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Abstract. A large effort has been made over the past 10
years to promote the operational use of probabilistic or en-
semble streamflow forecasts. Numerous studies have shown
that ensemble forecasts are of higher quality than determin-
istic ones. Many studies also conclude that decisions based
on ensemble rather than deterministic forecasts lead to bet-
ter decisions in the context of flood mitigation. Hence, it is
believed that ensemble forecasts possess a greater economic
and social value for both decision makers and the general
population. However, the vast majority of, if not all, exist-
ing hydro-economic studies rely on a cost–loss ratio frame-
work that assumes a risk-neutral decision maker. To over-
come this important flaw, this study borrows from economics
and evaluates the economic value of early warning flood sys-
tems using the well-known Constant Absolute Risk Aversion
(CARA) utility function, which explicitly accounts for the
level of risk aversion of the decision maker. This new frame-
work allows for the full exploitation of the information re-
lated to a forecasts’ uncertainty, making it especially suited
for the economic assessment of ensemble or probabilistic
forecasts. Rather than comparing deterministic and ensemble
forecasts, this study focuses on comparing different types of
ensemble forecasts. There are multiple ways of assessing and
representing forecast uncertainty. Consequently, there exist
many different means of building an ensemble forecasting
system for future streamflow. One such possibility is to dress
deterministic forecasts using the statistics of past error fore-
casts. Such dressing methods are popular among operational

agencies because of their simplicity and intuitiveness. An-
other approach is the use of ensemble meteorological fore-
casts for precipitation and temperature, which are then pro-
vided as inputs to one or many hydrological model(s). In
this study, three concurrent ensemble streamflow forecast-
ing systems are compared: simple statistically dressed de-
terministic forecasts, forecasts based on meteorological en-
sembles, and a variant of the latter that also includes an es-
timation of state variable uncertainty. This comparison takes
place for the Montmorency River, a small flood-prone wa-
tershed in southern central Quebec, Canada. The assessment
of forecasts is performed for lead times of 1 to 5 days, both
in terms of forecasts’ quality (relative to the corresponding
record of observations) and in terms of economic value, us-
ing the new proposed framework based on the CARA utility
function. It is found that the economic value of a forecast
for a risk-averse decision maker is closely linked to the fore-
cast reliability in predicting the upper tail of the streamflow
distribution. Hence, post-processing forecasts to avoid over-
forecasting could help improve both the quality and the value
of forecasts.

1 Introduction

More than 15 years after its advocation by (Krzysztofowicz,
2001) and more than a decade after the creation of the Hydro-
logic Ensemble Prediction EXperiment (HEPEX) commu-
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nity (Franz and Ajami, 2005; Schaake et al., 2007), the case
for probabilistic forecasting in hydrology has been accepted
by many researchers and practitioners across the world: un-
certainty assessment of hydrological forecasts conveys im-
portant information for decision makers and therefore should
be quantified and be considered as part of the forecast (e.g.
Ramos et al., 2013; Sordo-Ward et al., 2016).

(Beven, 2016) distinguishes aleatory uncertainty, which
originates from data only and possesses stationary statistical
characteristics, from various types of epistemic uncertainties.
Epistemic uncertainties can arise from a lack of knowledge
regarding the system’s dynamics, from a lack of knowledge
regarding the relevant forcings for the modelling process and
also from disinformation in the data. More broadly speaking,
as discussed in (Juston et al., 2013), uncertainty in hydrolog-
ical forecasting mainly originates from data and models (at-
mospheric and hydrologic). The most important sources of
uncertainty in short-term hydrological forecasting are struc-
tural uncertainty (choice of a particular hydrological model
structure), state variable uncertainty and parameter uncer-
tainty, which are both linked to the availability and quality
of hydro-meteorological data, and meteorological forecast
uncertainty. The latter gains in importance gradually as the
forecasting horizon increases.

However, there exist multiple sources of uncertainty in
hydrological processes and there also exist many means of
assessing those uncertainties and building an ensemble that
conveys the associated information. It is possible, for in-
stance, to produce streamflow ensemble forecasts from me-
teorological ensemble forecasts used as inputs to at least
one previously calibrated hydrological model. Deterministic
forecasts can also be “dressed” using past error statistics.

While there is a general agreement among the global sci-
entific community that ensemble and probabilistic forecasts
are superior to deterministic ones (e.g. Jaun et al., 2008; Ve-
lazquez et al., 2010; He et al., 2013, and many others), there
remains no consensus regarding the best means of obtaining
an ensemble of streamflow forecasts (i.e. constructing the en-
semble). There has also been an increased interest over the
last few years in regards to assessing the economic value of
forecasts. The quality of a forecasting system can be assessed
by comparing forecasts for different lead times with corre-
sponding observations. Forecast quality can be further de-
composed into different attributes (e.g. resolution, sharpness,
discrimination) that can be weighted differently depending
on specific applications. Forecast values also depend on the
specific applications. In particular, the usefulness of a fore-
cast is inherently linked to the decision makers’ ability to
adapt their behaviour to the information provided. Neither
assessment of forecast quality or of value is straightforward
and sometimes the relationship between the two is not obvi-
ous either.

In the case of hydropower production, forecast values
can be assessed using sophisticated decision-making models
based on stochastic dynamic programming in an operational

research framework (e.g. Boucher et al., 2012; Carpentier
et al., 2013; Côte and Leconte, 2016). Early flood warning is
another very important application for streamflow forecasts
and a decision problem entirely different from the optimisa-
tion of hydropower production. Hydrologists most often, if
not always, assess the value of streamflow forecasts for early
flood warning using the cost–loss framework (e.g. Murphy,
1977; Richardson, 2000; Roulin, 2007; Verkade and Werner,
2011), which does not account for the decision maker’s risk
aversion, i.e. the fact that, given the opportunity, a decision
maker would be willing to spend money (or resources) to re-
duce the amount of uncertainty they face. This is discussed
formally in Sect. 2 below.

This study considers the evaluation of the economic value
of early warning flood systems, from the point of view of
the decision maker, with explicit consideration of risk aver-
sion. This alternative framework is based on the use of the
von Neumann and Morgenstern (vNM) utility function (von
Neumann and Morgenstern, 1944), which is widely used in
economics but rarely in hydrology.1 To the best of our knowl-
edge, our study represents the first attempt at accounting
for risk aversion in the assessment of the economic value
of streamflow forecasts for early flood warning. This new
framework is used to assess the economic value of three
concurrent streamflow ensemble forecasting systems in a
case study for the Montmorency River, a flood-prone wa-
tershed in southern central Quebec, Canada. Five-day sta-
tistically dressed deterministic forecasts for this watershed
have been issued operationally since 2008 by the Direction
de l’Expertise Hydrique (DEH), a Quebec provincial agency.
These forecasts are used for early flood warning and emer-
gency response by the civil security bureau of Quebec City.

In Sect. 2, some concerns regarding the cost–loss ratio are
raised and an alternative framework is presented. Section 3
describes the context of the case study, namely the specifics
of the Montmorency River watershed, the current flood fore-
casting system based on dressed deterministic forecasts as
well as the early flood warning mechanism in place. Two
variants of a concurrent flood forecasting system are detailed
in Sect. 3.3. The economic model is presented in Sect. 4. Per-
formance assessment metrics, both in terms of forecast qual-
ity compared to observations and in terms of economic value,
are presented in Sect. 5. Results are presented in Sect. 6
and discussed in Sect. 7. Conclusions are drawn in Sect. 8
along with suggestions for future improvement of the pro-
posed economic model.

1Exceptions include (Krzysztofowicz, 1986) for seasonal water
supply planning and (Merz et al., 2009) for flood events, although
(Merz et al., 2009) use risk indicators and not vNM utility functions.

Hydrol. Earth Syst. Sci., 21, 2967–2986, 2017 www.hydrol-earth-syst-sci.net/21/2967/2017/



S. Matte et al.: Moving beyond the cost–loss ratio 2969

2 The economic model and the limits of the cost–loss
ratio

The cost–loss ratio decision model (Murphy, 1977; Katz and
Murphy, 1997; Richardson, 2000) is a simplified framework
used in numerous hydro-meteorological studies to assess the
economic value of forecasts (Roulin, 2007; Abaza et al.,
2014; Verkade and Werner, 2011, among many others). As
pointed out by (Zhu et al., 2002), this approach is only the
simplest one out of a much larger range of options. More
importantly, a classical cost–loss ratio decision model disre-
gards the role of risk aversion (e.g. Shorr, 1966; Cerdá Tena
and Quiroga Gómez, 2008). “Risk aversion” refers to an at-
tribute of a decision maker who would be willing to pay a
certain amount of money to remove any risk associated with
a decision problem. The specific amount of money he or she
is willing to pay for this is initially unknown and can be seen
as an indirect measure of the magnitude of this aversion.

As discussed by (Cerdá Tena and Quiroga Gómez, 2008),
risk aversion is very common, and most decision makers are
risk-averse when the stakes are high. In their paper, they il-
lustrate how disregarding risk aversion can sometimes lead
to misleading conclusions regarding the value of informa-
tion (such as meteorological or hydrological forecasts). Their
framework also involves the Constant Absolute Risk Aver-
sion utility function (see Sect. 2). However, the context of
their application and the rest of their economic model are
different from ours.

In a simple cost–loss ratio, the decision model follows
a contingency table that allows for binary decisions, with
known associated costs. When applied to ensemble forecasts,
decision-making according to the cost–loss ratio framework
is based solely on a probability threshold associated with the
material consequences of the event of interest (e.g. a flood
event), regardless of the ensemble spread (uncertainty). Ap-
pendix A illustrates a technical presentation that builds on the
concepts presented in this section. Including the concept of
risk aversion in the decision model is not only more realistic,
but also allows for weighting of the ensemble members dif-
ferently, depending on the level of risk aversion. For instance,
a risk-averse decision maker will give more importance to the
forecast members in the upper tail of the predictive distribu-
tion (i.e. highest streamflow values).

In economics, “utility” is an ordinal notion that reflects the
decision maker’s preferences over a set of possible outcomes.
Preferred outcomes lead to greater utility values. In the con-
text of random outcomes, the most popular class of utility
functions is the vNM utility function, as introduced in (von
Neumann and Morgenstern, 1944).

(Fishburn, 1989) provides a retrospective on von Neumann
and Morgenstern theory. He enlightens the remarkable im-
pact this theory had on the subsequent development of eco-
nomic theories and also clarifies some of its limits. There
exists a immense amount of literature regarding the applica-
tion of vNM utility theory in many different fields. For in-

stance, (Pope and Just, 1991) compare different types of util-
ity functions to represent preferences of farmers for potato
acreage. Although we could not find previous work in hy-
drology where risk aversion is considered in the assessment
of the economic value of forecasts, (Krzysztofowicz, 1986)
and (Merz et al., 2009) acknowledge its importance. (Shorr,
1966) attempts a reconciliation of the cost–loss ratio frame-
work with utility theory in the simple context of crop protec-
tion.

The interested reader is referred to Chapter 6 in (Mas-
Colell et al., 1995) for more details as well as the axiomatic
foundations of vNM utility functions.2

The vNM utility function of a decision maker regarding a
real-valued random outcome c̃ (e.g. money) is given by

U(̃c)=

M∑
m=1

pmµ(cm), (1)

where m= 1, . . .,M are the different “states of the world”,
pm is the probability of state m, and cm is the realisation
of the random outcome c̃ in state m. The function µ( q) is
assumed to be non-decreasing.

The set of states of the world represents the set of realisa-
tions of c̃ for which the decision maker has preferences. For
instance, in (Cerdá Tena and Quiroga Gómez, 2008), there
are only two possible states of the world: “adverse weather”
and “non adverse weather”.3 In the case of flood forecast-
ing systems, even if the streamflow values are continuous, in
practice the decision maker may only distinguish between a
finite set of implied damages. This point is discussed further
in Sect. 4.2, where a finite number of “damage categories”
are specified.

The curvature of the function µ( q) reflects the decision
maker’s preference regarding uncertainty. If µ( q) is concave,
the decision maker is risk-averse; if it is linear, the decision
maker is risk-neutral; if it is convex, the decision maker is
risk-seeking. To see why, consider the random variable c̃ and
its expected value c̄.4 Since c̄ is not risky, a risk-averse de-
cision maker should prefer to receive c̄ with certainty than
to receive a random draw from c̃. That is, U(c̄) > U(̃c), or
µ(c̄) >

∑M
m=1pmµ(cm), which is the definition of concav-

ity. Note that we can also define C > 0, the amount of money
that the decision maker would be willing to spend to remove

2See also (Werner, 2008) and chapters 1 and 2 of (Gollier, 2004).
For an online reference, (Levin, 2006) proposes an excellent re-
view of the main concepts. Available online at http://web.stanford.
edu/~jdlevin/Econ%20202/Uncertainty.pdf (last access: 22 Novem-
ber 2016).

3vNM utility functions can also account for an infinite num-
ber of states of the world. In such a case, one would have U(̃c)=∫
µ(c)f (c)dc, where f is the probability density function (pdf) of

c̃.
4Note that c̄ can be thought of as a degenerated random variable,

taking the value c̄ with probability 1.
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Figure 1. A schematic representation of the CARA utility func-
tion for risk-averse individuals. Here, only two states of the world
are assumed. The state c1 is realised with probability α and c2 is
realised with complementary probability. Since µ is concave, we
see that the expected utility U = αµ(c1)+ (1−α)µ(c2) is smaller
than the utility of the expected value µ(αc1+ (1−α)c2). In other
words, the individual would prefer to receive the certain amount
αc1+ (1−α)c2 than to receive a lottery which pays c1 with prob-
ability α and c2 with probability 1−α. Equivalently, the individual
would be willing to pay up to C > 0 to remove the risk associated
with this lottery, where C is such that µ(αc1+ (1−α)c2−C)=
αµ(c1)+ (1−α)µ(c2).

the risk associated with c̃, as follows:

µ(c̄−C)=

M∑
m=1

pmµ(cm). (2)

This argument extends directly to any change in risk: any
risk-averse decision maker prefers less risky distributions, in
the sense of mean-preserving second-order stochastic domi-
nance (Rothschild and Stiglitz, 1970). Figure 1 also presents
a graphical version of the above discussion when there are
only two states of nature.

This study focuses on a well-known parametric family for
µ( q) known as the Constant Absolute Risk Aversion (CARA)
function, given by Eq. (3) (e.g. Gollier, 2004; Mas-Colell
et al., 1995):

µ(c)=
−exp(−Ac)

A
, (3)

where A is the risk aversion of the decision maker. A is
strictly positive for risk-averse individuals and strictly nega-
tive for risk-seeking individuals. For positive values, the level
of risk aversion increases when A increases.

The parametric form in Eq. (3) implies that the level of
risk aversion is independent of the decision maker’s financial
capacities (hence the name Constant Absolute Risk Aversion,
CARA). This particular utility function is therefore coherent
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Figure 2. Monthly average values for (a) precipitation and (b) tem-
perature for the Montmorency River watershed.

with the expected behaviour of most public utility services
(municipal authorities will not, for instance, gradually adopt
a risk-seeking behaviour regarding the protection of citizens
if the city’s financial well-being improves). See Appendix B
for additional details, proofs, and references for those claims.

The economic model developed above is applied to the
particular context of frequent flooding on the Montmorency
watershed. This context is described in greater detail in the
next section.

3 Context

3.1 Floods on the Montmorency watershed

Located in southern Québec, Canada, the Montmorency
River watershed covers 1150 km2, most of which is densely
forested. Approximately 30 000 people reside in the basin,
concentrated in its southernmost portion. The northern por-
tion of the watershed lies within the Laurentian Wildlife Re-
serve, where heavy snowfall precipitation is common. Fig-
ure 2 presents the average monthly values for meteorological
variables for this watershed.

Crystalline rock of the Canadian Shield covers most of the
watershed, where the retreat of glaciers left till of an average
thickness of 1 m. The southernmost part is covered in sandy
sediments from the Champlain Sea. Figure 3 shows the geo-
graphical location of the watershed as well as the location of
the available meteorological stations and streamflow gauges
(see Sect. 3.3).

The Montmorency River experiences quasi-annual ice
jams during spring melt, which often enhance the magni-
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Figure 3. Geographical location of the Montmorency watershed.
The black dots represent the available meteorological stations and
the black square is the streamflow gauging station.

tude and frequency of floods within vulnerable inhabited ar-
eas. The response time of the watershed is rapid (12 h). The
return period of damaging floods is also short. This makes
emergency evacuation and flood damage a common occur-
rence for riverside residents. Table 1 shows return periods
and corresponding streamflow values for the Montmorency
River (Leclerc and Secretan, 2012). The table also provides
thresholds for streamflow values used for flood mitigation
operations (see Sect. 3.2.2). Note that these are given for
open-water levels, and take neither ice jams nor the increase
in water level due to the presence of ice blocks into account.

The behaviour and consequences of ice jams along the
Montmorency River have been the focus of previous studies,
such as forecasting river ice breakup (Turcotte and Morse,
2015). Risk analysis and technical solutions (Leclerc et al.,
2001) have also been studied, but as of yet have not been
implemented.

The river experienced its worst recorded event in Novem-
ber 1966, when a heavy rain system melted a late autumn
snow cover, resulting in a 1100 m3 s−1 flow peak. More re-
cently, an ice cover breakup followed by the formation of
an ice jam further downstream in January 2008 forced the
evacuation of 80 households and damaged four houses. In
March 2012, an early spring thaw caused by extreme tem-
peratures induced a flood, resulting in the evacuation of
25 households. Then, in April 2014, an ice jam breakup
caused a massive ice-carrying flood wave that, occurring dur-
ing a typical normal spring freshet, quickly raised waters to
a semi-centennial level. In addition, the topography in the
area causes certain regions to become entirely isolated and
surrounded by water during flooding. The greatest concern
of public authorities occurs when people refuse to evacuate,
especially in these flood-prone areas.

3.2 Current forecasting and decision-making process

3.2.1 The HYDROTEL hydrological model

HYDROTEL (Fortin et al., 1995) is a spatially distributed,
physics-based model developed and maintained by the In-
stitut National de Recherche Scientifique (INRS). It is used
operationally by the DEH, and has been implemented in
the Montmorency River watershed since 2008 (Rousseau
et al., 2008). The model accepts gridded inputs (precipita-
tion, snow cover, temperature) that can be interpolated using
a three-station average or the Thiessen method. Physical fea-
tures of the catchment (topography, soil type, hydrographic
network) are processed by a companion software program
called PHYSITEL. It divides the watershed into smaller spa-
tial units called RHHU (relatively homogeneous hydrolog-
ical units). Each of the RHHU is then assumed to possess
homogeneous physical properties. The model for the Mont-
morency catchment includes 366 RHHU. HYDROTEL then
performs the computation of vertical and horizontal water
flows.

HYDROTEL offers a range of sub-routines for hydrologi-
cal processes (interpolation of precipitation, evapotranspira-
tion, snow accumulation and melt, etc.). The user chooses
the most appropriate sub-routines depending on the available
data. For this study, interpolation of observed precipitation
was performed using Thiessen’s polygons. No radiation data
were available, so evapotranspiration was estimated from an
empirical temperature-based method (Fortin, 2000; Bisson
and Roberge, 1983) and snowmelt was modelled by a mixed
degree-day/energy budget approach. The vertical water bud-
get was performed by the BV3C (in French, Bilan Vertical en
3 Couches) sub-routine that divides the soil into three layers
of different composition and depths. Overland and channel
routing was performed using the kinematic wave approach
(Lighthill and Whitham, 1955). With this set-up, which repli-
cates the model set-up used operationally by the DEH, HY-
DROTEL has 27 parameters, but only 10 were calibrated (de-
fault values were used for the other parameters). The calibra-
tion already performed by the DEH was kept intact. This cal-
ibration was performed using the Shuffle Complex Evolution
algorithm of the University of Arizona (SCE-UA, Duan et al.,
1994). The objective function to maximise was the Nash–
Sutcliffe efficiency criterion. In forecasting mode, HYDRO-
TEL is driven by meteorological forecasts, either determin-
istic or ensemble-based.

In the actual operational setting, data assimilation is per-
formed manually and indirectly: the forecaster modifies pre-
cipitation and/or temperature observed during the previous
days until the model’s simulation is in agreement with the
observed streamflow for the actual day. When the model is
run with the modified meteorological inputs, state variables
are re-computed and should translate into an improvement in
the model’s description of the hydrological state of the wa-
tershed. The choice of applying modifications to temperature
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Table 1. Streamflow associated with important return periods and flood mitigation thresholds for the Montmorency River watershed.

Return period Threshold Streamflow
(years) (m3 s−1)

Surveillance: close surveillance of river behaviour 350
2 439.0

Pre-alert: warning calls to emergency employees 450
Alert: mobilisation 500
Flood: active evacuation 550

5 569.3
10 655.6
25 764.7
50 845.6
100 925.7
1000 1191.2
10 000 1456.0

or to precipitation depends mostly on the period of the year
and the associated dominant hydrological process. Thus, dur-
ing spring freshet, air temperature is the main forcing that
acts on the snowmelt rate. Solar radiation is not among HY-
DROTEL’s inputs, but is rather estimated empirically, in part
through air temperature. Therefore, during this period of the
year (early March to late May), perturbations are applied to
temperature forcing. During the summer and early autumn
periods, precipitation forcing is the dominant factor for con-
trolling runoff, soil moisture and eventually streamflow. Per-
turbations are applied primarily to precipitation from approx-
imately June to November.

3.2.2 Flood alerts

The Direction de l’Expertise Hydrique (DEH) is an admin-
istrative unit of the Government of Québec created in 2001
with the mandate to manage the water regime of Québec’s
rivers and provide streamflow forecasts to municipalities.
Since 2008, operational 5-day, 3 h time step streamflow
forecasts have been distributed to municipal water man-
agers. Those forecasts are always obtained using the HY-
DROTEL semi-distributed physics-based hydrologic model
(Fortin et al., 1995). Although HYDROTEL is a determinis-
tic model, the operational forecasts now largely distributed
by the DEH are not purely deterministic, but are rather ac-
companied by a 50 % confidence interval. This confidence
interval is computed from a statistical model derived from
the analysis of past deterministic streamflow forecast errors
for 10 watersheds across the province of Québec. A more
detailed description of this statistical method is available in
Huard (2013).

After receiving a forecast exceeding a pre-determined
flood threshold, municipalities can choose to engage in emer-
gency procedures. In the case of the Montmorency water-
shed, current measures are mostly reactive (road closure,
controlled evacuation of citizens, providing emergency shel-

ters and food) rather than preventive (artificial levees, cul-
verts, etc.; Leclerc et al., 2001).

Flood thresholds have been adapted from a hydrodynamic
study (Leclerc and Secretan, 2012). Threshold numbers have
been conservatively rounded down to compensate for the
worsening effect of ice in the channel. Table 1 includes op-
erational threshold levels for the most vulnerable residential
area.

3.3 A concurrent flood forecasting framework based on
meteorological ensemble forecasts

3.3.1 Meteorological ensemble forecasts

The alternative forecasting framework proposed in this study
involves meteorological ensemble forecasts passed on to HY-
DROTEL. Precipitation and temperature ensemble forecasts
from the Meteorological Service of Canada (MSC) cover-
ing the 2011–2014 period are used. For practical reasons,
those forecasts were obtained from the THORPEX5 Inter-
active Great Grand Ensemble (TIGGE, Park et al., 2008)
database managed by the European Centre for Medium
Range Weather Forecasts (ECMWF). The forecasting hori-
zon is 5 days, with a 6 h time step. The MSC meteorological
ensemble forecasts comprise 20 members. The initial spatial
grid of 0.6◦ was downscaled to a 0.1◦ grid through simple
bi-linear interpolation during data retrieval.

Observations for precipitation and temperature are mea-
sured at five ground stations distributed around the water-
shed (see Fig. 3, Climate Quebec, personal communication,
2015). Hourly measured data were accumulated and aver-
aged over a 3 h time step. Snow survey data interpolated on a
0.1◦ grid are also available. They were provided for this study
by the DEH. The streamflow gauging station at the river out-

5THe Observing system Research and Predictability EXperi-
ment. It is a programme led by the World Meteorological Orga-
nization.

Hydrol. Earth Syst. Sci., 21, 2967–2986, 2017 www.hydrol-earth-syst-sci.net/21/2967/2017/



S. Matte et al.: Moving beyond the cost–loss ratio 2973

let provides measurements at a 15 min interval, corrected for
backwater due to ice cover and then averaged over 3 h time
steps (DEH, 2016).

3.3.2 Data assimilation and state variable uncertainty

Appropriate data assimilation is crucial for short-term flood
forecasting as it allows the model to begin the forecasting pe-
riod with the best possible estimate for initial conditions. In
a study involving 20 catchments in Quebec, (Thiboult et al.,
2016) showed that the uncertainty for initial conditions domi-
nates the other sources of uncertainty for short-term (1 day to
3 days ahead) streamflow forecasts. Those catchments vary
in size and other physical characteristics, but they are all
subject to similar meteorological conditions, which are also
shared by the Montmorency catchment. However, the Mont-
morency catchment has a smaller area than any of the 20 wa-
tersheds in (Thiboult et al., 2016) and has a shorter response
time. Consequently, the uncertainty in the initial condition is
expected to dominate for less than 1 day.

In this study, manual data assimilation was performed ac-
cording to the guidelines by (Mamono, 2010) and agrees
with the procedure followed by operational forecasters at
the DEH. This assimilation process relies on the assump-
tions that (1) model errors are entirely compensated for
by the model calibration process, (2) streamflow measure-
ments are error-free, and (3) the only remaining source of
error affecting state variables is attributable to meteorolog-
ical inputs (Mamono, 2010). Additive coefficients were ap-
plied to temperature inputs, while multiplicative coefficients
were applied to precipitation inputs in order to improve the
agreement between simulated and observed streamflow se-
ries. Those perturbations were respectively bounded at [−10,
10] and [0.1, 10]. Although those minimal and maximal per-
turbation values are very large, they truly correspond to the
rules applied by the DEH operationally. Of course, the goal
is to limit perturbations as much as possible. In this study, the
multiplicative coefficient applied to precipitation varied be-
tween 0.5 and 2.5. Most additive coefficients for temperature
varied between −3 and +2.5, with occasional larger coeffi-
cients (up to −7 and +7, on three occasions). Those pertur-
bations of meteorological inputs were applied uniformly to
the basin for fixed periods of time.

The manual data assimilation described above only im-
proves on the “best guess” of the state variables for each time
step. To go one step further, additional perturbations were ap-
plied around this best guess estimate in order to account for
the uncertainty in initial conditions. To do so, a rudimentary
version of a sequential updating scheme, namely the ensem-
ble Kalman filter (EnKF, Evensen, 2003), was implemented.
From the starting point – constituted by manually assimilated
precipitation, temperature and streamflow simulation series
– random noise is further applied to precipitation and tem-
perature inputs. Additive perturbations are drawn randomly
fromU(−8,8)◦ for temperature. For precipitation, both mul-

tiplicative (U(0.5,1.5)) and additive (U(0,0.5)mm) pertur-
bations are drawn. The inclusion of additive perturbations for
precipitation is due to the fact that strong under-captation
is suspected for this catchment. Output uncertainty is mod-
elled by a normal distribution centered on observed stream-
flow with a standard deviation taken as 10 % of the observed
streamflow. In this study, data assimilation is a necessity
rather than a choice and is not at all the primary objective.
For this reason, the limits of the above-mentioned distribu-
tions were not optimised as in Thiboult and Anctil (2015).
Those limits were fixed according to the guidelines in (Ma-
mono, 2010) and (Abaza et al., 2015) and the experience
gained during manual data assimilation. Further refinements
of the EnKF model are outside the scope of this study.

The Kalman gainK is then computed sequentially follow-
ing (Mandel, 2006):

Kt =MtHT (HMtHT
t +Ot )

−1, (4)

where Mt is the model error covariance matrix computed ac-
cording to the perturbations defined above and Ot is the co-
variance of observation noise also computed according to the
perturbations drawn from the normal distribution described
above. The matrix H relates the state vectors and observa-
tions (the so-called “observation model”). It can be demon-
strated through matrix algebra that Eq. (4) amounts to com-
puting the derivative of the analysis error and setting it equal
to zero.

Once the Kalman gain is computed, it is used to weight
the credibility of the model error zt −HX− relative to the a
priori estimation of state variables X− according to Eq. (5).
This leads to the updated model states, X+.

X+t =X
−
t +Kt (zt −HX

−
t ) (5)

The next section adapts the general framework presented
in Sect. 2 to the specifics of the Montmorency watershed.

4 Parametrisation of the economic model

The preferences of a decision maker with risk-averse prefer-
ences represented by a CARA utility function can be repre-
sented as follows:

U(s)= (6)∑
m

pm
−1
A

exp
{
−A

[
− d(Qm)+ b

(
d(Qm),s,w

)
− s

]}
.

Strictly speaking, the streamflow value associated with
category m Qm has a probability of occurrence pm, and cor-
responds to a given damage d(Qm). In this study, the damage
curve is broken down into 12 categories (i.e. m= 1, . . .,12).
This choice of 12 categories is based on a previous hydraulic
study by (Leclerc and Secretan, 2012) to establish inundation
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maps. They produced 11 maps, for streamflow varying from
550 to 1050 m3 s−1 with an increment of 50 m3 s−1. This in-
crement of 50 m3 s−1 is adopted here, but all thresholds were
reduced to be in agreement with streamflow values that in-
duced inundations (see also the operational thresholds men-
tioned in Table 1). The first category represents all of the “no
flood” category (i.e. below the lowest threshold).

Then, Qm represents the streamflow associated with the
mth category and pm becomes the probability associated
with this category, inferred from the number of members that
fall within it. Given s, the amount of money spent (w days
ahead; see Sect. 4.3 below) on flood emergency measures,
the resulting gain (or benefit) in terms of damage reduction
is given by b

(
d(Qm),s,w

)
.

While Qm and pm are derived directly from the ensemble
forecast, d, s and b

(
d(Qm),s,w

)
must be calibrated from

other sources of information related to actual operation and
decision history. This can be a challenge, but fortunately
in the case of the Montmorency River, a record of citizen
evacuations and corresponding spending for the 2014 flood
was available. Although incomplete, this record allows us to
guide the estimation of d , s and b

(
d(Qm),s,w

)
.

In this context, the cost of implementing and operating the
forecasting system as such is not considered in s. Of course,
when the civil security chooses which forecasting system to
put in place, it must consider the cost of implementing this
particular system. Nevertheless, once the system is in place,
its cost should not affect precautionary spending decisions.
This also motivated the choice of CARA utility functions,
since they do not depend on “wealth” (which would be af-
fected by the cost of performing the forecast).

4.1 Level of risk aversion A

Risk aversion A is an intrinsic characteristic of each person
or organisation and could be calculated, given the availabil-
ity of a sufficiently long record of decisions and associated
money spending. However, in the present study, A was left
free for the following reasons. First, the available data are
not sufficient to credibly calibrate A. Second, as one of the
goals of this study is to illustrate how risk aversion influences
the value of a forecasting system for a particular problem, it
is logical to cover a range of possible As, including the risk-
neutral A= 0 situation. Therefore, A was made to vary from
0 to 0.01. Although these represent relatively small levels of
risk aversion (e.g. Babcock et al., 1993), preliminary tests
have shown that, in the context of this paper, these values
were sufficient to illustrate a change in the decision maker’s
spending decisions and therefore in the economic value of
the concurrent forecasting frameworks. Negative values for
A were not considered, as they represent a risk-seeking deci-
sion maker, unrealistic in the context of flood mitigation.

4.2 Damages d, spending s and damage reduction b

The material damages to houses and property associated with
flood events can be estimated using the flow-damage curve
established by Leclerc et al. (2001). This curve is based on
a survey regarding the types of houses in the sector: one or
two storeys, with or without a basement, etc., and their value
according to the municipal evaluation. The levels of submer-
sion for different streamflow values were obtained through
hydraulic simulations. The damage is then deduced from this
level of submersion using Gompertz’ law (Gompertz, 1825).
The damage expressed in dollars rises exponentially with ob-
served streamflow (m3 s−1) and ranges from $ 0 to $ 375 000.

In this study, the following parametrisation of the benefit
function is used:

b
(
d(Qm),s,w

)
=min

{
βw · s,ψ · d̂(m)

}
, (7)

where d(m)= ψd̂(m), d̂(m) is the flow-damage curve
(Leclerc et al., 2001) for the mth category, and βw and ψ are
parameters. This particular parametrisation assumes that the
benefit of spending is linear, until all damages are avoided.
It also implies that it is never optimal to spend more than
maxm{ψ · d̂(m)}, since additional spending brings no addi-
tional benefit, for any possible forecast member.

The parameter βw was initially calibrated by assuming
ψ = 1. By comparing the total amount of money spent in
2014 to alleviate flood damages with the damages (in dollars)
predicted by the aforementioned damage curve using the ob-
served streamflow, it was found that the calibrated βw was
less than 1. This implies that the civil security service would
have spent more than the total amount of possible damage.

This therefore implies the existence of intangible benefits
associated with having a flood warning system and spend-
ing money to mitigate flood effects. According to Lave and
Lave (1991) and Carsell et al. (2004), these intangible bene-
fits include but are not limited to not putting people’s health
and security at risk, stress reduction for the population, and
building a feeling of trust towards the authorities. In the case
of the Montmorency River, there has never been any loss
of life. However, as mentioned earlier, it may happen that
people refuse to leave their residences and become isolated
from connecting roads, restricting their access to services and
medical care. Unfortunately, it is very difficult and probably
rather imprudent to associate a definite cost with these in-
tangible benefits such as “reducing stress”. In the absence
of a better alternative, in this study a multiplying factor ψ
was applied to the damage curve to account for those intangi-
ble benefits, as suggested in Van Dantzig and Kriens (1960).
The parameter ψ was made to vary between 1.5 and 10, and
βw was computed again for each different value of ψ , as the
damage curve is modified. The lower limit of ψ was set so
that money spent during the flood of 2014 (C. Pigeon, per-
sonal communication, 2015) equals the damage predicted by
the damage curve. Therefore, in this framework, the damage
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curve of (Leclerc et al., 2001) (i.e. d̂(m)) represents mostly
the relationship between streamflow and its impact on the
lives and well-being of people.

4.3 Warning time and dynamic decision-making

According to the US Army Corps of Engineers (1994), as
well as to Richardson (2000) and Roulin (2007), the costs of
emergency measures or benefits thereof are related to warn-
ing time w. In particular, Roulin (2007) assumes that early
action can reduce the total cost of emergency measures and
maximise damage reduction. Carsell et al. (2004) also pro-
vide an evaluation of residential content (furniture, food,
electric appliances, etc.) that can be protected with a given
warning time.

However, the accuracy of forecasts is inversely related to
lead time, and the decision maker might want to wait for bet-
ter information before taking a decision.

Those considerations go far beyond the objective of this
study, and the formalisation of an explicit dynamic decision
process is left for further research. In this study, the dynamic
nature of the problem is addressed by assuming that the deci-
sion maker uses the following myopic decision-making pro-
cedure.

1. At the beginning of each day, the decision maker re-
ceives a 5-day forecast.

2. Iteratively, and starting with the earliest (5-day) fore-
cast, the decision maker chooses their preferred level of
spending. This level of spending is chosen so as to max-
imise Eq. (6).

3. The decision maker is constrained (by external factors
such as the availability of materials or labour force) to
spend at most a fraction δ of their preferred level of
spending s (see below).

The benefits of a spending are assumed to take effect on the
day the spending decision is made, up until the forecast date.
For example, if a decision maker spends $ 1000 on a given
Monday, anticipating a flood the following Thursday (i.e. a
4-day forecast), then any damage occurring prior to Thursday
is also reduced (by βw × $ 1000).

The parameter βw is divided between lead times according
to [2,1.75,1.5,1.25,1]β2014, where β2014 is calibrated on the
spending decisions of 2014 and represents the baseline ratio
of gain per dollar invested. The above multiplication there-
fore assumes that early actions lead to higher gains per dol-
lar spent. This is very similar to the methodology presented
in Sect. 4.3 of Roulin (2007), except that only one repartition
of βw is tested here, compared to two in Roulin (2007).

If the decision maker is to take successive actions at differ-
ent lead times according to forecasted streamflow, then the
total amount of available money can be spread across lead
times. The decision maker can, for instance, spend all the
available money 2 days prior to the event, or they can spend

Table 2. Maximum fraction of total spending s allowed, depending
on the forecasting horizon. Each spending vector is identified by an
identification number (ID) for further reference.

ID Maximum fraction of spending allowed
number Day 5 Day 4 Day 3 Day 2 Day 1

“No limit for a 1-day forecast”

1 1 1 1 1 1
2 0 0.25 0.5 0.75 1
3 0 0 0 0 1

“No limit for a 5-day forecast”

4 1 0.75 0.5 0.25 0
5 1 0 0 0 0

half 2 days prior to and the remaining half the day before the
flood (1 day). To account for this, five different “spending
vectors” were created (Table 2). The values in those spend-
ing vectors represent the maximal fraction δ of the preferred
level of spending s that can be spent at each lead time. The
first three spending vectors represent situations for which
there is no limit on the spending than can be made the day
before, with spending vector number 3 representing the ex-
treme case where the decision maker must wait until the 1-
day forecast before spending any money. By contrast, spend-
ing vector numbers 4 and 5 represent a fictitious situation in
which the decision maker can spend any amount of money at
the 5-day horizon, and no spending is allowed the day before
(1 day).

It is important to note that due to the myopic decision-
making procedure, the decision maker does not take into ac-
count the fact that money spreads across lead times when
making a decision. This effect alone underestimates the value
of early spending. However, the decision maker also does
not consider the reduction in uncertainty gained by waiting
(which overestimates the value of early spending). In this
study, those two effects are assumed to balance each other.

To summarise, the simulation procedure is as follows.

1. Fix A and ψ .

2. Given the spending decision of 2014, infer the value of
β2014 (given the decision model).

3. Given A, ψ , β2014 and the other model parame-
ters, apply the decision-making procedure described in
Sect. 4.3 for each forecast.

4. Compute the performance assessment metrics (see
Sect. 5).
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5 Performance assessment

5.1 Forecast quality

The three forecasting systems described in Sect. 3.2 and
3.3 are compared to each other by assessing their respec-
tive abilities to forecast observed streamflow values for the
1- to 5-day projections. This performance assessment also in-
volves the well-known Continuous Ranked Probability Score
(CRPS, Matheson and Winkler, 1976) and a reliability dia-
gram (Stanski et al., 1989).

5.2 Evaluating the benefits of forecasts

As described in the Introduction, the usefulness of an early
flood warning system is in helping the decision maker choose
the best spending level s, prior to the event. The value of such
a system is therefore closely related to the decision maker’s
ability to affect the outcome through their spending deci-
sions. The benefits of forecasts are therefore evaluated with
an explicit concern for the decision maker’s preferences.

In order to develop an indicator of the economic benefits of
a forecast, it is important to distinguish between the decision
maker’s ex ante utility (before the uncertainty is resolved,
as in Eq. 6) and their ex post utility (the realised level of
utility, after the uncertainty is resolved). This is important as
spending decisions are based on the ex ante utility, whereas
the value of the forecasts are based on the (expected) ex post
utility, conditional to spending decisions. Given the spending
decision s and the realised state m, the ex post utility of the
decision maker is given by

Um(sf)=
−1
A

exp
{
−A

[
− d(Qm)+ b

(
d(Qm, sf,w

)
− sf

]}
, (8)

where sf is the total amount of money spent, from a decision
based on forecasts (f ). The value of this ex post utility is
dependent, of course, on the realised streamflow values. In
order to obtain a sensible evaluation of the decision maker’s
utility, one must therefore consider the average ex post util-
ity: EmUm(s), where the expectation Em is taken with respect
to the historical streamflow values. Note that, strictly speak-
ing, the history under consideration should be long enough
to be representative of the true distribution of streamflow. On
the one hand, it is expected that a longer record will provide
a better empirical estimate of the true streamflow distribu-
tion. On the other hand, there can also be various sources
of non-stationarity affecting the observed streamflow values
over time (e.g. changing the measurement apparatus, climate
change, land-use change). Hence, even with a very long his-
torical record, the true distribution of streamflow cannot be
known with certainty. Note that this also affects measures of
quality, such as the CRPS.

The average ex post utility can be computed for any of the
three forecasting systems described in Sects. 3.2.2 and 3.3,
but also for two special cases: perfect forecasts and no fore-
casts. On the one hand, if forecasts were perfect, there would

be no missed events and the decision maker would spend
only the exact amount of money necessary to obtain the max-
imum possible protection, as early as time allowed. On the
other hand, if no forecasts were available, there would be no
decisions to be made and no money to be spent on flood mit-
igation and protection measures. Therefore, the maximum
amount of damage would occur for each flood event.

It is important to note that utility is an ordinal quantity
that only represents the preference of a person faced with a
decision-making problem, given some information from un-
certain forecasts. That is, the utility levels can be compared,
but the actual value of the decision maker’s utility has no
interpretation. Consequently, the utility values computed for
the three forecasting systems can be scaled relative to the
utility of a perfect forecasting system. This simplifies the in-
terpretation, without imposing any additional restriction.

The hit rate and the overspending index, two standard mea-
sures of the economic performance, are also presented.

The hit rate, given by Eq. (9), is the ratio of avoided dam-
ages when decision-making is based on the forecasting sys-
tem being evaluated to the damages that would be avoided if
the forecasts were perfect (always equal to the observations).

Hit rate=
Emb

(
d(Qm),sf,w

)
Emb

(
d(Qm),sp,w

) , (9)

where sp is the amount of money that would have been spent
if perfect forecasts had been available. sf is the total amount
of money spent when decisions are based on forecasts, as in
Eq. (8). sp matches exactly the damages corresponding to the
observed streamflow, for all time steps.

Overspending is defined as in Eq. (10). It allows for mea-
suring of how much the forecasting system being evaluated
overspends (in percentage) compared to perfect forecasts.
One should aim for the overspending value to be as low as
possible.

Overspending=
Emsf−Emsp

Emsp
(10)

Results are presented in the next section.

6 Results

6.1 Assessment hydrological forecasts relative to
observations

Figure 4 displays hydrographs for a 2-week period during the
spring of 2014. Panels (a), (c) and (e) correspond to 1-day
forecasts, while panels (b), (d) and (f) correspond to 5-day
forecasts. In all cases the time step is 3 h. Forecasts along
the upper row (a and b) are dressed deterministic forecasts.
Forecasts along the middle row are based on meteorological
ensemble forecasts without EnKF, while forecasts in the bot-
tom row are also based on meteorological forecasts but ac-
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Figure 4. A portion of the 1-day (left) and 5-day (right) forecasted
3 h time step hydrograph in 2014 against the observed streamflow;
(a) and (b) are dressed forecasts, (c) and (d) are forecasts based on
meteorological ensembles without EnKF and (e) and (f) are fore-
casts based on meteorological ensembles with state variable uncer-
tainty estimated using the EnKF.

count for state variable uncertainty through EnKF. This fig-
ure shows that for 1-day forecasts, forecasts based on me-
teorological ensembles generally have low spread. This is
expected, as only the forcing uncertainty is accounted for
and this uncertainty requires more than 1 day to be propa-
gated through the hydrological model. In addition, at short
lead times the members of meteorological ensemble fore-
casts are often very similar. However, before each of the
two flood peaks, they display more dispersion than dressed
forecasts. The influence of the EnKF can also be seen. The
spread of the forecasts with EnKF is greater than the fore-
casts without EnKF and the density of forecast members is
higher around the observed streamflow. At the 5-day lead
time, some members of the forecasts based on meteorologi-
cal ensembles reach very high streamflow values. This is not
the case for the dressed deterministic forecasts that often un-
derestimate streamflow.

Figure 5 presents the mean CRPS of the three concurrent
forecasting systems over the 2011–2014 period. The CRPS
was computed separately for each lead time in 3 h increments
and averaged over the entire record of forecasts and corre-
sponding observations. For very short lead times, the dressed
deterministic forecasts outperform those based on meteoro-
logical ensembles (lower CRPS). As noted above, for short
lead times the members of the meteorological ensemble fore-
casts are often very similar and the forecasts thus have no
dispersion. Dressed forecasts, by definition, necessarily have
more spread. Since the forecasting system is not perfect, an
ensemble with very low spread is at risk of missing the ob-
servation. However, for lead times longer than 18 h, forecasts

Figure 5. Mean CRPS as a function of lead time for the 2011–2014
period for the forecasts based on meteorological ensembles with
(grey line) and without (dashed black line) state variable perturba-
tions and for the dressed forecasts (solid black line).

Figure 6. Reliability diagrams as a function of lead time for (a)
dressed deterministic forecasts (b) forecasts based on meteorologi-
cal ensembles and manual data assimilation and (c) forecasts based
on meteorological ensembles, manual data assimilation and addi-
tional perturbation of state variables.

based on meteorological ensembles achieve a better (lower)
CRPS than dressed forecasts, despite the jumpy behaviour of
the ensemble curves compared to that of the dressed fore-
casts. Furthermore, the performance gap between meteoro-
logical ensemble-based forecasts and dressed forecasts in-
creases with lead time.

The perturbation of state variables after manual data as-
similation increases (worsens) the CRPS. This is likely at-
tributable to a loss of resolution. Although sharpness, resolu-
tion and reliability are all desirable attributes of a forecasting
system, there is most often a trade-off between the resolution
and reliability. Sharpness is akin to “precision” and refers
to the quality of a forecasting system which issue forecast
members that are all close together. Resolution is is the abil-
ity of the forecasting system to distinguish between differ-
ent situations. Indeed, Fig. 6 highlights that forecasts based
on meteorological ensembles having a perturbation of state
variables display a better reliability than when state variables
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Figure 7. Separation of forecast members into 12 categories accord-
ing to the magnitude of streamflow. The example is for forecasts
emitted on 17 May 2014. (a) and (d): dressed deterministic fore-
casts; (b) and (e) meteorological ensemble-based forecasts; (c) and
(f) meteorological ensemble+EnKF forecasts.

remain unperturbed. The difference is most striking for 1-
day forecasts. Figure 6 also shows that dressed deterministic
forecasts are more reliable than forecasts based on meteo-
rological ensembles for short lead times (e.g. 1-day, hollow
circles), but less so for longer lead times (e.g. 5-day, hollow
triangles). As lead time increases, the accuracy of meteoro-
logical forecasts decreases. However, the spread of forecasts
based on meteorological ensembles increases considerably
with lead times therefore more often including the observed
values at the 5-day lead time compared to the 1-day lead
time.

6.2 Assessment of hydrological forecasts in terms of
economic value

For each of the simulated values of A and ψ , the applica-
tion of each spending vector (cf. Table 2) was tested over the
study period (2011–2014). This section describes the simu-
lation procedure.

An example of the applied methodology and correspond-
ing results is provided in Fig. 7. The upper row shows 5-day
forecasts from the three systems, starting on 17 May 2014.
The lower row shows how each member of each fore-
cast is classified into 12 severity classes ranging from non-
damaging (class 1) to centennial-scale flooding (class 12) de-
fined after the damage curve.

The utility function (Eq. 6) is used successively with the
five spending vectors presented in Table 2. The probabili-
ties pm with m= 1. . .12 in Eq. (6) correspond to the relative
frequencies of each category after classification of forecast
members that allows for computing the utility as a function
of the money spent. The utility curve maximum provides the
optimal spending associated with each forecast. Figure 8 il-
lustrates an example for A= 0.01 and ψ = 7.

Figure 9 presents the utility, hit rate and overspending as a
function of parameter ψ for the three flood forecasting sys-
tems under study for various levels of risk aversion and for
spending vector number 1 (see Table 2). Note thatA= 0 cor-

Figure 8. Utility as a function of money spent for forecasts emitted
on 17 May 2014 for each of the three forecasting systems. Thin grey
curves represent the utility of any decision given the 12 classes of
events. Thick curves show the utility of forecasting system. Maxima
of each system are indicated by a diamond marker. Calculations are
for A= 0.01 and ψ = 7.

responds to the case of a risk-neutral decision maker. Nega-
tive risk aversion values representing risk-seeking behaviour,
were not used. As mentioned in Sect. 5.2, any affine trans-
formation of the utility function is admissible. In Fig. 9, the
utility of a perfect forecast was subtracted from the utility of
each concurrent forecasting system and from the “no fore-
cast” situation. This allows the y-axis of the utility plots to
start at 0 and provide a common reference. This figure shows
that a risk-neutral decision maker prefers having informa-
tion from forecasts based on meteorological ensembles (with
or without EnKF) rather than having no forecasts. However,
for higher levels of risk aversion (A= 0.01, bottom line of
Fig. 9), the forecasting system has no usefulness for low lev-
els of ψ .

Although this seems counter-intuitive, it can easily be ex-
plained by looking at the hydrographs (cf. Fig. 4). Fore-
casts based on meteorological ensembles, in particular us-
ing EnKF, have a tendency to generate members with very
high streamflow levels. As risk aversion increases, the deci-
sion maker puts more weight towards those members, as the
associated damage is considerable. This causes the decision
maker to spend large amounts of money to “insure” against
the potential damage.

As such high streamflow levels are historically rare for the
Montmorency River, the decision maker would have been
better off not to spend any money and suffer damage dur-
ing the relatively rare and comparatively small flood events.
The “usual” flood events for the Montmorency River are not
as dramatic as what is predicted by the most extreme scenar-
ios of the predictive distribution. However, for a risk-averse
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Figure 9. Utility, hit rate and overspending as a function of param-
eter ψ for the three flood forecasting systems for various levels of
risk aversion for the decision maker, when spending is allowed in-
differently at any lead time.

decision maker, large weights are attributed to those extreme
scenarios. This encourages the decision maker to spend large
amount of money to mitigate events that in fact never mate-
rialise.

Dressed deterministic forecasts decrease weakly with ψ ,
relative to the ensemble forecasts. Put differently, for large
amounts of material damage, the dressed deterministic fore-
casts have much higher values than the ensemble forecasts.
This is due to the fact that, for all lead times, ensemble fore-
casts include members having “unrealistic” streamflow val-
ues. This over-forecasting is exacerbated for high values of
material damage and a high value of risk aversion. As the
concavity of µ increases (due to an increase in the level
of risk aversion A), “bad shocks” are weighted more heav-

Figure 10. Utility, hit rate and overspending as a function of pa-
rameter ψ for the three flood forecasting systems for various levels
of risk aversion by the decision maker, when the decision maker is
allowed to spend an increasing fraction of the total available money
as the lead time shortens.

ily by the decision maker, leading to considerable levels of
(over-)spending.

The same effect can be seen for alternative choices of
spending vectors. Figure 10 shows the same parameters (util-
ity, hit rate and overspending) as a function ofψ , for the same
forecasts, but for spending vector number 2. With this spend-
ing vector, the decision maker cannot spend any amount of
money 5 days ahead and can then progressively spend a
greater percentage of the available money as the lead time
decreases. In such a case, the decision maker should prefer
to have access to forecasts based on meteorological ensem-
bles (rather than the no forecast situation) if they are slightly
risk-averse (A= 0.001). This is explained by the fact that the
5-day forecast (which contains extreme forecast members,
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cf. Fig. 4) is not used by the decision maker, which limits
overspending.

Eventually, a more risk-averse decision maker (A= 0.01)
should prefer the dressed forecasts over any other forecasting
system, for ψ values over 6. This is again attributable mostly
to some members of the ensemble systems frequently fore-
casting flood events that do not materialise. This is confirmed
by the overspending graphs on the right-hand side of Fig. 10.
Hence, in Eq. (6), the optimal level of spending s is less for
the dressed forecasts than for the other forecasting systems.

When ψ becomes very large (very important damages) the
utility of the “no forecast” framework decreases rapidly, es-
pecially for a more risk-averse decision maker. Then, even
if the decision maker generally overspends, all forecasts are
preferred to the “no forecast” situation since the damage as-
sociated with a flood event are considerable. For high values
of ψ , the spending decision effectively acts as an (valuable)
insurance policy. The hit rate increases (slightly) with the
level of risk aversion. This is expected, as a risk-averse de-
cision maker will attribute more importance to large stream-
flow values in the ensemble forecast.

The third column of Fig. 10 shows that a risk-averse de-
cision maker would reduce their overspending by using a
forecasting system based on dressed deterministic forecasts
rather than on meteorological ensemble forecasts with or
without EnKF. Dressed deterministic forecasts exhibit much
less dispersion than EnKF forecasts, which also accounts
for state variable uncertainty. As it was remarked earlier, a
risk-averse decision maker will put more weight on higher
streamflow values in the ensemble. If the spread is large, the
ensemble necessarily includes larger streamflow values. It is
therefore not surprising that overspending is larger for the
ensemble forecast with the larger spread, especially for high
values of both A and ψ .

The results for the other spending vectors (cf. Table 2) are
qualitatively similar and are therefore not presented. These
results are available as the Supplement.

Figure 11 shows bar graphs of the relative frequency of
each class of events, from 2 to 12, for the different forecast-
ing systems and for observations (see Sect. 6.2). The first
class, which is the “no damages” class for low streamflow
values, is not included. Over the 4-year period, there has been
a total number of 36 days of flooding. From this figure, it
can be seen that all three systems forecast floods more fre-
quently than they should (according to the observed frequen-
cies). This over-forecasting also increases with the forecast-
ing horizon. However, the frequencies computed from the
dressed deterministic forecasts (a) are closer to the observed
frequencies in each class. It can also be noted that the differ-
ence between forecasts based on meteorological ensembles
without EnKF (b) and with EnKF (c) lies in the representa-
tion of extreme events at the 1-day lead time. There are more
such over-forecasted situations at this lead time when the
EnKF is used as part of the forecasting system. This is suf-
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Figure 11. Relative frequencies of forecasts and observations corre-
sponding to the classes of events used in the evaluation of damages,
as a function of the forecasting horizon (1 to 5 days). (a) Dressed de-
terministic forecasts, forecasts based on meteorological ensembles
without (b) and with (c) EnKF. Panels (d), (e) and (f) are identical
and show the relative frequencies of the observations for the same
classes.

ficient for the EnKF forecasts to have lower economic value
than the forecasts relying only on meteorological ensembles.

7 Discussion

Throughout this paper, the impact of risk aversion on the eco-
nomic value of forecasts is assessed for a well-trained end-
user. In this paper, we find that risk-averse end-users mainly
consider the less favourable scenarios (upper tail of the pre-
dictive distribution in the case of flood forecasting). Thus,
although the members of the forecasts are truly equiproba-
ble and presented as such to the end-user, they can still be
weighted differently in his or her eyes. This is true for any
level of risk aversion, but even more so for high levels of risk
aversion. For example, (Danhelka, 2015) mentions that

The Minister simply asked me what the forecast
for Prague was. After I have explained all the
known information, forecasts and uncertainties, I
gave him my best guess of the peak flow. But his
response was “No, no, no, give me the worst-case
scenario; don’t tell me numbers you cannot guar-
antee as not being exceeded”.

Therefore, any “outlier” leads to costly actions and the
forecasts become of low or null economic value if these out-
liers are frequent. A consequence of this is that forecasters
may be especially careful about the forecasts for high proba-
bility of non-exceedance.
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The “real” level of risk aversion for the decision maker
for flood emergency measures along the Montmorency River
remains unknown due to the insufficient record of decisions
and associated spending. However, it can be reasonably as-
sumed that they are highly risk-averse (C. Pigeon, personal
communications, 2015). Considering A= 0.01 and Fig. 10,
the dressed deterministic forecasts provide maximal utility.
They have a lower hit rate but also a much lower level
of overspending compared to the other forecasting systems.
This leads to the conclusion that dressed forecasts have the
highest economic value for this level of risk aversion.

However, this conclusion relies on the assumption that
benefits are linear. As the level of damage (i.e. d(m)) in-
creases, so does the spending needed to alleviate this damage.
In a situation where human casualties are possible (result-
ing in extremely high values of ψ), the spending needs not
to increase with the value of the alleviated damages d(m).
For example, the cost of an evacuation is not linked to the
(somewhat subjective) value associated with human casual-
ties. These considerations are left for further research.

Our study also shows that forecast quality (as verified us-
ing metrics such as the CRPS) is not always a guarantee of
forecast value in an economic sense. In this study, the stream-
flow forecasts based on meteorological ensembles have bet-
ter CRPS than dressed deterministic forecasts, but their value
according to the CARA utility function is lower.

In any case, it is capital to recall that the role of the fore-
caster is to issue the best possible streamflow forecast given
their knowledge of the situation and available model and
data. It is the end-user’s role to decide the course of action.
In no way we would advocate for the forecasters to deliber-
ately bias the forecasts for a certain user. Furthermore, in this
paper we did not address the issue of potential cognitive bi-
ases and training issues for end-users, which is recognised in
the literature (e.g. Ramos et al., 2013; Demeritt et al., 2010;
Doswell, 2004). The training of end-users and continuous in-
teraction with forecasters should be encouraged to favour op-
timal decision-making. However, since risk aversion is not a
cognitive bias, even highly trained decision makers are ex-
pected to be risk-averse (cf. Fishburn, 1989; Krzysztofowicz,
1986).

Lastly, the decision-making process analysed in this study
is a static one. It would be even more realistic to analyse
flood mitigation as a dynamic decision process. For instance,
depending on their level of confidence regarding the 5-day
forecast, a decision maker could decide to launch an evac-
uation alert and immediately spend all available funds for
emergency measures. As stated in Roulin (2007), intuition
lends to thinking that preparing in advance for a flood could
lead to reduced overall spending compared with waiting un-
til the last minute. This is also discussed in Morss (2010) in
her analysis of three case studies of the interactions between
flood forecasts, decisions and outcomes. She provides exam-
ples of the importance of early actions.

Key property- and life-saving decisions are often
thought of as taking specific protective action im-
mediately prior to or during an event. However,
sometimes key decisions can be less evident and
occur during earlier planning stages. For example,
in Grand Forks, once officials had decided to ex-
pend most of their time, effort, and resources on
planning and building primary dikes, they were not
able to plan and build secondary dikes fast enough
when the flood grew worse than expected. In the
Pescadero case, if officials had not decided to po-
sition rescue crews and equipment before the flood
began, they would not have been able to reach the
area.

However, the implementation dynamic decision model
also introduces many more questions regarding how the total
spending should be distributed among lead times. It is thus
left for further studies.

8 Conclusions

The purpose of this study is to set the basis of an alterna-
tive framework to replace the cost–loss ratio in economic as-
sessment of early warning flood forecasting systems. This
alternative framework is based on the Constant Absolute
Risk Aversion (CARA) utility function which is well-known
in economics. To the authors’ knowledge, risk aversion is
rarely, if ever, accounted for in hydro-economic assessment
of flood warning systems. This new framework is used to
compare the economic value of three concurrent streamflow
ensemble forecasting systems using the flood-prone Mont-
morency River watershed in Quebec, Canada. This study
concentrates on ensemble rather than deterministic forecasts,
as the recent literature clearly states that ensemble forecasts
are preferable to deterministic ones for numerous reasons
(e.g. Krzysztofowicz, 2001; Jaun et al., 2008; Velazquez
et al., 2010; He et al., 2013). Furthermore, real-life opera-
tions for the case study involved here (flood forecasting for
the Montmorency River) do not involve deterministic fore-
casts. However, there exist many different means of con-
structing streamflow ensemble forecasts: dressed determin-
istic forecasts, single hydrological models fed with meteo-
rological ensemble forecasts, multiple hydrological models,
with or without data assimilation, etc. Those different fore-
casting systems can be compared in terms of their correspon-
dence with the observation and in terms of their value for an
end-user.

The importance of the level of risk aversion of the deci-
sion maker for the determination of the economic value of a
streamflow forecasting system is illustrated by our results. A
risk-neutral decision maker, as assumed in the cost–loss ra-
tio framework, is rarely, if ever, encountered in real-life de-
cision problems. The value of forecasting systems strongly
depends on the decision maker’s level of risk aversion and
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this parameter should be as much as possible targeted to the
end-user. The results also show that forecast quality as as-
sessed by the CRPS, or the reliability diagram, do not nec-
essarily translate directly into a greater economic value, es-
pecially if the decision maker is not risk-neutral. Frequent
over-forecasting strongly affects the economic value of fore-
casts. Over-forecasting can be corrected by adequate statisti-
cal post-processing of the predictive distributions. This was
judged to be outside of the scope of this study, but could cer-
tainly be explored in further work. Adequate post-processing
would likely improve the value of forecasts.

The decision-making framework presented here can be im-
proved in some ways. Further studies could also include a
more detailed, dynamic decision-making process, formally
accounting for the forecast horizon. Furthermore, the deci-
sion maker could lose confidence in a “bad” forecasting sys-
tem. The results presented in this paper implicitly assumed
that the decision maker’s trust of the forecast was absolute.
Further studies could include an explicit description of the
decision maker’s learning about the reliability of a forecast.

Data availability. The economic data used in this study (spend-
ing record of Quebec City’s civil security bureau) are con-
fidential and cannot be made publicly available. Meteorologi-
cal observations at hourly time step can be bought by com-
municating with climat.quebec@ec.gc.ca. The Canadian meteo-
rological ensemble forecasts can be retrieved from the TIGGE
data set through ECMWF’s MARS server. Data availability
can be determined at http://apps.ecmwf.int/datasets/data/tigge/
levtype=sfc/type=cf/. Then, a request written as a Python script
can be sent to the MARS server through a UNIX terminal.
Detailed explanations regarding how to write such a script
can be found at https://software.ecmwf.int/wiki/display/WEBAPI/
Access+ECMWF+Public+Datasets.
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Appendix A: How the cost–loss ratio implies
risk-neutrality

Consider the simple case where the decision maker has two
possible choices: s = 0 (no action) or s = 1 (action). The cost
of implementing the action is denoted by c > 0. If the adverse
event occur (e.g. flood), a damage of d > 0 is incurred. Let
also b be the damage avoided if an action is taken by the
decision maker (assuming c < b ≤ d). Finally, let p be the
probability of the adverse event.

Using the economic model presented in Sect. 2, the vNM
utility of the decision maker for each of the possible choices
is

U(s = 0) = pµ(−d)+ (1−p)µ(0) (A1)
U(s = 1) = pµ(−d + b− c)+ (1−p)µ(−c) (A2)

Straightforward algebra shows that an action is optimal (i.e.
U(s = 1)≥ U(s = 0)) if, and only if

p ≥
µ(0)−µ(−c)

µ(0)−µ(−c)+µ(−d + b− c)−µ(−d)
(A3)

If µ( q) is concave (the decision maker is risk-averse), this
is not equal to the cost–loss ratio. However, if the decision
maker is risk-neutral, µ( q) is linear, so for some a1 > 0 and
a2 ∈ R:µ(0)= a2,µ(−c)=−a1c+a2,µ(−d)=−a1d+a2
and µ(−d+b−c)= a1(−d+b−c)+a2. Therefore, Eq. A3
reduces to

p ≥
c

b
. (A4)

If b = d (all damages are avoided), this gives the usual cost–
loss ratio.

Here, an important comment is in order. One could always
define “cost” and “loss” as follows:

cost = µ(0)−µ(−c) (A5)
loss = µ(0)−µ(−c)+µ(−d + b− c)−µ(−d) (A6)

so an action is optimal if and only if

p ≥
cost
loss

(A7)

However, this “black-box” analysis sidesteps some interest-
ing and important questions regarding the contribution of
outcome versus risk preferences to the decision maker’s util-
ity. Using the vNM utility allows us to explicitly describe the
impact of risk preferences on the value of forecasting sys-
tems. Note also that the hydrological literature (e.g. Roulin,
2007; Verkade and Werner, 2011; Muluye, 2011) almost al-
ways considers “cost” and “loss” to be defined in monetary
units.

To see more clearly the impact of risk aversion on the
optimal decision, suppose that µ is CARA, i.e. µ(x)=
−1
A

exp{−Ax}, and that b = d . Using the formula above and
straightforward algebra, we find that an action is optimal if

p ≥
exp{Ac}− 1
exp{Ad}− 1

≡ t (A) (A8)

as opposed to p ≥ c/d for the cost–loss ratio. One can ver-
ify that t (A) is strictly decreasing with limA→0t (A)= c/d .
Then, this implies that, as risk aversion increases, the deci-
sion maker requires lower confidence level (for the realisa-
tion of the adverse event) in order to take an action. The lim-
iting case, when the decision maker is risk neutral, gives the
cost–loss ratio.

Appendix B: Properties of the CARA utility function

We have µ(x)= −1
A

exp{−Ax} for some real values for x
and A 6= 0. One can easily verify that the first derivative with
respect to x is µ′(x)= exp{−Ax}> 0, and that the second
derivative with respect to x is −Aexp{−Ax}. Therefore, µ
is strictly concave if A> 0 and strictly convex if A< 0. Fig-
ure 1 illustrates a generic example for a CARA utility func-
tion.

The value of A reflects the decision maker’s level of risk
aversion. Specifically, the Arrow–Pratt index of absolute risk
aversion is defined as

A(µ)=
−µ′′(·)

µ′(·)
(B1)

for all twice continuously differentiable function µ( q). If
A(µ) > A(µ̃), we say that the decision maker whose pref-
erences are represented by µ is more risk-averse than a deci-
sion maker whose preferences are represented by µ.

Using the parametric form, µ(x)= −1
A

exp{−Ax}, we im-
mediately see that A(µ)= A. Since A(µ) is independent of
x, we say that µ exhibits a constant absolute level of risk
aversion.

Note that the CARA utility functions are only defined for
A 6= 0. However, since an individual is risk-neutral if and
only if µ is linear, the utility function of any risk-neutral in-
dividual has the form µ(x)= a1x+a2 for a1 > 0 and a2 ∈ R.
In other words, there is no need to define a specific class of
utility for risk-neutral individuals. As such, the CARA utility
class needs only to apply to non-risk-neutral individuals.

The interested reader can consult chapter 2 in (Gollier,
2004), chapter 6 in (Mas-Colell et al., 1995) or (Levin, 2006)
for additional details.
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