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Abstract. L-band radiometry is considered to be one of the
most suitable techniques to estimate surface soil moisture
(SSM) by means of remote sensing. Brightness temperatures
are key in this process, as they are the main input in the
retrieval algorithm which yields SSM estimates. The work
exposed compares brightness temperatures measured by the
SMOS mission to two different sets of modelled ones, over
the Iberian Peninsula from 2010 to 2012. The two mod-
elled sets were estimated using a radiative transfer model
and state variables from two land-surface models: (i) OR-
CHIDEE and (ii) H-TESSEL. The radiative transfer model
used is the CMEM.

Measured and modelled brightness temperatures show a
good agreement in their temporal evolution, but their spatial
structures are not consistent. An empirical orthogonal func-
tion analysis of the brightness temperature’s error identifies a
dominant structure over the south-west of the Iberian Penin-
sula which evolves during the year and is maximum in au-
tumn and winter. Hypotheses concerning forcing-induced bi-
ases and assumptions made in the radiative transfer model
are analysed to explain this inconsistency, but no candidate
is found to be responsible for the weak spatial correlations at
the moment. Further hypotheses are proposed and will be ex-
plored in a forthcoming paper. The analysis of spatial incon-
sistencies between modelled and measured TBs is important,
as these can affect the estimation of geophysical variables

and TB assimilation in operational models, as well as result
in misleading validation studies.

1 Introduction

The United Nations (UN), the Food and Agriculture Orga-
nization (FAO), and the World Health Organization (WHO)
have reported that water resources are not being managed in
an optimum way at present. As a result, scarcity, hygiene,
and pollution issues related to improper water policies have
been detected. In addition, the world’s population is expected
to grow by 2 to 3 billion people over the next 40 years ac-
cording to the UN’s World Water Development Report from
2012 (WWAP, 2012). This will lead to a significant increase
in freshwater demand which will likely be affected by the
effect of a changing climate.

To achieve a better management of water resources, it is
necessary to improve our understanding of hydrological pro-
cesses. In order to do this, the study of soil moisture (SM) is
essential. It is defined as the water content in the soil and has
a key role in the soil–atmosphere interface. SM determines
whether evaporation over land surfaces occurs at a potential
rate (controlled by atmospheric conditions) or whether it is
limited by the available moisture (Milly, 1992). In addition,
it influences several processes, like infiltration and surface
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temperature, which have an important effect on plant growth
and the general state of the continental surfaces. However,
SM is a complex variable to model as the interactions be-
tween soils and water are not simple to represent. Its defini-
tion requires knowledge of soil hydraulic conductivity, which
is not often available as direct measurements. These are used
to access the saturated and residual soil water content, as well
as for SM dynamics. Pedo-transfer functions (Marthews et
al., 2014) allow us to estimate hydrodynamic characteristics
of the soil from available soil texture and structure informa-
tion. However, the suitability of these functions is under de-
bate (Baroni et al., 2008), as their performance depends on
several factors like the climate, geology, and the measure-
ment techniques used. Furthermore, different hydrological
schemes are found in land-surface models (LSMs), leading
to various ways of understanding and formulating soil mois-
ture.

Remotely sensed soil moisture products have brought
about new ways to perform data retrieval, adding new ob-
servations to data assimilation chains. The optimal combi-
nation of these products with modelled ones is expected to
provide better estimates of the true soil moisture state. Re-
mote sensing allows us to estimate SM by means of retrieval
algorithms, like inversion algorithms (Kerr et al., 2012) or
neural networks (Kolassa et al., 2013). Their main input de-
pends on the type of sensor used. This is backscattering for an
active sensor and brightness temperature (TB) for a passive
sensor. TB corresponds to the radiance emitted by the Earth
at a given wavelength and is the magnitude measured by a ra-
diometer. It is defined as the physical temperature times the
emissivity of the surface.

L-band radiometry is one of the best methods to estimate
soil moisture, due to the relation between SM and the soil
dielectric constant (ε) in this wavelength. The latter differs
significantly between a dry soil and water (4 vs. 80, respec-
tively) and this difference is key to estimating the soil water
content. It should be noted that the retrieved SM corresponds
to the water contained in the first centimetres of the soil. The
penetration depth in averaged conditions is about 5 cm (Kerr
et al., 2010). Therefore, we will refer to surface soil moisture
(SSM) instead of soil moisture. Some studies, like Escori-
huela et al. (2010), lower the penetration depth to 1–2 cm.

In the last decade, three space missions have been
launched with L-band radiometers on-board: the Soil Mois-
ture and Ocean Salinity (SMOS) mission (Kerr et al., 2010),
the Aquarius/SAC-D mission (Le Vine et al., 2010), and
the Soil Moisture Active and Passive (SMAP) mission (En-
tekhabi et al., 2010).

A large number of validation studies of remotely sensed
SSM products have been carried out (Albergel et al., 2011;
Sánchez et al., 2012; Bircher et al., 2013). These studies are
usually performed using airborne and/or ground-observed
data over a well-equipped site. Other studies, like the one
described in González-Zamora et al. (2015), validate SMOS
SSM products using in situ soil moisture measurement net-

works, which allow one to extend the study period to annual
and inter-annual scales. Several studies have been performed
to validate brightness temperatures too (Rüdiger et al., 2011;
Montzka et al., 2013). In Bircher et al. (2013) TBs are also
validated with network and airborne data over a SMOS pixel
in the Skjern River catchment (Denmark). LSMs coupled to
radiative transfer models (RTMs) can contribute to the anal-
ysis and validation of passive microwave (MW) data. Mod-
els permit extension of the validation to a longer period of
time and perform an extensive analysis of observed and re-
trieved data, as shown in Schlenz et al. (2012). In this study,
they compare TBs and vegetation optical depth from SMOS
with modelled ones obtained from a LSM coupled to a radia-
tive transfer model, over a period of 7 months in 2011 at the
Vils test site (Germany). Comparing modelled with satellite-
measured brightness temperatures can help to better under-
stand inconsistencies between retrieved and modelled data.
It provides information regarding the origin of their differ-
ences and whether they are due to the retrieval algorithm or
to issues related to the modelling process.

Polcher et al. (2016) present the first comparison of the
spatial patterns of the Level 2 (L2) SMOS product corre-
sponding to retrieved SSM, with SSM modelled by the OR-
ganising Carbon and Hydrology In Dynamic EcosystEms
(ORCHIDEE) LSM (de Rosnay and Polcher, 1998; Krin-
ner et al., 2005) over the Iberian Peninsula (IP) from 2010
to 2013. They identify inconsistencies between the spatial
structures of retrieved and modelled SSM. The main objec-
tive of the work presented herein is to extend the analysis
of this inconsistency by comparing brightness temperatures
measured by SMOS (Level 1C, L1C, product) with mod-
elled ones obtained from the coupling of ORCHIDEE’s state
variables and a RTM. In addition, a second set of modelled
TBs using state variables from the Hydrology Tiled ECMWF
Scheme for Surface Exchanges over Land (H-TESSEL) is
included in the comparison. The RTM used is the Commu-
nity Microwave Emission Model (CMEM) (de Rosnay et
al., 2009), developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF). The comparison is per-
formed over the same period and region as the study car-
ried out by Polcher et al. (2016). The IP is an excellent test
case for remote sensing of SSM, as its two characteristic cli-
mate regimes (oceanic and Mediterranean) result in a strong
contrast in soil water content. Furthermore, SSM is a criti-
cal variable regarding water resources, especially in the IP,
which makes this study even more necessary.

The data from SMOS and the LSMs used in this paper
will be presented in the next section. A methodology section
follows describing the data filtering and sampling processes
carried out, together with the analysis performed to compare
TBs. Afterwards, results will be presented. First, modelled
and measured TBs will be compared. Second, their differ-
ence will be characterized spatially and temporally and cer-
tain hypotheses to explain the differences found in the TB
comparison will be analysed. Third, we will study the am-
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plitude of the annual cycle of the TB signals. The paper will
end with discussion and conclusion sections.

2 Data

2.1 SMOS retrievals of TB

The SMOS mission is the second Earth Explorer Opportu-
nity mission from the European Space Agency (ESA). The
SMOS satellite was launched on 2 November 2009. One of
its main objectives is to provide surface soil moisture over
land with a target accuracy of 0.04 m3 m−3.

TBs are the main input of SMOS’s soil moisture retrieval
algorithm. L-band brightness temperatures are measured by
the SMOS radiometer at different incidence angles (from 0
to 65◦) and polarizations (H, V, HV). The retrieval algo-
rithm also models TBs using the state-of-the-art L-band Mi-
crowave Emission of the Biosphere (L-MEB) forward model
(Wigneron et al., 2007) with some modifications. These
brightness temperatures are then used to retrieve SSM us-
ing an inversion algorithm based on an iterative approach. Its
objective is to minimize the sum of the squared weighted dif-
ferences between measured and modelled TBs for all avail-
able incidence angles. Details about the retrieval algorithm
are provided in Kerr et al. (2012).

The L1C product containing horizontally and vertically
polarized brightness temperatures was provided by the
SMOS Barcelona Expert Center. From now on, this product
will be referred to as TBSM.

The SMOS L1C v5.05 product over the 10◦W : 5◦W to
45◦ N : 35◦ N region was selected and SMOS TBs at the an-
tenna reference plane were derived: TBs were first screened
out for radio-frequency interferences (RFIs) (strong, point
source, and tails), and also for Sun (glint area, aliases, and
tails) and Moon (aliases) contamination, using the corre-
sponding flags. Ionospheric effects (geometric and Faraday
rotations) were later corrected to obtain TB at the top of
the atmosphere (TOA). TB maps at a constant incidence an-
gle of 42.5± 5◦ were obtained through chi-squared linear fit
of all values included in the interval 42.5± 5◦, which is the
methodology used to generate the SMOS L1C browse prod-
uct (McMullan et al., 2008). Finally, these maps were resam-
pled from the Icosahedral Snyder Equal Area (ISEA) 4H9
grid to a 0.25◦ regular latitude–longitude grid, to facilitate its
manipulation.

2.2 Modelled TB: CMEM

The Community Microwave Emission Modelling (CMEM)
platform (de Rosnay et al., 2009), developed at ECMWF, is a
forward operator for low-frequency passive MW brightness
temperatures of the surface. Its physics is based on that of
the L-MEB forward model and the Land Surface Microwave
Emission Model (LSMEM) (Drusch et al., 2001). CMEM is
characterized by its modular structure, which allows the user

to choose among different physical configurations to com-
pute TB’s key parameters. Polarized brightness temperatures
provided at TOA result from the contribution of three dielec-
tric layers: atmosphere, soil, and vegetation. Snow, also con-
sidered, is characterized as a single additional homogeneous
layer.

The two sets of modelled TBs used in this study were esti-
mated by means of the CMEM provided with state variables
from (i) ORCHIDEE, and (ii) H-TESSEL simulations. From
now on we will refer to these sets as TBOR and TBHT, respec-
tively. TBOR was computed specifically for this study, while
TBHT was provided by the ECMWF to widen the comparison
between measured and modelled data. The CMEM configu-
ration used to compute each set of TB is listed in Table 1. The
table is divided into three configuration categories: physical,
observing, and soil and atmospheric levels. Even though both
sets have similar configurations, there are some differences
which are explained below.

First, the “Physical configuration” of TBOR was selected
to be as similar as possible to TBHT. However, they differ
in the parameterization used to compute the smooth surface
emissivity (εs). For TBHT the reflectivity of the flat soil sur-
face was computed following the Fresnel law (Ulaby et al.,
1986), so it is expressed as a function of the soil dielectric
constant and the observation incidence angle. This formu-
lation considers the emission at the soil interface. As it is
simple and affordable in computing time, it is commonly
used for microwave emission modelling and soil moisture re-
trieval, as well as for operational applications (e.g. Wigneron
et al., 2007; de Rosnay et al., 2009). It assumes an a pri-
ori soil moisture sampling depth, which in this study corre-
sponds to the first soil layer of the land-surface model (7 cm
for H-TESSEL). For TBOR, the multilayered soil hydrology
of ORCHIDEE allows us to take into account the soil mois-
ture profile and the resulting volume scattering effects on the
soil emission. Therefore the reflectivity of the flat soil surface
was computed using the parameterization proposed by Wil-
heit (1978). The different parameterizations chosen to cal-
culate εs lead to another variation between the CMEM con-
figurations. If εs is computed using Wilheit (1978), the soil
temperature profile is used to compute the effective temper-
ature (Teff). By contrast, if the Fresnel law is used, the user
can choose between different parameterizations to compute
Teff. For TBHT, Wigneron et al. (2001) was selected.

Second, the “Observing configuration” considers different
incidence angles for each set. Although the available TBHT
were modelled considering an angle of 40◦, 42.5◦ was used
to model TBOR, because measured TBs were provided at this
angle.

Third, a different number of soil layers was defined for
the “Soil and atmospheric level configuration”: 11 (TBOR)

and 3 (TBHT). ORCHIDEE’s soil discretization is finer. For
instance, its first layer’s depth is of the order of millimetres,
while H-TESSEL’s is of centimetres. In order to evaluate the
role of these differences in the vertical discretization and the
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Table 1. CMEM configuration for the two sets of modelled TBs.

Configuration Parameterization

ORCHIDEE H-TESSEL

Physical configuration Soil dielectric constant Wang and Schmugge (1980)
Effective temperature Soil temperature profile Wigneron et al. (2001)
Smooth surface emissivity Wilheit (1978) Fresnel law
Rough surface emissivity Wigneron et al. (2001)
Vegetation optical depth Wigneron et al. (2007)
Atmospheric optical depth Pellarin et al. (2003)
Temperature of vegetation Surface soil temperature
Vegetation cover input data Ecoclimap

Observing configuration Microwave frequency 1.4 Ghz
Incidence angle 42.5◦ 40◦

Soil and atmospheric level configuration Number of soil layers∗ 11 3
Number of layers in the top 5 cm 5 1

Layer depths of the hydrological schemes in cm: ORCHIDEE= 0.099, 0.391, 0.978, 2.151, 4.497, 9.189, 18.570, 37.340, 74.880, 150, and 200; H-TESSEL= 7, 21, 72,
and 189. ∗ Layer depths of H-TESSEL’s hydrological scheme (cm): 7, 21, 72, and 189.

LSMs, we performed the sensitivity analysis detailed in the
next paragraph.

In addition to the CMEM simulations performed to model
TBOR and TBHT using the configurations indicated in Ta-
ble 1, the following simulations were carried out to test
whether parameterization assumptions could affect the re-
sulting TBs.

– Simulation 1: TBHT(VC), where the subscript “VC”
stands for “vegetation cover”.

Vegetation cover is a key input. Since this parameter is
directly related to land-surface emissivity, the effects
of a different vegetation cover were tested on TBHT.
For this matter, a new set of TBs was modelled us-
ing H-TESSEL’s state variables with the same config-
uration as detailed in Table 1, except for the vegeta-
tion cover input, where H-TESSEL’s prescribed vegeta-
tion (Boussetta et al., 2013) was considered. One of the
differences between this input and the ECOCLIMAP
database (used in the original configuration) is that the
former consists of 20 vegetation types, while the latter
considers 7.

– Simulation 2: TBOR(SD), where the subscript “SD”
stands for “soil discretization”.

The impact of a coarser soil representation on mod-
elled TBs was tested by recomputing TBOR using OR-
CHIDEE’s state variables averaged to 3 soil layers: up-
per (9 cm), medium (66 cm), and lower (125 cm).

– Simulation 3: TBOR(FW), where the subscript “FW”
stands for “Fresnel Wigneron”.

We tested the combined effect of using the Fresnel law
to compute εs, rather than the parameterization pro-
posed by Wilheit (1978), and calculating Teff using the

Table 2. Input variables for the CMEM to compute TBs at TOA.

Soil conditions Constant fields Soil texture fraction (%)
Orography (km)

Vegetation Constant fields High and low vegetation types
High and low vegetation fractions
Water fraction

Dynamic fields Low vegetation LAI

Meteorology Dynamic fields Soil moisture profile (m3 m−3)
Soil temperature profile (K)
Skin temperature (K)
Snow depth (m)
Snow density (kg m−3)
2 m temperature (K)

methodology proposed by Wigneron (2001) instead of
the soil temperature profile. For this, TBs were simu-
lated using ORCHIDEE’s state variables.

The input variables required by the CMEM to model TBs
are summarized in Table 2. They are classified into dynamic
and constant fields and consist of meteorological data, vege-
tation characteristics, and soil conditions.

2.2.1 The ORCHIDEE and H-TESSEL land-surface
models

ORCHIDEE

The ORCHIDEE LSM (de Rosnay and Polcher, 1998; Krin-
ner et al., 2005) was developed by the Institut Pierre-Simon
Laplace (IPSL). It can be run coupled with the LMDZ gen-
eral circulation model, which was developed by the Labora-
toire de Météorologie Dynamique (LMD), or in stand-alone
mode. Uncoupled simulations were carried out for this study.
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The hydrological scheme used by ORCHIDEE approaches
hydrology through the resolution of a diffusive equation with
a multilayered scheme. For this, the Fokker–Planck equation
is solved over a soil 2 m deep with an 11-layer discretization.
The layers’ depths are shown in Table 1. The lower boundary
condition is free drainage, under the hypothesis that the wa-
ter content gradient between the last modelled layer and the
next one (not modelled) is zero. The upper boundary con-
dition sets the bare soil evaporation as the maximum upward
hydrological flux which is permitted by diffusion if it is lower
than potential evaporation.

The multilayer scheme considers a sub-grid variability of
soil moisture, which together with the fine soil discretiza-
tion improves the representation of infiltration processes. The
soil infiltration follows the Green–Ampt equation (Green and
Ampt, 1911) to represent the evolution in time of the wetting
front through the soil layers. It should be noted that partial
re-infiltration occurs from surface runoff if the local slope of
the grid cell is ≤ 0.5 % (D’Orgeval et al., 2008). Each grid
box has a unique soil texture and structure (Post and Zobler,
2000), but three different soil columns are considered, each
one with its own soil moisture discretization and root profile.
These are classified as bare soil and low and high vegeta-
tion, regrouping the 13 plant functional types (PFT) defined
in ORCHIDEE. These PFTs contribute to the soil layers of
each grouping of a root density to compute extraction and
soil moisture stress to the plants. The water balance is solved
for each soil column, resulting in three different soil moisture
profiles in each grid box.

ORCHIDEE’s soil temperature profile is calculated by
solving the heat diffusion equation. In contrast to the hy-
drological scheme, it considers a seven-layer discretization,
where the layers’ thicknesses follow a geometric series of ra-
tio 2, and a total soil depth of 5.5 m (Hourdin, 1992; Wang et
al., 2016). For this study, the first 2 m of the temperature pro-
file were calculated following the same soil discretization as
the one considered in the soil moisture calculation. The en-
ergy balance takes into account the skin temperature as pre-
sented in Schulz et al. (2001) to derive the land-surface tem-
perature (LST). The soil and vegetation are considered as a
single medium assigned with a surface temperature (Santaren
et al., 2007).

H-TESSEL

The H-TESSEL LSM (Balsamo et al., 2009), developed by
the ECMWF, revises and improves certain aspects regard-
ing the soil hydrology of the TESSEL model. Its hydrology
scheme solves a diffusive equation over a multilayer scheme
with a four-layer discretization. Layer depths follow an ap-
proximate geometric relation (Table 1). In addition, the soil
can be covered by a single snow layer. H-TESSEL considers
the same lower boundary condition as ORCHIDEE. How-
ever, it differs in the upper one that also accounts for infil-
tration. It defines a maximum infiltration rate given by the

maximum downward diffusion from the saturated surface.
Once this rate is exceeded by the water flux at the surface,
the excess of water is derived to surface runoff.

The model considers six types of tiles over land: bare soil,
low and high vegetation, water intercepted by leaves, as well
as shaded and exposed snow. Each one of these has its own
energy and water balance. However, only one soil moisture
reservoir is considered. Recent improvements have replaced
a globally uniform soil type (loamy) with a spatially varying
one (coarse, medium, medium-fine, fine, very fine, organic).
Surface runoff, based on variable infiltration capacity, was
also a recent improvement.

H-TESSEL’s soil temperature profile is computed using
the same soil discretization as the one defined in its hydro-
logical scheme. The soil heat budget follows a Fourier diffu-
sion law, which has been modified to also consider thermal
effects caused by changes in the soil water phases (Holmes
et al., 2012). To simulate the LST, a skin layer is defined rep-
resenting (i) the layer of vegetation, (ii) the top layer of bare
soil, or (iii) the top layer of the snowpack. The surface energy
balance equation is then linearized for each tile (Viterbo and
Beljaars, 1995).

Both LSMs are forced with the ERA-Interim forcing (Dee
et al. 2011), which is suitable for this study because it ranges
from 1979 to 2012 and recent data were needed to perform
the comparison with SMOSs. We are aware that biases in
this type of forcing have an effect on the LSM simulations
(Ngo-Duc et al., 2005). ORCHIDEE was configured to out-
put hourly TB values. However, TBHT is only available at 6-
hourly time steps (at 00:00, 06:00, 12:00, and 18:00 h). Due
to this difference, each set of modelled TBs was sampled in a
different way to approximate TBSM measurement times. The
sampling processes will be explained in Sect. 3.

The above paragraphs show that the hydrology, soil pro-
cesses, and land-surface temperatures are approached very
differently by both models. Therefore, the impact of these
differences needs to be considered when comparing simu-
lated TBs.

2.3 Precipitation and land-surface temperature

One important common feature of the presented model simu-
lations is the forcing data. Since biases in the imposed atmo-
spheric conditions can affect modelled TBs, it was decided to
validate two important variables for which independent ob-
servations exist. Focus was placed on precipitation (P ) and
the LST, as they are key variables for the water and radiative
balances.
P is the main driver of SSM, and this directly drives the

L-band emissivity. According to Zollina et al. (2004), P gen-
erated by a reanalysis (like ERA-Interim which is used here)
is highly model-dependent, and it should be noted that mod-
els do not represent accurately all the physical processes of
the atmospheric water cycle. Therefore, the verification of
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this forcing variable of the LSMs with independent data is
essential.

As for the radiative balance, the available energy at the
surface is one of the major drivers of LST. We chose to verify
this variable in this study for two reasons. First, it provides
a good summary of the surface energy balance. Second, it
is a key parameter in CMEM’s estimation of TB. Therefore,
its analysis will indicate whether the LSM thermodynamics
shows biases with spatio-temporal characteristics similar to
those from TBs.

The independent datasets used for validation are

– P from the E-OBS dataset (Haylock et al., 2008), and

– LST provided by the LandSAF product (http://landsaf.
meteo.pt).

It should be noted that these products have errors which must
be taken into account when used. For example, E-OBS data
can be over-smoothed depending on the station network den-
sity (Hofstra et al., 2010), or for LST sensor noise, emissivity
uncertainties, etc., are error sources which can propagate in
the LandSAf algorithm (Freitas et al., 2007). However, these
products are accepted by the community as being represen-
tative of large spatial scales and we have selected them as the
reference to benchmark P and LST.

3 Methods

3.1 Data sampling and filtering processes

To compare modelled and measured brightness temperatures,
TBOR and TBHT were sampled with TBSM and remapped
to the nearest neighbour of the SMOS grid. This allows one
to keep the spatial structures of the coarse model resolution.
Next, the three TB signals were filtered to exclude certain
situations, such as frozen soils or RFIs, which are known to
make SSM estimates unreliable.

3.1.1 Sampling

The objective of sampling the data is to use only modelled
TBs corresponding to available measured values. TBOR were
sampled at an hourly scale. However, TBHT consists of 6-
hourly values, thus potentially resulting in a large number of
neglected data because TBHT and SMOS time steps did not
always correspond. Therefore, TBHT were sampled consid-
ering a 3 h window around the observation in order to keep
a larger number of modelled data for the comparison. To test
the impact of this approximation, we also applied it to the
TBOR and compared it to the original hourly data. Differ-
ences between them were under 0.1 % for the diagnostics
used here, and, thus, it was considered to be negligible.

3.1.2 Filtering

Data were filtered to discard unreasonable TB values from
the comparison study. Filtering rules were devised following
the ECMWF criteria used to screen TBHT (Table 3). Com-
mon filters were also applied to measured and modelled TBs.

The filters applied in TBHT corresponding to the water
content in snow cover (snow water equivalent) and the cri-
terion on ERA-Interim’s 2 m air temperature aim to discard
frozen soils, which might affect the SM retrieval (Dente et
al., 2012). The same result was achieved by filtering TBOR
with the 2 m temperature from the forcing (as in the previous
case) as well as with ORCHIDEE’s average surface temper-
ature. The first common criterion excludes TBs higher than
300 K to avoid effects of RFIs, which can result in overesti-
mated brightness temperatures (can be higher than 1000 K).
The second common criterion aims at removing points which
might be influenced by coastal or topographic effects, as does
H-TESSEL’s orography (slope) criterion. The mask was built
using the L2 SMOS product. Any pixel with no surface soil
moisture data retrieved was excluded from the comparison.
The surrounding 24 pixels were also excluded to avoid ef-
fects of abrupt changes in land–sea transitions. In the end,
only data which are not masked in either case are retained.

3.2 Comparison analyses

3.2.1 Spatio-temporal correlation

The first diagnostic performed to compare measured and
modelled TBs consisted in temporal and spatial correla-
tion analyses. Our aim was to study the similarity between
the spatio-temporal patterns. We used the Pearson product-
moment correlation coefficient. Only values statistically sig-
nificant at the 95 % level were considered. An averaging win-
dow of 5 days was applied to the data before performing spa-
tial correlation analysis to ensure the highest coverage possi-
ble.

Even though the correlation coefficient is a widely used
statistical tool, it may not be suitable when analysing certain
fields. For instance, Polcher et al. (2016) show that tempo-
ral correlation measured between remotely sensed, in situ,
and modelled SSM is mainly driven by the high-frequency
behaviour of SSM. Therefore, this diagnostic is not very sen-
sitive to the slower variations of the field studied. Performing
the correlation analyses allowed us to study whether this con-
clusion also applies to TBs.

3.2.2 Empirical orthogonal function

The empirical orthogonal function (EOF) analysis extracts
the dominant spatial and temporal modes of variability of a
field (F ). It relates the spatial patterns of each variation mode
to a time series and its explained variance.
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Table 3. TB filtering criteria to keep data, applied to the TB signals.

TBOR TBHT All TB signals

ORCHIDEE’s daily average surface Snow water equivalent < 0.01 m Daily TB < 300 K
temperature > 275 K

ERA-Interim’s daily average 2 m air ERA-Interim’s daily average 2 m Mask
temperature > 273 K air temperature > 273.5 K (from SMOS’s L2 product)

Orography (slope)∗ < 0.04

∗ The slope is at the model T225 spectral horizontal resolution (∼ 80 km).

To do so, the covariance matrix (R) of F is computed.
Next, the eigenvalue problem is solved:

RC= C3, (1)

where 3 is a diagonal matrix that contains R’s eigenvalues
(λi) and C is a matrix where its column vectors (ci) are R’s
eigenvectors, which correspond to λi .

Each eigenvalue corresponds to a variability mode and
provides a measure of the total variance in R explained by
the mode. Therefore, the biggest eigenvalue will correspond
to the dominant variability mode. The eigenvector ci is the
spatial pattern (Pi) of the mode of variation i. The temporal
evolution of a mode of variation is obtained by projecting the
field F onto the corresponding spatial pattern:

αj = F cj . (2)

We will refer to these temporal series as the expansion coef-
ficients (ECs). Positive values of ECs imply that there is no
sign change in the spatial patterns. The EOF methodology is
detailed in Björnsson and Venegas (1997).

We applied the EOF analysis to the error between mea-
sured and modelled TBs, to characterize it spatially and tem-
porally. Identifying the main modes of variability of an er-
ror field allows us to propose and test hypotheses about its
causes. We followed this approach to analyse the impact of
forcing biases on modelled TBs. Other studies have also ap-
plied this methodology to error analysis. For example, Kana-
mitsu et al. (2010) analyse the impact of a regional model
error on the inter-annual variability of a set of analysis fields.

4 Results

The temporal evolution and spatial structures of measured
and modelled TBs are analysed in this section. This study fol-
lows the comparison between modelled and retrieved SSM
(Polcher et al., 2016) and attempts to elucidate whether the
difference found can be attributed either to the retrieval algo-
rithm, which converts TBs into estimated SSM, or its mod-
elled counterpart.

4.1 Comparison of modelled and measured TBs

The mean temporal and spatial correlations between mea-
sured and modelled TBs, over the IP from 2010 to 2012,
are shown in Table 4. Values from the SSM comparison per-
formed by Polcher et al. (2016) are also included. The differ-
ences between spatial and temporal correlations are already
apparent and warrant separate analyses as a first step.

4.1.1 Temporal correlation

Figure 1 shows the temporal correlation between measured
and modelled daily TBs for the horizontal and vertical po-
larizations. Both polarizations show a good agreement be-
tween models and observations in their temporal evolution,
with values above 0.7 over a large part of the IP. This can
be explained by the strong annual cycle imposed by the sur-
face temperature, but more important are the quick responses
of temperature and emissivity to precipitation events, which
drive TB’s fast variations and correspond to the synoptic vari-
ability of the signal. The high correlations indicate that it
is well captured by both models. It confirms our hypothe-
sis (Sect. 3.2.1) that the temporal correlation of TB is driven
by the synoptic variability, as demonstrated in the SSM com-
parison performed by Polcher et al. (2016). Most of the areas
with lower correlations correspond to mountain ranges. Re-
lief effects on MW radiometry over land (Mätzler and Stan-
dley, 2000) are a difficult remote-sensing problem and, thus,
discrepancies are expected. In fact, the lowest correlations
(0.3 to 0.6) appear over some areas of the Pyrenees. Other
examples are the Iberian System and the Cantabrian Moun-
tains, located over the north-eastern and northern regions of
the peninsula, respectively.

There are no large differences between the temporal cor-
relation maps of TBOR and TBHT with TBSM (Fig. 1). Since
the same forcing was used, the two LSMs share the same syn-
optic variability from the ERA-Interim reanalysis. However,
Fig. 1 shows that the synoptic variability of H-TESSEL leads
to slightly higher correlation values than ORCHIDEE’s, es-
pecially over the northern part of the IP.
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Figure 1. Temporal correlation between modelled and measured TBs from 2010 to 2012. TBH and TBV correspond to the horizontal and
vertical polarizations, respectively.

Table 4. Mean temporal and spatial correlations for SSM (Polcher
et al., 2016) and the horizontal and vertical polarizations of TBs
over the Iberian Peninsula from 2010 to 2012.

Temporal Spatial

Horizontal Vertical Horizontal Vertical

TBOR vs. TBSM 0.75 0.76 0.20 0.30
TBHT vs. TBSM 0.82 0.82 0.24 0.29
TBHT(VC) vs. TBSM – – 0.17 0.36
TBOR(SD) vs. TBSM – – 0.22 0.33
TBOR(FW) vs. TBSM – – 0.20 0.30
SSMOR vs. SSMSM 0.81 0.28

4.1.2 Spatial correlation

For clarity, the five daily spatial correlations are averaged per
season and the distribution of values obtained is represented
in boxplot form in Fig. 2. In general, the correlation is poor
throughout the year. Although maxima are around 0.6, the
annual mean ranges between 0.2 and 0.3 (Table 4). This im-
plies that the spatial structures from both modelled TBs are
not consistent with those observed by SMOS. We would like
to point out the seasonality in the correlation. The lowest
correlations occur during winter, where even negative val-
ues are obtained. These improve during spring and summer,
and weaken again in autumn. Moreover, winter and autumn
generally show larger ranges of variability and, thus, a wider

dispersion of the data than spring and summer. Figure 2 also
shows that the vertical polarization has systematically higher
mean correlations than the horizontal one, except for the win-
ter season. Finally, there is no significant difference in the
correlation of TBSM with either modelled TB, as has already
been noted for the temporal correlation.

4.2 Spatial and temporal characterization of the TB
error

The spatio-temporal variability of the error between mod-
elled and measured TBs is studied to better understand
the poor consistency of their spatial structures. We want
to analyse whether this difference can be related to some
physical process which might be incorrectly represented in
both models. For this, an EOF analysis of the TB errors
(TBOR−TBSM and TBHT−TBSM) is carried out.

4.2.1 TB error

Spatial patterns

Figure 3 shows the spatial patterns of the first two EOF vari-
ation modes corresponding to the TB error of ORCHIDEE
(TBOR−TBSM), for the horizontal and vertical polariza-
tions. The variance explained by each mode is also provided
as a percentage in brackets. The total variance explained by
the patterns of the first variation mode is above 30 % in both
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Figure 2. Boxplot showing the annual cycle of the spatial correla-
tion between modelled and measured TBs over the Iberian Penin-
sula from 2010 to 2012. TBH and TBV correspond to the horizontal
and vertical polarizations, respectively. Values have been grouped
per season: winter (DJF), spring (MAM), summer (JJA), and au-
tumn (SON).

Table 5. Spatial correlation for the first and second variation modes
of the EOF analyses performed for the difference between modelled
and measured TBs. TBH and TBV correspond to the horizontal and
vertical polarizations, respectively.

Mode 1 Mode 2

TBOR−TBSM (TBH) vs. 0.99 0.97
TBOR−TBSM (TBV)
TBHT−TBSM (TBH) vs. 0.86 0.75
TBHT−TBSM (TBV)
TBOR−TBSM (TBH) vs. 0.92 0.69
TBHT−TBSM (TBH)
TBOR−TBSM (TBV) vs. 0.73 0.48
TBHT−TBSM (TBV)

polarizations: 36 % (horizontal) and 31 % (vertical). These
two patterns show a similar structure characterized by high
values over the south-west and a smaller area further north
of the IP, which weaken as they extend through the rest of
the peninsula. This similarity is confirmed by their high spa-
tial correlation, which is 0.99 (Table 5). The second varia-
tion mode exhibits a structure that is also maximum over the
south-west of the IP in both polarizations. However, the to-
tal variance explained has decreased to 6 and 7 % (horizontal
and vertical polarizations, respectively).

Figure 4 is equivalent to Fig. 3, but presents the TB er-
ror of H-TESSEL (TBHT−TBSM). The variance fractions
explained by the first EOF mode are 30 and 18 % for the hor-
izontal and vertical polarizations, which are lower than those
obtained for the TB error of ORCHIDEE. As in Fig. 3, the
first variation modes show similar spatial structures, which
are highly spatially correlated (0.86, Table 5). It is interest-

ing to note that this structure coincides with the one identified
for the TB error of ORCHIDEE (Fig. 3a and c). This is con-
firmed by the high correlation obtained between the patterns
of the two errors: 0.92 and 0.73 for the horizontal and ver-
tical polarizations, respectively (Table 5). The second varia-
tion mode of H-TESSEL’s TB error explains 8 % (horizontal
polarization) and 12 % (vertical polarization). The horizon-
tal polarization pattern shows that the error is maximum over
the south-western region of the IP, while the vertical polar-
ization pattern does not show a clear structure. In contrast to
the first variation mode, patterns from the second one show
larger differences with the patterns depicted by the TB error
of ORCHIDEE.

Expansion coefficients

Figure 5 shows the ECs of the first EOF variation mode of
both TB errors: in other words, the projection of the error
time series onto the EOF pattern, summarizing how much
the error field varies according to the pattern.

The four series show a strong annual variation which peaks
in autumn. High values are also observed in December 2012
and during the winter of 2010–2011. It should be noted that
the behaviour of the ECs coincides with the marked season-
ality shown in Fig. 2 and, thus, reinforces our observation
that modelled TB patterns have their strongest disagreement
with SMOS measurements in autumn and winter. The ECs
of the second EOF variation mode of each TB error have
not been included in Fig. 5, because the spatial patterns of
each error differ between them. Nevertheless, it is important
to note that they show variations at a higher frequency than
those from the first mode.

Two conclusions can be drawn from these results.
First, the largest spatially coherent error identified in

Figs. 3 and 4a and c is dominated by the slow-varying com-
ponent of the TB signals, which is driven by the annual cycle.
At first sight, this might seem to contradict the temporal cor-
relation analysis (Fig. 1). However, it shows that the slow
(annual cycle) and fast (synoptic variability) components of
TBs show different behaviours.

Second, modelled TBs are warmer than measured ones
over the south-western IP during autumn and winter, revealed
by the first EOF patterns and their oscillations (Figs. 3 to 5).
To further analyse this result, we looked at ECMWF’s mean
error from the months of November 2010 to 2012. This di-
agnostic consists of the time-averaged geographical mean of
the difference between SMOS-measured TBs and modelled
ones using the CMEM and H-TESSEL’s surface state vari-
ables (Fig. 6). For all 3 years we see a contrast between the
error over the north-western region of the IP (in an orange
colour) and over the south-western region and a smaller area
further north (in a blue colour). According to this, measured
TBs are warmer than modelled ones over the north-west of
the IP during these three periods, while modelled TBs are
warmer than SMOS’s over the south-west of the IP. This is
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Figure 3. Spatial patterns associated with the first two EOF variation modes (P1 and P2) of the difference between modelled TB (OR-
CHIDEE) and measured TB (SMOS). TBH and TBV correspond to the horizontal and vertical polarizations, respectively. The percentage of
variance explained by each mode is included in brackets.

Figure 4. As Fig. 3 but for H-TESSEL.
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Table 6. Possible explanations studied and proposed to analyse the dominant mode of the error between measured and modelled TBs. The
paper’s section where these are analysed has been included.

Hypotheses Outcome (test) Section

Biases in precipitation forcing Discarded 4.2.2
(EOF analysis∗)

Errors in LST modelling Discarded (EOF analysis∗ and annual 4.2.2 and 4.3
cycle over the southern and northern IP)

CMEM configuration Vegetation cover Discarded (EOF analysis∗ and 4.2.3
spatial correlation)

Soil discretization Discarded (EOF analysis∗)

ε parameterization Combined effect of the Fresnel law Discarded (EOF analysis∗ and
and Wigneron et al. (2001) spatial correlation)
to estimate εs and Teff

ε estimation Proposed to study 5

τveg estimation Proposed to study

εr estimation Proposed to study

Modelled LAI Discarded
Rainfall interception Discarded
Attenuation effect of litter in measured TB Discarded
LSMs’ subgrid process simplifications Discarded
Instrumental issues (RFIs) Discarded

∗ EOF analysis→ incompatible spatio-temporal variability of errors.

Figure 5. Temporal evolution of the expansion coefficients corre-
sponding to the first EOF variation mode of the TB errors (OR-
CHIDEE vs. SMOS and H-TESSEL vs. SMOS) over the Iberian
Peninsula. Values have been normalized using the standardization
method. TBH and TBV correspond to the horizontal and vertical
polarizations, respectively.

in good agreement with the behaviour described by the first
EOF variation mode of both TB errors (Figs. 3 and 4a and
c). It should be noted that the mean error shows a global bias
between the spatial patterns of measured and modelled TBs.
However, only the IP is represented in this figure to show
clearly the spatial structures.

To summarize, the EOF analyses of the ORCHIDEE and
H-TESSEL TB errors identified a common dominant struc-
ture, which is maximum in the autumn and winter seasons
over the south-west of the IP and a smaller area further north.
It represents between 18 and 36 % of the error depending on
the modelled TB set considered and its polarization. More-
over, it corresponds well to the ECMWF mean error for the
2010–2012 November months.

4.2.2 LST and precipitation errors

Precipitation and LST data are used to explore possible
causes of the difference between measured and modelled
TBs. Errors are calculated with respect to independent
datasets. The dominant error pattern of each variable is com-
puted via EOF analysis and compared with the dominant pat-
tern of the ORCHIDEE and H-TESSEL TB errors. If simi-
larities can be identified, then possible causal links between
these variables and the TB error can be explored.

The precipitation error is calculated as the difference be-
tween the P provided by the ERA-Interim forcing and the
E-OBS independent dataset. The LST errors are computed
as the difference between modelled LST (from ORCHIDEE
or H-TESSEL) and the EUMETSAT LandSAF product (http:
//landsaf.meteo.pt).

Spatial patterns

The first EOF patterns of P and LST errors are represented
in Fig. 7, together with their explained variance. The precip-
itation error is common to both models as it originates in the
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Figure 6. ECMWF’s mean error (observation–model) from the months of November 2010 to 2012. TBH and TBV correspond to the
horizontal and vertical polarizations, respectively.

selected forcing. The dominant spatial structure of this er-
ror, which represents only 15 % of the total variance, has its
maximum in the south-east of the IP and is different from
the one found for TB. The error patterns from LST differ re-
markably between the two models and do not seem related to
the TB error. On the one hand, a north–south gradient is ob-
served in ORCHIDEE’s LST error (Fig. 7a), which is most
likely explained by forcing-induced biases due to available
energy affecting the LSM simulation. On the other hand, H-
TESSEL’s LST error pattern (Fig. 7c) shows a gradient from
east to west.

Expansion coefficients

The ECs corresponding to each of these patterns are pre-
sented in Fig. 8. Those for the precipitation error show a
higher frequency variation than those of the LST and TB
errors. ORCHIDEE’s LST error behaves as expected from
land-surface physics, with a maximum in summer when the

largest amount of energy is absorbed by the surface and, thus,
small errors in the energy balance translate into large temper-
ature differences. This is not the case for H-TESSEL’s LST
error, whose ECs show higher frequency variation, with max-
ima in the autumn season and at the end of the winter in 2011
and 2012.

The dominant modes of variability of P and LST er-
rors show different spatial and temporal characteristics than
the TB error dominant pattern. Neither the spatial struc-
tures nor their temporal evolution over the 2010 to 2012
period coincide. The TB errors show a strong annual vari-
ation which peaks in autumn and winter. The ECs of OR-
CHIDEE’s LST error show a maximum in summer, while
those for H-TESSEL’s LST and P errors are characterized
by higher-frequency variations.

The difference between the EOF analyses’ results of P ,
LST, and TB errors suggests that their error sources differ.
Therefore, even though the products taken as a reference (E-
OBS and LandSAF) are affected by errors, these do not seem
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Figure 7. Spatial patterns from the first EOF variation mode of the LST and the precipitation errors. The percentage of variance explained
by each mode is included in brackets.

Figure 8. Temporal evolution of the expansion coefficients corre-
sponding to the first EOF variation mode of the LST and the precip-
itation errors. As in Fig. 5, values have been normalized using the
standardization method.

to be responsible for the dominant mode of the TB discrep-
ancy. The EOF analysis excludes the hypothesis that biases
in precipitation driving the models or errors in their surface
temperature are the direct cause of the inconsistency in TB’s
spatial structures. The strong similarity of the TB errors in
two quite different LSMs further strengthens the rejection of
this hypothesis.

4.2.3 Analysis of CMEM assumptions

The CMEM is another candidate to explain the TB error
since it is also a common element from both sets of modelled
TBs. In fact, modelled TBs have been shown to be more sen-
sitive to the configuration of the microwave model than to the
LSM used (de Rosnay et al., 2009).

As explained in Sect. 2, we performed a sensitivity anal-
ysis to test whether certain CMEM parameterizations could
explain the differences between measured and modelled TBs.
As a result, three new sets of modelled TBs were estimated,
TBHT(VC), TBOR(SD), and TBOR(FW), to evaluate the role of
vegetation, vertical discretization, and the emissivity param-
eterization, respectively.

In the first place, TBHT(VC) shows similar mean spatial
correlations with TBSM to the ones for TBHT and TBSM (Ta-
ble 4). In addition, an EOF analysis of the difference between
this new estimate and observed TBs (figure not included)
shows similar spatial patterns to the ones identified in Fig. 4a
and c, as well as a good agreement between their ECs.

In the second place, no significant differences were ob-
served between TBOR(SD) and TBOR when compared to
TBSM. For instance, mean spatial correlations computed us-
ing TBOR(SD) and TBSM are 0.22 and 0.33 for the horizontal
and vertical polarizations, which are similar to the values ob-
tained for TBOR and TBSM (Table 4).
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Figure 9. Normalized amplitude of the smoothed annual cycle of modelled and measured TBs: amplitude(TB)/TB. TBH and TBV correspond
to the horizontal and vertical polarizations, respectively.

In the third place, an EOF analysis of the TB error com-
puted using the TBOR(FW) and TBSM sets (figure not in-
cluded) shows a similar dominant structure both in space and
time to the one observed in Fig. 3a and c. In addition, simi-
lar spatial correlations between TBOR(FW) and TBSM to those
from TBOR and TBSM are also found (Table 4).

As synthesized in Table 4, in the current state of CMEM
the vegetation cover, the number of soil layers, and the εs
and Teff parameterizations can be discarded as the dominant
factors responsible for the poor spatial correlation between
modelled and SMOS TBs.

4.3 Annual cycle of TBs

The slow-varying component of the TB signals is analysed
pixel by pixel, because it has been identified as the driver
of the largest spatially coherent error structure between mea-
sured and modelled TBs (Fig. 5). For this matter, the mean
annual cycle of each TB signal was computed for each
pixel and then smoothed using a spline filter to remove sub-
monthly fluctuations. The period of study is too short to en-
sure that a simple annual mean cycle will filter out high-
frequency variations. In Fig. 9 the normalized amplitudes of
the annual TB cycle are displayed.

The spatial structures shown in SMOS’s maps (Fig. 9c and
f) exhibit strong resemblances to those observed in the first
EOF patterns of the TB error (Figs. 3 and 4a and c). How-
ever, this structure is not found in the maps corresponding
to TBOR and TBHT, where there is less contrast in the spa-
tial distribution of the relative amplitude of the annual cycle.

This indicates that the LSMs combined with CMEM do not
reproduce the annual cycle amplitude of TBs observed by
SMOS.

To further analyse this result, two study areas are de-
fined (Fig. 10). The first one is over the south-western IP
(7.5◦W : 4◦W, 40◦ N : 38◦ N) and corresponds to the part of
the area where the largest differences in TB’s normalized am-
plitudes are identified. The second one is the north-western
region (8.25◦W : 6◦W, 43◦ N : 41.75◦ N) of the IP and is cho-
sen because it shows similar annual cycle amplitudes of TB
in the two models and SMOS. In addition, the EOF analysis
of the TB error showed opposite behaviours in these areas.

Figure 10 shows the smoothed annual cycle of the hori-
zontal and vertical polarizations of the TB signals from both
regions. The LST from the LandSAF product as well as those
modelled by ORCHIDEE and H-TESSEL are also displayed
because of their direct relation to TBs. The plots show that
the TB’s annual cycle behaviour differs between both regions
and is not related to the LST errors obtained when comparing
to the LandSAF product. Therefore, the processes responsi-
ble for the TB error are probably different in each one of
them.

The following results can be extracted from the plot corre-
sponding to the south-western area (Fig. 10a).

In winter, the difference between models is small com-
pared to their relative warm bias when compared to SMOS.
In summer, the agreement is relatively good, with observa-
tions lying within the spread of the models. This explains the
result presented above, namely that the amplitude of the sim-
ulated annual cycle is smaller than for the remotely sensed
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Figure 10. Smoothed annual cycle of TBSM, TBOR, and TBHT,
as well as of the LST signals from ORCHIDEE, H-TESSEL, and
LandSAF over south-western (a) and north-western (b) regions of
the Iberian Peninsula, from 2010 to 2012. The TBH and TBV corre-
spond to the horizontal and vertical polarizations, respectively. The
regions’ location is shown in panel c: south-west (red) and north-
west (blue).

TB. Examining the LST, one can note that the biases are
relatively small and that ORCHIDEE generally matches the
LandSAF product better, but H-TESSEL shows a larger and
more correct amplitude of the annual cycle. This might ex-
plain why this model has the largest amplitude of TB in both
polarizations, indicating that a large fraction of the error in
the annual cycle of TB is caused by the emissivity simulated
by CMEM given the surface states of both LSMs.

Over the north-western IP, SMOS observations are mostly
within the uncertainty spanned by the two models. One no-
table exception is the summer period for the horizontal polar-
ization where both models are cooler. Also in this region, the
amplitude of TB in both polarizations is larger in H-TESSEL
than ORCHIDEE and closer to that measured by SMOS.
Again, this can be related to LST. Although ORCHIDEE has
smaller biases, the H-TESSEL amplitude of the annual cycle
is larger and closer to the observed one.

The strong difference in behaviour between the two se-
lected regions in winter is already visible in the dominant
EOF mode of the TB errors. The spatial patterns (Figs. 3
and 4) have different signs in the north-western and south-
western regions. For both regions, the LST biases of the
LSMs do not show a clear relation to the simulated TBs. H-
TESSEL has the warmest surface temperatures but the low-
est TBs, indicating that its state variables produce a lower

emissivity than ORCHIDEE when processed by CMEM. On
the other hand, the differences in annual amplitudes of LST
could contribute to the differences in the amplitude of the
simulated TB annual cycle. This is also supported by the
fact that the dominant variation modes of LST errors are not
related to those of TBs. This would indicate that the major
contribution to the TB errors found for the models does not
originate in their forcing or their ability to simulate the land-
surface energy balance and temperature, but rather in the way
CMEM simulates L-band emissivity based on their descrip-
tion of the surface state.

5 Discussion

This work complements with an analysis of TBs the study
by Polcher et al. (2016), which compared the SSM prod-
uct of SMOS with ORCHIDEE’s modelled SSM. Both stud-
ies present a spatio-temporal correlation analysis and obtain
similar results: a good agreement in temporal evolutions and
a large mismatch between the spatial structures of measured
and modelled SSM and TB.

The temporal correlation between TBOR and TBSM is very
similar to that between retrieved (SMOS) and modelled (OR-
CHIDEE) SSM (Table 4). In addition, both variables show
lower correlations over mountain ranges. As noted for SSM,
the temporal correlation is mainly driven by its fast-varying
component and is not very sensitive to the annual cycle
(Polcher et al., 2016).

Spatial correlations are low for both variables, indicating
an inconsistency between the spatial structures of measured
and modelled data. Polcher et al. (2016) showed that the
spatial correlation between retrieved and modelled SSM is
worse for the SSM’s slow-varying component than for its
fast-varying component. This can be due to the fact that the
largest spatially coherent error between measured and mod-
elled TBs is dominated by their slow-varying component, as
shown in this paper.

The EOF analysis presented here identified a dominant
structure over the south-western IP using both sets of mod-
elled TBs, which explains a large fraction of the TB error.
This structure differs from the error characterization of the
SSM comparison, which showed the largest discrepancies
between modelled and retrieved SSM over the north-western
IP. In fact, only weak differences were found for SSM over
the south-western region (Polcher et al., 2016). These results
indicate that the transfer functions used by SMOS to derive
SSM from observed TBs or CMEM, which estimates TBs
from modelled SSM (together with other state variables),
play an important role and have to be better understood in
order to explain the differences between the SMOS observa-
tions and the simulated surface states.

None of the hypotheses tested to identify a methodolog-
ical weakness in the forcing of both LSMs or the configu-
ration of CMEM, which would explain this common error,
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was conclusive. The differences in TB between the LSMs
and SMOS are noteworthy and we believe that understand-
ing them should be a priority for the community to achieve a
better usage of these observations. As the LSMs used here are
very different in their conception, it is unlikely that they will
produce the same systematic SSM bias, which would explain
the large discrepancy in the south-west of the IP during win-
ter. On the other hand, processes which are not represented
with enough detail in both schemes could explain the error
and need to be analysed as to their potential to explain the
discrepancies.

– In the first place, it is interesting to study the leaf area
index (LAI), because it is linked to the seasonal cycle
of vegetation. It may, therefore, reveal some underesti-
mated effects of vegetation dynamics on modelled TBs,
which could be related, to a certain extent, to the sea-
sonality identified in the dominant structure of the TB
error. In addition, the LAI is a key component in the
CMEM parameterization of τveg. However, the areas of
the IP where the TB error is largest are those of least
vegetation. Therefore, in our opinion, modelled LAI is
not likely to be the main cause of the differences in TB’s
spatial structures.

– In the second place, assumptions made in the modelling
of rainfall interception may also explain some differ-
ences between modelled and measured TBs, in partic-
ular, those shown in Fig. 10b over the north-western re-
gion of the IP. This region is characterized by an oceanic
climate and, thus, wet winters and mild summers, with
high precipitation and rainfall often occurring as drizzle.
In contrast to the southern region, there is more vegeta-
tion and, thus, rainfall interception plays a key role over
this area and may be of interest to revise how this pro-
cess is modelled. However, the IP region with strong in-
terception is not the one with the largest TB error. The
error over the south-western region is larger than over
the north-western region, as shown by the EOF analy-
sis.

– In the third place, the attenuation effect of litter on the
soil and its interception of water could also explain dif-
ferences obtained between modelled and measured TBs,
since it is not taken into account by models, but is part
of satellite observations. However, we believe that prob-
ably it would not cause an impact structured as the one
observed over the south-western area of the IP without
affecting other regions. Indeed, this process would be
strongest in regions with dense vegetation.

– Finally, issues related to the fundamental simplification
of subgrid processes in LSMs may also contribute to the
inconsistency between the spatial structures of modelled
and measured TBs. For instance, LSMs do not repre-
sent small-scale features such as open water in lakes and

rivers, swamps, irrigated areas, or other water ponded
on the surface, and could contribute strongly to L-band
emissivity of the surface. Assumptions made by LSMs
could neglect key issues from the small scale which
could be carried over to the large scale of TBs. For
the moment, we do not see why these simplifications
of LSMs would have the strongest impact in the south-
west of the IP.

Instrumental issues from SMOS could also explain the dif-
ferences in TB spatial structures, in case these are not of a
climatological or geophysical nature. For example, one of
the most important causes of noise in SMOS surface soil
moisture is radio-frequency interferences (RFIs). Daganzo-
Eusebio et al. (2013) describe their effect on SMOS data.
Some of them are difficult to detect and, thus, RFIs may
not be properly filtered out. For instance, Dente et al. (2012)
identified an irregular angular pattern in the TBs affecting
data from the L1C product used to retrieve soil moisture. In
their opinion, this was caused by weak RFIs which were not
correctly filtered. Another explanation could be antenna pat-
tern errors as SMOS TB seasonal and latitudinal drifts de-
tailed in Oliva et al. (2013). However, RFIs are not likely to
be the main cause of the differences between measured and
modelled TBs, because the main spatial structure identified
in both TB errors is found to be dominated by the brightness
temperature’s annual cycle. This suggests that it contains a
geophysical signal.

In our opinion, further analyses should be carried out re-
garding the CMEM assumptions concerning emissivity. Ac-
cording to Jones et al. (2004), the soil moisture and vegeta-
tion water content have a significant effect on the sensitivity
of TB at the top of the atmosphere. However, they impact mi-
crowave emission in different ways. On the one hand, an in-
crease in soil moisture results in a higher soil dielectric con-
stant (ε) and, thus, in lower emissivities. On the other hand,
an increase in the vegetation water content raises the scat-
ter and the absorption, increasing the emission. The ε is key
in the computation of emissivity, while the vegetation optical
depth (τveg) is closely related to the vegetation water content.
Both variables are modelled in CMEM and the same param-
eterization has been used to estimate the two sets of mod-
elled TBs: Wang and Schmugge (1980) for ε and Wigneron
et al. (2007) for τveg. Furthermore, the same parameterization
has been used to model the rough surface emissivity (εr) in
both cases: Wigneron et al. (2001). Considering that similar
spatial patterns were obtained for the TB error using two dif-
ferent LSMs, focus should be placed on the above-mentioned
variables (ε, τveg, and εr) in CMEM. We suggest prioritizing
the analysis of the relationship between the vegetation wa-
ter content and TB because of the role the vegetation opac-
ity model plays in CMEM’s configuration, as shown in de
Rosnay et al. (2009). In addition, no significant differences
were observed between modelled and retrieved SSM over the
south-western IP (Polcher et al., 2016), where the maximum
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TB error was identified. This reassures our suggestion of pri-
oritizing τveg with respect to ε, since the latter is directly re-
lated to SSM.

The hypotheses analysed to identify the cause of TB’s er-
ror dominant mode, as well as those proposed to study it, are
listed in Table 6. The conclusion obtained for each analysis
is also included.

6 Conclusions

TBs of the SMOS Level 1C product were compared to two
sets of modelled TBs. The latter were obtained using simu-
lated state variables (from the ORCHIDEE and H-TESSEL
LSMs) and a radiative transfer model, CMEM. The study
was carried out over the Iberian Peninsula (IP) for the period
2010 to 2012.

On the one hand, a temporal correlation analysis between
measured and modelled data shows that there is a good agree-
ment in their temporal evolution. However, this diagnostic
is mainly driven by the TB’s signal synoptic variability, as
occurs with SSM (Polcher et al., 2016). On the other hand,
a spatial correlation analysis detected a large mismatch be-
tween the TB spatial structures provided by models and ob-
servations.

An EOF analysis of the error between modelled and mea-
sured TBs suggests that the inconsistency is not limited to a
particular LSM. It is dominated by the TB slow-varying com-
ponent, peaking in autumn and winter. In addition, modelled
TBs are larger than SMOS measurements during these sea-
sons over the dominant error structure detected. This struc-
ture explains between 18 and 36 % of the TB error variance,
depending on the LSM and polarization. Therefore, there is
a high percentage of the error (between 82 and 64 %) that
shows structures which have to be analysed and explained.
Since these are not present in both LSMs, they are of lower
priority and have not been approached in this study.

Forcing-induced biases are discarded as the main cause of
the spatial inconsistency in TBs after computing the domi-
nant error structures of precipitation and land-surface tem-
perature (LST). Nevertheless, the degree of accuracy of the
forcing cannot be fully established because of scale issues
and the lack of sufficient independent measurements. The
difference in TBs’ spatial structures could also be thought
of as a combination of non-linear relations between errors in
precipitation and LST, but this is beyond the scope of this
paper.

Assumptions made in certain CMEM parameterizations
are also discarded as the main source of the spatial incon-
sistency between measured and modelled TBs: the vegeta-
tion cover input; the number of soil layers defined; and some
parameterizations to compute the smooth surface emissivity
(Fresnel law and Wilheit, 1978) and the effective temperature
(Wigneron et al., 2001, and the temperature profile).

Previous studies found differences between the spatial
structures of modelled and retrieved SSM (Parrens et al.,
2012; Polcher et al., 2016). This paper shows that these struc-
tures are not consistent also when comparing modelled and
observed TBs. In addition, this issue is amplified for the TBs
compared to SSM, because the latter are bounded by zero
and saturation. This could explain the generally better spa-
tial correlation for SSM in winter, when it reaches saturation
in large parts of the IP. Although this study is limited to the
IP, differences in spatial structures occur at a global scale.
We would like to draw the reader’s attention to the fact that
TBs are not only the main input of the SMOS soil moisture
retrieval algorithm, but that they are used to retrieve other
variables, like vegetation optical depth or salinity. We believe
that analysing the spatial inconsistencies between modelled
and measured TBs is important, as these can affect the esti-
mation of geophysical variables and TB assimilation in op-
erational models, as well as result in misleading validation
studies. Therefore, obtaining the spatial contrast of measured
TBs in models is a challenge which, in our opinion, deserves
a higher priority in the community.

7 Data availability

The observational datasets used in the present study can
be accessed freely from their original source: SMOS L1C
(MIR SCLF1C, version 505): https://smos-ds-02.eo.esa.
int. The post-processing performed before comparison to
CMEM output is described in Sect. 2.1. E-OBS: http://www.
ecad.eu/download/ensembles/download.php; LandSAF LST:
http://landsaf.ipma.pt/; ERA-Interim: http://www.ecmwf.int/
en/research/climate-reanalysis/era-interim.

The simulations were produced specifically for this
study but can be reproduced using the corresponding re-
lease of the models: ORCHIDEE: https://forge.ipsl.jussieu.
fr/orchidee (release no. 3400); CMEM: https://software.
ecmwf.int/wiki/display/LDAS/CMEM (version4.1); HTES-
SEL: http://www.ecmwf.int (cycle38r2).
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