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Abstract. In this synthesis paper addressing hydrologic scal-
ing and similarity, we posit that roadblocks in the search for
universal laws of hydrology are hindered by our focus on
computational simulation (the third paradigm) and assert that
it is time for hydrology to embrace a fourth paradigm of data-
intensive science. Advances in information-based hydrologic
science, coupled with an explosion of hydrologic data and
advances in parameter estimation and modeling, have laid the
foundation for a data-driven framework for scrutinizing hy-
drological scaling and similarity hypotheses. We summarize
important scaling and similarity concepts (hypotheses) that
require testing; describe a mutual information framework for
testing these hypotheses; describe boundary condition, state,
flux, and parameter data requirements across scales to sup-
port testing these hypotheses; and discuss some challenges to
overcome while pursuing the fourth hydrological paradigm.
We call upon the hydrologic sciences community to develop
a focused effort towards adopting the fourth paradigm and
apply this to outstanding challenges in scaling and similar-

1ty.

1 Introduction

This synthesis paper is an outcome of the “Symposium in
Honor of Eric Wood: Observations and Modeling across
Scales”, held 2—-3 June 2016 in Princeton, New Jersey, USA.
The focus of this contribution is the heterogeneity of hy-
drological processes; their organization, scaling, and sim-
ilarity; and the impact of the heterogeneity on water and
energy states and fluxes (and vice versa). We argue here
that the growth of hydrologic science, from empiricism (first
paradigm), via theory (second paradigm), to computational
simulation (third paradigm) has yielded important advances
in understanding and predictive capabilities — yet we argue
that accelerating advances in hydrologic science will require
us to embrace the fourth paradigm of data-intensive science,
to use emerging datasets to synthesize and scrutinize theo-
ries and models, and improve the data support for the mech-
anisms of Earth system change.

The fourth paradigm is a concept that focuses on how sci-
ence can be advanced by enabling full exploitation of data
via new computational methods. The concept is based on
the idea that computational science constitutes a new set of
methods beyond empiricism, theory, and simulation, and is
concerned with data discovery in the sense that researchers
and scientists require tools, technologies, and platforms that
seamlessly integrate into standard scientific methodologies
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Figure 1. An illustration of the scientific method in hydrology, highlighting how each component of the method reflects the various paradigms

of science. The fourth paradigm is characterized by advanced data
Clark et al. (2016).

and processes. By integrating these tools and technologies
for research, we provide new opportunities for researchers
and scientists to share and analyze data and thereby encour-
age new scientific discovery. As shown in Fig. 1, the scien-
tific method applied to hydrology is not a linear process —
rather, because hydrology is already in the third paradigm,
empiricism (the first paradigm) and theoretical development
(the second paradigm) both lead to new theories and hypothe-
ses that are embodied in computational models. These hy-
potheses may not be rigorously tested with many datasets,
either because the datasets have not been gathered into an ef-
fective, accessible platform, or because the datasets require
additional processing and information theoretic techniques
to apply them to the model predictions for hypothesis testing.
Further, as noted by Pfister and Kirchner (2017), hypothesis
testing with models is fraught with challenges that require
not only consideration of the data required to test a given
hypothesis, but also careful consideration of how to encode
hypotheses as uniquely falsifiable predictions (Fig. 1). Ad-
vances in data science now allow the fourth paradigm to in-
ject “big data” into the scientific method using rigorous infor-
mation theoretic methods without eliminating the other parts
of the scientific method.

Our focus here on scaling and similarity directs atten-
tion to one of the most challenging problems in the hydro-
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collection and analysis, as noted in the green boxes. Based on Fig. 1 in

logic sciences. As defined by Bldschl and Sivapalan (1995),
scale is a “characteristic length (or time) of process, observa-
tion, model” and scaling is a “transfer of information across
scales” (see also Bierkens et al., 2000; Grayson and Bloschl,
2001). Functional relationships between hydrologic variables
may also exist and these may be scale-independent (or scale-
invariant). Similarity is present when characteristics of one
system can be related to the corresponding characteristics
of another system by a simple conversion factor, called the
scale factor. We should note that the terms “scaling” and
“similarity” used here are specific to the hydrology litera-
ture and distinct from the general notions of self-similarity,
fractals, and emergent behavior in the nonlinear dynamics
literature. Classic examples of similarity include the ratio of
catchment areas (Willgoose et al., 1991; Smith, 1992), and
the topographic index In (a/tan 8) (Beven and Kirkby, 1979)
that are used for relating flows of two catchments and relat-
ing the topographic slopes and contributing areas to water ta-
ble depths, respectively. Other examples include the hillslope
Péclet number (Berne et al., 2005; Lyon and Troch, 2007)
and the catchment seasonal water balance (Berghuijs et al.,
2014). Heterogeneity or variability in hydrology manifests
itself at multiple spatial scales (e.g., Seyfried and Wilcox,
1995; Bloschl and Sivapalan, 1995), from local (O(1 m);
e.g., macropores) to hillslope (O(100 m); e.g., preferential
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flowpaths) to catchment (O(10km); e.g., soils) and regional
(O(1000km); e.g., geology). Similarly, temporal variabil-
ity is reflected on event, seasonal, and decadal timescales
(e.g., Woods, 2005). Understanding scaling and similarity
requires understanding how the interactions among multiple
processes across scales affect the (emergent) hydrologic be-
havior on other space-time scales; such understanding un-
derpins methods for computational simulation.

The scaling and similarity problem is nevertheless very
difficult. As asserted by Dooge (1986), “within the physi-
cal sciences and the Earth sciences there is and can be no
universal model for water movement.” Despite numerous at-
tempts at integrating local models across soils (e.g., Kim et
al., 1997), hillslopes (Troch et al., 2015), and watersheds
(e.g., Reggiani et al., 1998, 1999, 2000, 2001), universal
laws in hydrology and the required closure relations remain
elusive because the physics are likely scale-dependent (e.g.,
Bierkens, 1996) and the data required to test these hypotheses
are either not readily available or not easily synthesized, or,
even worse, would never be observable (Beven, 2006). Fur-
ther, computational advances have enabled so-called “hyper-
resolution” or, using an alternative term that is not necessar-
ily equivalent, “hillslope-resolving” modeling (e.g., Chaney
et al., 2016; Wood et al., 2011); but as noted in the discussion
between Beven and Cloke (2012) and Wood et al. (2012), and
later discussed in Beven et al. (2015), the ability to provide
meaningful information from hillslope-resolving models is
limited both by a lack of tested parameterizations on a given
model scale as well as by lack of data for model evaluation
(e.g., Melsen et al., 2016a).

In principle, moving to finer spatial and temporal resolu-
tions may improve accuracy simply by reducing the trun-
cation error in the numerical solution of the system of par-
tial differential equations. In an analogy with fluid mechan-
ics and the atmospheric sciences where “large-eddy simu-
lations” are designed to capture the most energetic motions
and thereby reduce the sensitivity to turbulence closure, one
might ask whether “hillslope-resolving” models might re-
solve the most energetic components (in an information the-
oretic or entropy sense) of the terrestrial water storage spec-
trum such that the closure problem may be simplified. As
discussed in many of the studies cited above, topography is
fractal and this, combined with scaling between the pedon
and the hillslope, drives much of the scaling behavior seen
in hydrology. Most of the apparent fractal nature in relation
to hydrology has been demonstrated on the scale of river net-
works (e.g., Tarboton et al., 1988), so a question that could be
tested with data following the fourth paradigm is to what ex-
tent does resolving these river networks in models reduce the
information loss. Further, proposed scaling relationships may
be appropriate above a given scale, but as we move down-
ward in scales from watershed to hillslope to local, these re-
lationships may break down.

These current tactics in the hydrologic sciences are rep-
resentative of the third paradigm of scientific investigation
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(Hey et al., 2009), characterized by applying computational
science to simulate complex systems. The so-called third
paradigm builds on the earlier first (empirical) and second
(theoretical) paradigms. As discussed by Clark et al. (2017),
computational science approaches to modeling hydrologic
systems have been discussed for decades. With the advent
of high-resolution Earth observing systems (McCabe et al.,
2017), proximal sensing (Robinson et al., 2008), sensor net-
works (Xia et al., 2015), and advances in data-intensive hy-
drologic science (e.g., Nearing and Gupta, 2015), there is
now an opportunity to recast the hydrologic scaling prob-
lem into a data-driven hypothesis testing framework (e.g.,
Rakovec et al., 2016a). By embracing such a framework,
hydrologic analysis can become explicitly “scale-aware” by
testing specific parameterizations on a given model scale.
Now is the time for a fourth paradigm in hydrologic science.

With this goal in mind, this paper addresses the following
questions:

1. What are the key scaling and similarity concepts (hy-
potheses) that require testing?

2. What framework could we use to test these hypotheses?

3. What are the data requirements to test these hypotheses?
and

4. What are the model requirements to test these hypothe-
ses?

2 Scaling and similarity hypotheses

Most scaling work to date has built on the representative el-
ementary area (REA) concept (Wood et al., 1988; Beven et
al., 1988; Bloschl et al., 1995; Fan and Bras, 1995), and ex-
tensions to the representative elementary watersheds (REW)
introduced by Reggiani et al. (1998, 1999, 2000, 2001) —
the REA-REW concept seeks to define physically meaning-
ful control volumes for which it is possible to obtain sim-
pler descriptions of the rainfall-runoff process (i.e., sim-
pler than those on the point scale). An alternative, but re-
lated, concept is the representative hillslope (RH; Troch et
al., 2003; Berne et al., 2005; Hazenberg et al., 2015). The
REA-REW approach is conceptually similar to Reynolds av-
eraging, and relies on the fundamental assumption that the
physics are known on the smallest scale considered (e.g.,
Miller and Miller, 1956). Critically, the fluxes at the bound-
aries of the model control volumes require parameterization
(the so-called “closure” relations). These closure assump-
tions are typically ad hoc and include subgrid probability dis-
tributions, scale-aware parameters, or new flux parameteriza-
tions. Fundamentally, these approaches conform to the third
paradigm, in the sense that they take as given a set of con-
servation equations that govern behavior at the fundamental
(patch, tile, grid, hillslope, or REW) scale (Fig. 2). Testing
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both the scaling and closure assumptions as hypotheses us-
ing data would move hydrology towards the fourth paradigm.

The examples above represent the classic “Newtonian” ap-
proach in hydrology, but the fourth paradigm advocated here
is not specific to testing hypotheses derived from that ap-
proach and, as shown in Fig. 1, represents an augmentation
to the scientific method in hydrology. Foundational (Siva-
palan, 2005; McDonnell et al., 2007) and more recent work
(Thompson et al., 2011; Harman and Troch, 2014) on “Dar-
winian” hydrology has used scale and similarity concepts to
synthesize catchments across scales, places, and processes.
As noted in McDonnell et al. (2007) there has been a call for
areconciliation of the Newtonian and Darwinian approaches,
starting first in the ecology community (Harte, 2002), and we
believe that moving to a fourth paradigm with the augmented
scientific method depicted in Fig. 1 will embody the wishes
of Darwin from his “Structure of Coral Reefs”, as quoted in
Harman and Troch (2014):

“... In effect, what an immense addition to our
knowledge of the laws of nature should we pos-
sess if a tithe of the facts dispersed in the Jour-
nals of observant travellers, in the Transactions of
academies and learned societies, were collected to-
gether and judiciously arranged! From their very
juxtaposition, plan, correlation, and harmony, be-
fore unsuspected, would become instantly visible,
or the causes of anomaly be rendered apparent; er-
roneous opinions would at once be detected; and
new truths — satisfactory as such alone, or supply-
ing corollaries of practical utility — be added to the
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Figure 2. Aggregation and scaling schematic following Wood (1995).

mass of human knowledge. A better testimony to
the justice of this remark can hardly be afforded
than in the work before us.”

An important avenue to advance hydrologic understanding
and predictive capabilities is through attention to hypotheses
of hydrologic scaling and similarity, i.e., different ways to re-
late processes and process interactions across spatial scales.
One of the foundational works in hydrologic similarity is
the topographic index (Beven and Kirkby, 1979) — the topo-
graphic index defines local areas of topographic convergence
and is used to relate the probability distribution of local wa-
ter table fluctuations to catchment-average surface runoff and
subsurface flow. Building on this topographic similarity, this
index was expanded to include soils and study runoff produc-
tion (Sivapalan et al., 1987, 1990) and was further applied to
examine scaling of evaporation (Famiglietti and Wood, 1994)
and soil moisture (Wood, 1995; Peters-Lidard et al., 2001).
Such controls of water table depth on runoff production and
evapotranspiration on catchment scales represent just one hy-
pothesis of similarity and scaling behavior — an example al-
ternative hypothesis, used in the variable infiltration capacity
(VIC) model (Liang et al., 1994), is the description of how
subelement variability in soil moisture affects the develop-
ment of saturated areas in a catchment and the partitioning
of precipitation into surface runoff and infiltration (Moore
and Clarke, 1981; Diimenil and Todini, 1992; Wood et al.,
1992; Hagemann and Gates, 2003). Other scaling hypothe-
ses are used for other physical processes, for example, how
small-scale variability in snow affects large-scale snow melt
(Luce et al., 1999; Liston, 2004; Clark et al., 2011a) and how
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energy fluxes for individual leaves scale up to the vegeta-
tion canopy (de Pury and Farquar, 1997; Wang and Leuning,
1998).

The critical issue here is the interplay between the scale
of the model elements and the choice of the closure rela-
tions: as computational resources permit higher resolution
simulations across larger domains (Wood et al., 2011), more
physical processes can be represented explicitly, and the clo-
sure relations must be tailored to fit the spatial scale of the
model simulation. To some extent such hyper-resolution ap-
proaches abandon the quest for physically meaningful con-
trol volumes that characterizes the REA and REW concepts,
and the representation of subelement processes in fully 3-D
simulation of watersheds (e.g., Kollet and Maxwell, 2008;
Maxwell and Miller, 2005) is becoming less and less obvi-
ous, and perhaps less and less necessary. A key question now
is whether hyper-resolution applications through explicit 3-D
models, or (at least for some variables) with clustered 2-D
simulations (e.g., the HydroBlocks of Chaney et al., 2016),
provide reasonable representations of scaling and similarity.
Considering infiltration excess and saturation excess runoff
generation processes, high-resolution numerical studies indi-
cate that excess infiltration does not appear to have an ergodic
limit (e.g., Maxwell and Kollet, 2008), while excess satura-
tion processes scale with the geometric of subsurface satu-
rated hydraulic conductivity (e.g., Meyerhoff and Maxwell,
2011). Similarly, one might imagine different scaling rela-
tions for evapotranspiration depending on the nature of con-
trols due to radiation (topography), vegetation, and/or soil
moisture (e.g., Rigden and Salvucci, 2015). For example, as
recently shown by Maxwell and Condon (2016), the inter-
play of water table depths with rooting depths along a given
hillslope exerts different controls on evaporation and tran-
spiration, which links the water table dynamics with the land
surface energy balance, even on continental scales. This find-
ing is based on limited data, and would benefit from formal
hypothesis testing in an information-based framework, as de-
scribed in the next section.

3 A hypothesis testing framework for hydrologic
scaling and similarity

As demand increases for hillslope-resolving or hyper-
resolution modeling (e.g., Beven et al., 2015; Beven and
Cloke, 2012; Bierkens et al., 2015; Wood et al., 2011, 2012),
the question arises as to whether the physics in our mod-
els, the parameters that are used in the models, and the in-
put data (e.g., “forcings”) are adequate to support such en-
deavors (e.g., Melsen et al., 2016b). Following from Nearing
and Gupta (2015), we can formulate a framework for testing
hypotheses based on measuring information provided by a
model (e.g., parameterizations based on similarity concepts)
as distinct from information provided to a model (e.g., forc-
ing data or parameters). We should note that this is not hy-
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pothesis testing in the traditional sense, but rather a frame-
work for scrutinizing hydrological scaling and similarity hy-
potheses with data. This concept was demonstrated by Near-
ing et al. (2016), who evaluated the information loss due to
forcing data, parameters, and physics in the North American
Land Data Assimilation System (NLDAS) model ensemble.
In this example, information was first measured using point
data for soil moisture and evaporation and then compared
to regressions that are kernel density estimators of the con-
ditional probability densities and represent the upper bound
of information available on a given variable from the forc-
ing data alone and given the forcing data and parameters. As
shown in Fig. 3, we can measure the total information about
a given variable z contained in observations (H (z), left bar)
and then measure the information about that variable pro-
vided by a given model simulation (7 (z; yM), right bar). The
intermediate bars represent losses of information due to forc-
ing data (boundary conditions) and due to parameters.

If we take this example, and expand it to conceptualize a
framework for hypothesis testing in hydrology, we can imag-
ine multiple instances of H (z) computed on different spatial
scales, as well as multiple instances of mutual information
1(z,yM), computed for models employing different repre-
sentations of processes on that scale. One concrete exam-
ple hypothesis described in the previous section is the use
of TOPMODEL parameterizations for groundwater, versus
representative hillslopes, versus “HydroBlocks” (Chaney et
al., 2016), versus explicit 3-D modeling.

Critical to this exercise is the availability of forcing data,
such as precipitation, radiation, humidity, temperature, and
wind speed, that have sufficient information content on the
scale being evaluated such that it can adequately character-
ize the variable (e.g., soil moisture) or process (e.g., evapo-
transpiration, runoff) being studied (e.g., Berne et al., 2004).
Similarly, the parameters provided to the model must also
contain information about the variable or process being stud-
ied on a particular spatial and temporal scale. The Near-
ing and Gupta approach provides a framework for explicitly
measuring the information available from observations, com-
paring that to information provided by a model and attribut-
ing lost information to forcings, parameters, and physics, and
hence provides a rigorous method to test our physics assump-
tions by confronting them with observations. Clearly, this
leads to requirements for data that can support such a frame-
work.

4 Data requirements

As shown in Fig. 1, the fourth paradigm for hydrology is
characterized by the rigorous application of large datasets
towards testing hypotheses as encapsulated in models. The
process of constructing models requires observations both
as input data and for model and process validation or hy-
pothesis testing. A distinguishing characteristic of data for
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Figure 3. A conceptual diagram of uncertainty decomposition us-
ing Shannon information following Nearing et al. (2016). The term
H (z) represents the total uncertainty (entropy) in the benchmark ob-
servations, and I (z; u) represents the amount of information about
the benchmark observations that is available from the forcing data.
Uncertainty due to forcing data is the difference between the to-
tal entropy and the information available in the forcing data. The
information in the parameters plus forcing data is /(z;u), and
I(z;u,0) < I(z;u) because of errors in the parameters. The term
1(z; yM ) is the total information available from the model, and
1(z; yM ) < I(z; u,0) because of model structural error.

model and process validation will be that we are observ-
ing spatial and temporal patterns of fluxes and states repre-
sented in our modeling framework, for example, soil mois-
ture, snow pack or evapotranspiration. As discussed by Mc-
Cabe et al. (2017), there has been a dramatic increase in the
type and density of hydrologic information that is becom-
ing available on multiple scales, from point- to mesoscale
and regional to global. For example, the number of remote
sensing missions dedicated to observing the water cycle al-
lows further development of (large scale) hydrological mod-
els and data assimilation frameworks for more accurate soil
moisture, evaporation, and streamflow prediction. In partic-
ular, there are exciting developments in mesoscale (i.e., hill-
slope to catchment) observations, which are critical for test-
ing hypotheses about scaling (REA, RH, REW) by connect-
ing point measurements, hydrological models, and remote
sensing observations. Examples include recent advances in
cosmic ray neutron sensors (Franz et al., 2015; Kohli et al.,
2016; Zreda et al., 2008), distributed temperature sensing
(DTS; Steele-Dunne et al., 2010; Bense et al., 2016; Dong et
al., 2016), soil moisture observations, the use of crowdsourc-
ing (de Vos et al., 2016) and microwave signal propagation
from telecommunications towers for precipitation (Leijnse et
al., 2007), to the rise in the use of unmanned autonomous
vehicles to characterize the landscape on centimeter scale
(Vivoni et al., 2014). These alternative data sources enhance
our ability to observe, understand, and simulate the hydrolog-
ical cycle. Advances in citizen science (Buytaert et al., 2014;
Hut et al., 2016) and the use of so-called “soft” data for hy-
drological modeling (Van Emmerik et al., 2015; Seibert and
McDonnell, 2002) show that even though these new data are
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collected on nontraditional spatiotemporal scales, they might
give us new insights into how processes on different scales
are coupled.

Advances in hydrogeophysical characterization of the sub-
surface (Binley et al., 2015), such as electrical methods,
ground-penetrating radar, and gravimetry, offer non-invasive
mesoscale information that can be used to provide param-
eters or to infer boundary conditions, states, or fluxes. Re-
cently, Christensen et al. (2017) demonstrated that dense air-
borne electromagnetic data can be used to map hydrostrati-
graphic zones, which is an encouraging capability. Imaging
the subsoil may be feasible on local scales, but it is a chal-
lenge on river basin or continental scales. Hence, we encour-
age more joint efforts in hydrogeophysical imaging for inte-
grated characterization of the subsurface.

Combined, these observations may be used in a bench-
marking exercise similar to Nearing et al. (2016). Synthesiz-
ing hydrogeophysical methods with point observations and
laboratory or field techniques for estimating “effective” soil
hydraulic functions and parameters is a challenging opportu-
nity (e.g., Kim et al., 1997), but one which might be tractable
using a data-driven hypothesis testing framework. These new
data sources allow us to understand and apply scaling be-
tween data sources (point scale to remotely sensed data) and
between model scales and provide the critical data required
to test alternative scaling hypotheses.

Beyond the new mesoscale observations, extensive catch-
ment databases now exist to support hypothesis testing in-
cluding the TERENO (Zacharias et al., 2011), MOPEX
(Duan et al., 2006), contiguous USA benchmarking (New-
man et al, 2015a), GRDC (http://www.bafg.de/GRDC/
EN/O1_GRDC/13_dtbse/database_node.html), and EURO-
FRIEND databases (Stahl et al., 2010). Recent similar-
ity studies (Sawicz et al., 2011) have systematically ana-
lyzed large numbers of catchments focusing on streamflow-
oriented signatures such as the runoff coefficient, baseflow
index, and slope of the flow duration curve and have then
explored relationships between these signatures and model
process timescales (Carrillo et al., 2011). Coopersmith et
al. (2012) generalized this work with four nearly orthogonal
signatures that included aridity, seasonality of rainfall, peak
rainfall, and peak streamflow and demonstrated that 77 % of
MOPEX catchments can be described by only six classes,
which are themselves defined by combinations of the four
signatures. Clearly there is information contained in these
catchment databases about not just the coevolution of climate
(forcing) and landscape properties (parameters), but also the
physics of the catchment responses. Comparative hydrology
(e.g., Kovics, 1984; Falkenmark and Chapman, 1989; Gupta
et al., 2014) takes the first necessary step in the direction of
the fourth paradigm, and following the framework described
above, we can explicitly quantify the mutual information in
the signatures, parameters, and forcings to help elucidate
these connections beyond classification. One of the crucial
factors that complicate scaling is the anthropogenic effect on
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catchments. Recent advances in modeling the coevolution of
the human—water system (see, e.g., Troy et al., 2015; Ciullo
etal., 2017) focused on identifying generic key processes and
relations. Yet, it is unknown how these relate to systems on
larger (and smaller) scales. To arrive at new understandings
of scaling and similarities in human-influenced catchments,
studying these issues from a sociohydrological point of view
should be an integrated part of the way forward (e.g., Van
Loon et al., 2016).

5 Modeling framework requirements

Embracing the fourth paradigm in hydrology will face sev-
eral challenges. First, it is necessary to implement and/or
extend a hydrologic modelling framework with sufficient
flexibility to evaluate competing hypotheses of similarity
and scaling behavior (Clark et al., 2011b). One possible
framework is the Structure for Unifying Multiple Model-
ing Alternatives (SUMMA), recently introduced by Clark et
al. (2015), which has the capability to incorporate alterna-
tive spatial configurations and alternative flux parameteriza-
tions. Frameworks like SUMMA, which pursue the method
of multiple working hypotheses, enable the decomposition of
complex models into the individual decisions made as part of
model development so that attention can be focused on spe-
cific decisions (e.g., related to scaling and similarity) while
keeping all other components of a model constant, hence
enabling users to isolate and scrutinize specific hypotheses.
One confounding issue is that models with parameterizations
designed to represent subgrid processes may not add infor-
mation in a manner proportional to increased information in
the inputs, while models that have a single column tile or
subtile form may show a more direct relationship between
information in inputs and information in outputs. Similarly,
integrated models with lateral flow of water in surface and
subsurface systems that generate runoff directly will have a
different spatial sensitivity to the resolution of the input data
than more traditional land surface models with no lateral flow
and a parameterized runoff generation. Hence, the model-
ing framework must be able to isolate the role that surface
and subsurface connectivity play in processing information
on different scales.

A second challenge consists of understanding how to deal
with different uncertainties and errors of different observa-
tional products and hydrologic models when comparing them
for the purpose of studying the scaling behavior. Several pa-
pers have highlighted the problem of different climatologies
or sensitivities of remote sensing products (e.g., Albergel
et al., 2012; Brocca et al., 2011), gridded meteorological
products (Clark and Slater, 2006; Newman et al., 2015b),
and streamflow observations (Di Baldassarre and Montanari,
2009; McMillan et al., 2010). A true correspondence of these
remotely sensed variables with model results is often ham-
pered, due to vertical mismatches in the soil column between
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the different products (Wilker et al., 2006), approximations
in the structure of the hydrological model used, its parame-
terization and discretization, the initial conditions, and errors
in forcing data (De Lannoy et al., 2007). Because of this,
modeled variables often do not correspond well to observa-
tions; nevertheless, similar trends and dynamics between the
different products are found (Koster et al., 2009).

In several data assimilation studies, the problem of differ-
ences in climatologies is resolved by bias-correcting the ob-
servations towards the model (e.g., Crow et al., 2005; Kumar
et al., 2014; Lievens et al., 2015a, b; Martens et al., 2016;
Reichle and Koster, 2004; Sahoo et al., 2013; Verhoest et al.,
2015). Yet, such (statistical) operations may not be appropri-
ate for scaling studies. First of all, these methods only rescale
the remotely sensed value, yet the uncertainties in these prod-
ucts need rescaling as well. Second, depending on the bias-
correction method used (ranging from only correcting for the
first moment to full cumulative distribution function (CDF)
matching), different scaling relations may be found. Ideally,
multiscale data should be used in a way that best demon-
strates the ability of the models to reproduce processes at the
scales at which those data are available, particularly with re-
spect to reproducing attributes of dynamics (such as the time
rate of decorrelation using an information metric) and the
mutual information across variables, space, and time.

Testing hypotheses with multiple scale information also
requires assimilation—-modeling frameworks that allow inte-
gration of data into models at their native resolution so that
simulations and observations can be compared without the
need to introduce ad hoc downscaling or upscaling rules. One
such framework has recently been proposed by Rakovec et
al. (2016b). This framework uses the multiscale parameter
regionalization (MPR; Samaniego et al., 2010) technique to
link the resolutions of the various data sources with the tar-
get modeling resolution, keeping a single set of model trans-
fer parameters that are applicable to all scales. As a result,
seamless, flux-matching simulations can be obtained. The
MPR-based assimilation framework proposed by Rakovec
et al. (2016b) is general and can be used within any land
surface or hydrologic model. This framework was originally
tested with a mesoscale hydrological model (mHM) (Kumar
et al., 2013; Samaniego et al., 2010) in order to test hypothe-
ses related to model transferability across scales and loca-
tions as well as process description. This data assimilation
approach is general and can be used — for example within
the SUMMA (Clark et al., 2015) modeling framework — to
test hypotheses related to the appropriate model complex-
ity on a given scale. A model-agnostic MPR system called
MPR-flex has been recently applied to the VIC model to es-
timate seamless parameter and flux fields over the contiguous
USA (Mizukami et al., 2017). This symbiosis of model pa-
rameterization (MPR-Flex) and simulation frameworks (e.g.,
SUMMA, mHM, etc.) is a very promising avenue to test scal-
ing laws as well as the uncertainty decomposition described
above. Finally, the issue of subjective modeling decisions
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(e.g., the choice of time step, spatial resolution, numerical
scheme, study region, time period for calibration and valida-
tion, performance metrics, etc.) and associated uncertainties
is an issue that requires further attention (e.g., Krueger et al.,
2012).

6 Summary and next steps

In this paper we review advances in hydrologic scaling and
similarity. Beginning with the challenge of Dooge (1986),
we posit that roadblocks in the search for universal laws
of hydrology are hindered by our third-paradigm approach,
and assert that it is time for hydrology to embrace a fourth
paradigm of data-intensive science. Building on other syn-
thesis papers in this issue (Clark et al., 2017; McCabe et al.,
2017), advances in data-intensive hydrologic science (e.g.,
Nearing and Gupta, 2015) have laid the foundation for a data-
driven hypothesis testing framework for scaling and similar-
ity. To achieve this goal, we have (1) summarized important
scaling and similarity concepts (hypotheses) that require test-
ing; (2) described a mutual information framework for test-
ing these hypotheses; (3) described boundary condition, state
flux, and parameter data requirements across scales to sup-
port testing these hypotheses; and (4) discussed some chal-
lenges to overcome while pursuing the fourth hydrological
paradigm.

Figure 1 illustrates the concept of embracing a fourth
paradigm in hydrology where we enable a rigorous con-
frontation of our hypotheses embodied within our mod-
els with a range of data types across many locations and
spatial-temporal scales. This paradigm represents a union
and extension of previous scientific methods within a for-
mal hypothesis-driven framework. Models are a synthesis of
all that we have learned (e.g., conservation equations, con-
stitutive relationships for soil infiltration) and data, particu-
larly through first-paradigm examples like comparative hy-
drology, yield empirical relationships, signatures, and finger-
prints that help lead to new understanding and theory (sec-
ond paradigm). By coupling traditional (e.g., in situ) and new
data sources (e.g., satellites) we can use the power of infor-
mation theory and rigorous hypothesis testing to elucidate
the causes of behaviors that may not be evident in the anal-
ysis of individual sites or catchments. In this sense, a move
to the fourth paradigm means that we seek modeling-driven
monitoring and, simultaneously, monitoring-driven model-
ing. The formal hypothesis-driven framework will indicate
where we have weak understanding of processes because we
cannot explain the data obtained at high resolution. In other
cases, comprehensive integrated simulations and big-data re-
lationships would allow the identification of where the mea-
surement errors are too large (i.e., data have little information
content, entropy) and point out what kind of sensors or new
measurements and sensors are needed to improve our physi-
cal understanding. These are the feedback loops in Fig. 1, and
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these represent two important paths to optimizing the use of
models and data to enhance hydrologic science.

As a next step, we propose a focused community effort to
shape the development of the fourth paradigm for hydrology.
To this end, a workshop following the publication of this spe-
cial issue would be a good first step.
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