however, was about
50 % of the total variance, which gave an accuracy of less
than 60 % for most of the cross-validation cases. Despite
the noisy character of the observations, the analysis demon-
strated that L can be used as secondary information to reduce
the estimation variance of D.

1 Introduction

Global warming and natural climate fluctuations give rise to
urgent calls from water authorities to quantify impacts on
the hydrological cycle. These needs are based on numerous
indications of expected changes in the pattern of precipi-
tation, temperature and vegetation (Haddeland et al., 2013;
Bierkens, 2015; Tang and Oki, 2016). A cardinal question in
hydrological modeling is the storage capacity of water in the
catchment. Storage capacity determines catchment response
to input from rainfall or snowmelt events. Storage volumes
are therefore important for river discharge calculations and
water balance assessments (Meyles et al., 2003; Tromp-van
Meerveld and McDonnell, 2006; Beven, 2006; Skaugen et
al., 2015). The primary storage capacity in many catchments
is governed by the spatial distribution of sediments in the
landscape (Lamb et al., 1997).

Most hydrological models use lumped averages for phys-
ical parameters in space, either for large areas or for the en-
tire catchments (Beven and Binley, 1992; Devi et al., 2015).
In some of these models, the storage volume is a calibration
parameter that may be difficult to assess. In such cases the
interpretation of the storage parameter may be misleading or
even inconsistent with physics (Skaugen and Onof, 2013).
Thus, to increase prediction reliability, calibration parame-
ters should be replaced by physically based estimates as far
as possible.

Soil properties have been registered and mapped by na-
tional authorities for many years, but the same attention has
not been directed towards the sediment thickness and the
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Figure 1. Surface topography T , sediment thickness D, and
bedrock topography B. Observations of Di are indicated in three
boreholes (i = 1,2,3) and with the associated horizontal distance
to the nearest outcrop (Li ). In areas where B is not exposed, B can
be estimated by using observations ofD as the primary variable and
information of L as secondary information.

bedrock topography. Some remarkable exceptions do exist.
One example is the bedrock topography map of Iowa, USA
(Witzke et al., 2003). This map was constructed by using well
data and digital soil maps that also included observations of
outcrops and sparse cover (< 1 m) of sediments (R. R. An-
derson, personal communication, 2011). In the study pre-
sented below, similar data sources were used: a public well
database and geological maps showing exposed bedrock and
very thin cover of sediments. The intention with this paper is
to test simple geostatistical methods to produce similar maps
with less consumption of time.

Monitoring of environmental variables takes place as a
response to an increasing awareness of human impact on
nature. A large number of such variables are available to-
day in public databases. One example is the Norwegian well
database GRANADA (NGU, 2016a). According to Norwe-
gian legislation, new wells, boreholes and probe drillings
are reported to the Norwegian Geological Survey (Lovdata,
1996). One of the variables stored in GRANADA is the thick-
ness of unconsolidated sediments at the borehole location
D(ui). The purpose of this study was to explore the possi-
bilities of using recordings of D(ui) to estimate sediment
thickness E[D(u)], and estimation variance Var[D(u)]. The
number of recorded D(ui) is increasing for every day, but
the average spatial density of D(ui) is still relatively sparse.
Hence, to improve the estimation quality, which in this con-
text means to minimize the estimation variance Var[D(u)],
an auxiliary function is attached to D(u), namely the hori-
zontal distance to the nearest outcrop L(u) (Fig. 1).

L(u) is interesting to explore as a secondary variable be-
cause it is easy to derive at any location of interest. The statis-
tical relation, however, between D(u) and L(u) is not obvi-
ous except when the bedrock is exposed to the atmosphere. If
L(uj )= 0, then by definition D(uj )= 0. It does not imply,
however, that if L(uj ) is small, D(uj ) is also small, because
the bedrock topography may be very irregular or even discon-
tinuous in some places. The contrary is also true: if L(uj ) is
enormous, then D(uj ) is not necessarily always large. The
reason is of course that the bedrock may undulate below a
thin cover of sediments. Even though there are local anoma-
lies, there might exist a statistical relation between L(u) and
D(u) that could be used to reduce the estimation uncertainty
of D(u).

It should be emphasized that the relation between D(u)
and L(u) depends on the geological setting. The data used
for the current study are taken from an area where the distri-
bution of unconsolidated sediments is determined by the last
glaciation period.

Before presenting the data material in more detail, some
statistical challenges should be mentioned. In brief, these
challenges are related to asymmetric probability density
functions (pdfs), clustering, and bias of empirical data.

High-resolution environmental data usually deviate
strongly from Gaussian pdfs. The experimental pdfs of
D(ui) and L(ui) reveal a majority of small values and a
few extremely large values. Standard Gaussian statistics can
therefore not be applied directly, at least not without mod-
ifications. The challenge of non-Gaussian pdfs is relevant
for all problems dealing with processes at different scales.
Bayesian statistics have given successful contributions to
the estimation of non-Gaussian variables by using Markov
chain Monte Carlo (MCMC) simulation algorithms and by
including independent (a priori) information (Omre and
Halvorsen, 1989; Andrieu et al., 2003). Recently, an efficient
numerical method was introduced (Rue et al., 2009). In
this method the estimation is expressed as a stochastic
partial differential equation and the pdfs are derived for
heterogeneous stochastic fields.

It is beyond the scope of this article to review the large
number of different methods, but it should be kept in mind
that there exist numerous methods that are available for ex-
ploring environmental data. The present study uses the nor-
mal score transform (Deutsch and Journel, 1998), which
means that after the transform, standard Gaussian statistics
were utilized for estimation and afterwards transformed back
to the original sampling domain.

Environmental data are prone to preferential sampling.
Preferential sampling usually implies clustering and bias. In
this context clustering means inhomogeneous sampling fre-
quency in space, while bias is systematic oversampling (or
undersampling) with respect to low (or high) values. Bias
and clustering may appear as independent processes, but they
may also be related to each other by another (hidden) fac-
tor. The data material used for the current study was af-
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fected by serious clustering. The reason is simply that wells,
boreholes and probe drillings are located where people live.
Urban areas account for a higher density of observations
than rural or remote areas (Fig. 2). Clustering affects the
estimation of statistical moments, and the effect of over-
and under-representation of observations should therefore be
suppressed.

Omre (1984) suggested calculating Thiessen polygons to
control clustering effects. The area of the polygons is pro-
portional to the weight coefficients associated with the dif-
ferent observations. In other studies observations are iter-
atively removed in the calculations of statistical moments
(Olea, 2007). For the current study, a grid-based method
was applied where declustering weights were obtained by
gridding the sampling domain. The number of observations
within each grid cell were used to calculate weight coeffi-
cients (Deutsch and Journel, 1998). In this way areas with a
high density of observations received less weight than areas
with less frequent observations.

Biased experimental data are ubiquitous in environmental
science. A prominent example is observations of precipita-
tion. Several studies document a systematic deficit in the ob-
servations due to wind and turbulence (Wolff et al., 2015).
In the context of sediment thickness D(u), there are also
reasons for systematic underrepresentation of observations
with largeD(ui). In locations whereD(u) is large, it is more
likely that drilling is terminated before reaching the base-
ment, because of the drilling costs, than in locations with less
sediment thickness. Abandoned wells are not recorded in the
database, and the result is a systematic overrepresentation of
wells with minorD(ui). The working hypothesis is to use the
statistical relation betweenD(u) and L(u) to improve the es-
timates of D(u) in a similar way to how wind speed is used
as secondary information for better estimates of precipitation
(Wolff et al., 2015).

2 Material

2.1 Point observations of sediment thickness

In 1996, Norwegian authorities implemented mandatory re-
porting of all drillings related to groundwater in mainland
Norway (Lovdata, 1996). The purpose of the legislation was
to provide the society with relevant groundwater observa-
tions. The Geological Survey of Norway (NGU) manages
the regulations and stores the data in the GRANADA well
database. As a public service, the data are freely accessible
for downloading (NGU, 2016a). According to recent statis-
tics, about 44 % of the recorded boreholes were drilled for the
purpose of energy extraction (NGU, 2016b). At the startup
of this study the total number of recorded observations was
54 194 (Table 1). Of these recordings, 48 628 were boreholes,
3740 wells were in unconsolidated sediments, and 1826 were
probe drillings. Explicit documentation of D was not avail-

able for all GRANADA recordings. For boreholes, however, it
is possible to derive D with quite high precision by using in-
formation of the casing length. A casing is necessary in loca-
tions with unconsolidated material to prevent sediments from
entering the well. Because casing is a considerable cost, the
casing length is usually reported. Based on the GRANADA
recordings, the casing was on average drilled 2 m into the
bedrock. Hence, in cases where only casing length was re-
ported, D was set equal to the casing length minus 2 m. In
the following, the GRANADA recordings are referred to as
boreholes because this is the vast majority of the data mate-
rial.

2.2 Land cover information

The secondary variable, L, was calculated from digital maps
of unconsolidated sediments (NGU, 2016c). The total areal
extensions of different sediments are listed in Table 1. The
sediments are represented in terms of polygons in a geo-
graphical information system (GIS). Sediments covered by
water (lakes, rivers, and glaciers) are not included in Table 1.
The total sum of land cover polygons is 307 104 km2, while
the total area of mainland Norway is 323 781 km2 (Kartver-
ket, 2016). The difference should in principle be identical
to the areal extension of lakes, rivers and glaciers. Thus,
according to the land cover polygons (Table 1), water cov-
ers 5.2 % of mainland Norway. Updated figures from the
Norwegian Mapping Authority, however, show that lakes
(5.7 %), glaciers (0.8 %) and rivers (0.4 %) constitute to-
gether 6.9 % of mainland Norway (Kartverket, 2016). The
difference (1.7 %) indicates the irreducible uncertainty for
this kind of statistics. The relative uncertainty for individ-
ual categories is higher because positive and negative devi-
ations cancel out each other. It is also important to keep in
mind that the actual uncertainty, with respect to areal infor-
mation, increases with decreasing size of the land category.
This precaution is relevant when point information from one
data source (GRANADA) is combined with areal information
from another source (GIS maps).

2.3 Geological setting

Before explaining the primary screening of boreholes, a few
words on the geological setting are required. The vast bulk
volume of unconsolidated sediments in mainland Norway is
from the last glaciation (Weichselian). More than 90 % of
the glacial erosion products were deposited offshore, and ex-
posed bedrocks or sparse covers of sediments characterize
the Norwegian landscape (Olsen et al., 2013). Here, in the
current study, the term “exposed bedrock” includes polygons
identified as uncovered bedrock (id. 130, Table 1). In ad-
dition, polygons labeled as “exposed bedrock or very thin
cover of soil or organic matter” were included (id. 100, 101
and 140, Table 1). Exposed bedrock constitutes about 35 %
of mainland Norway according to this definition. Patchy and
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Figure 2. Location of wells, boreholes and probe drillings in the GRANADA database (NGU, 2016a); 20 432 observations (Nt ) were included
in this study (see the text for screening of observations). Black dots indicate locations where sediment thickness D(ui) > 0, i = 1, . . .,N ,
N = 19682. Red dots indicate locations where D(uj )= 0, j = 1, . . .,K , K =Nt −N = 750. Horizontal distances to the nearest outcrop
L(ui) were calculated for locations where D(ui) > 0. Histograms of log10(D|D > 0) and log10(L|D > 0) indicate significant deviation
from normal probability density functions (upper left corner). Statistical parameters and percentiles for D and L are given in the lower right
corner.

thin till material covers about 20 % of the land area (id. 12,
Table 1), and Olsen et al. (2013) include this category when
they define areas classified as exposed bedrock. In that case
exposed bedrock makes up 55 % of the land area. Peatlands
cover 5 % of the country (id. 90, Table 1). According to Olsen
et al. (2013) the average thickness of the continuous till is ap-
proximately 6 m. They did not include any further discussion
on the estimation of sediment thickness based on recorded
data. This issue will be elaborated further in the study pre-
sented below.

2.4 Data screening

There is no mandatory method for recording of drilling coor-
dinates as part of the GRANADA standard. Quality tags were
therefore attached to the observations to identify the uncer-
tainty of the geographical coordinates. Geographical preci-
sion is important to consider during inference on the statisti-

cal structure of the data material, and it is decisive for spatial
resolution of the final estimates. Hence, for the purpose of
the current study, observations with less precision than 10 m
(18898) were excluded from further analysis. Wells located
on unconsolidated sediments but without any information on
D were also omitted (3090) from the analysis. The same was
done for probe drillings without information about D (1186
locations). Finally, all boreholes or probe drillings located in-
side polygons classified as “exposed bedrock” (10588) were
omitted from further analysis. In these areas D is by defini-
tion given as E[D|L= 0] = 0.

Summing up the excluded locations (numbers given in
parentheses above), the primary screening reduced the num-
ber of recordings from 54194 to 20432. The locations of the
remaining boreholes (Nt = 20432) are indicated in Fig. 2.
Some of these boreholes (750) also had recordings ofD = 0,
and these wells were also excluded from the statistical analy-
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Table 1. Land cover statistics of mainland Norway.

Ida Land cover Ai
b (km2) Nc Fatm

d (%) Ftot
e (%)

130 Exposed bedrock 97 000 9562 31.59 29.96
12f Till material, patchy or thin cover over bedrock 80 719 10 311 26.28 24.93
11g Till material, continuous cover, great thickness locally 65 008 10 640 21.17 20.08
90 Peat and swamps (organic material) 17 000 1445 5.54 5.25
70h Weathered deposits, not divided by thickness 15 600 3464 5.08 4.82
20i Fluvial sediments 8829 6095 2.87 2.73
41j Marine and coastal sediments, coherent, often great thickness 7600 5932 1.56 1.48
81k Avalanche materials and landslides 7272 235 2.37 2.25
43l Marine, beach sediments, patchy or thin cover over bedrock 2676 3625 0.87 0.83
14 Till modified by running water (ablation moraine) 1900 67 0.62 0.59
21m Glaciofluvial sediments 1769 683 0.58 0.55
15 Ice-marginal deposits 1000 264 0.33 0.31
120 Anthropogenic deposits, unspecified 350 1650 0.11 0.11
30n Glaciolacustrine and lake sediments 253 175 0.082 0.078
60 Eolian (wind) sediments 100 46 0.033 0.031
88o Scree, clay slides, rockfalls, etc. 28 0 0.0091 0.0086

Sum 307 104 54 194 100.00 94.85

a Land cover identification numbers (NGU, 2016d).
b Area of land cover polygons exposed to the atmosphere, Aatm =

∑
Ai = 307 104 km2. The total area of mainland Norway is Atot = 323 781 km2

(Kartverket, 2016).
c Number of recorded boreholes, wells, and probe drillings in GRANADA 2010 (NGU, 2016d).
d Fraction of land cover polygons relative to Aatm.
e Fraction of land cover polygons relative to Atot. Mainland Norway covered by water:1−Aatm/Atot = 1− 0.9485= 0.0514.
f Includes id. 12 (65 000 km2), 100 (thin humus cover, 12 000 km2), 140 (3500 km2), 101 (210 km2), 10 (5.8 km2), 13 (3.5 km2).
g Includes id. 11 (65 000 km2), 16 (drumlin, 8 km2).
h Includes id. 70 (7000 km2), 73 (5100 km2), 71 (2300 km2), 72 (1200 km2).
i Includes id. 20 (4700 km2), 50 (4000 km2), 54 (2600 km2), 55 (76 km2).
j Includes id. 41 (4800 km2), 42 (2800 km2).
k Includes id. 81 (5000 km2), 82 (2200 km2), 80 (69 km2), 301 (2.5 km2).
l Includes id. 43 (2600 km2), 40 (76 km2).
m Includes id. 21 (1700 km2), 22 (69 km2).
n Includes id. 30 (190 km2), 36 (38 km2), 35 (25 km2).
o Includes id. 88 (scree, 17 km2), 307, 102, 1, 122, 31, 304, 308, 313, 315, 53, 316.

sis. Thus, the number of wells included in the further analysis
was N = 19682. For these wells, L > 0 and D > 0.

2.5 Exploratory data analysis

Figure 2 shows that both D and L deviate strongly from
Gaussian (normal) probability density functions (pdfs). The
same is also true for the logarithmic values (Fig. 2). The
mean value of D = 5.5 m corresponds well to the value re-
ported by Olsen et al. (2013), but 50 % of the recorded
data had D <= 2 m, which implies a positively skewed pdf.
The average horizontal distance to the outcrop is L= 832 m,
while 50 % of the boreholes had L≤ 460 m.

Clustering of boreholes (Fig. 2) can easily be seen on
the GRANADA webpage (NGU, 2016a). This uneven spatial
sampling affects the inference of statistical moments and the
spatial correlation structure.

The mean and standard deviation ofD and L as a function
of separation distance h are given in Fig. 3 for 1h= 20 m
and 1h= 150 m. It should be noted that the highest val-
ues of the mean and standard deviation of D occur at small
(h < 100 m) separation distances. This is opposite to what

is shown for mean and standard deviations of L, which are
small for minor separation distances, and which increase to
maximum values around h= 2.5 km, and then decay towards
h= 10 km. From Fig. 3 it is clear that when the separation
distance h to the nearest borehole increases, the number of
low values of D increases. This feature might be caused by
preferential sampling, which implies that there is a system-
atic overrepresentation of drillings that has minor D values.
Thus, Fig. 3 indicates a bias in the observations of D.

3 Method

For the current study, multi-Gaussian methods were applied
to estimate sediment thickness D(u), where u ∈� and � is
the geographical domain covered by the database (in this case
mainland Norway). Multi-Gaussian methods are well docu-
mented in the literature (Isaaks and Srivastava, 1989; Jour-
nel and Huijbregts, 1989; Deutsch and Journel, 1998), but
to make it easier for interested readers to reproduce and im-
prove the results, the most important equations and algorithm
are presented in the following. As mentioned above, the main
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Figure 3. Mean and standard deviation as a function of separation distance h (m), sediment thickness D to the right (a), and horizontal
distance to outcrop L to the left (b).

purpose of the study was to evaluate whether the secondary
information L can be used to improve the estimates of the
primary variable D or not. This question was addressed by
performing a conventional cross-validation of the GRANADA
boreholes by successively leaving out information on D (but
not L), and estimating D at the locations where observations
of D were left out. First, the cross-validation was performed
by including the primary variableD only. Then, secondly, the
cross-validation was done by including the secondary vari-
able.

More formally expressed, two cumulative density func-
tions (cdfs) were compared to each other for all borehole
locations uj where j = 1, . . .,N and N is the number of
GRANADA boreholes (cf. the section above). If the function
of interest is Gaussian Z ∈N(0,1), then the complete cdf is
described by the first two moments. Thus, the task was to
compare estimates based on D alone,

E[ZD(uj )|ZD(ui)], and Var[ZD(uj )|ZD(ui)], (1)

with estimates based on D and L:

E[ZD(uj )|ZD(ui);ZL(uj )],

and Var[ZD(uj )|ZD(ui);ZL(uj )]. (2)

Here, j = 1, . . .,N , and i = 1, . . ., j − 1, i 6= j,j + 1, . . .,N ,
whereN is the number of observations (cf. Sect 2.4). For this
case study Eq. (1) was obtained by ordinary kriging (OK)
and Eq. (2) by co-kriging (CK). Before solving Eqs. (1) and
(2), the experimental data need preprocessing to suppress ef-
fects of preferential sampling, and since Gaussian estimation
methods were applied, the data need to be transformed to a
standard normal pdf.

3.1 Declustering

The purpose of declustering is to compensate for uneven
sampling. This was done by giving less weight to observa-
tions in areas of high sampling density and a relative increase
in weights in areas of sparse sampling. For this case study, the

weights were found by gridding of the sampling domain and
counting the number of observations in each grid cell. The
weights were set equal to the inverse of the number of bore-
holes in the corresponding grid cell. These weights, however,
are grid dependent. Hence, the following procedure was im-
plemented to minimize the grid dependency.

1. Decide the size for the grid elements 1u= (1x,1y)
that constitute a uniform grid.

2. Choose an (arbitrary) origin u0 and make a regular mesh
that covers the estimation area �. The mesh consists of
1uk elements, where k = 1, . . .,M , and M is the num-
ber of grid elements.

3. Count the number of boreholes nk(u0), and calculate the
declustering weights ck(u0), for each well in 1uk:

ck(u0)=
1

nk(u0)
, k = 1, . . .,M, (3)

where M is the number of grid elements in the mesh.

4. Because nk(u0) in Eq. (3) depends on the grid origin u0,
it is necessary to repeat steps (2) to (3) and change the
grid origin to

ur = u0+ rδ, (4)

where r = 1, . . .,p and the lag δ�1u. The number of
iterations p should be large enough to get a stable av-
erage. Deutsch and Journel (1998) recommend p ≥ 6.
Here, in the current case study, p = 7 and δ = 100 m.

5. Finally,

ci =
1
p

p∑
r=0

ck(ur), k = 1, . . .,M, (5)

where ci denotes the declustering weight for the indi-
vidual boreholes in the database, i = 1, . . .,N , where N
is the number of boreholes.
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The declustering coefficients c in Eq. (5) imply that the to-
tal variance of the experimental data is reduced and the corre-
lation length is increased. This effect is called regularization
in geostatistical terminology. It means that the declustering
coefficients also depend on the grid size 1u. Thus, the final
step is to repeat (1) to (5) above, but with a different grid size.
The grid size that minimizes the regularization effect should
be employed.

3.2 Normal score transform

Application of Gaussian interpolation methods implies that
the estimated function Z belongs to a standard normal pdf
N(0,1). In this case, the stochastic function X = (D,L) is
not Gaussian (6∈ N(0,1)), which means that a transforma-
tion is necessary. The normal score transform implies that
the quantiles pk in the original cdf, F(X), correspond to the
quantiles in a standard normal Gaussian cdf, G(Z), where
Z ∈N(0,1) (Goovaerts et al., 2005):

ZX(ui)= ϕ(X(ui))=G
−1
[F(X(ui)] =G

−1
[p∗k ], (6)

where p∗k is the quantiles in the standard normal cdf, and ϕ
denotes the transformation of X corresponding to the inverse
Gaussian G−1 cdf of D or L. The transformation in Eq. (6)
was done by linear interpolation (or extrapolation) from the
table of regular sampled Z ∈N(0,1) based on the ranked
values (percentiles) of X(ui) 6∈N(0,1).

The normal score transform requires a monotonic func-
tion to be unique. This is a problem if the data are cen-
sored (Huang and Wellner, 1997; Deutsch and Journel, 1998;
Goovaerts et al., 2005; Saito and Goovaerts, 2000), which
means that the true value is only observed within intervals.
This is the case for the lower values in the current exper-
imental data (D = [0.1;0.5;1]m), which indicate that the
true depth is only roughly recorded. For the current study,
the normal score transform was done on declustered data
which “corrected” the observations and thus removed over-
representation of some observations; thus, the transformation
to N(0,1) was unique.

3.3 Experimental semivariogram and
cross-semivariogram

The spatial structure of the data Z was described by the ex-
perimental semivariogram function:

γ̂ (h)=
1

2N(h)

N(h)∑
i=1
[ZX(ui)−ZX(ui +h)]

2, (7)

where N(h) is the number of data pairs in the separation in-
terval h, and where ZX is the normal score transform (Eq. 6)
of either D or L.

In addition to the experimental semivariogram, the mean
m(h) and the variance s2(h) were calculated as a func-
tion of h,

m(h)=
1

N(h)

N(h)∑
i=1

Zi (8)

and

s2(h)=
1

N(h)

N(h)∑
i=1

(Zi −m(h))
2

=
1

N2(h)

N(h)∑
i=1

N(h)∑
j>i

(Zi −Zj )
2, (9)

where N(h) is the number of observations for the separation
interval h.

The experimental cross-semivariogram was estimated by
expressing the two functions ZD(h) and ZL(h) as a sum of
each other:

W(h)= ZD(h)+ZL(h). (10)

This is possible because D and L were sampled in the
same locations, and after the normal score transform (Eq. 6)
we know by definition that E[ZD] = 0 and E[ZL] = 0. In
that case, the cross-semivariogram can be found by (Myers,
1982)

γ̂ZDZL(h)= 1/2[γ̂W (h)− γ̂ZD (h)− γ̂ZL(h)], (11)

which is valid if ZD(h) and ZL(h) are stationary functions
in space with finite variance. These properties are difficult to
prove in practice, but Myers (1982) suggests that if

|γ̂ZDZL(h)| ≤
[
γ̂ZD (h)γ̂ZL(h)

]1/2
, (12)

then Eq. (11) is valid.

3.4 Semivariogram and cross-semivariogram maps

Anisotropy structures in the experimental data may be
discovered by calculation of semivariogram and cross-
semivariogram maps. The same equations (Eqs. 7 and 11)
are applied, but instead of the separation vector h the intrin-
sic values are calculated as a function of the north–south and
east–west components (hx,hy) of the separation vector:

γ̂Z1Z2(hx,hy)=
1

2N(hx,hy)

N(hx ,hy )∑
i=1[

Z1(ui)−Z2(ui + (hx,hy))
]2
, (13)

where Z1 and Z2 denote stochastic functions. If Z1 = Z2
(i.e., the normal score transform of D or L), then Eq. (13) is
the semivariogram map for ZD or ZL. If Z1 = ZD and Z2 =

ZL, then Eq. (13) is equivalent to the cross-semivariogram
map between ZD and ZL. The semivariogram (or cross-
semivariogram) maps are similar to the experimental semi-
variogram function, but the semivariance is visualized in
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terms of a separation matrix instead of a separation vec-
tor. By calculating the semivariance in terms of a separa-
tion matrix, it is possible to reveal large-scale (systematic)
directional dependencies – called anisotropy. If anisotropy
in the observation material is evident, the next step is to cal-
culate directionally dependent experimental semivariograms,
where the direction of the searching sector is taken from the
semivariogram map. The directionally dependent properties
can be taken into account in the estimation procedure by us-
ing the directionally dependent searching directions derived
from the semivariogram maps. An alternative is to transform
the observation coordinates to an isotropic and orthogonal
coordinate system (Langsholt et al., 1998).

3.5 Semivariogram – and covariance model

The semivariogram model, which was fit to the experimental
semivariogram had the following form:

γ (h)= C0+C1

[
1− exp

(
β

(
h

a

)α)]
, (14)

whereC0,C1, a, and α were the fitting parameters. In geosta-
tistical terms C0 is called the nugget (the variance at h→ 0),
C0+C1 is the sill (the variance at h→∞), a is the range, and
α is the exponential coefficient (1≤ α ≤ 2). The constant β
determines the variance at h= a. In this case β =− ln(20),
which is equivalent to 95% of γ (∞). For that reason β is
called the practical range in the literature.

The model parameters in Eq. (14) were obtained by mini-
mizing the objective function ϒ :

ϒ(h)=
∑
i

|γ (hk)− γ̂ (hk)|, k = 1, . . .,K, (15)

where K is the number of distance classes in the semivari-
ogram. For the case study, the objective function was mini-
mized by using the simulated annealing algorithm (Matlab,
2015).

The kriging equations below are expressed in terms of the
covariance function:

C(h)= C0+C1− γ (h)= C1 exp
(
β

(
h

a

)α)
, (16)

where the constant β =− ln(20), and the parameters C0, C1,
a, and α were found by minimizing Eq. (15).

3.6 Kriging and co-kriging equations

For this project the kriging and co-kriging equations were
implemented in Matlab (2015), which makes it convenient to
express the equations in terms of matrix notation. A thorough
mathematical derivation of the equations can be found in My-
ers (1982). In matrix notation the estimation is expressed as

Ẑ= Zobs3, (17)

where Ẑ is the estimated variable in location u. If k =
1, . . .,m variables are involved, then Ẑ is a row vector with
m entries (1×m matrix), Zobs contains the observations in
a 1×m matrix, and 3 is an m×m matrix where the col-
umn vectors are the estimation weights. In this case, m= 2,
Eq. (17) is written as[
ẐD, ẐL

]
= [ZD(obs),ZL(obs)]

[
3DD 3DL
3LD 3LL

]
. (18)

For the present case study, the observations ZD(obs) and
ZL(obs) were available in the same locations ui, i = 1, . . .,n.
The weights 3 are found by solving the kriging equations
(Myers, 1991):

X= C−1C0, (19)

where C−1 denotes the inverse of the matrix C, which in this
case reads as

C=


CDD(h) CDL(h) ITDD ITDL
CLD(h) CLL(h) ITLD ITLL
IDD IDL 0 0
ILD ILL 0 0

 , (20)

where Ckk(h) is the covariance model (Eq. 16) and where
k =D,L. IDD = ILL are row vectors of ones (1× n), and
IDL = ILD are row vectors of either ones or zeros depending
on whether all weights should sum up to one or not (IT is the
transposed of I ).

The matrix C0 denotes the covariance between the point
of estimation (u) and the observations:

C0=


C0DD(h) C0DL(h)
C0LD(h) C0LL(h)

1 0∗

0∗ 1

 , (21)

where C0kk(h) is given in Eq. (16) and where k =D,L. The
symbol 0∗ indicates that the entry might be one or zero, de-
pending on the Lagrange condition that all weights should
sum up to one or only the weights for the single variable es-
timation problem. Again, zero is the default value. The esti-
mation weights 3kk(h) and the Lagrange multipliers µkk(h)
(k =D,L) are contained in the X matrix:

X=


3DD 3DL
3LD 3LL
µDD µDL
µLD µLL

 . (22)

The estimation variance σ 2
K can then be written (Myers,

1982) as

σ 2
K(u)= Var[Z] −XTC0, (23)

where the total variance is Var[Z] = Var[ZD] for ordinary
kriging and Var[Z] = Var[ZDZL] for co-kriging. Hence, the
total variance is equivalent to the sum of the diagonal en-
tries in CDD(h) and CLL(h)), where C0 and X are given in
Eqs. (21) and (22).
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3.7 Absolute error, accuracy and precision

The quality of the estimation method depends on the absolute
error AE, which is the difference between the observed value
and the estimated value:

AE(ui)= |Zobs(ui)− Ẑ(ui)|. (24)

Average values for all estimates are given by the mean abso-
lute error MAE,

MAE =
1
n

n∑
i

AE(ui), (25)

and the standard deviation of the absolute error SAE:

SAE =

(
1

n− 1

n∑
i

(AE(ui)−MAE)
2

)1/2

, (26)

where n is the number of cross-validated observations.
In addition, it is necessary to quantify the precision of

the estimates. Two concerns are taken into account in this
study: first, if the estimate is within a given confidence inter-
val (PR):

PR(ui)= AE(ui)−ωσK, (27)

where ω depends on the level of confidence. The accuracy
AC of the estimates is then given by

AC(ui)= 1 if PR(ui) ≤ 0 else AC(ui)= 0, (28)

and the accuracy is given as a fraction of the total number of
observations FAC :

FAC =
1
n

n∑
i

AC(ui), (29)

where n is the number of cross-validated observations.
If two methods have the same level of accuracy, then the

method that gives the best precision should be preferred. Pre-
cision can be taken into account by scaling the absolute error
by the estimation uncertainty:

ξ(ui)= AE(ui)/σK(ui), (30)

and the scaled precision SP is written as

SP (ui)= ξ(ui)AC(ui), (31)

and with the mean scaled precision MSP , expressed as

MSP =
1
n

n∑
i

SP (ui), (32)

and the standard deviation of the mean scaled precision SSP :

SSP =

(
1

n− 1

n∑
i

(SP (ui)−MSP )
2

)1/2

, (33)

where n is the number of cross-validated observations.

4 Results

4.1 Declustering and normal score transform

The GRANADA boreholes used in the current study were
clustered in urban areas (Fig. 2). To minimize the impact
of this uneven spatial sampling, declustering weights were
calculated according to the procedure described in Sect 3.1.
The window sizes (w = wx = wy) applied to calculate the
declustering weights were w = [500;1000;2000;4000]m.
Average declustering coefficients were calculated by mov-
ing the grid in seven steps p = 7, with an offset δ = 100 m
(Eq. 4).

The skewness given by the ratio of the median to the mean
for the different declustering windows w shows that maxi-
mum skewness appears for w = 500 m (Table 2). For w =
1000 m, however, the skewness was more similar to the origi-
nal (raw) observations; thus, for the cross-validation analysis
the declustering weights were calculated with w = 1000 m.
The declustering coefficients show that about 13 % of the
boreholes had 10 or more boreholes located within a neigh-
borhood of 5 km. More than 50 % of the boreholes had two
or more boreholes within a search radius of 5 km, and about
23 % had no other wells within a 5 km neighborhood. The
normal score transform (Eq. 6) yields by definition a nor-
mal pdf of the variables involved. The transform relies, how-
ever, on the experimental data, which means that sampling
of extreme values has an impact on the results. The dataset
used for calculations (N = 19682 samples) had a minimum
observed D = 0.05 m and a maximum D = 229 m (Fig. 2).
Some of the extreme high values may represent outliers or
recording errors; thus, for the cross-validation, study bore-
holes with recorded sediment thicknesses of more than 100 m
were not included in the calculations. The scatter plot of the
raw observations shows the censored character of the data
with a high frequency of recordings at even numbers (0.10;
0.20; 0.30 m; etc.). This is very clear from 0.1 to 1 m, and to
some degree from 1 to 10 m (Fig. 4a). After declustering, the
censored character was less obvious (Fig. 4b). The semivar-
iogram analyses and the kriging procedures were employed
on the normal score data (ZD and ZL). After kriging, the
estimation results were transformed back by the inverse nor-
mal score transform Eq. (6) and divided by the declustering
coefficients.

4.2 Semivariogram maps

Semivariogram maps (Eq. 13) of depth to bedrock ZD and
horizontal distance to outcrop ZL were calculated to de-
tect large-scale anisotropy in the data material. Anisotropy
might be identified in Fig. 5 for the range (correlation length)
of ZD . The range varies apparently as a function of direc-
tion with the slowest decay in the north-westerly direction
(N35W–N45W) and with a somewhat faster decay in the
south-easterly direction. The number of observation pairs
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Figure 4. Scatter plot of sediment thickness D and horizontal distance to outcrop L. Original (obs) and declustered (dcl) observations to the
left (a), and normal score transforms ZD and ZL to the right (b). The black line indicates a “perfect” (1 : 1) relation between ZD and ZL.

Table 2. Median and mean of depth to bedrockD (m), and horizon-
tal distance to outcrop L (m), for raw observations (window size =
0 m) and declustered data with window [500;1000;2000;4000]m.
The skewness index is skw = median/mean.

Window size (m) 0 500 1000 2000 4000

D median 2.000 1.286 1.000 0.594 0.321
D mean 5.451 3.394 2.770 2.043 1.316
D skw 0.367 0.379 0.361 0.291 0.244

L median 458.63 227.94 156.79 91.64 47.67
L mean 827.46 491.69 382.14 268.67 169.06
L skw 0.554 0.464 0.410 0.341 0.282

had, however, a similar structure, which indicates that the ap-
parent anisotropy might be an artifact due to the clustering of
the observations. This presumption was tested by calculating
artificial semivariogram maps based on the same borehole
locations but where the observations were substituted by a
random number. The artificial semivariogram maps revealed
similar structures that can be seen in Fig. 5. Hence, the pre-
sumption of an artifact due to clustering cannot be ruled out.
For this reason no directional experimental semivariograms
were calculated as part of this case study.

4.3 Experimental semivariograms and
cross-semivariograms

The results of the semivariogram analysis confirm the exis-
tence of a correlation structure in the data (Fig. 6) that might
be capitalized when estimating D(u). The model parame-
ters given in Fig. 6 were obtained by minimizing the objec-
tive function (Eq. 15) by the simulated annealing algorithm
(Matlab, 2015). First, all parameters [C0,C1,a,α] were op-
timized; and then, secondly, C0 was fixed and the remaining
parameters [C1;a;α] were simulated. This automatic proce-
dure gave the model parameters shown in Fig. 6. The mini-
mum of the objective function is not well defined everywhere
and different combinations of model parameters gave almost
similar results. The model parameters in Table 3 were evalu-
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Figure 5. Semivariogram map (γ̂ (hx ,hy)) of the normal score
transformed sediment thickness ZD ; grid cells of 100× 100 m.

ated in the cross-validation procedure below. The automatic
calibration procedure gave an optimal correlation length of
about a = 10 km for depth to bedrock ZD(h) (Fig. 6a). The
most prominent feature, however, is the large nugget value
C0, which in this case is about 50 % of the total variance:
C0+C1. The experimental semivariogram for the horizontal
distance to outcrop ZL(h) had a minor nugget value com-
pared to the total variance (Fig. 6b). At the same time the cor-
relation length (a = 5.9 km) was somewhat shorter compared
to ZD(h). The experimental cross-semivariogram between
ZD(h) and ZL(h) was calculated according to Eqs. (10) and
(11). The nugget value was about 10 % of the total variance
in this case, with a correlation length of a = 2.7 km. Finally,
the cross-semivariogram was tested according to Eq. (12),
but none of the parameter combinations in Table 3 violated
the criterion.
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Figure 6. Semivariogram and cross-semivariogram functions for
normal score data: semivariograms for sediment thickness ZD
(a); and horizontal distance to the nearest outcrop ZL (b). Cross-
semivariongram for ZD and ZL (c). Dots indicate the experimental
data and solid lines are the model functions.

Table 3. Covariance and cross-covariance model parameters∗

Eq. (16) used for cross-validation.

Case C0 C1 a α

A CDD 2.09e−01 6.72e−01 4.478e+03 1.00
CDL 1.00e−01 1.10e−01 1.512e+03 1.65
CLD 1.00e−01 1.10e−01 1.512e+03 1.65
CLL 0.39e−01 6.06e−01 6.049e+03 1.05

B CDD 3.44e−01 5.18e−01 4.380e+03 1.00
CDL 0.00e+00 1.00e−01 1.512e+03 1.65
CLD 0.00e+00 1.00e−01 1.512e+03 1.65
CLL 0.39e−01 6.06e−01 6.049e+03 1.05

C CDD 2.09e−01 6.72e−01 4.478e+03 1.00
CDL 0.00e+00 1.00e−01 1.512e+03 1.65
CLD 0.00e+00 1.00e−01 1.512e+03 1.65
CLL 0.39e−01 6.06e−01 6.049e+03 1.05

Case C0 C1 a α

D CDD 4.65e−01 4.94e−01 10.320e+03 1.00
CDL 1.90e−02 2.12e−01 2.786e+03 1.01
CLD 1.90e−02 2.12e−01 2.786e+03 1.01
CLL 7.00e−03 6.38e−01 5.865e+03 1.02

E CDD 7.70e−02 7.26e−01 2.371e+03 1.00
CDL 1.90e−02 2.12e−01 2.786e+03 1.01
CLD 1.90e−02 2.12e−01 2.786e+03 1.01
CLL 7.00e−03 6.38e−01 5.865e+03 1.02

F CDD 7.70e−02 7.26e−01 2.371e+03 1.00
CDL 3.00e−03 2.07e−01 2.402e+03 1.01
CLD 3.00e−03 2.07e−01 2.402e+03 1.01
CLL 7.00e−03 6.38e−01 5.865e+03 1.02

∗ All models are derived from declustered normal score transformed variables of
depth to bedrock D and the horizontal distance to the nearest outcrop L. Practical
range β = log(0.05) for all models.

4.4 Cross-validation

The purpose of the cross-validation was to evaluate the im-
pact of using horizontal distance to outcrop as an addi-
tional variable for estimation of sediment thickness above the
bedrock. In this case, the cross-validation was performed by
leaving one observation out. At the point where the observed
value was left out, ordinary kriging (OK) and co-kriging
(CK) were performed by using the global model parameters
given in Table 3. The differences between the estimation re-
sults and the observations left out were used to quantify the
quality of the estimation procedure. Three criteria were used
to distinguish the two estimation procedures: the mean ab-
solute error (Eqs. 24 and 25); the accuracy of the estimation
results (Eqs. 28 and 29); and the precision of the estimation
results (Eqs. 31 and 32).

In general, both OK and CK overestimate minor depths to
bedrock and underestimate large depths (Fig. 7). The most
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Figure 7. Cross-validation results of sediment thickness D. Normal score observations ZD against estimates Z∗
D

to the left (a), and raw
observations D and estimates D∗ to the right (b). OK denotes results from ordinary kriging, and CK from co-kriging.

important estimation criterion is usually considered to be
the mean absolute error (Eq. 25). With the model parame-
ters tested in Table 3 there are only minor differences in the
mean absolute error (Eq. 25) between the OK and CK esti-
mates (Table 4). The CK estimates have slightly lower mean
absolute errors than the OK estimates unless the nugget value
(C0) for the cross-covariance between D and L approaches
half of the total variance: C0+C1 (Table 4).

In cases with a minor difference in the mean absolute error,
the estimation results might be ranked according to criteria
for estimation accuracy (Eq. 28) and precision (Eq. 31). For
the present case study, the definitions of accuracy and preci-
sion were both related to the estimation variance (Eq. 23),
and in this respect, CK was superior compared to OK
(Fig. 8).

In Fig. 9 scaled precision (Eq. 31) is sorted and given as a
function of cumulative accuracy SAC :

SAC =6
j
i AC(ui)/nmax, j = 1, . . .,nmax, (34)

where nmax is the number of estimates where AC = 1.
As long as the absolute estimation errors (Eq. 24) are sim-

ilar, OK yields a higher accuracy than CK because CK has a
lower estimation variance. This result follows directly from
the definitions in Eqs. (27) and (28). With ω = 1 in Eq. (27),
the OK estimates gave an accuracy from 60 to 65 %, while
CK had an accuracy of 50–60 %. At the same time CK yields
an overall higher precision than OK because of lower estima-
tion variances (Fig. 9).

A final result that deserves some attention is the location
of estimates that did or did not fulfill the accuracy criteria.
This is illustrated for mainland Norway and the Oslo area in
Fig. 10. Three categories were visualized: (i) locations with
low accuracy (AC = 0, Eq. 28); (ii) locations with good ac-
curacy (AC = 1, Eq. 28) obtained either by OK or CK; and
(iii) locations with good accuracy (AC = 1, Eq. 28) obtained
only by the CK method. For all cases ω = 1 (Eq. 27).

5 Discussion

Attention has been directed towards sediment thickness, D,
in this article. The question has been raised whether infor-
mation derived from public well databases on D(ui) can be
utilized for continuous estimation of D(u). A motivation for
this attention has been the potential application of spatial
estimates of D(u) in hydrology and geo-engineering. Com-
bined with available information on soil properties or digi-
tal terrain elevation, storage capacity of water or bedrock to-
pography might be estimated within predefined uncertainties
and with feasible resources. It should be emphasized, how-
ever, that the purpose of the application should be taken into
account when choosing the estimation method. In this case
study, the normal score transforms and Gaussian estimation
methods were applied, but none of these methods provide
robust estimates of extreme values. If, for example, maxi-
mum D(u) is an important issue, stochastic simulation or
non-Gaussian methods should be taken into account. Such
topics, however, are left for further studies.

5.1 Clustering and bias

For the current case study, D(u) was derived from the
GRANADA open-access database (NGU, 2016a). Public
databases are prone to preferential sampling. In this context,
preferential sampling implies two specific challenges that
need to be discussed, namely clustering and bias. Clustering
is due to the fact that wells and boreholes are located where
people need them; thus, the spatial frequency of boreholes
mirrors the population density (Fig. 2). Clustering of obser-
vations has an impact on statistical inference regarding sta-
tistical moments and semivariograms. Different approaches
have been suggested to control the clustering effects. Olea
(2007) suggested removal of wells randomly in areas with
high density of observations, and then recalculation of the
experimental semivariograms based on the remaining obser-
vations. The experimental semivariograms, however, turned
out to be sensitive to the size of the searching window where
clustered observations were removed. Thus, this method was
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Table 4. Cross-validation results from ordinary kriging (OK) and co-kriging (CK) with model parameters corresponding to cases given in
Table 3.

Case MAE (m) SAE (m) FAC (–) MSP (–) SSP (–)

A OK 4.44 7.72 0.16 0.39 0.098
CK 4.52 7.58 0.40 0.37 0.125

B OK 4.36 7.57 0.65 0.34 0.062
CK 4.33 7.51 0.62 0.38 0.077

C OK 4.35 7.46 0.62 0.39 0.098
CK 4.31 7.40 0.57 0.44 0.116

Case MAE (m) SAE (m) FAC (–) MSP (–) SSP (–)

D OK 4.43 7.71 0.66b 0.31 0.039
CK 4.38 7.54 0.59 0.43 0.065

E OK 4.37 7.47 0.59 0.44 0.151
CK 4.29a 7.23 0.51 0.41 0.151

F OK 4.35 7.45 0.59 0.44 0.151
CK 4.30 7.27 0.53 0.49c 0.173

MAE – mean absolute error (Eq. 25).
SAE – standard deviation of absolute error (Eq. 26).
FAC

– fraction of estimates that fulfill the accuracy criteria (Eq. 29).
MSP – mean scaled precision (Eq. 32).
SSP – standard deviation of scaled precision (Eq. 33).
a – lowest mean absolute error.
b – highest accuracy.
c – highest precision.
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Figure 8. Estimation variance (Eq. 23) for case F (Tables 3 and 4), with ordinary kriging OK and co-kriging CK results. The scatter plot
to the left (a) shows that CK estimation variances are lower than OK estimation variances. The black line indicates a 1 : 1 relation. The
histograms to the right (b) show the estimation variance for OK and CK.

disregarded in the current case study because the algorithm
did not yield robust results.

Omre (1984) suggested controlling clustering effects in
the semivariogram by calculating weights that were inversely
proportional to the Thiessen polygons for each observation.
This method provides a set of weights that are mathemat-
ically sound, but it is relatively expensive with respect to
computer resources, especially if the number of observations
is large. Instead of Thiessen polygons a less computer de-
manding algorithm was employed, namely the moving grid
method (Deutsch and Journel, 1998). By this method the
declustering weights were inversely proportional to the aver-
age number of observations within the moving window (cf.
Sect. 3.1). The declustering weights depend on the size of the

window (Table 2). In general it is recommended to use the
window size w that maximizes the skewness of the pdf(s),
which in this case was w = 500 m. However, w = 1000 m
gave a skewness for D(u) that was closer to the original
data; thus, the semivariograms were based on a declustering
window w = 1000 m. The mean value from raw (not declus-
tered) data was 5.5 m, but the declustered mean was reduced
to 3.4 and 2.8 m for w = 500 and w = 1000 m, respectively
(Table 2).

The problem of biased recordings of D(u) in the database
is more difficult to assess. There are good reasons to expect
that bias exists and that minor sediment thicknesses are over-
represented in the database. One indication is that mean and
standard deviation are highest at minor separation distances,
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which indicates that willingness to continue drilling is less
if D(u) is large and if there are no other wells in the close
neighborhood (Fig. 3).

Biased observations are a common problem for datasets
sampled in open large-scale environments. The impact of
bias may be controlled if there exists independent informa-
tion on processes related to the variable of interest. Goovaerts
et al. (2005) did a case study based on biased observations of

arsenic concentration in groundwater. They used geological
maps and utilized knowledge of arsenic concentration in spe-
cific geological units to control the bias. Wolff et al. (2015)
reported biased recordings of precipitation from a meteoro-
logical gauge station. In this case the bias was due to tur-
bulence in the wind field around the gauge equipment. They
recorded wind speed and temperature together with precipi-
tation and other meteorological variables, and derived func-
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tions for bias correction by application of Bayesian statistics.
A similar token was applied in the current study. Here, hor-
izontal distance to outcrop L(u) was evaluated as secondary
information to control the impact of biased observations of
sediment thickness D(u).

The cross-validation exercise presented here cannot ver-
ify a general relation betweenD(u) and L(u), but the results
show that the estimation uncertainty was reduced by using
L(u) as a secondary function. Non-biased relations between
D(u) and L(u) ought to be investigated by further research,
for example by utilizing datasets from geotechnical probe
drillings. Results from such studies would increase the value
of the GRANADA database and other similar databases.

5.2 Cross-validation

The cross-validation analysis indicates low estimation accu-
racy in urban areas. One reason for this result might be an-
thropogenic reallocation of unconsolidated matter, which in-
cludes removal of sediments in some places and deposition
of unconsolidated matter in others. Similar problems might
also be valid for identification of horizontal distance to out-
crop. For further studies such locations might be disregarded
or given less weights. One option is to allocate a quality tag
to the D(u) recordings in the same manner as was done for
recordings of geographical coordinates.

Both OK and CK overestimated small D(u) and under-
estimated large D(u) (Fig. 7). Such results are typical for
Gaussian estimation methods applied on observations with
positively skewed pdfs. Other case studies report similar re-
sults (Goovaerts et al., 2005), but it should be noticed that
the double logarithmic scale exaggerates the deviations es-
pecially for minor depths.

The observations of D(u) had a high fraction of small-
scale noise (C0 in Fig. 6) relative to the total variance:
C0+C1 (Fig. 6). Efforts should be taken to control C0. One
abatement measure might be achieved by attaching a quality
assurance tag to D(u). In this way low-quality recordings
could receive less weights or be filtered out. These kinds
of measures would increase the quality of the GRANADA
database.

Despite these uncertainties the cross-validation shows that
the accuracy is higher than 60 % for the model parameters
with highest scores (Table 4). For this case study, the estima-
tion accuracy was set equal to one if the absolute estimation
error was less than one standard deviation of the estimation
uncertainty and zero for all others (Eqs. 27 and 28). By this
definition, the accuracy increases by increasing estimation
variance, which means that accuracy should be evaluated to-
gether with the estimation variance (Eq. 23 and Fig. 8). For
stochastic simulation the precision of the estimates is of pri-
mary interest. In such cases, the probability of extreme re-
alizations may also be quantified. For such applications, the
precision is more important than the accuracy of the estima-
tion method. The cross-validation results show that the pre-

cision in general is higher if the horizontal distance to the
outcrop L(u) was included (Fig. 9). Because precision in-
creases as a function of decreasing estimation variance, the
cross-validations show that L(u) should be included despite
the uncertainties in the experimental data.

5.3 Further studies

These results indicate that more advanced estimation pro-
cedures should be considered. In this case study, the to-
tal estimation domain (mainland Norway) was considered
as homogeneous with respect to variance and correlation
length. Methods that take local model parameters and local
anisotropy into account may reduce the absolute estimation
error but not necessarily the estimation variance. The same is
true with respect to estimation methods that are more robust
with respect to estimation of extreme realizations. For esti-
mation of most likely minimum and maximum thickness of
sediments within a given estimation area, stochastic simula-
tions are recommended.

After initiation of this case study, the number of recorded
boreholes, wells, and probe drillings in the GRANADA
database has increased (NGU, 2016b). The new recordings
might be used as an independent dataset for cross-validation
purposes. One interesting candidate for further work is the
approach suggested by Rue et al. (2009). They approximate
the estimation problem to stochastic partial differential equa-
tions. In this method non-stationarity of statistical moments
are taken into account, but at the same time less computer
resources are spent on matrix inversions which is a challenge
for applications with a large number of observations (Lind-
gren et al., 2011; Ingebrigtsen et al., 2014; Hu and Steins-
land, 2016).

Finally, it is appropriate to recall that the primary purpose
of the GRANADA database is not the recording of sediment
thickness D(u) alone, but to provide information on ground-
water resources in general (Lovdata, 1996). Hence, in this
context, the present study is a call to explore public data to
obtain important estimates for science and society.

6 Summary and conclusions

The GRANADA open-access database (NGU, 2016a) was
used to derive point recordings of sediment thickness above
the bedrockD(u). For eachD(u) horizontal distance to near-
est outcropL(u)was derived from geological maps. The pur-
pose was to utilize L(u) as a secondary function for estima-
tion of D(u). Two estimation methods were employed: ordi-
nary kriging (OK) and co-kriging (CK). A cross-validation
analysis was performed to evaluate the additional informa-
tion in the secondary function L(u). L(u) was disregarded
in OK estimation but included in CK estimation. The cross-
validation results showed that CK provided overall lower
mean absolute error compared to the OK results, but the dif-
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ferences were minor. The estimation uncertainty determines
the estimation accuracy and the precision. These quantities
might be considered as equally important as the mean abso-
lute error. With respect to the estimation precision, the CK
estimates were superior to OK estimates. This result demon-
strates the value of using L(u) as a secondary function for es-
timation of D(u). The problem of clustering of observations
can be controlled by calculation of declustering weights, but
the relation between D(u) and L(u) should be explored in
further studies to control the effect of biased observations.

The semivariogram analysis revealed a correlation length
(range) for D of approximately 10 km and about 6 km for
L. The cross-semivariogram between D and L gave a cor-
responding length of 2.7 km (Fig. 6). The recordings of
D were affected by an ample small-scale variance (nugget
value). Despite this problem, the estimation accuracy was
quite high (Table 4). Between 50 and 60 % of the cross-
validation recordings had an accuracy of less than 1 kriging
error σK Eq. (23).

Hence, continuous estimates of D(u) might be derived
for mainland Norway based on the GRANADA public well
database. The challenge, however, is to provide estimates
within confined uncertainties. The present case study demon-
strates that this goal can be approached by using information
embedded in the exposed bedrock.

Data availability. The data material for this study was downloaded
in 2010 from public databases managed by the Geological Survey of
Norway. Data on unconsolidated sediment thicknessD(u) are avail-
able from the GRANADA database: http://geo.ngu.no/kart/granada/
(NGU, 2016a). Data on horizontal distance to bedrock outcropL(u)
are available at (NGU, 2016d): http://geo.ngu.no/kart/losmasse/.
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