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Abstract. Daily streamflows are often represented by flow
duration curves (FDCs), which illustrate the frequency with
which flows are equaled or exceeded. FDCs have had broad
applications across both operational and research hydrology
for decades; however, modeling FDCs has proven elusive.
Daily streamflow is a complex time series with flow val-
ues ranging over many orders of magnitude. The identifica-
tion of a probability distribution that can approximate daily
streamflow would improve understanding of the behavior of
daily flows and the ability to estimate FDCs at ungaged river
locations. Comparisons of modeled and empirical FDCs at
nearly 400 unregulated, perennial streams illustrate that the
four-parameter kappa distribution provides a very good rep-
resentation of daily streamflow across the majority of physio-
graphic regions in the conterminous United States (US). Fur-
ther, for some regions of the US, the three-parameter gener-
alized Pareto and lognormal distributions also provide a good
approximation to FDCs. Similar results are found for the pe-
riod of record FDCs, representing the long-term hydrologic
regime at a site, and median annual FDCs, representing the
behavior of flows in a typical year.

1 Introduction

Daily streamflows are often represented by flow duration
curves (FDCs), which illustrate the frequency with which
flows are equaled or exceeded. FDCs have important appli-
cations, including water allocation, wastewater management,
hydropower assessments, sediment transport, protection of
ecosystem health, and the generation of time series of daily
streamflows (Archfield and Vogel, 2010; Castellarin et al.,

2013; Smatkin, 2001; Vogel and Fennessey, 1995). Broad re-
gions of the world have insufficient records of streamflow
and, despite a decade of work focused on such ungaged and
partially gaged basins, accurate prediction of streamflow in
these locations remains a challenge (Sivapalan et al., 2003;
Hrachowitz et al., 2013). Identification of a probability dis-
tribution of daily streamflows would be instrumental to the
prediction of flows in ungaged basins. The goal of this study
is to assess whether a single probability distribution can ad-
equately approximate the distribution of daily streamflows,
as represented by a period-of-record FDC (FDCpor), which
reflects the long-term or steady-state hydrologic regime at
a site. This assessment is performed at the sub-continental
scale to enable consideration of a broad range of hydrologic
conditions that may be experienced in practice.

Methods to predict the FDCpor in ungaged basins gener-
ally fall into one of two categories: process-based or statisti-
cal. For an extensive review of these methods, refer to chap. 7
in the book Runoff prediction in ungaged basins (Castellarin
et al., 2013). Process-based models are an increasingly pop-
ular method of estimating FDCs at ungaged basins because
they offer the ability to relate physical watershed character-
istics to streamflow regimes. While promising for regions
without any streamflow data, process-based FDCpor models
require numerous assumptions regarding runoff and climate
mechanisms (Basso et al., 2015; Botter et al., 2008; Doulat-
yari et al., 2005; Miiller and Thompson, 2016; Schaefli et al.,
2013; Yokoo and Sivapalan, 2011).

Historically, most studies predicting FDCpor at ungaged
sites have used statistical methods, such as regression and
index-flow methods, due to their parsimony and relative ease
of use in operational hydrology (Castellarin et al., 2013).
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Yet, daily streamflow observations exhibit a very high de-
gree of serial correlation, seasonality, and other complexities
and are thus neither independent nor identically distributed.
Klemes (2000) warned that ignoring these complexities can
be problematic, particularly if the FDCpor is used to extrap-
olate upper tails of the distribution. Furthermore, the fact that
daily streamflows often range over many orders of magnitude
presents a considerable challenge to the identification of an
appropriate distribution. Although multiple parameters are
needed to describe the complex distribution of daily stream-
flows, it is also important that the model be parsimonious,
because each additional parameter can hinder estimation, pa-
rameter identifiability, and interpretation (Castellarin et al.,
2007).

Despite these challenges, there is a relatively large litera-
ture which has sought to approximate the distribution of daily
streamflow with a single probability distribution for practi-
cal purposes. The main motivations have been estimation of
FDCs at ungaged sites (Castellarin et al., 2004, 2007; Fen-
nessey and Vogel, 1990; Li et al., 2010; Mendicino and Sen-
atore, 2013; Rianna et al., 2011; Viola et al., 2011) or esti-
mation of time series of daily streamflow at ungaged sites
(Fennessey, 1994; Smatkin and Masse, 2000; Archfield and
Vogel, 2010). To estimate FDCs at ungaged sites, regional re-
gression models of distribution parameters can be used when
basin characteristic data are available at both ungaged sites
and gaged sites in the region. A number of distributions have
been proposed to describe daily streamflow. Li et al. (2010)
found that the three-parameter lognormal distribution (LN)
adequately represented FDCpor for southeastern Australia.
In Italy, both the four-parameter kappa (KAP) and the gener-
alized Pareto (GPA), a special case of KAP, have been used
to describe FDCpopr in index-flow studies (Castellarin et al.,
2004, 2007; Mendicino and Senatore, 2013). Similarly, both
GPA and KAP were found to provide a good approximation
for FDCpoRr in the northeastern United States (US) (Arch-
field, 2009; Fennessey, 1994; Vogel and Fennessey, 1993).
However, Archfield (2009) highlighted challenges in fitting
both KAP and GPA to tails of the FDCpoRr, noting that these
fitted distributions often exhibit lower bounds that can result
in the generation of negative flows. Multiple authors have
noted that a complex distribution with at least four parame-
ters is needed to approximate the probability distribution of
daily streamflows (Archfield, 2009; Castellarin et al., 2004;
LeBoutillier and Waylen, 1993).

Given the complexity of daily streamflow, some studies
have focused on only a portion of the FDCpoR, such as flows
below the median (Fennessey and Vogel, 1990) or above the
mean (Segura et al., 2013). Others have studied the distri-
bution of streamflow by season. For eight rivers across the
US, Bowers et al. (2012) developed a method to identify
wet and dry season FDCs and found discharge data in wet
seasons to be well approximated by a lognormal distribu-
tion, but dry season flows sometimes better fit with a power
law distribution. The study also illustrated the challenges of
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conducting comprehensive seasonal analyses; findings var-
ied across rivers and depended upon season, suggesting that
seasonal analysis of this kind is often site-specific. A cou-
ple of papers have documented attempts to fit a probability
distribution to a mean annual FDC or a median annual FDC
(FDCMED), two types of hypothetical FDCs that express the
likelihood of daily streamflow being exceeded during a typi-
cal year (Fennessey, 1994; LeBoutillier and Wayland, 1993).
The FDCwmEep, introduced by Vogel and Fennessey (1994),
has a number of applications, from ecology to hydropower
(Lang et al., 2004; Miiller et al., 2014; Kroll et al., 2015).
FDCymep are increasingly common and enable the compu-
tation of tolerance or uncertainty intervals along with asso-
ciated hypothesis tests for flow alteration (see Kroll et al.,
2015).

To address the practical goal of estimating FDCs, this
study aims to determine whether or not an existing proba-
bility distribution is capable of approximating the distribu-
tion of daily streamflow for nearly 400 perennial rivers with
near-natural streamflow conditions across the conterminous
US. Differences in the performance of hypothesized proba-
bility distributions in approximating FDCpor are compared
across physiographic regions of the US to illustrate where
these methods might be most successful. In addition, this
study also considers the ability of a single probability dis-
tribution to represent the FDCyEgp.

The paper is organized as follows. First, the method to con-
struct an FDCpor is described and the goodness-of-fit (GOF)
metrics and study region are introduced. The results are then
presented, including L-moment ratio diagrams and quanti-
tative GOF comparisons among the fitted probability distri-
butions. These GOF results are then compared by physio-
graphic region within the US and the FDCygp results are
shown. Finally, the conclusion summarizes study findings
and provides directions for future research.

2 Methods
2.1 FDC estimation

An empirical FDCpor is constructed by ranking daily
streamflows from all recorded years and plotting them
against an estimate of their exceedance probability, known
as a plotting position (Vogel and Fennessey, 1994). An FDC
is defined as the complement of the cumulative distribution
function:

1—Fp(q), where Fo(q)=P{Q <gq}, (1)

where g represents observed streamflow and Fp(g) is
the empirical cumulative distribution function of observed
streamflow. The first step in constructing an FDCpor is to
rank the flows, ¢, in ascending order. For leap years, flows
from 29 February were removed to maintain consistent sam-
ple sizes across years. To obtain the probability with which
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each flow is exceeded, the Weibull plotting position was
used, as it provides an unbiased estimate of exceedance prob-
ability, regardless of the underlying probability distribution
of the ranked observations (Vogel and Fennessey, 1994):

i

P I B
(0>aq) 3650 +1°

@

where i represents the rank and n represents the number of
years of record. Vogel and Fennessey (1994) review several
alternative nonparametric plotting positions for constructing
empirical FDCs at a gaged site, some of which are preferred
for smaller samples. The Weibull plotting position is selected
here given the large sample sizes considered (at least 40 years
of daily data leading to sample sizes greater than 40 x 365 =
14600).

2.2 Selection of candidate distributions

As an initial assessment, L-moment ratio diagrams were used
to narrow the pool of potential candidate probability distri-
butions. L-moments are linear combinations of probability-
weighted moments (Hosking and Wallis, 1997). Estimates
of L-moment ratios exhibit substantially less bias than mo-
ment ratio estimators and are resistant to the influence of
data outliers (Hosking and Wallis, 1997). The advantages of
using L-moment diagrams in distribution identification are
described in Vogel and Fennessey (1993) and Hosking and
Wallis (1997). L-moments can be directly related to ordinary
product moments of a probability distribution.

Theoretical relationships between L-moment ratios have
been determined for a wide class of probability distribu-
tions (Hosking and Wallis, 1997). These relations can be
plotted on an L-moment ratio diagram with L-moment ra-
tios estimated from the daily streamflows to provide a visual
method of comparing various probability distributions to ob-
served data. Vogel and Fennessey (1993) demonstrate that
L-moment ratio diagrams are often superior to ordinary mo-
ment ratio diagrams, especially for extremely long records
of highly skewed samples of daily streamflow, as is the fo-
cus of this study. Even when parent distributions are com-
plex, L-moment ratio diagrams are useful in identifying sim-
pler distributions that fit the observed data sufficiently well
(Stedinger et al., 1993). For a description of the theory of
L-moments, see Hosking (1990).

2.3 Goodness-of-fit evaluation

To evaluate the suitability of a model to reproduce observa-
tions, a measure of the standardized mean square error com-
monly referred to as Nash—Sutcliffe efficiency (NSE) is used.
The estimator of NSE for a streamgage site is

X () — 002
>X (0 —002

NSE=1-— 3)
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where Q, represents observed flow at quantile x, Qﬁ“”d rep-

resents predicted flow at quantile x, Q, represents the mean
value of the observed flows, and X represents the total num-
ber of daily flows. NSE values range from —oo to a maxi-
mum of 1, which here would indicate that the estimated flow
quantiles matched observed flow quantiles exactly. Because
NSE is heavily influenced by the highest flows, NSE is com-
puted based on the natural logarithms of the flows and is re-
ferred to as LNSE.

Part of the reason why FDCpor are so widely used in prac-
tice is that they provide a graphical illustration of the com-
plete relationship between the magnitude and frequency of
streamflow. Examples of poor, good, and very good fits by
candidate distributions to FDCppRr are presented to illustrate
LNSE values visually. Lastly, error duration curves are given
for each candidate distribution to illustrate how error is dis-
tributed across exceedance probabilities. Error is measured
by calculating the ratio of predicted quantiles of flow to ob-
served ranked flows for each site.

3 Study region and streamgages

Only gages considered to represent near-natural stream-
flow conditions, as identified by the U.S. Geological Sur-
vey (USGS) Hydro-Climatic Data Network (U.S. Geologi-
cal Survey, 2015a), were included in the analysis, because
modifications to streamflows could have substantial impacts
on FDCs (Castellarin et al., 2013; Kroll et al., 2015). In ad-
dition to near-natural conditions, streamgages in this study
have at least 40 years of daily mean streamflow records since
1950 to minimize impacts due to differences in sampling
variability between sites (Vogel et al., 1998). Previous stud-
ies have focused on fitting a probability distribution to daily
streamflows at small and/or intermittent streams (Croker et
al., 2003; Mendicino and Senatore, 2013; Pumo et al., 2014;
Rianna et al., 2011). Here, sites having an average daily flow
value of zero (flows below 0.01 feet® s—1) were omitted from
analysis because such intermittent sites require additional
methodological considerations. These criteria resulted in 398
gages (Fig. 1) with mean daily streamflows obtained from
the USGS National Water Information System (U.S. Geo-
logical Survey, 2015b). Physiographic regions, which differ-
entiate between areas of the US with similar physical and cli-
mate characteristics (Fenneman and Johnson, 1946), are also
shown in Fig. 1. These regions were used to assess whether
GOF metrics are related to the physiographic setting. The
periods of record for the study streamgages range from 40
to 61 years between 1950 through 2010, and drainage areas
vary from 2 to over 5000 km?.
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Figure 1. Map of the conterminous United States showing physiographic regions and the streamgages included in the study. Boxplots on the
lower left show the range of drainage areas and record lengths represented by study streamgages.

4 Results
4.1 Graphical identification of candidate distributions

To identify candidate probability distributions, theoretical L-
moment ratios are compared to sample L-moment ratios in
Fig. 2a. Four-parameter KAP is represented by the shaded
area below the generalized logistic curve and above the the-
oretical L-moment ratio limits. The lower bound of the five-
parameter Wakeby (WAK) distribution is also plotted as a
curve. Sample estimates of L-moment ratios computed from
empirical FDCpor at study sites are shown as points. Empir-
ical L-moment ratios mostly fall below the generalized lo-
gistic and generalized extreme value curves and above the
Pearson type III and WAK lower bound curves (Fig. 2a). The
points are clustered around the three-parameter GPA and LN
curves; thus, these two distributions are identified as possible
parent distributions. The empirical L-moment ratios are also
consistent with both KAP and WAK distributions.

The scatter of points around the GPA or LN distribution
curves could, in theory, be due to sampling variability. How-
ever, given a sufficiently long record, empirical L-moment
ratios would be expected to fall directly on the theoretical
curves if the probability distribution of daily streamflow truly
arose from one of these distributions. The very large sam-
ple sizes here suggest this is unlikely; nevertheless, synthetic
daily streamflows were generated to test this hypothesis. The
method of L-moments (Hosking and Wallis, 1997) was used
to estimate distribution parameters from the ranked observed
daily streamflows (the empirical FDCpor) for each study
gage. Distribution parameters were found to be inconsistent
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with KAP at 35 sites (9 %) and with WAK at 244 sites (61 %).
Because WAK could not be fit at over half of the study gages,
a finding encountered previously for New England (Arch-
field, 2009), WAK was removed from further consideration.

Based on distribution parameters for GPA, LN, and KAP,
data of the same record length as the daily streamflow ob-
servations at a given site were simulated and L-moment ra-
tios computed. These synthetic L-moment ratios are plot-
ted in Fig. 2b—d. As expected given the very large sam-
ples, the synthetic L-moment ratios for GPA and LN fall on
the empirical curves representing these distributions. Thus,
the scatter in L-moment ratios does not appear to be due
to sampling variability, but rather reflects the complexity of
the true distribution(s) from which daily streamflows arise.
Compared to GPA and LN, simulated L-moment ratios from
KAP (Fig. 2d) appear more consistent with the L-moment
ratios estimated from empirical FDCs (Fig. 2a). Thus, KAP
appears to provide the best fit among the probability distribu-
tions considered. Because there are benefits to having fewer
parameters in practice and because some gages do have L-
moment ratios consistent with theoretical GPA and LN L-
moment ratios, GPA and LN hypotheses are retained for fu-
ture analyses.

4.2 National goodness-of-fit comparisons

In this section, additional measures of the GOF of the GPA,
LN, and KAP models for approximation of FDCpor are con-
sidered. One complication involves the generation of neg-
ative streamflows, which can occur when the fitted lower
bound of a distribution is less than zero. Negative stream-
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Figure 2. Theoretical L-skew and L-kurtosis ratios of three- and four-parameter distributions compared to empirical L-skew and L-kurtosis
ratios from (a) daily streamflows at 420 US sites, (b) flows simulated from three-parameter generalized Pareto, (¢) flows simulated from
three-parameter lognormal, and (d) flows simulated from four-parameter kappa distributions.

flows were predicted at 98 sites for GPA, 159 sites for LN,
and 40 sites for KAP. Other studies have also encountered
problems with the generation of negative streamflow (Arch-
field, 2009; Castellarin et al., 2007). To prevent these infeasi-
ble negative flow predictions, distributions were constrained
to ensure a theoretical lower bound of zero at study sites for
which negative flows would otherwise be generated. Both the
GPA and LN distributions include parameters representing
theoretical lower bounds (Hosking and Wallis, 1997). Con-
straining both of these lower bound parameters to zero was
relatively simple as it is equivalent to fitting two-parameter
versions of three-parameter GPA and LN distributions. For
KAP, the lower bound is a function of all four parameters,
so enforcing a theoretical lower bound requires solving for
the four parameters simultaneously while constraining the
lower bound. The same approach as that used by Castellarin
et al. (2007) in constraining the KAP lower bound to zero
was followed here. Following this procedure, KAP parame-
ters were infeasible based upon site L-moment ratios at 42
sites (11 %).

www.hydrol-earth-syst-sci.net/21/3093/2017/

Figure 3a gives boxplots showing the range of values of
LNSE across sites corresponding to the GPA, LN, and KAP
hypotheses. To ensure fair comparison across the three distri-
butions, only LNSE values for sites for which KAP could be
estimated (356 sites) are shown, though the figure appears
nearly identical when the additional 42 sites are included
for GPA and LN. KAP shows the highest GOF, which is
not surprising given that the distribution includes an addi-
tional parameter compared to GPA and LN. Both GPA and
LN also have quite high values of LNSE (note that the y-
axis ranges from 0.8 to 1). To illustrate how these LNSE val-
ues translate into GOF, example FDCpopR are given for three
sites with varying GOF (Fig. 3b—d). It is important to note
that there was substantial variability in how FDCpor appear
across similar LNSE values, and these are only three exam-
ples. First, in Fig. 3b, an empirical and fitted FDCpor with
LNSE values above 0.99 for all three distributions is given.
For this example site located in Pennsylvania, nearly the en-
tire FDCpor is captured except for the very lowest flows. A
site with “good” fits, all with LNSE values between 0.93 and

Hydrol. Earth Syst. Sci., 21, 3093-3103, 2017
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Figure 3. (a) Boxplots showing the range of streamgage Nash—Sutcliffe efficiencies for natural logarithms of daily streamflows (LNSE)
based on hypothesized generalized Pareto (GPA), lognormal (LN), and kappa (KAP) distributions with points omitted from the plots listed
in brackets, and example streamgage sites with (b) very good fits (LNSE above 0.99), (c) good fits (LNSE between 0.93 and 0.99), and (d)

poor fits (LNSEs below 0.93).

0.99, is shown in Fig. 3c. For this site located in Michigan,
GPA over-estimates the highest flows and under-estimates
the lowest flows. LN and KAP predict the upper tail well, but
KAP has trouble predicting the lower tail. Finally, Fig. 3d il-
lustrates a site in Virginia where all three distributions show
poor fits (LNSE values below 0.93).

To assess how the magnitude of errors varied across ex-
ceedance probabilities, error duration curves are shown in
Fig. 4 (similar to the error duration plots given in Miiller
and Thompson, 2016). These plots illustrate how error, the
ratio of predicted quantiles of flow to observed ranked flows,
is distributed across the quantiles for GPA, LN, and KAP.
Values of one indicate no error and above one indicate that
predicted flows are greater than observed flows for a given
quantile. Each grey line represents the error for a study site.
All three distributions dramatically over-predict the highest
flows for some sites, but the spread of error is highest for the
lowest flows (exceedance probabilities closer to one). These
errors highlight the challenge of having one distribution rep-
resent the tail behavior of both low and high flows. While
GPA and LN errors appear relatively comparable, the spread
of errors for KAP is generally smaller across all quantiles.

4.3 Goodness of fit by physiographic region

Perhaps the sites with poor fits to FDCppr are primarily lo-
cated within certain regions of the US. Focusing on such a
large study region provides both a challenge and an oppor-
tunity to compare the GOF of candidate distributions across
regions within the US. Figure 5a shows boxplots of LNSE
by probability distribution for eight physiographic regions in

Hydrol. Earth Syst. Sci., 21, 3093-3103, 2017

the US (all of the regions which included at least 20 study
sites). Sample sizes are given, as well as the number of sites
within each region for which FDCpor could not be estimated
with KAP. (This was a particular problem in the Piedmont
region, where only 8 of the 24 sites had feasible KAP param-
eters.) These boxplots illustrate that there are some regions in
the US for which all three distributions provide a very good
fit, such as the New England, Appalachian, and Valley and
Ridge regions. A three-parameter distribution such as GPA
or LN might be adequate to describe FDCs in these regions,
as Fennessey (1994) found to be the case for the mid-Atlantic
region. For most regions, KAP provides the best fit, which is
not surprising given that it has an additional parameter com-
pared to GPA and LN. The Cascade-Sierra mountains appear
to be a particularly difficult region to capture with these three
candidate distributions, as none show very high GOF.

Maps of the US illustrating LNSE for GPA, LN, and KAP
are given in Fig. 5b. For GPA (left), nearly all “poor fits”
(LNSE<0.93) are at sites in the western half of the coun-
try. Very good fits (LNSE>0.99) are found throughout the
US, but are primarily clustered in New England and the
mid-Atlantic regions. For LN (middle map), more sites have
LNSE values above 0.99 compared to GPA, particularly in
the eastern half of the country, and there are fewer sites on
the West Coast, with LNSE values below 0.93. Finally, the
map of KAP LNSE (right) illustrates that, of the 356 sites
which could be fit with KAP, the majority are well approx-
imated by KAP, as indicated by LNSE values above 0.99.
However, a limitation of KAP is that it could not be used to
estimate FDCpoR at 42 sites in the study region due to pa-
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rameters inconsistent with KAP. Martinez and Gupta (2010)
found a relatively similar geographic pattern in GOF for a
monthly water balance model applied across the contermi-
nous US. They attributed this pattern in GOF to aridity, with
worse model performance generally found at water-limited
sites.
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4.4 Median annual flow duration curves

The FDCpor reflects the steady-state or long-term behav-
ior of the frequency—magnitude relationship for streamflow.
Alternatively, if flows in a typical year are of interest, then
median annual FDCs (FDCygp) are useful (Vogel and Fen-
nessey, 1994). Less dependent upon the specific period of
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record than FDCpor, FDCyEp are increasingly applied in
practice when hydrologic conditions for a typical year are of
interest. For example, FDCygp have recently been used to
predict hydropower production (Mohor et al., 2015; Miiller
et al., 2014), evaluate regional similarity between streams
under different flow conditions (Patil and Stieglitz, 2011),
and characterize baseflow variability (Hamel et al., 2015).
FDCw\Eep are also used to compare streamflow regimes in dif-
ferent catchments (Hrachowitz et al., 2009), to assess before
and after watershed land-use changes (Kinoshita and Hogue,
2014), and to quantify fish passage delays (Lang et al., 2004).
More generally, FDCygp are useful in testing hypotheses re-
garding any form of flow alteration (Kroll et al., 2015).

A few studies have attempted to fit a probability distri-
bution to FDCs in a typical year. LeBoutillier and Way-
land (1993) found a five-parameter mixed lognormal distri-
bution to be superior to two- and three-parameter lognor-
mal, Gamma, and generalized extreme value distributions for
mean annual FDCs of four rivers in Canada. For the mid-
Atlantic US, Fennessey (1994) identified the GPA as a suit-
able distribution for both FDCpor and FDCyEp, developed
regional regression models to relate GPA model parameters
to basin characteristics, and then used those models to predict
FDCs at ungaged locations. FDCygp can also be estimated
seasonally, and seasonal FDCygp have been used to evaluate
impacts on ecological flow regimes (Gao et al., 2009; Lin et
al., 2014; Vogel et al., 2007).

The procedure for constructing an FDCygp is similar to
the method for constructing an FDCpog, but rather than rank-
ing all recorded flows, flows are ranked within each calendar
year, resulting in rankings of 1-365 for each year. Then, the
median flow at each ranking is selected to represent the given
quantile within the FDCygp. The majority of the FDCpor
and FDCyp curves are generally very similar, only differ-
ing at the lowest and highest exceedance probabilities. This
is because the most extreme flows on record are included in
FDCpor but are not included in FDCygp, as the median es-
timator is insensitive to outliers. See Vogel and Fennessey
(1994) for a more detailed discussion of the relationship be-
tween FDCpor and FDCpyEgp.

Figure 6a shows the relationship between empirical L-
skew and L-kurtosis for FDCygp at study sites. These
L-moment ratios appear quite similar to those found for
FDCpor (Fig. 2a), as do the LNSE values for GOF by dis-
tribution shown in boxplots (Fig. 6b). As for FDCpor, dis-
tributions were constrained to ensure no negative stream-
flows are predicted, and KAP appears to provide the best
fit to FDCymep. Figure 6¢ shows error duration curves for
FDCpmep. The main difference between these plots and the
error duration plots for FDCpor (Fig. 4) is that the errors are
smaller at the lowest and highest exceedances. This may be
due to the fact that FDCygp curves are generally quite simi-
lar to FDCpoRr but lack the most extreme high and low flows.
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5 Discussion and conclusions

Due to the complexity associated with time series of daily
streamflows, the challenge set forth in this study — to iden-
tify a single probability distribution that could approximate
the distribution of daily flows — was an ambitious one. Based
upon multiple goodness-of-fit (GOF) assessments, three can-
didate probability distributions were identified which can ap-
proximate period-of-record (FDCpor) and median annual
(FDCmgep) flow duration curves at perennial, unregulated
streamgage sites in much of the conterminous United States
(US). Previous work on this subject identified the need for
at least four parameters to describe the complex distribution
of daily streamflows; this study built off of earlier studies by
investigating the suitability of a probability distribution for
streamflow at the sub-continental scale across widely vary-
ing physiographic and hydroclimatic settings. For these study
streamgages, four-parameter kappa (KAP) was found to pro-
vide a very good fit to the distribution of daily streamflows
across most of the US (at the 89 % of sites that had valid KAP
parameters). A special case of the KAP distribution, three-
parameter generalized Pareto (GPA), can provide an accept-
able fit for certain regions of the US, particularly New Eng-
land, Appalachia, and the Valley and Ridge regions. Com-
pared to GPA, three-parameter lognormal (LN) was found
to result in predictions with better GOF, particularly in the
Pacific Border and Cascade-Sierra regions. To prevent the
prediction of infeasible negative streamflows, all three dis-
tributions required lower bound constraints for some sites.
More work is needed on parameter estimation that enforces
the conditions that streamflows be both non-negative and ex-
ceed theoretical distributional lower bounds.

Few previous studies have sought to evaluate theoretical
probability distributions for modeling FDC in a typical year,
but the growing use of FDCygp suggests that these findings
could have broad applications. Users of FDCygp should be
aware that the FDCygp only provides information about the
behavior of streamflow in a typical year; thus, it is impor-
tant to illustrate the entire family of annual FDCs which gave
rise to the computation of the FDCygp. To predict either
FDCpor or FDCyEp at ungaged sites, regional regression
models of distribution parameters can be developed based on
the relation between basin characteristics and distribution pa-
rameters at a set of neighboring gages. Then, with knowledge
of basin characteristics at the ungaged site, the FDC can be
estimated from distribution parameters predicted by the re-
gional regression model.

There are many limitations of this work. First, daily
streamflows are not independent and exhibit a high level
of serial correlation. This correlation will impact confidence
intervals or any other form of uncertainty analysis associ-
ated with modeled FDCs. Furthermore, daily streamflows
exhibit seasonality and are thus far from being identically
distributed, which is assumed whenever one attempts to fit
a single distribution to a random variable. The seasonality
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Figure 6. (a) L-moment diagram with empirical L-moment ratios of the median annual flow duration curves (FDCpgp) estimated at study
streamgages; (b) boxplots of streamgage Nash—Sutcliffe efficiencies for natural logarithms of FDCygp (LNSE) based on hypothesized
generalized Pareto (GPA), lognormal (LN), and kappa (KAP) distributions with points outside the bounds of the plots listed in brackets; (c)
error duration plots for FDCygp illustrating the range of error (the ratio of predicted quantiles of FDCygp to empirical FDCpgp) across
exceedance probabilities for the GPA, LN, and KAP hypotheses. Each grey line represents the estimated relative error for a study streamgage

and the black horizontal line at one shows no error.

of daily streamflows suggests that distributional analyses of
this nature should be done at a seasonal level, as was re-
cently carried out on a broad scale for daily precipitation (see
Papalexiou and Koutsoyiannis, 2016). The definition of sea-
sons, as well as the parent distributions which can approx-
imate streamflows within those seasons, has been shown to
vary across sites (Bowers et al., 2012). Given the large range
of hydroclimatic conditions affecting study streamgages, a
seasonal analysis was beyond the scope of this study, but fu-
ture studies should consider the impact of seasonality on the
GOF of FDCs. In addition, this study included only peren-
nial and unregulated streams. While there is some existing
literature on intermittent regimes (Mendicino and Senatore,
2013; Pumo et al., 2014; Rianna et al., 2011) and the im-
pacts of human regulation on flow duration curves (Gao et al.,
2009; Kroll et al., 2015), additional research on these topics
would improve understanding of flows across a wider range
of streams.
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Daily streamflow varies over 4 or 5 orders of magnitude
and is subject to seasonality and serial correlation. When
viewed though this lens, the finding of any reasonable can-
didate distribution that provides some explanatory power —
such as those explored here — is somewhat remarkable. Fu-
ture research on intermittent sites, differences across seasons,
lower bound constraints, and additional distributional types,
such as mixed distributions, can help to improve prediction
of daily streamflows at ungaged sites across the globe.
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