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Abstract. Computer models of hydrologic systems are fre-
quently used to investigate the hydrologic response of land-
cover change. If the modeling results are used to inform
resource-management decisions, then providing robust es-
timates of uncertainty in the simulated response is an im-
portant consideration. Here we examine the importance of
parameterization, a necessarily subjective process, on uncer-
tainty estimates of the simulated hydrologic response of land-
cover change. Specifically, we applied the soil water assess-
ment tool (SWAT) model to a 1.4 km2 watershed in south-
ern Texas to investigate the simulated hydrologic response
of brush management (the mechanical removal of woody
plants), a discrete land-cover change. The watershed was
instrumented before and after brush-management activities
were undertaken, and estimates of precipitation, streamflow,
and evapotranspiration (ET) are available; these data were
used to condition and verify the model. The role of param-
eterization in brush-management simulation was evaluated
by constructing two models, one with 12 adjustable parame-
ters (reduced parameterization) and one with 1305 adjustable
parameters (full parameterization). Both models were sub-
jected to global sensitivity analysis as well as Monte Carlo
and generalized likelihood uncertainty estimation (GLUE)
conditioning to identify important model inputs and to es-
timate uncertainty in several quantities of interest related to
brush management. Many realizations from both parameteri-
zations were identified as “behavioral” in that they reproduce
daily mean streamflow acceptably well according to Nash–
Sutcliffe model efficiency coefficient, percent bias, and co-
efficient of determination. However, the total volumetric ET
difference resulting from simulated brush management re-
mains highly uncertain after conditioning to daily mean
streamflow, indicating that streamflow data alone are not suf-

ficient to inform the model inputs that influence the simulated
outcomes of brush management the most. Additionally, the
reduced-parameterization model grossly underestimates un-
certainty in the total volumetric ET difference compared to
the full-parameterization model; total volumetric ET differ-
ence is a primary metric for evaluating the outcomes of brush
management. The failure of the reduced-parameterization
model to provide robust uncertainty estimates demonstrates
the importance of parameterization when attempting to quan-
tify uncertainty in land-cover change simulations.

1 Introduction

An important use for computer models of hydrologic sys-
tems is simulation of the hydrologic response of land-cover
change (Fohrer et al., 2001; DeFries and Eshleman, 2004);
many modeling analyses have been undertaken in attempts
to better understand how changes in land cover may change
the timing and quantity of runoff, recharge, and evapotran-
spiration (e.g., Schilling et al., 2014; Ahn and Merwade,
2017; Chu et al., 2010). Given the uncertainties that exist
in nearly every hydrologic model input dataset, the poten-
tial exists for the simulated outcomes to be highly uncertain,
even after conditioning to streamflow data. Given this poten-
tial uncertainty in model outcomes, quantifying uncertainty
in the simulated results of land-cover change is an important
consideration, especially if simulation results are to be used
in resource-management decision making.

Previous research has shown that the subjective process
of selecting which model inputs to treat as uncertain (e.g.,
parameterization) may affect uncertainty estimates in model
outcomes (White et al., 2014). Herein, parameterization
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refers to the subjective and necessary process of selecting
uncertain model inputs to treat as adjustable in the condition-
ing process. We investigate how parameterization may affect
the uncertainty quantification process when simulating a dis-
crete, vegetative land-cover change, the mechanical removal
of woody plants.

Woody-plant encroachment into grasslands has been a
worldwide phenomena in the past 150 years (Archer et al.,
2011). This encroachment has several ramifications for the
ecosystem, including changes to the hydrologic function and
the response of the surface-water basins (Archer et al., 2011).
Woody species are commonly thought to consume a larger
quantity of water (by transpiration) in comparison to native
grasses (Tennesen, 2008). By removing the woody species
and allowing native grasses to reestablish in the area (com-
monly referred to as “brush management”), changes in the
hydrology in the watershed might occur (US Department of
Agriculture, 2009).

Many hydrologic modeling analyses have been completed
to evaluate the feasibility of applying brush management in
order to decrease the quantity of water transpired within a
given watershed. (Ben Wu et al., 2001; Lemberg et al., 2002;
Brown and Raines, 2002; Afinowicz et al., 2005; Bumgar-
ner and Thompson, 2012; Harwell et al., 2016). However, to
date (2017), very few, if any, of the modeling-based brush-
management feasibility studies have included uncertainty es-
timation in the simulated hydrologic response of brush man-
agement, even though substantial uncertainty in other appli-
cations of the soil water assessment tool (SWAT) model have
been reported (Gassman et al., 2014).

To demonstrate the utility of including uncertainty es-
timation and to investigate how parameterization may af-
fect the reliability of a model to resolve the hydrologic out-
comes of simulated land-cover changes, such as brush man-
agement, the SWAT (Arnold et al., 1998) was applied to a
1.4 km2 watershed in southern Texas. The same watershed
assessed in this study was subject of a previous investigation
in which multiple types of data (precipitation, streamflow,
and evapotranspiration – ET) were collected (Banta and Slat-
tery, 2011). The objectives of our study are to (1) assess the
reliability of a computer model to simulate pre- and posttreat-
ment water-budget components in the context of uncertainty
and (2) evaluate the role of model parameterization in the
uncertainty estimation process by investigating the number
of model inputs that influence the important model outputs.

1.1 Hydrologic setting

The brush-management simulation described herein is ap-
plied to a 1.4 km2 watershed in the Honeycreek State Natural
Area in southern Texas (Fig. 1). For a complete description
of the study area, see Banta and Slattery (2011). Note the wa-
tershed analyzed in this study is referred to as the “treatment
watershed” in Banta and Slattery (2011).

According to Banta and Slattery (2011), long-term average
precipitation near the watershed is 863.6 mm year−1 and is
equally distributed throughout the calendar year. The water-
shed generally has gentle slopes (less than 5 %), with steeper
slopes in the stream channel ravines. Clay and clay loam soils
overlie the Trinity aquifer outcrop in the watershed; the Trin-
ity aquifer is a regional karst aquifer system (Banta and Slat-
tery, 2011). Before brush management was implemented, the
watershed was largely dominated by Juniperus ashei (ashe
juniper). Approximately 40 % of the ashe juniper land cover
was mechanically cleared from the watershed during calen-
dar year 2004 (Homer et al., 2007). The watershed configura-
tion before removal of 40 % of the ashe juniper is referred to
as the “pretreatment” configuration. Following ashe juniper
removal, the land returned to a native rangeland land-cover
type (referred to hereinafter as the “posttreatment” configu-
ration).

2 Model construction

The SWAT model was used to simulate the hydrologic re-
sponse of the watershed, including the effects of brush man-
agement. Specifically, a SWAT2012 (Arnold et al., 2012b, a)
model of the watershed was built using the ArcSWAT tool
(Winchell et al., 2007). The resulting model files were incor-
porated into the model-independent framework of PEST++
V3 (Welter et al., 2015) to facilitate programmatic interac-
tion with the model so that any model input quantity could
be treated as a parameter and a variety of model outputs, in-
cluding derived and processed quantities, can be included in
the modeling analysis.

2.1 Datasets

Three datasets were needed to apply the ArcSWAT tool
(Winchell et al., 2007), which discretized the watershed into
hydrologic response units (HRUs):

digital elevation model: the 10 m National Elevation
Dataset (NED) (Maune, 2007)

soil data: the Soil Survey Geographic Database (SSURGO)
(Soil Survey Staff, 2016)

land-cover type: the National Land Cover Database
(NLCD) (Homer et al., 2007).

These three datasets were used within the ArcSWAT tool
to find unique land slope, soil, and land-cover combinations
across the watershed. These unique combinations became
HRUs in the SWAT model. The NED digital elevation model
for the watershed was smoothed with a 4-pixel-width aver-
aging kernel to remove apparent artifacts.

As part of the previous study that evaluated the effects of
brush management at the Honey Creek State Natural Area
(Banta and Slattery, 2011), daily total precipitation, ET, and
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Figure 1. Study area and watershed location. The 47 HRUs yielded by the ArcSWAT tool (Winchell et al., 2007). The model inputs of
HRUs 18, 20, 22, and 32 (stippled pattern) were modified to simulate the brush-management activities. Streamflow-gaging station (US
Geological Survey streamflow-gaging station 08167353) is on an unnamed stream. Base map from US Geological Survey digital data,
1 : 24 000 Universal Transverse Mercator projection, Zone 15 North American Datum of 1983.

daily mean streamflow were measured during 2001–2010
(Fig. 2). The methods used to collect the input datasets are
described in Banta and Slattery (2011). The precipitation
data were used as inputs to the SWAT model, whereas the ET
and streamflow data were used for conditioning and model
evaluation (described below). Because the SWAT model is
sensitive to precipitation intensity, the original 5 min mea-
surements from four precipitation measurement stations in
the study area were combined via arithmetic averaging to
develop the precipitation input dataset – the averaging was
needed to account for missing data caused by instrument is-
sues in order to form a complete precipitation dataset. The
National Centers for Environmental Prediction (NCEP) Cli-
mate Forecast System Reanalysis (CFSR; Saha et al., 2014)
Global Weather Database was used in the SWAT simulation
as the input for weather data when on-site precipitation data
were not available (Banta and Slattery, 2011). To account for
errors induced by averaging precipitation data and the use of
lower-resolution NCEP precipitation data, we treat precipita-
tion as uncertain; the treatment of model inputs as uncertain
is discussed in detail in Sect. 2.4.

2.2 ArcSWAT

The ArcSWAT tool (Winchell et al., 2007) was used with
the previously described datasets to construct a SWAT2012
model of the watershed. Surface runoff is simulated with
SWAT using the Green–Ampt excess-rainfall method (Mein
and Larson, 1973; Jeong et al., 2010).

The NLCD 2001 (Homer et al., 2007) land-cover data
were modified so that areas of mixed brush–rangeland within
the watershed were reclassified as rangeland, which is con-
sistent with site-specific knowledge (Banta and Slattery,
2011).

The application of the ArcSWAT tool with the previously
described datasets resulted in a model with a single subbasin
covering the 1.4 km2 watershed study area with 47 distinct
HRUs (Fig. 1). A summary of the HRU characteristics is
included in Table S1 of the Supplement; the detailed HRU
characteristics obtained by applying the ArcSWAT tool are
included in the associated data release (White et al., 2017).
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Figure 2. Summary of (a) precipitation, (b) streamflow, and (c) evapotranspiration used in the modeling analysis. Accumulated values for
the conditioning and forecast period are shown in heavy black lines. Precipitation, streamflow, and evapotranspiration estimates are from
Banta and Slattery (2011).

2.3 Model configurations

The modeling analysis described herein includes two specific
simulation periods that correspond to the pretreatment and
posttreatment configurations:

conditioning period: 1 January 2002 to 31 December 2003
(pretreatment configuration)

forecast period: 1 January 2005 to 31 December 2010
(posttreatment configuration).

The conditioning period and forecast period models simu-
late the years 2001 and 2004, respectively; the initial year of
simulation for each model is used as a model warm-up period
to remove any transient artifacts from initial conditions.

In a typical modeling feasibility study, the model is con-
structed and conditioned to pretreatment (conditioning pe-
riod) system states, then forecasts are made using the model
related to how simulated brush management will affect the
hydrology within the watershed.

Here, two distinct SWAT models were constructed. The
first SWAT model simulated the pretreatment configuration
and is hereinafter referred to as the “pretreatment” model.
The second SWAT model simulated the posttreatment config-
uration and is hereinafter referred to as the “posttreatment”
model. The only difference between the two SWAT models

are specific inputs to HRUs 18, 20, 22, and 32, which repre-
sented the area of watershed that was converted from ever-
green forest (e.g., ashe juniper) to rangeland. Modifications
to the input files for the listed HRUs were as follows (herein,
references to specific SWAT input variables are shown in all
caps):

maximum canopy interception – the CANMX variable in
the .HRU input files

plant growth cycle – the PLANT_ID and HEAT_UNITS
variables in the .MGT input files.

In this study, brush management is simulated by modi-
fying the maximum canopy storage and inputs that control
the simulated growth cycle for a representative area of the
subbasin from evergreen forest to rangeland, because this
required few assumptions and allowed injection of the de-
sired uncertainty into the simulation workflow. We modified
the maximum canopy storage and the plant growth aspects
of HRUs 18, 20, 22, and 32 because these inputs directly
affect the available precipitation for partitioning and simu-
lated ET processes, respectively, whereas plant-growth vari-
ables affect the timing and intensity of simulated ET pro-
cesses related to the annual plant-growth cycle. In the pre-
treatment model, these model inputs were specified to rep-
resent ashe juniper land cover for HRUs 18, 20, 22, and 32,
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Table 1. Summary of parameters used in the reduced parameterization. These 12 inputs were selected from Table 1 in Arnold et al. (2012b)
and are adjusted on the subbasin scale.

Parameter Type Lower bound Upper bound Description (with units if applicable)

alpha_bf_v value 0.10 0.50 subbasin baseflow alpha factor (day−1)
cn2_r multiplier 0.50 1.50 subbasin soil-moisture condition II curve number
epco_v value 0.50 0.98 subbasin plant-uptake compensation factor
esco_v value 0.50 0.98 subbasin soil evaporation compensation factor
gw_delay_v value 10.00 300.00 subbasin groundwater delay time (days)
gw_revap_v value 0.02 0.40 subbasin groundwater “revap” coefficient
gwqmn_v value 500 4000 subbasin groundwater threshold return flow depth (mm)
ov_n_r multiplier 0.50 1.50 subbasin overland-flow Manning’s “n”
rchrg_dp_v value 0.25 0.75 subbasin deep-aquifer percolation factor
revapmn_v value 100 1000 subbasin groundwater threshold “revap” depth (mm)
sol_awc_1_r multiplier 1.00 5.00 subbasin soil available water capacity (mm mm−1)
surlag_v value 2.00 12.00 subbasin surface-runoff lag coefficient

whereas in the posttreatment model, these inputs for HRUs
18, 20, 22, and 32 were specified to represent rangeland land
cover, effectively capturing the change in the simulated in-
puts that corresponds to the brush-management operations
that occurred during 2004. See the SWAT theory (Neitsch
et al., 2011) and input–output documentation (Arnold et al.,
2012a) for more information on the model inputs listed in the
.HRU and .MGT files.

2.4 Parameterization

Parameterization is a critical part of any modeling analysis
and has received considerable attention in the literature (Ab-
baspour et al., 2004; Romanowicz et al., 2005; Sexton et al.,
2011; Zhenyao et al., 2013; Migliaccio and Chaubey, 2008;
Cibin et al., 2010; Gitau and Chaubey, 2010; Du et al., 2013;
Malone et al., 2015; Zhang et al., 2016). In this analysis, we
investigated two parameterization designs:

reduced parameterization uses the 12 model inputs listed
on Table 1 of Arnold et al. (2012b) to represent
model input uncertainty. These 12 model inputs are
the most cited SWAT model inputs treated as parame-
ters when simulating surface-water runoff and base-flow
processes (Arnold et al., 2012b). The reduced parame-
terization was, therefore, representative of many SWAT
modeling analyses in the literature. For the reduced pa-
rameterization model, inputs were adjusted on the wa-
tershed scale – that is, all 47 HRUs receive the same
value for each of these 12 model inputs (Table 1).

full parameterization used 1305 model inputs. It builds on
the 12 parameters of the reduced parameterization by
adding unique multiplier parameters on the HRU scale
for each of the 12 parameters in Table 1, and also in-
cludes many other model inputs that are not typically
adjusted, although they are still uncertain, such as soil

properties, and inputs that govern the simulation of plant
growth, such as leaf area index (LAI) variables. The full
parameterization also includes annual quartile precipi-
tation multipliers to account for uncertainty and poten-
tial bias in precipitation estimates (Leta et al., 2015; Re-
nard et al., 2011; Kavetski et al., 2006; Kuczera et al.,
2006). See Table S1 of the Supplement for a summary
of the full parameterization and the associated data re-
lease (White et al., 2017) for a complete description of
the full parameterization.

These two parameterizations represent different ap-
proaches to hydrologic modeling. From a computational
standpoint, the reduced parameterization is more desirable,
whereas the full parameterization offers the opportunity for
a more complete expression of model input uncertainty.

The SWAT input CANMX is of particular importance in
simulating brush management because it controls how much
precipitation is available for partitioning, and it is directly
affected by land-cover changes. Therefore, CANMX poten-
tially exhibits a strong control of the simulated outcomes of
brush management. CANMX is not treated as uncertain in
the reduced parameterization as it is not commonly treated
as adjustable (Arnold et al., 2012b). However, CANMX is
included in the full parameterization and is parameterized as
follows (herein, references to specific parameters are shown
in italics):

– the parameter canmx_v represents the maximum canopy
storage for evergreen forest land-cover-type HRUs;

– the parameter canmxfac_07 represents the portion of
canmx_v that is applied to deciduous forest land-cover-
type HRUs; and

– the parameter canmxfac_15 represents the portion of
canmx_v that is applied to rangeland land-cover-type
HRUs.

www.hydrol-earth-syst-sci.net/21/3975/2017/ Hydrol. Earth Syst. Sci., 21, 3975–3989, 2017
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In this way, we can incorporate uncertainty in the values
of CANMX for all three land-cover types while also enforc-
ing the relations we expect for the maximum canopy storage
between the land-cover types. This treatment for CANMX
allows both the pre- and posttreatment models to receive
the same parameter values for the same land-cover types.
Because HRUs 18, 20, 22, and 32 switch from evergreen
land cover to rangeland land cover, the CANMX values as-
signed to these HRUs is in harmony with the CANMX val-
ues assigned to other HRUs. The HRU-scale multipliers,
named canmx_XX, where XX is the HRU number, still ac-
count for HRU-scale variability in CANMX for HRUs of
the same land-cover type. In the reduced parameterization,
the parameters canmx_v, canmxfac_07, and canmxfac_15 are
specified values of 13.0 mm, 0.625×13.0 mm (8.13 mm) and
0.25× 13.0 mm (3.25 mm), respectively, which corresponds
to the midpoint of the respective parameter ranges.

The upper and lower bounds of each parameter were de-
fined using a combination of literature values (Abbaspour,
2015; Douglas-Mankin et al., 2010) and expert knowledge.
Collectively, the upper and lower bounds of each parameter
form a multivariate uniform distribution (hereinafter referred
to as the “Prior”). Conceptually, the Prior is the distribution
of “acceptable” parameter values based on hydrologic system
knowledge. The upper and lower bounds of each parameter
are summarized in Table S1 of the Supplement; the upper and
lower bounds of the reduced parameterization are distilled on
Table 1.

2.5 Model interface

Both the pre- and posttreatment SWAT models must be eval-
uated repeatedly to simulate hydrologic outcomes of brush
management and evaluate the importance of parameteriza-
tion in said outcomes. To accomplish this repeated eval-
uation, a model-independent interface to SWAT was con-
structed. This interface facilitated the translation of parame-
ter values into SWAT model input files, the execution of both
the pre- and posttreatment SWAT models, and the postpro-
cessing of SWAT model output into quantities of interest.

To translate parameter values to SWAT model input files,
parameters were assigned two characteristics:

1. Scale: a given parameter is either subbasin-scale or
HRU-scale. Subbasin-scale parameters are applied to
all 47 HRUs, whereas an HRU-scale parameter applies
only to a specific HRU.

2. Type: a given parameter is either a multiplier-type pa-
rameter or a value-type parameter. Multiplier-type pa-
rameters are treated as scaling factors against the origi-
nal SWAT model input variable(s), whereas value-type
parameters replace the original SWAT model input vari-
ables(s).

The following steps represent a single model evaluation in
the model interface:

1. Construct two“base” tables of HRU-scale inputs where
the columns are the SWAT model input names and the
rows are the 47 HRUs (one table for the pretreatment
model and one table for the posttreatment model). Pop-
ulate these tables with the base input values from the
ArcSWAT tool.

2. For each value-type, subbasin-scale parameter, replace
the values in the base tables for each corresponding col-
umn with the specified parameter value, assigning all
HRUs the same value.

3. For each multiplier-type, subbasin-scale parameter,
multiply the corresponding column of the base tables
by the specified parameter value, scaling all HRUs by
the same value.

4. Apply canmx_v, canmxfac_07 and canmxfac_15 pa-
rameters to the CANMX column of both base tables
according to the land-cover type of each HRU using the
previously described relation between these parameters.

5. For each multiplier-type, HRU-scale parameter, multi-
ply the corresponding row–column location in the base
tables by the specified parameter value, scaling only a
single entry in the table.

6. Translate the base tables into the appropriate SWAT in-
put files for both the pre- and posttreatment models.

7. Apply precipitation multiplier parameters and write a
new SWAT .PCP input file (Arnold et al., 2012a).

8. Apply plant-growth multiplier parameters and write a
new SWAT plant-growth database file.

9. Run the pretreatment model for 2001 through 2010 (the
pretreatment model outputs are needed from 2005–2010
for calculation of brush-management quantities of inter-
est).

10. Run the posttreatment model for 2004 through 2010.

11. Postprocess both model runs to formulate brush-
management quantities of interest and conditioning
measures (described in Sect. 2.6).

The forward run process was completed many times as
part of both the global sensitivity analysis and the uncertainty
analysis (described in Sect. 2.6). For the reduced parameter-
ization, the HRU-scale parameters, precipitation parameters,
and plant growth parameters were each assigned a value of
1.0, effectively removing the influence of these parameters
on the model outputs.
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2.6 Evaluation of brush-management simulations

We used uncertainty quantification techniques to investigate
how well the previously described SWAT models simulate
the effects of brush management on long-term water-budget
components. Specifically, after applying the global sensitiv-
ity analysis (GSA) method of Morris (Morris, 1991) (here-
inafter referred to as the “method of Morris”), we used Monte
Carlo (MC) analysis in conjunction with Generalized Like-
lihood Uncertainty Estimation (GLUE; Beven and Binley,
1992) to construct prior and behavioral distributions for sev-
eral model outputs that are important to simulating the out-
comes of brush management, which we term quantities of
interest (QOIs).

2.7 Quantities of interest

Output from both the pre- and posttreatment model was pro-
cessed into QOIs that encompass the simulated pre- and post-
treatment long-term water-budget components in the simu-
lated watershed:

QOI-1: volumetric conditioning-period (pretreatment) ET–
precipitation ratio

QOI-2: volumetric conditioning-period (pretreatment)
streamflow–precipitation ratio

QOI-3: volumetric forecast-period (posttreatment) ET–
precipitation ratio

QOI-4: volumetric forecast-period (posttreatment)
streamflow–precipitation ratio

QOI-5: volumetric forecast-period difference between the
simulated treated and untreated watershed.

The work of Banta and Slattery (2011) includes daily
mean streamflow and daily total ET for the watershed during
the forecast (posttreatment) period, which means measured
values for QOI-1 through QOI-4 are available. Posttreatment
streamflow measurements as well as pre- and posttreatment
ET measurements are not available in most real-world ap-
plications of modeling to support brush-management activi-
ties. Therefore, we treat QOI-1 through QOI-4 as verification
measures to check how well the model reproduces long-term
water-budget components, measures that are related to simu-
lating the feasibility of brush management.

QOI-5 is the primary quantity we use to evaluate the ef-
fectiveness of brush management: how does the simulated
long-term volumetric ET change as a result of brush manage-
ment? QOI-5 is simulated by running the pre- and posttreat-
ment models for 2004 to 2010 and summing the differences
in simulated ET between the two simulations.

2.8 Monte Carlo and GLUE

Monte Carlo analysis (Tarantola, 2005) was used to investi-
gate the effects of SWAT model input uncertainty on brush-

management QOIs. MC was chosen because it employs few
assumptions and because the forward model run time is rela-
tively short.

To perform the MC analysis, a 1 million parameter set en-
semble was drawn from the Prior for each of 1305 elements
of the full parameterization using the python module pyEMU
(White et al., 2016). Note the upper and lower bounds of each
parameter are provided in the data release (White et al., 2017)
and are summarized in Table S1 in the Supplement. Once the
prior parameter ensemble was constructed, the SWEEP util-
ity of the PEST++ software suite (Welter et al., 2015) was
used to run the pre- and posttreatment SWAT models for each
of the 1 million realized parameter sets in a distributed, par-
allel environment using the steps described in Sect. 2.5. The
result of this process yielded 1 million values for each of the
conditioning measures and brush-management QOIs.

The reduced parameterization was evaluated in a similar
fashion. The full-parameterization prior ensemble was modi-
fied so that the value of each parameter that was not included
in reduced parameterization was fixed at the value represent-
ing the midpoint of the parameter’s range. In this way, param-
eters not included in the full parameterization were treated
as if they were not in the analysis and are instead “fixed”
or “known” model inputs – just as they would be treated
in a modeling analysis that only adjusted the 12 inputs of
the reduced parameterization. Whereas the midpoint values
of the fixed parameters may not be “best” in the sense that
they reduce model-to-measurement misfit, they are nonethe-
less centered within the range of plausibility as described by
the Prior.

The reduced-parameterization prior ensemble was also
evaluated using the SWEEP utility in a distributed parallel
environment, yielding 1 million values for each of the condi-
tioning measures and brush-management QOIs.

Once the prior ensembles of both the reduced and full pa-
rameterizations were evaluated, the GLUE method of Beven
and Binley (1992) was used to condition the prior ensembles.
The GLUE method was selected because it accommodates a
subjective likelihood function, which allows the conditioning
process to be flexible and can simultaneously accommodate
several criteria (Beven and Binley, 1992). In this study, the
behavioral parameter ensembles are a subset of prior param-
eter ensembles which meet three criteria (herein referred to
as conditioning measures). Following Moriasi et al. (2007),
we selected the following conditioning measures, which are
based on daily mean streamflow, to form the behavioral en-
semble:

CM-1 conditioning-period (pretreatment) Nash–Sutcliffe
model efficiency coefficient (NSE) > 0.75

CM-2 conditioning-period (pretreatment) percent bias
< 5 %

CM-3 conditioning-period (pretreatment) coefficient of de-
termination (R2) > 0.85.

www.hydrol-earth-syst-sci.net/21/3975/2017/ Hydrol. Earth Syst. Sci., 21, 3975–3989, 2017



3982 J. White et al.: Parameterization of land-cover change simulation

These conditioning measures are widely used to judge a
hydrologic model’s ability to reproduce observed daily mean
streamflow (Moriasi et al., 2007). Briefly, NSE is a statistic
that determines the relative magnitude of simulated residual
variance to the observed variance (Nash and Sutcliffe, 1970).
Percent bias measures the tendency of the model to system-
atically over- or undersimulate the observed data, whereas
the coefficient of determination measures the colinearity be-
tween simulated and observed pairs. By using all three of
these conditioning measures simultaneously, the parameter
realizations that “best” reproduce different facets of the ob-
served streamflow data are identified.

Realizations in each of the prior ensembles that satisfied
all three of conditioning measures are designated as “behav-
ioral” and, taken together, comprise the reduced and full pa-
rameterization behavioral ensembles, respectively. These be-
havioral ensembles represent parameter realizations that re-
spect the Prior but that also reproduce daily mean streamflow
acceptably well according to the three conditioning mea-
sures. That is, each parameter realization in the full- and
reduced-parameterization behavioral ensembles can be con-
sidered “calibrated” in that each of these parameter realiza-
tions results in simulated daily mean streamflow that accept-
ably matches the observed data according to the three condi-
tioning measures.

2.9 Global sensitivity analysis

Given the large difference in the number of parameters be-
tween the reduced (12) and full (1305) parameterizations,
the interested reader may be wondering how many members
of the reduced and full parameterizations influence either
the conditioning measures or the QOIs or both. In an effort
to address this question, we employed the method of Mor-
ris (Morris, 1991) which is a “one-at-a-time” GSA method;
each parameter is varied, in turn, across the specified range,
effectively sampling the sensitivity of QOIs and condition-
ing measures across parameter space. We used the model-
independent implementation of the method of Morris en-
coded in GSA utility of the PEST++ software suite (Morris,
1991; Welter et al., 2015) with 20 discretization points across
the range of each parameter.

3 Results

The application of the method of Morris (1991) reveals
a considerable number of model inputs that influence the
conditioning measures as well as the designated brush-
management QOIs. Furthermore, the combined Monte Carlo
and associated GLUE-based conditioning process (MC–
GLUE) analysis reveals a relatively large difference in the
estimated range of QOI-5 between the reduced and full pa-
rameterization models.

3.1 Global sensitivity analysis

Of the 1305 model inputs treated as parameters, the method
of Morris analysis indicates that only 194 parameters are
noninfluential to the three conditioning measures and five
brush-management QOIs (see the Supplement for a com-
plete summary of the GSA results, including a table of the
five most influential parameters for each QOI and condition-
ing measure, Tables S2 and S3). Note that many of the most
influential parameters, specifically precipitation multipliers,
plant growth parameters, and HRU-scale parameters, are not
in the reduced parameterization and are not included in typi-
cal hydrologic modeling analyses (Arnold et al., 2012b).

3.2 Monte Carlo

The MC–GLUE analysis yielded 7155 and 6846 realizations
(out of the 1 million member prior ensembles) that compose
the behavioral ensembles for the reduced and full parame-
terizations, respectively. These behavioral ensembles repro-
duce the pretreatment daily mean streamflow data acceptably
well according to the three conditioning measures. The rela-
tion of prior and behavioral ensembles to the three condition-
ing measures for the reduced and full parameterizations can
be seen graphically in Fig. 3. The diagonal panes of Fig. 3
show the histograms of each of the three conditioning mea-
sures, whereas the off-diagonal panes show the relation be-
tween conditioning measures. Parameter realizations within
the hatched boxes in Fig. 3 collectively form the behavioral
ensembles for both the reduced and full parameterization.

3.2.1 Verification QOIs

In general, for both the reduced and full parameterizations,
the behavioral distributions for ET-based QOIs (QOI-1 and
QOI-3) are similar to prior distributions; conditioning has
slightly shifted the distributions towards larger precipitation–
ET ratios but has not substantially decreased the width of
the distributions. The similarity between prior and behav-
ioral distributions indicates the conditioning process has not
changed the uncertainty that exists in model-simulated ET.
The prior and behavioral distributions of reduced and full pa-
rameterizations bracket the measured value for QOI-1, QOI-
2, and QOI-3 at the 95 % confidence level (Figs. 4, 5, and
6).

QOIs related to streamflow (QOI-2 and QOI-4) have
markedly different behavioral distributions compared to
prior distributions, indicating considerable conditioning
of streamflow-sensitive parameters. The measured value
for QOI-4 (volumetric forecast-period – posttreatment –
streamflow–precipitation ratio) was not bracketed at the 95 %
confidence level by either behavioral distribution or the prior
distribution of the reduced parameterization (Fig. 7).
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Figure 3. Values of conditioning measures for the full (gray) and reduced (blue) parameterizations. The diagonal panes (a, c, f) show
distribution of each conditioning measure; the off-diagonal panes (b, d, e) show the relation between respective conditioning measures. The
hatched boxes mark the 3-dimensional behavioral region; realizations within the hatched boxes comprise the behavioral ensembles of each
parameterization.

3.2.2 Forecast QOI

The prior uncertainty in the QOI-5 (the simulated difference
between the total forecast-period ET in the pre- and posttreat-
ment models) was substantially larger for the full parameter-
ization compared to the reduced parameterization (Fig. 8):
the reduced parameterization prior uncertainty ranged from
approximately −4.1 to −2.1 %, whereas the full parameter-
ization model yielded a prior uncertainty that ranged from
approximately −7.5 to +0.5 %. Note a negative ET differ-
ence indicates a decrease in ET as a result of simulated brush
management. The larger range yielded by the full parame-
terization is a direct outcome of specifying more uncertain
parameters that influence QOI-5.

QOI-5 behavioral uncertainty from the reduced parame-
terization is substantially different than the prior uncertainty;
the 95 % confidence interval of the reduced parameteriza-
tion behavioral distribution ranges from −2.5 to −2.0 %.
The behavioral distribution of QOI-5 yielded by the full pa-
rameterization is similar to the prior distribution, but shifted
slightly towards positive values; the 95 % confidence inter-
val of the full parameterization behavioral distribution ranges
from −6.2 to +0.5 % (Fig. 8a). Only slight differences be-
tween the prior and behavioral distributions for the full pa-
rameterization, again, indicate the selected conditioning pro-
cess did not substantially change the reliability in simulated
long-term changes in ET as a result of brush management.
We attribute the differences in QOI-5 distributions between
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Figure 4. Quantity of interest QOI-1: simulated conditioning-period (pretreatment) ET as a percentage of precipitation. The prior and
behavioral 95 % confidence intervals – defined by the confidence limits (CLs) – of both model parameterizations bracket the measured value.
However, the conditioning process has little affect on uncertainty as the behavioral distribution is similar to the prior distribution.
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Figure 5. Quantity of interest QOI-2: simulated conditioning-period (pretreatment) streamflow as a percentage of precipitation. The effects
of the conditioning process can be seen as large reduction in the range of the behavioral distribution compared to the prior distribution. The
prior and behavioral distributions for model parameterizations bracket the measured value.

the reduced and full parameterizations to the model error
generated by using a reduced set of parameters to repre-
sent SWAT model input uncertainty. Note the prior distribu-
tion for the reduced parameterization was also nonparametric
compared to the full parameterization counterpart, a numer-
ical artifact we also attribute to the model error induced by
the reduced parameterization.

4 Discussion

The full-parameterization behavioral distribution of QOI-5
included a range of possible outcomes from a net decrease to
a slight net increase in the ET component of the long-term
water budget (Fig. 8). This range of possible outcomes stems
from the number of model inputs that were identified as un-
certain and treated as parameters in the MC–GLUE analysis.

The possibility of a net increase in ET following brush man-
agement is not unprecedented. Harwell et al. (2016) showed
a net decrease in surface-water yield following simulated
brush-management activities for one of their simulated sub-
basins. Furthermore, we have demonstrated that condition-
ing of a hydrologic model to daily mean streamflow does not
necessarily increase the reliability of forecasts made with the
model.

This study demonstrates the importance of robust uncer-
tainty quantification to support simulations of brush man-
agement, and, more generally, simulation of the hydro-
logic outcomes of land-cover change. Without uncertainty
quantification, the simulated outcomes of simulating brush
management are simply single points on the behavioral
QOI distributions, which conveys no information related
to the reliability of the model results. The failure of the
reduced-parameterization model to provide robust uncer-
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Figure 6. Quantity of interest QOI-3: simulated forecast period (posttreatment) ET as a percentage of precipitation. All 95 % confidence
intervals bracket the measured value. However, the conditioning process has done little to decrease uncertainty, as the behavioral distributions
are similar to the prior distributions for both model parameterizations.
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Figure 7. Quantity of interest QOI-4: simulated forecast period (posttreatment) streamflow as a percentage of precipitation. Both the param-
eterizations appear to have been “overfit” with respect to this QOI, as neither behavioral distributions bracket the measured value at the 95 %
confidence level.

tainty estimates demonstrates the importance of parameteri-
zation when attempting to quantify uncertainty in land-cover
change simulations. The results of our analysis should not
be directly extrapolated to other hydrologic settings that are
different from the one described herein.

The MC–GLUE analysis showed that using a reduced pa-
rameterization to represent model input uncertainty leads to a
misrepresentation and critical underestimation of the uncer-
tainty in QOI-5, leading to artificially high confidence that
brush-management activities will decrease the ET compo-
nent of the water budget by approximately 2.0 to 2.5 %. By
including a more representative and complete set of parame-
ters to represent model input uncertainty, the resulting QOI-5
uncertainty estimate more appropriately conveys the reliabil-
ity in the modeled outcome of brush management.

A clear link between level of parameterization and un-
certainty estimates for the simulated results of brush man-
agement has been demonstrated, and issues such as under-
estimation of uncertainty and numerical artifacts are shown
to be associated with a reduced parameterization. Further-
more, the results of applying the method of Morris revealed
more than 1100 model inputs that were identified as uncer-
tain and that also influence conditioning measures, QOIs or
both. Following Sexton et al. (2011), parameters that influ-
ence the QOIs must be included in the uncertainty analysis,
even if said parameters do not influence the likelihood func-
tion (e.g., they are not “identified” by the conditioning data).
The demonstrated issues with the level of parameterization
raise questions related to the concept of “overparameteriza-
tion” (Jakeman and Hornberger, 1993) in the context of sim-
ulating the hydrologic outcomes of land-cover change. Each
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Figure 8. Quantity of interest QOI-5: simulated difference in total forecast period (posttreatment) ET volume as a result of brush management.
Negative values indicate a decrease in ET as a result of brush management. The reduced parameterization yields a much narrower confidence
interval compared to the full parameterization.

of the inputs that were selected for adjustment in the full-
parameterization model were deemed uncertain at the start
of the modeling analysis; whereas other practitioners may
choose different prior distributions and/or ranges for these
parameters, we doubt any practitioners would state these
model inputs are known with certainty.

There are two avenues to reduce QOI-5 uncertainty:
(1) collect information directly about the model input vari-
ables that most influence QOI-5 – that is, reduce the prior
uncertainty of the parameters that represent these inputs – or
(2) collect additional hydrologic observations that, through
conditioning, reduce the uncertainty of parameters that influ-
ence QOI-5. We recognize that the ET observation data used
to formulate QOI-1 could in fact be used as a condition mea-
sure. Given the similarity between QOI-1 and QOI-5, it is
possible that the conditioning-period ET data could be used
to further condition several parameters that influence QOI-5,
thereby reducing the behavioral uncertainty of QOI-5. How-
ever, the conditioning-period ET data provide a valuable val-
idation of the model’s performance, and using these data as
a conditioning measure would provide unique and atypical
conditioning.

5 Conclusions

This study provided an analysis of the ability of a SWAT
model to forecast how brush management affects the long-
term water balance within a watershed. The analysis relies
on measured streamflow and independently derived evapo-
transpiration estimates to condition the parameterized model
inputs as well as provide a verification of the model’s per-
formance during the forecast period. The method of Morris
was used to investigate model input influence on condition-
ing measures and brush-management quantities of interest.
Following the method of Morris, Monte Carlo and GLUE

analyses were used to estimate the uncertainty of brush-
management QOIs for the reduced and full parameterization
schemes.

Our analysis reveals the importance of robust uncertainty
quantification when simulating the outcomes of brush man-
agement, especially as it relates to how the model is parame-
terized. Failure to specify a complete and encompassing pa-
rameterization is shown to lead to an underestimation of un-
certainty in simulated brush-management outcomes, which
may lead to suboptimal water-resource decision making.

Given the number of identified uncertain model inputs
and the associated specified uncertainty in said inputs, the
model-simulated change in the long-term ET in the water-
shed is largely uncertain and includes a range of possible
outcomes from a net negative to a slightly net positive change
in the long-term ET component of the water budget. The re-
sulting uncertainty in one of the primary metrics of brush-
management effectiveness underscores the importance of ro-
bust and conservative uncertainty quantification. Watersheds
with different hydrologic response characteristics will obvi-
ously behave differently, but, if modeling is used to evaluate
brush-management outcomes, robust uncertainty quantifica-
tion is needed to place the model results in a representative
context.

Data availability. A data release that supports the analyses pre-
sented herein is available at https://doi.org/10.5066/F7WH2NGR
(White et al., 2017). The data release includes files and data needed
to reproduce our analyses, including the following:

1. an ESRI ArcMAP 10.2.2 project that includes the ArcSWAT
version 2012.10.2.18 project used to create the base model

2. base SWAT2012 input files generated by the ArcSWAT tool

3. PEST++ interface files including python pre- and postprocess-
ing scripts.
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The comma-separated value files used in the reduced and full-
parameterization Monte Carlo analysis can be generated from the
files provided in the data release (White et al., 2017). The ET, pre-
cipitation, and streamflow data used for conditioning and verifica-
tion are available for download as the appendices to Banta and Slat-
tery (2011) at the US Geological Survey Publication Warehouse
(http://pubs.usgs.gov/sir/2011/5226/).

The Supplement related to this article is available
online at https://doi.org/10.5194/hess-21-3975-2017-
supplement.
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