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Abstract. The parameters of hydrological models are usually
calibrated to achieve good performance, owing to the highly
non-linear problem of hydrology process modelling. How-
ever, parameter calibration efficiency has a direct relation
with parameter range. Furthermore, parameter range selec-
tion is affected by probability distribution of parameter val-
ues, parameter sensitivity, and correlation. A newly proposed
method is employed to determine the optimal combination of
multi-parameter ranges for improving the calibration of hy-
drological models. At first, the probability distribution was
specified for each parameter of the model based on genetic
algorithm (GA) calibration. Then, several ranges were se-
lected for each parameter according to the corresponding
probability distribution, and subsequently the optimal range
was determined by comparing the model results calibrated
with the different selected ranges. Next, parameter correla-
tion and sensibility were evaluated by quantifying two in-
dexes, RCY,X and SE, which can be used to coordinate with
the negatively correlated parameters to specify the optimal
combination of ranges of all parameters for calibrating mod-
els. It is shown from the investigation that the probability dis-
tribution of calibrated values of any particular parameter in a
Xinanjiang model approaches a normal or exponential distri-
bution. The multi-parameter optimal range selection method
is superior to the single-parameter one for calibrating hydro-
logical models with multiple parameters. The combination
of optimal ranges of all parameters is not the optimum inas-
much as some parameters have negative effects on other pa-
rameters. The application of the proposed methodology gives
rise to an increase of 0.01 in minimum Nash–Sutcliffe effi-

ciency (ENS) compared with that of the pure GA method.
The rising of minimum ENS with little change of the maxi-
mum may shrink the range of the possible solutions, which
can effectively reduce uncertainty of the model performance.

1 Introduction

Hydrological process modelling is an important tool for re-
search on water resource management, flood control and dis-
aster mitigation, water conservancy project planning and de-
sign, hydrological response to climate change, and so on
(Zanon et al., 2010; Papathanasiou et al., 2015). The initial
hydrological model was a black-box model in 1932 (Sher-
man, 1932) and conceptual and physically based models
were subsequently put forward in 1960s (Freeze and Har-
lan, 1969). The three kinds of hydrological models have been
significantly improved in recent years, with their structures
becoming more mature. Theoretically, the physically based
model has a definite physical mechanism of the water cy-
cle and all parameters can be measured in situ (Abbott et
al., 1986; Huang et al., 2014). Conceptual models express
hydrological processes in the form of some abstract models
which come from some physical phenomenon and experi-
ence. For example, the interflow and the base flow are simpli-
fied as the flow from linear reservoirs (Caviedes-Voullième
et al., 2012; Lü et al., 2013). As a result, some parameters
of conceptual models need calibrating. In general, concep-
tual models have better performance in modelling the stream-
flow at the catchment outlet than physically based distributed
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models do, especially for catchments lacking sufficient data
(Bao et al., 2010; Cullmann et al., 2011). Thus, many con-
ceptual models such as HBV model, TOPMODEL, Tank
model and Xinanjiang model are of strong vitality (Abebe
et al., 2010; Vincendon et al., 2010; Hao et al., 2015; Xie et
al., 2015). Additionally, the performance of physically based
distributed models can be improved after calibration of some
parameters (Chen et al., 2016). Therefore, all of the hydro-
logical models should be calibrated before engineering ap-
plications.

There are two kinds of calibration methods for hydro-
logical models, the trial–error method and auto-calibration
method. The trial–error method depends on plenty of trials
for reducing the error of the objective. However, it is diffi-
cult to obtain an exact optimal solution due to limited enu-
meration (Boyle et al., 2000). The auto-calibration method
is based on stochastic or mathematical calculations and thus
more widely applied in the non-linear parameter optimiza-
tion. Compared with the trial–error method, it is more ef-
ficient and effective, avoiding the interference of anthro-
pogenic factors (Madsen, 2000; Getirana, 2010). The ini-
tial automatic optimization methods, such as the Rosenbrock
method (Rosenbrock, 1960) and the simplex method (Nelder
and Mead, 1965), are classical and useful methods, but at
the same time have a negative side of being bounded by
initial value ranges of parameters. Therefore, it can only
be regarded as local optimization algorithms (Gupta and
Sorooshian, 1985). Different from classical methods above,
the genetic algorithm (GA), which is designed with random
search strategy, can avoid the problem of local search and
thus is a global optimization algorithm in its essence (Wang,
1991, 1997; Sedki et al., 2009; Chandwani et al., 2015). Af-
ter that, many global optimization algorithms have been pro-
posed inheriting the random search strategy. The shuffled
complex evolution (SCE-UA) method combines many ad-
vantages of the GA and simplex methods, having a power-
ful capability of calibrating the rainfall–runoff model (Duan
et al., 1994; Zhang and Shi, 2011). The particle swarm op-
timization (PSO) based on random solution can directly ob-
tain the identification parameters through the iterative search
for an optimal solution (Kennedy, 1997; Zambrano-Bigiarini
and Rojas, 2013). Although the auto-calibration method has
been intensively employed to calibrate parameters in the field
of hydrology, the most advanced algorithm inevitably falls
into local solution because of the strong non-linear problem
of a hydrological model and parameter correlation (Chu et
al., 2010; Jiang et al., 2010, 2015).

In general, parameter variables follow some specific prob-
ability distributions within the given range after multiple in-
dependent calibrations (Viola et al., 2009; Jin et al., 2010; Li
et al., 2010). Graziani et al. (2008) stated that the shape of
a parameter probability distribution can be significantly af-
fected by a parameter range. Touhami et al. (2013) studied
the effect of different probability distributions (e.g. normal
distribution and uniform distribution) of parameter values on

parameter sensitivity, and found that the probability distri-
bution can provide a clue for realizing parameter sensitiv-
ity. Although normal and uniform distributions are greatly
studied in practice, other types of probability distributions
were seldom investigated in previous research (Kucherenko
et al., 2012; Esmaeili et al., 2014).

Most hydrological models contain many parameters of dif-
ferent sensitive characteristics and correlation patterns. Some
researchers believe that the sensitive parameter should be cal-
ibrated, while the insensitive parameter can be set as a fixed
value by experience (Beck, 1987; Cheng et al., 2006). In-
appropriate parameter ranges or fixed values may result in
the instability of calibrated results. Furthermore, the range
setting of one parameter may influence the calibration of
other related parameters (Song et al., 2015). The model pa-
rameter sensitivity analysis has been a growing concern in
recent years. Parameter sensitivity varies with catchment
characteristics, objective functions, and parameter ranges
(van Griensven et al., 2006). Wang et al. (2013) noted the
different parameter ranges could lead to changes in parame-
ter sensitivity. Shin et al. (2013) reported that reducing or ex-
tending ranges might render insensitive parameters into sen-
sitive ones or vice versa. Thus, parameter ranges and correla-
tion should be taken into consideration when the calibration
of multi-parameter models is performed.

Parameter ranges are generally given roughly due to lack
of knowledge concerning physical settings of a local catch-
ment (Song et al., 2013; Hao et al., 2015). The more devia-
tion between an optimal range and a given range, the more
uncertainty of the calibration result. The selection of appro-
priate parameter ranges is critical for calibrating the model
efficiently. However, there have not been many documented
studies on how to select the appropriate parameter range for
improving the calibration of hydrological models. Further-
more, the calibration of multiple parameters is more complex
due to parameter sensitivity and correlation. Hence, it is nec-
essary to find a way to coordinate the range settings of all
parameters.

Considering the effect of parameter ranges on calibration
efficiency of hydrological models, an approach of parame-
ter range selection (PRS) is put forward to improve the cal-
ibration of hydrological models with multiple parameters.
At first, probability distribution of each parameter was anal-
ysed based on many independent calibrations by using a GA
method. Then the optimal range of a single parameter was
specified for calibration according to its probability distribu-
tion. Finally, parameter correlation and sensitivity were esti-
mated to determine the optimal combination of multiple pa-
rameter ranges. The proposed method is expected to be help-
ful for an effective and efficient calibration of hydrological
models with multiple parameters.
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2 Study area and data collection

The Chaotianhe River catchment is located in the northeast
of the Guangxi Zhuang Autonomous Region in southwest
China (Fig. 1). The Chaotianhe River is the major tributary of
the Lijiang River of a well-known karst landscape. The total
catchment area is 476.24 km2. The annual precipitation is ap-
proximately 1704 mm and 78 % precipitation concentrates in
flood seasons (March–August). The thickness of soil varies
spatially in most karst areas. Limestone is exposed to air in
some peak-cluster regions. Clay soil with thickness ranging
from 2 to 10 m is distributed in the depressions and valleys. In
clastic rock mountain areas, the thickness of the soil is usu-
ally less than 0.5 m. Thus, the soil moisture storage capacity
varies significantly with space. Moreover, the underground
rivers are very well developed in the karst area, which makes
the flood gather rapidly and recess slowly due to higher un-
derground flow rate.

The data concerning daily precipitation, evaporation and
streamflow were collected from national gauging stations for
the 5-year period of 1996–2000. Four precipitation stations,
one streamflow gauging station, and one evaporation station
are selected for the investigation. Areal precipitation was cal-
culated using data from the four precipitation stations by
using a Thiessen polygon method under GIS environment
(Cai et al., 2014). The streamflow gauging station is at the
catchment outlet. Some hydro-meteorological statistical data
of the studied catchment are summarized in Table 1. From
1996 to 2000, the maximum of daily streamflow was about
719 m3 s−1, the minimum 0.53 m3 s−1, and the average was
13.31 m3 s−1 at the outlet. The maximum areal daily precipi-
tation varies with years in the studied catchment and reached
the value of 235 mmd−1 in 1996.

3 Methodology

3.1 Hydrological model selection

The method of PRS is designed for most of hydrological
models. At present, there have been many hydrological mod-
els for hydrological process simulation. Considering the cli-
mate characteristics of the study area, the Xinanjiang model,
which is suitable for humid regions, was chosen to serve as
a hydrological model for the investigation. The Xinanjiang
model mainly includes three evapotranspiration layers and
three runoff components (i.e. surface-, subsurface runoff and
groundwater) (Zhao, 1992). The surface runoff is routed by
the Unit Hydrograph (UH) which is derived from the ob-
served streamflow, and other runoff components are simpli-
fied as linear reservoirs (Ju et al., 2009). With regard to the
Xinanjiang model, there are 10 parameters that should be cal-
ibrated. The definitions of the parameters are given in Ta-
ble 2 (Lin et al., 2014; Hao et al., 2015). The proposed PRS

Table 1. Metro-hydrological statistical data of the study area.

Year QMax QMin QAvg PMax

(m3 s−1) (mmd−1)

1996 719 0.76 14.38 235
1997 308 0.76 14.32 155
1998 369 0.66 13.67 157
1999 282 0.53 12.81 144
2000 339 1.14 11.37 107

QMax, QMin, and QAvg mean the maximum, minimum, and
average value of daily streamflow, respectively, and PMax
means the maximum value of daily precipitation.

Figure 1. Location of the study area.

method is introduced as follows, when a Xinanjiang model
is taken as an example.

3.2 Probability distribution analysis of calibrated
parameter value

3.2.1 Sample collection of calibrated parameter value

In theory, the parameter values calibrated by using a
stochastic-based auto-calibration method are not the same as
each other but follow a specific probability distribution un-
der a reasonable convergence condition (Jiang et al., 2015).
The stochastic-based auto-calibration is used to calibrate the
model, and samples of calibrated parameter values are ob-
tained in order to analyse the probability distribution of pa-
rameter values. The sample size of 100 is adequate for es-
timating the probability distribution of calibrated parameter
values in the investigation, which is deduced from the results
of trial tests as shown in Fig. 2. It can be seen that both max-
imum and minimum ENS keep stable when sample size is
greater than 100.

A GA was selected as the auto-calibration method in the
investigation, because GA is a common and widely used
global optimization algorithm based on stochastic and evo-
lutionary optimization. Many studies show that evolution-
ary algorithms provide equal or better performance of a
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Table 2. Parameters of Xinanjiang model.

Parameter Definition Units

CI Recession constants of the lower interflow storage dimensionless
Kc Ratio of potential evapotranspiration to pan evaporation dimensionless
KI Outflow coefficients of the free water storage to interflow dimensionless
SM Areal mean free water capacity of the surface soil layer, which represents

the maximum possible deficit of free water storage mm
B Exponential parameter with a single parabolic curve, which represents

the non-uniformity of the spatial dimensionless
WM Averaged soil moisture storage capacity of the whole layer mm
C Coefficient of the deep layer, which depends on the proportion

of the basin area covered by vegetation with deep roots dimensionless
EX Exponent of the free water capacity curve influencing the development of the saturated area dimensionless
CG Recession constants of the groundwater storage relationships dimensionless
KG∗ Outflow coefficients of the free water storage to groundwater relationships dimensionless
Im Percentage of impervious and saturated areas in the catchment dimensionless

∗ The value of KG is calculated by the function 0.7-KI.

Figure 2. Variation curves of maximum and minimum ENS with
sample sizes.

model than other algorithms do (Cooper et al., 1997; Jha et
al., 2006; Zhang et al., 2009). The Nash–Sutcliffe efficiency
(ENS) was chosen as an objective function (Eq. 1) for GA,
which represents the agreement between observed and simu-
lated data.

ENS = 1−

∑n
i=1

(
Qobs,i −Qsim,i

)2

∑n
i=1

(
Qobs,i −Qmean

)2 , (1)

whereENS is Nash–Sutcliffe efficiency, i is the serial number
of the step, n is the total number of the observed streamflow
data,Qobs,i is the observed streamflow at step i,Qsim,i is the
simulated streamflow at step i, and Qmean is the mean value
of observed streamflow.

3.2.2 Determination of probability distribution types

The probability distributions of calibrated parameter values
can be estimated roughly by using box-plot charts, cumula-
tive frequency curves, and frequency histograms. The sym-
metry of the box-plot chart (including one box and two
whiskers) and the length ratio of the whisker to the box, the
shape of the cumulative frequency curve, and the frequency
histogram are important indicators for the identification of
the distribution type. Based on these indicators, three types
of probability distributions are listed as follows: (1) normal
distributions, where the box and whiskers are approximately
symmetrical along the y-axis direction, the length of either
whisker is longer than half height of the box in a box-plot
chart (Fig. 3a), and the cumulative frequency curve is S-
shaped and the histogram bell-shaped (Fig. 3b); (2) exponen-
tial distributions, where the whole chart is distinctly asym-
metrical in the y-axis direction, which means that the av-
erage value (marked with a small hollow square) deviates
from the median value (marked with a centre line in box),
where the box is inclined to one side with the extreme shorter
whisker (Fig. 3a), the cumulative frequency curve is parabola
shaped, and the histogram tends to increase or decline grad-
ually (Fig. 3c); (3) uniform distribution, where the box and
whiskers are approximately symmetrical along the y-axis di-
rection, the length of two whiskers is close to that of the box
(Fig. 3a), the cumulative frequency curve tends to a straight
line and the histogram varies little along the x axis (Fig. 3d).

A Kolmogorov–Smirnov test (K–S test) is geared to exam-
ine whether a data set fits a reference probability distribution
or not (Haktanir, 1991). In a K–S test, for any variable xi in a
data set, the empirical distribution function value (Fi) is cal-
culated by using a plotting position formula, and the cumu-
lative distribution function value (F ∗i ) is computed by using
the reference probability distribution. The maximum devia-
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Figure 3. Different probability distribution types of calibrated parameter values. (a) Box-plot charts of normal, exponential, and uniform
distribution; cumulative frequency curve and histogram for normal (b), exponential (c), and uniform (d) distributions.

tion between the two values, 1Max, is expressed in Eq. (2).

1Max =
∣∣F ∗i −Fi∣∣ (2)

According to the acceptable level of significance α (α =
0.2α) and the total number of values in a data set n, 1table
can be obtained from the K–S table. If 1Max <1table, the
reference probability distribution is identified to fit to the data
set.

3.3 Parameter range selections

3.3.1 Single parameter range selection (S-PRS)

In order to improve ENS, the initial range of a parameter re-
quires adjusting properly. Given the three probability distri-
bution types mentioned above, the different ways to specify
the optimal range for a single parameter are presented in the
investigation. For the parameter of a uniform distribution, it
is better to keep the initial range due to the weak influence of
ranges on calibration results. For the parameter of a normal
distribution, the cumulative frequency curve is employed to
seek some reduced ranges with a given cumulative frequency
(e.g. 50 %), and the minimum and maximum ranges (namely
MINR and MAXR) are obtained as depicted in Fig. 4. The
MINR and MAXR represent the ranges of maximum and
minimum probability density of parameter values under a
given cumulative frequency. As for the parameter of an ex-
ponential distribution, the initial range can be extended ap-
propriately towards one side of high probability density, if

the parameter has reasonable meaning in the extended range.
Then, the optimal range of the parameter can be specified
by comparing different ENS calculated separately by using
the initial range, the MINR or MAXR of the initial range,
or the MINR or MAXR of the extended range. If the initial
range cannot be extended, the MINR and MAXR are sought
out according to the cumulative frequency curve. Figure 5
gives the variation curves of maximum and minimum ENS
of a single parameter with cumulative frequency values. It is
found that the maximum ENS remains constant despite a cu-
mulative frequency value varying, while the minimum ENS
approaches the peak value of 0.881 when the cumulative fre-
quency value is equal to 50 %. Considering that higher mini-
mum ENS contributes to more efficient calibration, the fixed
cumulative frequency value of 50 % was selected to deter-
mine the ranges of maximum and minimum probability den-
sity (i.e. MINR and MAXR) for each parameter. In short, the
optimal range of a single parameter can be determined by
properly extending or reducing the initial range to make cali-
brated parameter values distributed quite closely to a uniform
distribution.

3.3.2 Multiple parameter range selection (M-PRS)

In general, there is more or less correlation between param-
eters for most hydrological models. As far as a Xinanjiang
model is concerned, parameters WM and B refer to the wa-
ter storage volume–area curve that represents the spatial vari-
ability of soil moisture storage. If the curve is fixed, a larger
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Figure 4. Selection of minimum and maximum range (MINR and
MAXR) with a cumulative frequency of 50 %.

Figure 5. Variation curves of maximum and minimum ENS of a
single parameter with cumulative frequency values.

WM results in a smaller B (Zhao, 1992). As a result, the
range change of parameter WM may affect the range setting
and calibration of parameter B. If the ranges of the related
parameters required adjusting, the correlations among pa-
rameters, therefore, should be taken into account. If the range
change of one parameter has positive influence on calibration
of other parameters, using the optimal range of the parameter
instead of the initial one can contribute to better calibration
results. On the contrary, the negative impact may result in a
worse model calibration, even though the optimal ranges of
the parameters are used. Thus, some coordination measures
should be taken to deal with such a contradiction. The index
RC (Eq. 3) was quantified to analyse the influence degree of
one-parameter range change on the calibration of other pa-
rameters. When RCY,X is closer to 1, the range change of
parameter X has a greater positive influence on the calibra-
tion of parameter Y . If RCY,X is minus, it exerts a negative

influence.

RCY,X = 1−
LY,X −LY, Y

LY, Initial−LY,Y
, (3)

where RCY,X is the influence degree of the range change of
parameter X on the calibration of parameter Y , LY,X is the
range of parameter Y calibrated with the optimal range of
parameter X and initial ranges of other parameters, LY, Y is
the range of parameter Y calibrated with the optimal range
of parameter Y and initial ranges of other parameters, and
LY, Initial is the range of parameter Y calibrated with initial
ranges of all parameters. The calibrated range of any param-
eter is calculated, excepting extreme outliers.

If there is a negative influence between two parameters, the
optimal range of the parameter of higher sensitivity is used
and the initial range of the other parameter is kept for calibra-
tion generally to mitigate the negative impact. It is due to the
fact that sensitive parameters play more important roles than
insensitive parameters do in a multi-parameter calibration. In
order to assess the sensitivity of parameter range change to
ENS, index SE as expressed in Eq. (4) is computed by per-
forming an S-PRS method on each parameter. The larger the
value of RC, the more concentrated the distribution of ENS,
which means more efficient parameter calibration. Thus, the
parameter of higher SE is given priority to the optimal range
when the RC of two parameters is minus.

SE = 1−
E′NS Max−E

′
NS Min

ENS Max−ENS Min
, (4)

where SE is sensitivity of parameter range change to ENS,
ENS Max and ENS Min are maximum and minimum ENS cali-
brated with an initial range, and E′NS Max and E′NS Min are
maximum and minimum ENS calibrated with an optimal
range. The statistical analysis of ENS excludes extreme out-
liers.

Given the fact that there are more than two parameters in
most hydrological models, the accumulative influence and
the coordination of range selection were investigated in the
study. The mean value of RC (RC mean) is the index to judge
the accumulative influence of one-parameter range change
on the calibration of other parameters. Thus, for parameters
of a negative RC mean, the initial ranges instead of the optimal
ones are adopted for the multi-parameter calibration.

The flow chart of the PRS method is shown in Fig. 6. In
stage 1, a set of initial ranges of parameters are given for a
hydrological model and the probability distribution for each
parameter analysed based on the 100 independent parameters
values calibrated by an auto-calibration method. In stage 2,
there are three range adjustment methods with response to
a probability distribution of parameter values: for a normal
distribution, the optimal range of a single parameter is ob-
tained by reducing the initial range; for an exponential dis-
tribution, the initial range of a single parameter is extended
to specify the optimal range, or the initial range is reduced to
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Figure 6. The flow chart of multiple parameter range selections.

seek the optimal range for calibration when the extension of
the parameter range is limited; for a uniform distribution, the
initial range is kept. In stage 3, the single-parameter range
selection (S-PRS) is performed on each parameter. Based on

the indexes SE and RC estimated, the optimal combination of
ranges is determined by coordinating the range selection of
all parameters.
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Table 3. Range changes and K–S tests (α = 0.2) of parameters in the initial schema.

Parameter Initial range Calibrated rangea Ratiob ( %) 1Max
c

Normal Exponential Uniform
distribution distribution distribution

CI 0–0.9 0.630–0.745 12.78 0.062 (pass) 0.328 (fail) 0.115 (fail)
Kc 0–1.1 0.81–1.09 25.45 0.076 (pass) 0.305 (fail) 0.089 (pass)
KI 0–0.7 0.534–0.7 23.71 0.128 (fail) 0.076 (pass) 0.173 (fail)
SM 10–50 31–39.4 21.00 0.060 (pass) 0.304 (fail) 0.110 (fail)
B 0.1–0.4 0.238–0.4 54.00 0.180 (fail) 0.062 (pass) 0.203 (fail)
WM 120–200 120–150 37.50 0.181 (fail) 0.072 (pass) 0.231 (fail)
C 0.1–0.2 0.1–0.2 100.00 0.163 (fail) 0.082 (pass) 0.217 (fail)
EX 1.0–1.5 1.0–1.5 100.00 0.118 (fail) 0.079 (pass) 0.135 (fail)
CG 0.950–0.998 0.950–0.994 91.67 0.123 (fail) 0.102 (pass) 0.139 (fail)
Im 0.01–0.04 0.01–0.04 100.00 0.134 (fail) 0.076 (pass) 0.148 (fail)

a The calibrated parameter range except the extreme outlier.
b The ratio is calculated by dividing the length of the range derived from 100 GA calibration runs by the initial range length.
c The 1Max is calculated by using the normalized parameter values.

4 Results and discussion

4.1 Probability distribution characteristics of
calibrated parameter values of the Xinanjiang
model

A series of calibrated parameters values were obtained
through 100 independent calibration runs by using a GA
method. Trial tests were employed to determine the optimal
GA control parameters: crossover probability of 0.5, muta-
tion probability of 0.7 for the individual, mutation probabil-
ity of 0.5 for each gene, population size of 21, maximum
generation number of 500, and maximum iteration number
of 50. These parameters were kept constant for GA calibra-
tions in the investigation. The initial and calibrated ranges
of parameters are presented in Table 3. The ratio of the cal-
ibrated range length to the initial one in Table 3 is less than
60 % for most parameters (i.e. parameter CI, Kc, KI, SM, B,
and WM), which implies that reducing the ranges can help
calibrate most parameters efficiently. For any particular pa-
rameter, calibrated values were normalized by dividing a de-
viation between a calibrated value and the lower limit of the
initial range by the length of the initial range. Based on 100
calibrated values after normalization, a box plot for a param-
eter is depicted. It is obvious from Fig. 7 that the box and
whiskers are approximately symmetrical and the length of
whiskers is longer than that of half the box along the direc-
tion of the y axis for parameters CI, SM, and Kc. But for
other parameters, it is shown from the box-plot charts that
the mean value deviates from the median one, which means
an asymmetric chart. According to the characteristics of the
box plots, the probability distributions of the calibrated val-
ues are normal for parameters CI, SM, and Kc, while those
are exponential for other parameters. Furthermore, K–S tests

Figure 7. The box-plot chart of normalized calibrated values for
parameters of Xinanjiang model.

were employed to determine the probability distributions of
parameters and the corresponding results are listed in Ta-
ble 3. It is shown that only a normal distribution is accepted
for parameters CI and SM. Despite the fact that both normal
and uniform distributions are accepted for parameter KC, the
probability distribution of parameter KC is regarded as a nor-
mal distribution. It is because the 1Max will become smaller
if a normal distribution serves as a reference distribution in-
stead of a uniform distribution. In addition, just an exponen-
tial distribution is accepted for the rest of the parameters.
Thus, these three parameters follow normal distributions and
the others exponential distributions in the Xinanjiang model.
The ratio of the calibrated range length to the initial range
length is less than 30 % for parameters CI, SM, and Kc, while
the ratio exceeds 30 % for parameters B, WM, C, EX, CG,
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and Im. It indicates that reducing the initial ranges can im-
prove the calibration for parameters whose values observe
normal distributions.

4.2 Effect of range adjustment pattern on calibration
results

Since the probability distribution of a single parameter has a
direct relation with the PRS, the range adjustment pattern of a
single parameter was discussed on the basis of the parameter
probability distribution in the investigation.

For a normal distribution, the range was reduced to find the
optimal range. Figure 8 shows the calibration results of pa-
rameter CI when the different ranges are selected. The MINR
(0.679–0.713) and the MAXR (0.623–0.694) were picked
out based on the cumulative frequency curve derived from
calibrations with the initial range (0–0.900). From the cumu-
lative curves and the histograms in Fig. 8a, b, and c, it is
found that the probability distribution of parameter CI values
is converted from a normal distribution to a uniform distribu-
tion when the initial range is reduced to the MINR, whereas
the probability distribution approximates an exponential one
when the MAXR is used. Figure 8d reveals the contribution
of the PRS toENS. It is found that the minimumENS, except-
ing extreme outliers, rises from 0.881 to 0.884 and the ENS
concentrates at a higher value range, when the MINR is used
instead of the initial range. Using the reduced range of high
probability density is, therefore, helpful to make calibration
more stable and more efficient.

To an exponential distribution, both reduced ranges and
extended ranges of reasonable meaning were used to select
the optimal range for parameter calibration. Figure 9 shows
the calibration results under three different input ranges of
parameter KI. Since the initial range of parameter KI cannot
be extended, the two reduced ranges (i.e. the MINR, 0.660–
0.700, and the MAXR, 0.522–0.660) were picked out accord-
ing to the cumulative frequency curve. From the cumulative
curves and the histograms in Fig. 9a, b, and c, it is found that
the probability distribution of parameter KI values is similar
to a uniform distribution in the case of the MINR, whereas
that is still exponential in the case of the MAXR. The con-
tributions of the three parameter ranges to ENS are shown in
Fig. 9d. Thus, the MINR is best for calibration of parame-
ter KI when compared with the MAXR or the initial range,
which is similar to the calibration result of parameter CI. In
general, the MINR is better than the MAXR for parameter
calibration, because the parameter values that may achieve
a higher ENS can be easily picked out from the MINR of
higher probability density.

Figure 10 shows the calibration results of parameter B
whose initial range can be extended. Parameter B generally
ranges from 0.1 to 0.4 for most areas, but it is quite different
for karst areas where the soil moisture storage varies remark-
ably with space. As a result, the value of parameter B can
be greater than 0.4. From Fig. 10a and b, it is shown that

the probability distribution of parameter B is converted from
an exponential distribution to a normal distribution when the
initial range is extended to new one (B = 0.1–0.6). After the
MINR selection was performed on the initial range and the
extended range, the two ranges, i.e. the MINR (B = 0.36–
0.40) and the extension-MINR (B = 0.379–0.488), were ob-
tained and then used to calibrate parameter B. From Fig. 10c
and d, it is found that the probability distribution of param-
eter B approximates a uniform distribution when the MINR
or the extension-MINR is used. The box plots of ENS for dif-
ferent ranges are shown in Fig. 10e. It is shown that there is
little improvement in maximum ENS when MINR is used for
calibration instead of the initial range. There is an increase of
0.0003 in maximum ENS if the initial range is replaced with
the extension range or the extension-MINR. As for minimum
ENS (except outliers), an increase of 0.001 in the case of the
MINR, a decrease of 0.003 in the case of the extension range,
and an increase of 0.003 in the case of the extension-MINR
are found when they replace the initial range. It suggests that
an appropriate range extension followed by a MINR selec-
tion is helpful to improve calibration for the parameter whose
probability distribution is exponential and initial range can be
extended.

4.3 Effect of multiple parameter range combination on
calibration results

The S-PRS method was employed to determine the optimal
range for each parameter. According to the optimal ranges
and the corresponding initial ranges, indexedRC and SE were
quantified to understand parameter correlation and sensitiv-
ity. It is obvious from Table 4 that RC values in the columns
of parameters CI and WM are positive, but most RC values
in the column of parameter Im are negative. The negative
RC related to two parameters means that using the optimal
range of one parameter is adverse to calibrating the other.
Both RC EX, Im and RC Im,EX are negative in spite of small
values, indicating that using the optimal ranges of parame-
ters EX and Im simultaneously is not conducive to calibrat-
ing these two parameters. The mean of RC (RC mean) varies
with parameters. Parameter CI has the maximum RC mean of
0.465 and parameter Im the minimum RC mean of −0.026.
Furthermore, all parameters have positive RC mean values ex-
cept for parameter Im, owing to the accumulative negative
correlation between parameter Im and the others.

To coordinate with negatively related parameters, the in-
dex SE was used to pick out parameters of higher sensitivity
to ENS. From Table 4, it is found that parameter CI has the
maximum SE of 54.7 % and parameter Im the minimum SE
of 0.3 %. Most SE values are more than 20 % except those
of parameters C, EX, and Im. It suggests that parameters
C, EX, and Im are of low sensitivity to ENS and the oth-
ers highly sensitive to ENS. Parameter CI is the most sensi-
tive while Im is the most insensitive, which agrees with the
work of Lü et al. (2013) and Song et al. (2013). For the well-
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Figure 8. Results of range selection of parameter CI. Probability distribution of parameter values for schema initial range (a), CI-MINR (b)
and CI-MAXR (c); (d) box-plot chart of ENS for three schemas.

Figure 9. Results of range selection of parameter KI. Probability distribution of parameter values for schema initial range (a), KI-MINR (b),
and KI-MAXR (c); (d) box-plot chart of ENS for three schemas.

developed karst areas, the thin layer of soil and strong per-
meability of limestone make rainfall easy to penetrate into
the ground. Moreover, the existence of karst caves and sub-
surface streams contribute to great interflow storage which
accounts for a large proportion of streamflow. As a result,

the calibration of parameters KI (representing the penetrabil-
ity of free water to interflow) and CI (representing recession
capacity of interflow storage) has a significant influence on
rainfall-runoff simulation results. Hence, parameters KI and
CI are highly sensitive in the investigation. Thus, the optimal

Hydrol. Earth Syst. Sci., 21, 393–407, 2017 www.hydrol-earth-syst-sci.net/21/393/2017/



Q. Wu et al.: Improvement of hydrological model calibration by using a PRS method 403

Figure 10. Results of range selection of parameter B. Probability distribution for schema initial range (a), B-Extension (b), B-MINR (c),
and B-Extension-MINR (d); (e) box-plot chart of ENS for four schemas.

Table 4. The indexed RC and SE of parameters when the optimal range of each parameter is used for calibration.

Parameter∗ CI Kc KI SM B WM C EX CG Im

Optimal range of 0.679–0.713 0.95–1.05 0.66–0.7 35–39 0.379–0.488 105–110 0.175–0.2 1–1.118 0.95–0.966 0.01–0.0245
a single parameter

RC

CI 1.000 0.334 0.371 0.462 0.322 0.113 0.105 0.115 −0.128 0.272
Kc 0.689 1.000 0.467 0.429 0.504 0.503 0.389 0.102 0.284 0.150
KI 0.778 0.315 1.000 0.445 0.574 0.268 0.456 0.328 0.060 0.258
SM 0.508 −0.199 0.422 1.000 −0.089 0.009 −0.063 0.383 0.218 −0.032
B 0.914 0.560 0.698 −0.017 1.000 0.972 −0.175 0.007 −0.319 −0.722
WM 0.575 0.311 0.439 0.553 0.325 1.000 0.229 0.360 −0.069 −0.235
C 0.208 0.273 0.083 0.151 0.277 0.335 1.000 0.077 0.200 0.210
EX 0.054 0.047 −0.011 0.018 0.371 0.045 0.009 1.000 −0.021 −0.025
CG 0.221 0.246 −0.135 0.022 0.010 0.198 −0.034 −0.009 1.000 −0.112
Im 0.238 0.073 −0.025 0.045 0.031 0.030 −0.026 −0.020 0.001 1.000

Mean of RC 0.465 0.218 0.257 0.234 0.258 0.275 0.099 0.149 0.025 −0.026

SE (%) 54.7 47.9 36.6 41.7 48.1 39.9 10.8 14.7 21.9 0.3

∗ The parameter represents parameter X in Eq. (2).
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Table 5. Parameter range setting for different cases.

Case Range setting of parameter

CI Kc KI SM B WM C EX CG Im

1 I I I I I I I I I I
2 I I I I I I I I I O
3 I I I I I I I O I I
4 I I I I I I I O I O
5 O O O O O O O O I I
6 O O O O O O O O O I
7 O O O O O O O O O O

The symbol “I” represents the initial range of the parameter in Table 3, and “O” the optimal
range of the parameter in Table 4.

ranges of parameters of higher sensitivity should be used to
improve calibration.

In order to determine the optimal range combination of
multiple parameters, seven cases were investigated with dif-
ferent range combinations of parameters (Table 5). Case 1
was defined as the initial case using all initial ranges.
Cases 2–4 were defined as the single parameter range se-
lection (S-PRS) cases. Cases 5–7 were set as the multiple
parameter range selection (M-PRS) cases. The box plots
of ENS for different cases are given in Fig. 11. There is a
small decrease in ENS when Case 4 is separately compared
with Cases 1–3. It can be explained that both RC EX, Im and
RC Im,EX are negative and the combination of the optimal
ranges corresponding to the two parameters leads to a worse
calibration result. As the SE value of parameter Im is less
than that of parameter EX, parameter EX is given priority
to use the optimal range. It is the reason why the calibra-
tion result of Case 3 is better than that of Case 2. As for the
cases with the multi-parameter range selection (i.e. Cases 5–
7), the ENS values are more robust than those of Cases 1–
4. There is an increase of approximately 0.001 in maximum
ENS and an increase of approximately 0.01 in minimum
ENS when the multi-parameter range selection is performed.
There are some differences in ENS with the comparison be-
tween Cases 5–7 in a magnified box-plot chart. Case 6 has
the most concentrated values of ENS and the largest mean
value of ENS among the three cases. It means that the com-
bination of optimal ranges of all parameters (see Case 7) is
not the optimum to calibrate a multi-parameter model inas-
much as some parameters like Im have negative correlation
on other parameters. Hence, the initial ranges of parameters
having negative mean values of RC and low values of SE are
supposed to be used to calibrate parameters instead of the
corresponding optimal ranges.

Through a calibration run, a set of calibrated values of
all parameters and the corresponding ENS are obtained. Fig-
ure 12 shows the variation curves of maximum and minimum
values of ENS with number of runs by using a GA method
and a proposed PRS method. It is indicated from Fig. 12 that
no matter if it is maximum or minimum ENS, the PRS-based

Figure 11. The box-plot chart of ENS for different cases.

Figure 12. The variation curves of maximum and minimum ENS
with number of runs by using a GA method and a proposed PRS
method.

value is essentially the same as the GA-based one when the
number of runs does not exceed 100. It is because the PRS
method initially needs 100 runs of GA calibration to obtain
parameter value samples for selecting the optimal ranges. If
a proposed method is used for calibration instead of a GA
method, there is an increase of approximately 0.001 in max-
imum ENS and an increase of approximately 0.01 in min-
imum ENS when the number of runs is greater than 100.
Thus, for any particular run number, the value of ENS cal-
culated by using a PRS method is not less than that by using
a GA method. Additionally, it is found from the investigation
that there is no significant difference in computational time
between the two methodologies. The application of a pro-
posed method, therefore, contributes to a relatively efficient
calibration.

5 Conclusions

Considering that there is a relation between the selection of
multi-parameter ranges and the calibration effect of a hydro-
logical model, an approach to determine an optimal combi-
nation of ranges for the multi-parameter calibration was put
forward by analysing parameter probability distribution, pa-
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rameter sensitivity, and correlation between parameters. The
newly proposed method was applied for the calibration of a
Xinanjiang model for karst areas, and some findings are pre-
sented as follows.

In the Xinanjiang model, parameters CI, Kc, SM, and B
approximately obey normal probability distributions and pa-
rameters WM, C, EX, KI, CG, and Im obey exponential
probability distributions, both after 100 independent calibra-
tion runs. For the parameters of a normal distribution, the
MINR defined by using a cumulative frequency curve of cal-
ibrated values is preferred to be selected as the optimal pa-
rameter range for calibration. For the parameters of an ex-
ponential distribution, the extension-MINR is recommended
to be used for calibration if the initial range can be extended
towards the high-probability side; otherwise the MINR is se-
lected as the optimal range for calibration.

The proposed PRS method improves the minimum and
mean values of ENS. The application of the proposed
methodology results in an increase of 0.01 in minimum ENS
compared with that of the pure GA method. The rising of
minimumENS with little change of the maximum may shrink
the range of the possible solutions. As a result, the un-
certainty of the model performance can be effectively con-
trolled.

The M-PRS method is superior to the S-PRS one for cali-
brating hydrologic models with multiple parameters. The RC
and SE are two important indexes that can help to analyse
the sensitivity and correlation between parameters and con-
sequently to coordinate with the negatively related param-
eters. The initial ranges of parameters of relatively low SE
and negative RC mean and the optimal ranges of parameters
of positive RC mean should be preferred to be chosen for the
multi-parameter model calibration.

6 Data availability

Please contact the corresponding author to access the data in
this study.
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