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Abstract. Observed streamflow data from 966 medium sized
catchments (1000—-5000 km?) around the globe were used to
comprehensively evaluate the daily runoff estimates (1979—
2012) of six global hydrological models (GHMs) and four
land surface models (LSMs) produced as part of tier-1 of the
eartH2Observe project. The models were all driven by the
WATCH Forcing Data ERA-Interim (WFDEI) meteorologi-
cal dataset, but used different datasets for non-meteorologic
inputs and were run at various spatial and temporal resolu-
tions, although all data were re-sampled to a common 0.5°
spatial and daily temporal resolution. For the evaluation, we
used a broad range of performance metrics related to impor-
tant aspects of the hydrograph. We found pronounced inter-
model performance differences, underscoring the importance
of hydrological model uncertainty in addition to climate in-
put uncertainty, for example in studies assessing the hydro-
logical impacts of climate change. The uncalibrated GHMs
were found to perform, on average, better than the uncali-
brated LSMs in snow-dominated regions, while the ensemble
mean was found to perform only slightly worse than the best
(calibrated) model. The inclusion of less-accurate models did
not appreciably degrade the ensemble performance. Overall,
we argue that more effort should be devoted on calibrating
and regionalizing the parameters of macro-scale models. We
further found that, despite adjustments using gauge obser-

vations, the WFDEI precipitation data still contain substan-
tial biases that propagate into the simulated runoff. The early
bias in the spring snowmelt peak exhibited by most models
is probably primarily due to the widespread precipitation un-
derestimation at high northern latitudes.

1 Introduction

Hydrological models are indispensable tools for many pur-
poses including, but not limited to, (i) flood and drought fore-
casting, (ii) water resources assessments, (iii) assessing the
hydrological impacts of human activities, and (iv) increas-
ing our understanding of the hydrological cycle. It is more
than 50 years since the first attempts at hydrological mod-
eling (Linsley and Crawford, 1960; Rockwood, 1964; Sug-
awara, 1967; Freeze and Harlan, 1969). Since then, a plethora
of conceptual, physically based, and stochastic hydrological
models has been developed, each with its own assumptions
and characteristics (for non-exhaustive overviews; see Singh,
1995; Singh and Frevert, 2002; Rosbjerg and Madsen, 2006;
Trambauer et al., 2013; Sooda and Smakhtin, 2015; Bierkens
et al., 2015; Kauffeldt et al., 2016). Because all hydrolog-
ical models are inevitably imperfect representations of real-

Published by Copernicus Publications on behalf of the European Geosciences Union.



2882

ity, they produce highly uncertain estimates even if we would
have access to perfect meteorological data (Beven, 1989).

The quantification of these uncertainties using indepen-
dent data sources is of critical importance to advance model
development, reject deficient model structures and parame-
terizations, quantify model credibility, and ultimately bring
some order to the plethora of models (Klemes, 1986; Wa-
gener, 2003; Doll et al., 2015; Clark et al., 2015). There
have been several collaborative research efforts focusing on
the intercomparison and verification of hydrological models.
The earliest were coordinated by the World Meteorological
Organization (WMO, 1975, 1986, 1992). Other noteworthy
initiatives include the Model Parameter Estimation Experi-
ment (MOPEX; Duan et al., 2006), the Global Soil Wetness
Project (GSWP; Dirmeyer, 2011), the Water Model Inter-
comparison Project (WaterMIP; Haddeland et al., 2011), and
the Global Energy and Water Exchanges (GEWEX) Land-
Flux project (McCabe et al., 2016). These initiatives have led
to numerous multi-model evaluation studies focusing on such
hydrological variables as runoff (e.g., Gudmundsson et al.,
2012a; Zhou et al., 2012), evaporation (e.g., Schlosser and
Gao, 2010; Jiménez et al., 2011; Miralles et al., 2015), soil
moisture (e.g., Guo et al., 2007; Xia et al., 2014), snow cover
(e.g., Slater et al., 2001), and total water storage (Giintner,
2008), among others.

One of the most useful variables for hydrological model
evaluation is runoff, since it reflects the integrated response
of a host of hydrological processes occurring in a catch-
ment (Fekete et al., 2012) and because observations are read-
ily available for many catchments across the globe (Hannah
etal., 2011). Table 1 lists, to our knowledge, all macro-scale
(i.e., continental to global scale) studies evaluating the runoff
estimates of multiple models that have been published so
far. Out of these 20 studies, two focused on the contermi-
nous USA, five focused on Europe, while 13 had a global
scope. However, many of these studies used observations
from a relatively small number (< 100) of large catchments
(>> 10000 km?2). The use of a small number of basins limits
confidence in the results and precludes a spatially detailed
assessment, while the large size of the catchments makes it
more difficult to distinguish between deficiencies in the forc-
ing, the (sub-)surface component, or the river routing com-
ponent of the modeling chain. Moreover, a large number of
the studies only evaluated monthly mean runoff, precluding
analysis of the shape of individual flow events, or used the
Nash and Sutcliffe (1970) efficiency (NSE), which has been
criticized in several previous studies for being overly sensi-
tive to the timing and magnitude of peak flows (Schaefli and
Gupta, 2007; Jain and Sudheer, 2008). Furthermore, many
studies considered only a few hydrological models (< 5) or
performance metrics (< 2), limiting the insights that can be
gained.

As part of tier-1 of the eartH2Observe project, 10 state-of-
the-art hydrological models were run globally at a daily time
step for the period 1979-2012 using the same forcing dataset,
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in an effort to develop a global reanalysis of water resources
that supports efficient water management and decision mak-
ing (Schellekens et al., 2016). Six of the models are global
hydrological models (GHMs) while four of the models are
land surface models (LSMs). GHMs have traditionally been
designed to simulate (sub-)surface water fluxes and storages,
while LSMs have traditionally been designed to simulate
the soil-vegetation—atmosphere interactions within climate
models (Haddeland et al., 2011; Bierkens, 2015). GHMs gen-
erally represent hydrological processes in a more conceptual
way, solve only the water balance, commonly operate at daily
time steps, and typically have a small number of soil lay-
ers (< 3 in the current study) and a single snow layer. Con-
versely, LSMs generally represent hydrological processes in
a more physically based way, solve both the water and en-
ergy balances, typically operate at (sub-)hourly time steps,
and tend to have many soil and snow layers (4—11 and 1-
12, respectively, in the current study; for more details on the
models, see Table 1 of Schellekens et al., 2016). The present
study aims to comprehensively evaluate the runoff estimates
of these 10 models across the globe in an effort to answer the
following pertinent research questions:

1. How well do the different models simulate runoff?

2. How well do the models perform in terms of long-term
runoff trends?

3. How do the results of the GHMs differ, if at all, from
those of the LSMs?

4. Are calibration and regionalization important or even
essential?

5. What is the impact of the forcing data on the simulated
runoff?

6. How valuable are multi-model ensembles for improving
runoff estimates?

7. Do all models show the early bias in runoff timing
in snow-dominated catchments previously documented
(e.g., Zaitchik et al., 2010) and what is the cause?

We use daily streamflow observations during 1979-2012
from a large, highly diverse, quality-controlled set of
medium-sized catchments, which allows us to compare the
performance among different regions and climate types (An-
dréassian et al., 2007; Stahl et al., 2011; Gupta et al., 2014).
Moreover, we use a broad range of performance metrics, in-
cluding runoff signatures (measures that quantify the hydro-
graph shape such as runoff coefficient and baseflow index;
Olden and Poff, 2003; Monk et al., 2007) that can be related
to specific hydrological processes (Yilmaz et al., 2008).
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Table 1. Overview of, to the best of our knowledge, all macro-scale (continental to global) studies evaluating the runoff estimates of multiple
models, sorted by region and then publication date. The present study has been added for the sake of completeness.

Study Region Number of Number of catchments (size range)  Evaluation timescale(s)
models

Lohmann et al. (2004) Cont. USA 4 1145 (23 to 10000 km? ) Daily, monthly, annual, long-term

Xia et al. (2012) Cont. USA 4 969 (23 to 1353280 kmz) Daily, weekly, monthly, annual, long-term

Prudhomme et al. (2011) Europe 3 579 (< 1000 km2) Daily

Gudmundsson et al. (2012a) Europe 9 426 (< 4000 kmz) Daily, annual, long-term

Gudmundsson et al. (2012b) Europe 9 426 (< 4000 km2) Annual, long-term

Greuell et al. (2015) Europe 5 46 (9948 to 658 340km?) Daily, monthly, annual, long-term

Gudmundsson and Seneviratne (2015)  Europe 10 426 (< 4000km?) Monthly, annual, long-term

Milly et al. (2005) Global 12 165 (> 50000 km2) Long-term

Decharme and Douville (2006) Global 6 80 (100000 to 4758 000 kmz) Daily, monthly

Decharme and Douville (2007) Global 6 80 (100000 to 4758 000 kmz) Monthly

Decharme (2007) Global 2 80 (100000 to 4 758 000 kmz) Monthly

Materia et al. (2010) Global 13 30 (82000 to 4677 000 km?) Monthly

Zaitchik et al. (2010) Global 4 66 (19000 to 4600000 km?) Daily, annual

Haddeland et al. (2011) Global 11 8(650000 to 4 600 000 km?) Monthly

Zhou et al. (2012) Global 14 150 (not specified; > 10000 kmz) Annual

Van Dijk et al. (2013b) Global 5 6192 (10 to 10000 km?) Monthly

Beck et al. (2015) Global 4 4079 (10 to 10000 kmz) Daily, long-term

Yang et al. (2015) Global 7 16 (135757 to 3475000 kmz) Monthly, annual

Zhang et al. (2016) Global 4 644 (> 2000 km2) Monthly, annual

Beck et al. (2016) Global 10 1113 (10 to 10000 km?) Daily, 5-day, monthly, long-term

This study Global 10 966 (1000 to 5000 kmz) Daily, 5-day, monthly, annual, long-term
2 Data ponents was calculated. Six of the models are GHMs (LIS-

2.1 Forcing

The models were all driven by the daily 0.5° WATCH
Forcing Data ERA-Interim (WFDEI) meteorological dataset
(1979-2012; Weedon et al., 2014) with the precipitation (P)
data adjusted using the monthly 0.5° gauge-based Climate
Research Unit (CRU) TS3.1 dataset (Harris et al., 2013).
Although the models all used the same P data, they used
potential evaporation (PET) derived using diverse formu-
lations, ranging from the temperature-based Hamon equa-
tion (PCR-GLOBWB) to various radiation-based approaches
(WaterGAP3, SWBM, and HBV-SIMREG), the Penman—
Monteith combination equation (HTESSEL, JULES, LIS-
FLOOD, SURFEX, and W3RA), and a surface-energy bal-
ance approach (ORCHIDEE). The models also used differ-
ent datasets for non-meteorologic inputs. For more details,
see Schellekens et al. (2016).

2.2 Simulated runoff

Table 2 lists the 10 state-of-the-art macro-scale hydrologi-
cal models of which we evaluated the simulated daily un-
routed runoff depths (mmd~!). The data used in this study
have been named tier-1 and represent an initial run by all
participating modeling groups (Schellekens et al., 2016). All
data were acquired through the eartH2Observe Water Cycle
Integrator (WCI; http://wci.earth2observe.eu), and for each
model the sum of the subsurface and surface runoff com-
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FLOOD, PCR-GLOBWB, SWBM, W3RA, WaterGAP3,
and HBV-SIMREG) and four are LSMs (HTESSEL, JULES,
ORCHIDEE, and SURFEX). The GHMs were all run at daily
time steps and the LSMs at hourly and 15 min time steps.
The models were run at a 0.5° spatial resolution, with the
exception of LISFLOOD and WaterGAP3, which were run
at 0.1° and 0.08°, respectively. For the analysis, however, all
model output was re-sampled to a common 0.5° spatial and
daily temporal resolution. Four of the models were subjected
to varying degrees of calibration to improve their parameters
(LISFLOOD, SWBM, WaterGAP3, and HBV-SIMREG; see
Sect. 4.4 for specifics). More details concerning the models
can be found in Table 1 of Schellekens et al. (2016).

2.3 Observed streamflow

Daily and monthly observed streamflow data were used in
this study to evaluate the runoff estimates of the models. The
observed streamflow and catchment boundary data used in
this study originate from the same three sources as Beck et al.
(2013, 2015, 2016), namely (i) the Global Runoff Data Cen-
tre (GRDC; http://www.bafg.de/GRDC/), (ii) the Geospatial
Attributes of Gages for Evaluating Streamflow (GAGES)-
II database (Falcone et al., 2010), and (iii) an Australian
streamflow data compilation by Peel et al. (2000). The fol-
lowing seven criteria were used to select suitable catchments
for our analysis:

Hydrol. Earth Syst. Sci., 21, 2881-2903, 2017
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Table 2. Overview of the hydrological models considered in this study. For definitions of the model name acronyms, see Schellekens et al.
(2016). Definitions of model-class acronyms: GHM, global hydrological model; and LSM, land surface model.

Model name Data provider(s) Reference(s) Model class

HTESSEL European Centre for Medium-Range Balsamo et al. (2009, 2011) LSM
Weather Forecasts (ECMWEF)

JULES Natural Environment Research Best et al. (2011) LSM
Council (NERC)

LISFLOOD Joint Research Centre (JRC) Burek et al. (2013) GHM

ORCHIDEE Centre National de la Recherche Krinner et al. (2005) LSM
Scientifique (CNRS)

PCR-GLOBWB  University of Utrecht Van Beek and Bierkens (2009) GHM

SURFEX Meétéo France Decharme et al. (2011, 2013) LSM

SWBM Eidgenossische Technische Hochschule Orth and Seneviratne (2015) GHM
(ETH) Ziirich

W3RA Australian National University (ANU) and Van Dijk (2010) GHM
Commonwealth Scientific and Industrial
Research Organisation (CSIRO)

WaterGAP3 University of Kassel Verzano (2009) GHM

HBV-SIMREG JRC Beck et al. (2016) GHM

Table 3. The long-term runoff behavioral signatures considered for evaluating the model performance. The signatures were computed, for
each catchment, from the entire record of simultaneous observed and simulated runoff. The o values represent the spatial variability in the
runoff signatures across the landscape.

Runoff Units Description Evaluated flow aspect Standard
signature deviation (o)
RC - Square-root-transformed runoff coefficient, ratio of long-term  Water balance 0.33
runoff to P
MAR Vmm yr—!  Square-root-transformed long-term mean annual runoff Water balance 11.21
T50 d The day of the water year marking the timing of the center of  Seasonal flow distribution 34.36
mass of flow (Stewart et al., 2005). A water year is defined as
the 12-month period from October to September in the Northern
Hemisphere and April to March in the Southern Hemisphere
BFI - Base flow index, the ratio of long-term baseflow to total runoff;  Partitioning between quickflow 0.18
the baseflow portion of the total runoff was computed following  and baseflow, flow peakiness
the procedure of Gustard et al. (1992), which takes the minima
at 5-day non-overlapping intervals and subsequently connects
the valleys in this series of minima to generate baseflow
Ql vmmd—! Square-root-transformed 1st percentile exceedance flow Peak-flow magnitude 1.27
Q99 vmmd~! Square-root-transformed 99th percentile exceedance flow Low-flow magnitude 0.21

1. The streamflow record length was required to be > 3. The catchment area had to be > 1000km?, to pre-

5 years (not necessarily consecutive) during 1979-2012
(the temporal span of the simulated runoff data).

. The catchment area had to be < 5000km?, to mini-
mize the effects of channel routing delays and to re-
duce the likelihood of significant anthropogenic water
use. We could not use larger catchments and evaluate
routed streamflow estimates since three of the mod-
els did not simulate river routing (JULES, SWBM, and
HBV-SIMREG).

Hydrol. Earth Syst. Sci., 21, 2881-2903, 2017

vent catchments unrepresentative of the 0.5° grid cells
(2182 km? at 45° latitude) from confounding the results.

. To reduce human influences, catchments were required

to have < 2 % classified as urban (using the “artificial
areas” class of the GlobCover version 2.3 map; 300 m
resolution; Bontemps et al., 2011) and subject to irri-
gation (using version 5 of the Global Map of Irrigation
Areas GMIA; 5 min resolution; Siebert et al., 2005).

. We used the Global Reservoir and Dam (GRanD)

database (v1.1; Lehner et al., 2011) to exclude catch-
ments influenced by major reservoirs (defined by total

www.hydrol-earth-syst-sci.net/21/2881/2017/
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reservoir capacity > 10 % of the observed mean annual
streamflow).

6. Catchments with forest gain or loss > 20 % of the catch-
ment area (the threshold at which changes in runoff can
generally be detected; Bosch and Hewlett, 1982) were
excluded using version 1.1 of the Landsat-based forest
change dataset (30 m resolution; Hansen et al., 2013).

7. To further reduce the number of disinformative catch-
ments, all streamflow records were visually screened
for artifacts and anthropogenic influences (caused by,
for example, diversions and impoundments). Further-
more, USA catchments flagged as “non-reference” in
the GAGES-II database were discarded, and GRDC
catchments for which the catchment boundaries could
not be reliably determined were discarded (Lehner,
2012).

In total 966 catchments (median size 1970 km?; median
record length 19 years during 1979-2012) were found to
be suitable for the analysis, of which 641 catchments have
daily streamflow data and 325 catchments (mainly located
in Russia) have only monthly streamflow data. The locations
of the selected catchments will be shown in the Results sec-
tion. All observed streamflow data were converted to runoff
in mm d~! using the provided catchment areas.

3 Methodology
3.1 Model evaluation

The simulated runoff of the models were evaluated in five
ways. First, for each catchment, we calculated the differ-
ences D (—) between simulated and observed values of sev-
eral runoff signatures. Table 3 lists the six runoff signa-
tures selected including their computation from the period
with simultaneous simulated and observed runoff. The base-
flow index (BFI), square-root-transformed 1st percentile ex-
ceedance flow (Q1), and square-root-transformed 99th per-
centile exceedance flow (Q99) require daily (rather than
monthly) flow data. To compute the flow timing (T50) from
monthly data, we first computed daily time series from
monthly time series using linear interpolation. Some of the
signature values were square-root transformed to give more
weight to small values. D was computed according to

quyqsim_ qobs’ (1)

9q

where Y represent the values of the runoff signatures (—),
the ¢ subscript denotes the runoff signature, and the “sim”
and “obs” subscripts refer to simulated and observed, respec-
tively. The o values (—) are constants that represent the spa-
tial variability in the runoff signatures across the landscape
and are used to normalize the D values (i.e., to make the D
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values of the different signatures intercomparable; see Ta-
ble 3). The o values were computed by taking the standard
deviation of the observed values. Next, the mean D value
over all catchments was computed (expressed by D). D and
D values closer to zero correspond to better model perfor-
mance (see Table 4). It should be noted that, although D pro-
vides a valuable estimate of the overall performance, a good
D value may reflect an overestimation in one region that is
compensated by an underestimation in another region.

Second, to evaluate the temporal variability of the simu-
lated runoff time series, we computed Pearson linear corre-
lation coefficients (r) between daily, log-transformed daily,
5-day, monthly, monthly climatic, and annual time series of
simulated and observed runoff (termed rqiy, 7diylog, 5 days
Fmons Tmonclim» and ryr, respectively). The raly, rdiylog, and
r5day values were only computed for catchments with daily
observations. If monthly data were not supplied by the data
providers, monthly values were computed by simple averag-
ing of the daily data only if > 25 non-missing values were
available. Annual values were computed by simple averag-
ing of the monthly data (either supplied or computed) only
if > 10 non-missing values were available. We subsequently
computed for each model and metric the mean » value over
all catchments, expressed by 7. The r and 7 values range from
—1 to 1, with higher values corresponding to better model
performance (see Table 4).

Third, to summarize the overall performance of each
model, we computed for each catchment a summary per-
formance statistic (termed OS) incorporating the previously
mentioned metrics, and computed the mean value over all
catchments (OS). The OS consists of two parts, of which the
first (OS;ig) considers the performance in terms of runoff sig-
natures and is defined as

OSsig =

1 = mean | Drcl. | Dvarl, | Drsol. [ Daal, [Daul, [ Dossl ]+ (2)

The second part (OSy,r) evaluates the performance in terms
of temporal variability, and is defined as

OSyyr = mean I:’"dly’ Fdlylog» I'5 day > "'mon s mon clim ryr:l- (3

The summary score is subsequently computed following:

_ OSsig + OSvar
= —2 .

The BFI, Q1, and Q99 components of Eq. (2) and the rgjy and
Fdlylog components of Eq. (3) were omitted if daily observa-
tions were unavailable for a particular catchment. Higher OS
values correspond to better model performance; the maxi-
mum attainable value is 1 (see Table 4).

Fourth, to evaluate the ability of each model to simu-
late the variability among the catchments in the six previ-
ously mentioned runoff signatures, Spearman rank correla-
tion coefficients (p) were computed between simulated and

oS “4)
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Table 4. Qualitative descriptions of intervals of the performance
metrics to aid in interpreting the results.

|D| r.p oS
Excellent [0,0.2) [0.8,1] [0.8,1]
Good [0.2,0.4) [0.6,0.8) [0.6,0.8)
Moderate [0.4,0.6) [0.4,0.6) [0.4,0.6)
Fair [0.6,0.8) [0.2,0.4) [0.2,0.4)
Poor [0.8,400] [-1,0.2) [—00,0.2)

observed values of the runoff signatures. Spearman rank cor-
relation coefficients rather than Pearson linear correlation co-
efficients were used to minimize the influence of outliers.
The p values range from —1 to 1, with higher values cor-
responding to better model performance (see Table 4).

Fifth, we computed trends in simulated and observed mean
annual runoff time series (termed MAR trend) using the
simple non-parametric approach of Sen (1968). We subse-
quently calculated the p between simulated and observed
MAR trends (pPMAR trend), reflecting the agreement in spatial
trend patterns.

Sixth and last, we produced density plots of grid cell val-
ues of aridity index (Al ratio of long-term available energy
to P) versus RC (ratio of long-term simulated runoff to P),
revealing how the models behave in terms of RC under differ-
ent climatic conditions. To estimate the available energy we
used PET for four models (ORCHIDEE, PCR-GLOBWB,
W3RA, and WaterGAP3) and net radiation for three mod-
els (HTESSEL, JULES, and SURFEX). For the remaining
models estimates of the available energy were not available.

For the evaluation, we used for each catchment the simu-
lated runoff time series of the 0.5° grid cell with its center
located within the catchment. However, if multiple grid cell
centers were located within the catchment, we calculated the
mean simulated runoff time series, and if no grid cell cen-
ter was located within the catchment, we used the simulated
runoff time series of the grid cell with its center located clos-
est to the catchment centroid.

3.2 Multi-model ensembles

Ensemble modeling using the outputs from multiple mod-
els or from different realizations of the same model typically
improves predictive accuracy and is widely used in atmo-
spheric, climate, and hydrological sciences (Wandishin et al.,
2001; Tebaldi and Knutti, 2007; Breuer et al., 2009; Viney
et al., 2009). We tested two ways of combining the runoff
estimates of the individual models into ensembles. First, for
each 0.5° grid cell and day with non-missing values for all
models, the mean simulated runoff of the 10 models was
calculated (i.e., equal weights were assigned to the models).
The resulting runoff estimates will be referred to hereafter as
“MEAN-AIl". Second, we computed the mean based on only
the four models that performed best in terms of 08, to exam-
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ine the effect of excluding less-accurate models. These runoff
estimates will be referred to hereafter as “MEAN-Best4”.

3.3 Caveats

There are a number of caveats that should be kept in mind
when interpreting the results. First, some of the models (no-
tably the LSMs) were not traditionally developed to estimate
daily runoff for such small catchments. Some of the GHMs,
on the other hand, have runoff estimation in small catch-
ments among their primary aims (e.g., LISFLOOD, Water-
GAP3, W3RA, and HBV-SIMREG), and four GHMs were
even explicitly calibrated against observations (LISFLOOD,
SWBM, WaterGAP3, and HBV-SIMREG:; see Sect. 4.4 for
specifics). Second, a model performing poorly in one respect
may well perform better for other hydrological variables, cli-
mates, catchments, or performance metrics. Third, a poor
model performance could simply be the result of subopti-
mal parameter values. Fourth, some studies have found that
less-accurate models may still lead to a better ensemble mean
(Ajami et al., 2006; Viney et al., 2009), although this did not
appear to be the case here (see Sect. 4.6). Fifth, we stress that
while some models may perform well, they are inherently un-
suitable for specific types of impact assessments. For exam-
ple, SWBM and HBV-SIMREG do not account for physical
differences among land cover types and hence cannot be used
for studies assessing the hydrological impacts of changes in
land cover. Sixth and finally, the forcing data quality has an
important influence on the evaluation results that should not
be overlooked.

4 Results and discussion

In this section we will answer the questions posed in the in-
troduction.

4.1 How well do the different models simulate runoff?

Table 5 shows, for the uncalibrated models, the calibrated
models, and the ensembles: (i) the mean difference between
simulated and observed values of the (normalized) runoff
signatures (D), (ii) the mean temporal correlation between
simulated and observed runoff time series (), and (iii) the
mean overall performance in terms of runoff signatures and
temporal correlation coefficients (OS). HTESSEL obtained
negative D values for the square-root-transformed RC and
the square-root-transformed mean annual runoff (MAR), in-
dicating it underestimates runoff. JULES performed moder-
ately in terms of temporal correlation, as indicated by the
low r values. Conversely, LISFLOOD performed good over-
all, particularly in terms of temporal correlation, although
it tends to overestimate RC and MAR. ORCHIDEE ap-
pears to strongly underestimate runoff and performed fairly
in terms of temporal correlation, whereas PCR-GLOBWB
shows moderate to good scores for most metrics. Apart from
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a much too early bias in the flow timing (T50), SURFEX
demonstrated moderate to good performance overall. Simi-
lar to SURFEX, W3RA exhibited a very early bias in TS0,
but generally obtained moderate to good scores. WaterGAP3
and particularly HBV-SIMREG outperformed the other mod-
els in most cases. JULES, ORCHIDEE, SURFEX, Water-
GAP3, and especially SWBM displayed negative D values
for the BFI and the square-root-transformed 99th flow per-
centile (Q99), and a positive D value for the square-root-
transformed 1st flow percentile (Q1; Table 5), suggesting
they consistently overestimate quickflow. Conversely, LIS-
FLOOD and particularly PCR-GLOBWB exhibited positive
D values for BFI and Q99, and a negative D value for Ql,
indicating they tend to underestimate quickflow.

Table 5 also presents, for the 10 models and the ensembles,
the spatial correlation between simulated and observed val-
ues of the runoff signatures (o). HTESSEL, JULES, W3RA,
WaterGAP3, and HBV-SIMREG performed good overall,
while the remaining models performed moderately over-
all. PCR-GLOBWB, SURFEX, and WaterGAP3 performed
poorly in terms of BFI, while SWBM obtained a poor score
for Q99. WaterGAP3 performed good to excellent for all
signatures except BFI, likely due to the empirical estima-
tion of groundwater recharge and thus baseflow as a func-
tion of landscape characteristics (Doll and Fiedler, 2008).
HBV-SIMREG attained good to excellent p values for all
signatures. The models generally performed best for TS50 and
worst for BFI among the signatures.

Table 5 also shows, for the 10 models and the ensembles,
OS scores for the major Koppen—-Geiger climate types. We
used the newly produced Koppen—Geiger climate map from
Beck et al. (2016), which is based on the high-quality World-
Clim climatic dataset (Hijmans et al., 2005) supplemented
with regional climatic datasets for the USA (Daly et al.,
1994) and New Zealand (Tait et al., 2006). All four LSMs
(HTESSEL, JULES, ORCHIDEE, and SURFEX) gener-
ally demonstrated fair performance in cold and polar cli-
mates. Conversely, PCR-GLOBWB demonstrated poor per-
formance in tropical and arid climates, likely due to the over-
estimation of baseflow. SWBM performed moderately only
in arid catchments, probably at least partly due to the lack of
baseflow under these conditions (Pilgrim et al., 1988; Beck
et al., 2013). Similarly, Orth et al. (2015) found that SWBM
performs well during dry periods for eight small Swiss catch-
ments (60-392 kmz). Only LISFLOOD, WaterGAP3, and
HBV-SIMREG exhibited at least moderate performance for
all climates.

Figure 1 presents, for the 10 models and the ensembles,
maps of simulated minus observed MAR for the catchments,
revealing the data underlying the MAR D and p values listed
in Table 5. Maps of all other runoff signatures are presented
in Supplement Figs. S1.2-1.8. HTESSEL and ORCHIDEE
strongly underestimate runoff for most of the catchments,
while LISFLOOD appears to strongly overestimate runoff
for most of the globe with the exception of snow-dominated
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regions. All models showed negative MAR biases in snow-
dominated regions such as Alaska, the Rocky Mountains,
and southern Russia, while they consistently showed posi-
tive MAR biases for the Great Plains (USA) and southern
Australia. Figure 2 shows, for the 10 models and the en-
sembles, maps of the correlation between simulated and ob-
served monthly flows (rmen) for the catchments, showing
the data underlying the 7mon values presented in Table 5.
Maps of all other temporal variability metrics are presented
in Figs. S1.9-1.14. In general, the GHMs obtained good rmon
values for most catchments, while the LSMs obtained moder-
ate rmon values for most catchments. All LSMs showed poor
to fair ryon values for snow-dominated catchments.

Although the NSE has been widely criticized for being
overly sensitive to the magnitude and timing of peak flows
(e.g., Schaefli and Gupta, 2007; Jain and Sudheer, 2008;
Criss and Winston, 2008; Gupta et al., 2009), we did cal-
culate NSE scores to allow the present results to be put in the
context of previous macro-scale studies (see Supplement Ta-
ble S1). For most models negative median NSE scores were
obtained, similar to Zhang et al. (2016), who evaluated the
monthly and annual runoff estimates from 14 (uncalibrated)
macro-scale models in 644 large Australian catchments (>
2000 kmz). Our scores are, however, slightly lower than those
obtained by Lohmann et al. (2004) and Xia et al. (2012),
who evaluated the daily runoff estimates from four (uncal-
ibrated) macro-scale models in about a thousand small-to-
medium sized USA catchments (< 10000km?), but this is
probably attributable to the high quality of the USA forc-
ing data (Wu et al., 2017). They are also somewhat lower
than those obtained by Decharme and Douville (2007), who
evaluated two (uncalibrated) macro-scale models in 80 large
catchments (> 100000km?) around the globe, but this can
be explained by their much larger catchment sizes.

Figure 3 shows, for the seven models with data on en-
ergy availability, density plots of grid cell values of aridity
index (Al ratio of long-term energy availability to P) versus
RC (ratio of long-term mean runoff to P), revealing how the
models respond in terms of RC to different climatic condi-
tions. Also shown are the energy-limit line for which actual
evaporation equals the available energy, the water-limit line
for which runoff equals P, and the Budyko (1974) curve,
the most well-known among several similar empirical rela-
tionships describing the competition between runoff and ac-
tual evaporation (Ol’dekop, 1911; Pike, 1964; Zhang et al.,
2001; Porporato et al., 2004). Given its empirical nature, the
Budyko curve should only be used for visual reference, and
not to judge the performance of the different models. Be-
sides the striking differences in behavior among the mod-
els, it can be seen that HTESSEL, JULES, PCR-GLOBWB,
W3RA, and WaterGAP3 do not adhere to the water and/or
energy limits (Fig. 3a, b, d, f, and g, respectively). For Wa-
terGAP3, this may be due to the use of calibration factors,
which have the potential to generate runoff that can go be-
yond the physical limits in an effort to compensate for errors
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(a) HTESSEL (b) JULES

Figure 1. Simulated minus observed square-root-transformed mean annual runoff (MAR; units v/mm yr—!) for the catchments. Each data
point represents a catchment centroid (n = 966). Red (blue) indicates an overestimated (underestimated) MAR relative to the observations.
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(a) HTESSEL (b) JULES

Figure 2. Correlation coefficients calculated between simulated and observed monthly runoff (rpon; unitless) for the catchments. Each data
point represents a catchment centroid (n = 966).
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in the P, PET, or streamflow data. For the other models this
could be indicative of issues with the runoff and/or evapo-
ration routines. The larger spread found for the models for
which we used net radiation to estimate the available energy
(HTESSEL, JULES, and SURFEX; Fig. 3a, b, and e, respec-
tively) is because the majority of the net radiation is con-
verted to sensible heat rather than latent heat in cold climates
(Kleidon et al., 2014).

It is generally difficult to gain insight into why a particular
model performs as it does due to the large number of inter-
acting model components, equations, and parameters. Never-
theless, the underestimation of runoff by HTESSEL probably
reflects the excessive evaporation by HTESSEL previously
reported by Haddeland et al. (2011). PCR-GLOBWB most
likely suffers from suboptimal baseflow-related parameter
values, since its structure is similar to that of LISFLOOD,
which performs markedly better. SWBM clearly suffers from
the absence of a baseflow routine outside (semi-)arid re-
gions. Although W3RA and HBV-SIMREG use an identical
snow routine, W3RA performs considerably worse in snow-
dominated regions, probably because HBV-SIMREG uses
a snowfall gauge undercatch correction factor. The unsat-
isfactory performance demonstrated by the LSMs in snow-
dominated regions could be related to deficiencies in the
snow routines or the energy balance estimates (see Sect. 4.3).
WaterGAP3 and particularly HBV-SIMREG performed quite
well overall, likely because of their comprehensive calibra-
tion (see Sect. 4.4). In any case, the pronounced inter-model
performance spread found here suggests that model choice
should be regarded as a critical step in any hydrological mod-
eling study. Moreover, it underscores the importance of hy-
drological model uncertainty in addition to climate input un-
certainty, as also emphasized in several other recent macro-
scale studies (Haddeland et al., 2011; Schewe et al., 2013;
Prudhomme et al., 2014; Mendoza et al., 2015b; Giuntoli
et al., 2015a). Currently, the large majority of studies as-
sessing the hydrological impacts of climate change com-
pletely neglect hydrological model uncertainty (Teutschbein
and Seibert, 2010).

4.2 How well do the models perform in terms of
long-term runoff trends?

The models displayed very similar MAR trends (Fig. S1.8),
meaning they respond similarly to climate variability, given
that none of the models account for land use or land cover
changes, urbanization, reservoir construction, or increasing
atmospheric CO,. However, the models obtained rather low
spatial (Spearman) correlation coefficients (OMAR trend) Tang-
ing from 0.32 (SURFEX) to 0.42 (LISFLOOD; Table 5), in-
dicating that the simulated MAR trends correspond fairly to
moderately well to the observed ones. These values are lower
than the (Pearson) correlation coefficients ranging from 0.52
to 0.63 obtained by Stahl et al. (2012), who evaluated MAR
trends from seven models using observations from 293 small

www.hydrol-earth-syst-sci.net/21/2881/2017/

European catchments (100—1000 km?), presumably due to
the better quality of the European meteorological forcing and
observed streamflow data. Milly et al. (2005) evaluated MAR
trends from a 12-model ensemble using observations from
165 large catchments (> 50000km?) around the globe, ob-
taining a (Pearson) correlation coefficient of 0.34, which is
similar to ours. These low correlations, which were some-
what unexpected given the relative ease with which MAR can
be estimated (e.g., Westerberg and McMillan, 2015; Beck
et al., 2015), may be indicative of changes in non-climatic
drivers of hydrological change or drift errors in the forcing
or observed streamflow data. We expect the inter-model vari-
ability in trends to be higher and the agreement with obser-
vations to be even lower for seasonal and monthly averages
as well as runoff signatures sensitive to the shape of individ-
ual flow events (cf. Bastola et al., 2011; Gosling et al., 2011).
Overall, these results suggest that studies using global-scale
datasets to assess the impacts of past climate change on
runoff in small-to-medium-sized catchments should be inter-
preted with considerable caution.

4.3 How do the results of the GHMs differ, if at all,
from those of the LSMs?

Similar to Haddeland et al. (2011), the LSMs were found to
produce less runoff overall (Table 5 and Fig. 1), perhaps due
to their use of physically based Richards—Darcy type equa-
tions, which neglect preferential flows. We further found that
the GHMs perform, on average, worse than the LSMs in rain-
dominated regions: the GHMs (excluding the comprehen-
sively calibrated models WaterGAP3 and HBV-SIMREG;
see Sect. 4.4) obtained mean 0OS scores of 0.28, 0.33, and
0.43 for tropical, arid, and temperate climates, respectively,
while the same values for the LSMs are 0.39, 0.47, and
0.47, respectively (Table 5). However, the lower performance
of the GHMs is primarily attributable to PCR-GLOBWB
and SWBM. As mentioned before, PCR-GLOBWB probably
suffers from a suboptimal baseflow-related parameterization,
while SWBM suffers from the absence of a baseflow routine.

The GHMs do appear to perform consistently better than
the LSMs in snow-dominated regions: the GHMs (again ex-
cluding WaterGAP3 and HBV-SIMREG) obtained mean OS
scores of 0.46 and 0.32 for cold and polar climates, respec-
tively, while the same values for the LSMs are 0.31 and
0.25, respectively (Table 5). The performance of the LSMs
appears to be mainly due to a very early bias in flow tim-
ing, a very low baseflow contribution, and a misrepresen-
tation of the seasonal cycle (Figs. S1.4, S1.5, and S1.13,
respectively). Our results are in agreement with Giuntoli
et al. (2015b), who found five GHMs to outperform, on aver-
age, four LSMs using observations from 252 temperate and
cold catchments (64 to 1350000km?) located in the cen-
tral USA, and with Zhang et al. (2016), who found that two
LSMs performed considerably worse than two GHMs in cold
and polar regions using observations from 644 catchments

Hydrol. Earth Syst. Sci., 21, 2881-2903, 2017
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Figure 3. Density plots of grid cell values of aridity index (Al) versus runoff coefficient (RC), for the seven models with data on the available
energy. The green line represents the energy limit for which actual evaporation equals PET, the purple line represents the water limit for
which runoff equals P, whereas the blue line represents the Budyko (1974) curve.

(> 2000 km?, upper limit not reported) around the globe. The
poorer performance obtained by the LSMs is probably in-
dicative of differences between the snow routines used by
GHMs and LSMs. The GHMs use relatively simple concep-
tual temperature-index snow routines driven by air tempera-
ture, which can be estimated with relative ease, whereas the
LSMs use more complex physically based energy balance
snow routines driven by estimates of energy balance compo-
nents, which are subject to considerable uncertainty, particu-
larly in regions with complex topography (Ferguson, 1999).
Although several previous studies have found that the two
types of snow routines yield comparable performance (e.g.,
WMO, 1986; Franz et al., 2008; Zeinivand and De Smedt,
2009; Debele et al., 2010), these studies used a very small
number of relatively well-instrumented catchments (six, two,
one, and three, respectively), which may have led to less-
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generalizable conclusions. Overall, it appears that the energy
balance estimates and snow routines used by the LSMs re-
quire re-evaluation (cf. Zhang et al., 2016).

4.4 Are calibration and regionalization important or
even essential?

Calibration is important for both conceptual and physically
based hydrological models to provide more accurate runoff
estimates, to account for (i) the impossibility of measur-
ing all required model parameters at the model applica-
tion scale, (ii) lack of process understanding, (iii) possibly
overly simplistic process representations, (iv) the spatiotem-
poral discretization of highly heterogeneous rainfall-runoff
processes, and (v) errors in the forcing data (Beven, 1989;
Bloschl and Sivapalan, 1995; Duan et al., 2001, 2006; Mc-
Donnell et al., 2007; Nasonova et al., 2009; Rosero et al.,

www.hydrol-earth-syst-sci.net/21/2881/2017/
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2011; Minville et al., 2014). Yet, despite the development
of numerous calibration techniques over the last 50 years
(Dawdy and O’Donnell, 1965; Duan et al., 2004) and the
current widespread availability of streamflow observations
(Hannah et al., 2011), macro-scale models generally tend
to be uncalibrated (Sooda and Smakhtin, 2015; Bierkens,
2015; Kauffeldt et al., 2016). This is perhaps mainly due
to (i) the substantial amount of work involved with calibra-
tion (e.g., Bock et al., 2015), (ii) the risk of obtaining un-
realistic parameters due to equifinality and data issues (An-
dréassian et al., 2012), and (iii) the lack of a commonly ac-
cepted regionalization technique (Beck et al., 2016). In ad-
dition, the modeler may feel that since their model is phys-
ically based, it does not require calibration (Beven, 1989).
LSMs in particular are rarely calibrated against runoff, likely
because (i) runoff estimation is generally not among the pri-
mary aims of LSMs; (ii) for water transport in the soil, LSMs
typically use Richards—Darcy type equations, which are com-
putationally expensive and require a fine vertical and tempo-
ral soil discretization; and (iii) LSMs often do not account
for river routing, confounding the calibration of large catch-
ments. Instead, the parameters in macro-scale models are
usually based on “expert opinion” and thus founded on the
bold assumption that the modeler sufficiently understands
the hydrological processes, feedbacks, and parameter inter-
actions taking place within the model for any location on
Earth.

Nevertheless, out of the 10 models considered in
this study, four use parameters derived by calibration
(LISFLOOD, SWBM, WaterGAP3, and HBV-SIMREG
all GHMs). LISFLOOD was calibrated against ob-
served streamflow for 24 large catchments (84230 to
4 680000km?) across the globe using the WFDEI forcing
and an aggregate objective function incorporating bias, NSE,
and log-transformed NSE computed from daily streamflow
data. The calibration might have influenced the present eval-
uation; although we used much smaller catchments (1000 to
5000 kmz), 47 % of our catchments are located within the
calibration catchments. SWBM uses a spatially uniform pa-
rameter set based on calibration using the E-OBS forcing
(Haylock et al., 2008) against European data on such key hy-
drologic variables as soil moisture, total water storage, evap-
oration, and runoff (Orth and Seneviratne, 2015). For the
calibration against runoff, they used observations from 436
small European catchments (mostly < 1000 km?), and con-
sidered daily and monthly correlations as well as bias. The
calibrated parameter set was subsequently applied globally.
Besides the addition of a baseflow routine, SWBM would
probably benefit from regionalized parameters that vary ac-
cording to landscape characteristics. WaterGAP3 has been
calibrated using the WFDEI forcing in terms of bias for the
interstation regions (the catchment of a station excluding
the catchments of nested upstream stations) of 2071 stations
(catchment size ranging from 2830 to 966 321 km?) around
the globe, some of which have also been used in the current
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evaluation. The calibrated parameters were subsequently re-
gionalized to ungauged regions using multiple linear regres-
sion based on six predictors (D6ll et al., 2003). The model
does indeed perform very well for MAR and thus RC, but
this did not necessarily translate into good performance for
BFI (Table 5, and Figs. 1 and 2). HBV-SIMREG also uses
regionalized parameter fields, produced by transferring cali-
brated parameters from 674 small-to-medium sized “donor”
catchments (10 to 10 000 km?) across the globe to “receptor”
grid cells with similar climatic and physiographic character-
istics (Beck et al., 2016). In their study, Beck et al. (2016)
show that HBV using spatially uniform parameters performs
within the range of the other models, confirming that the
relatively good performance of HBV-SIMREG stems from
the regionalization exercise. In addition, although Beck et al.
(2016) did not use the WFDEI forcing for the calibration,
they calibrated against several of the performance metrics
also used here and used 179 of our catchments as parameter
donors, further explaining the relatively good performance
obtained by HBV-SIMREG (Table 5, and Figs. 1 and 2).

Overall, it appears that the calibration exercises for Wa-
terGAP3, HBV-SIMREG, and possibly LISFLOOD have re-
sulted in markedly improved performance. However, Water-
GAP3 performed poorly in terms of pgpy (Table 5), meaning
the calibration of MAR did not translate into better BFI per-
formance. These results underscore the benefits of calibrated
parameters over a priori parameters (cf. Duan et al., 2006;
Hunger and Daéll, 2008; Nasonova et al., 2009; Rosero et al.,
2011; Greuell et al., 2015; Zhang et al., 2016) and highlight
the importance of using an objective function for the cali-
bration that incorporates a broad range of metrics related to
various important aspects of the hydrograph (cf. Gupta et al.,
2008; Vis et al., 2015; Shafii and Tolson, 2015). These results
also emphasize the usefulness of regionalization techniques
(Parajka et al., 2013), which typically enhance performance
over the entire model domain and are thus of particular value
for macro-scale modeling, given that the majority of the land
surface is ungauged or poorly gauged (Sivapalan, 2003; Han-
nah et al., 2011). However, although there are numerous stud-
ies performing regionalization at a regional scale (see re-
views by He et al., 2011; Hrachowitz et al., 2013; Razavi
and Coulibaly, 2013; Parajka et al., 2013), only a few studies
have attempted regionalization at a macro-scale (see review
by Beck et al., 2016). We argue that more effort should be de-
voted to regionalizing the parameters of macro-scale models
(cf. Bierkens, 2015; Doll et al., 2015).

It should be noted, however, that the potential performance
improvement gained by calibration and regionalization will
depend on the structure and flexibility of the model in ques-
tion. Many current models have rigid structures and/or in-
sufficient free parameters and thus cannot be calibrated suc-
cessfully (Mendoza et al., 2015a). Moreover, for climate pro-
jections one should bear in mind that calibrated parameters
become less valid when the model is subjected to climatic
conditions it has never seen before (Knutti, 2008).
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4.5 What is the impact of the forcing data on the
simulated runoff?

There are not only strong inter-model differences in the per-
formance patterns but also clear inter-model similarities, sug-
gesting that the forcing data quality imparts a strong limit
on the performance. This is most notable for the MAR met-
ric: all models showed negative biases in MAR in snow-
dominated regions such as Alaska, the Rocky Mountains, and
southern Russia, while they consistently showed positive bi-
ases in MAR for the Great Plains (USA) and southern Aus-
tralia (Fig. 1). The high spatial correlation in the performance
patterns suggests that these consistent performance patterns
may be due to biases in the WFDEI P data, rather than bi-
ases in the streamflow observations, which are unlikely to be
spatially correlated.

It is conceivable that biases are present in the WFDEI P
data, because (i) the monthly CRU dataset, which has been
used to correct the WFDEI dataset, is based on only a subset
of the available gauges and does not explicitly account for
orographic effects; (ii) in sparsely gauged regions the cor-
rection using CRU is more likely to deteriorate rather than
improve the P estimates; and (iii) the Adam and Lettenmaier
(2003) gauge undercatch correction factors are based on in-
terpolation of a very sparse sample of gauges and thus sub-
ject to considerable uncertainty. For the conterminous USA
we quantified the biases in the WFDEI P data using the
high-quality Parameter-elevation Relationships on Indepen-
dent Slopes Model (PRISM) climatic dataset (Daly et al.,
1994), which is based on considerably more gauges than
CRU and includes sophisticated corrections for orography.
Figure 4a shows the bias in mean annual P from WFDEI
relative to that from PRISM, suggesting that the WFDEI P
data are indeed subject to large biases. Figure 4b shows the
bias in MAR from the MEAN-AIl ensemble relative to MAR
from the observations, revealing a comparable bias pattern,
thus confirming that the biases in the WFDEI P propagate
in the simulated runoff. The correlation coefficient between
the MAR and P bias values is 0.58, indicating a moderately
strong relationship. These P biases appear to translate into
even more pronounced runoff biases in (semi-)arid regions
(notably the northern Great Plains; Fig. 4b and c) due to
the highly nonlinear response behavior in these environments
(Lidén and Harlin, 2000; Fekete et al., 2004; Van Dijk et al.,
2013a). We were unable to quantify the P biases globally
since no other independent, global-scale P dataset exists (the
WorldClim and CHPclim datasets are likely to exhibit simi-
lar biases as the CRU TS3.1 dataset, given that they are based
on similar sets of gauges). However, we expect the P biases
to be at least similar, if not more severe, outside the well-
instrumented conterminous USA (cf. Fekete et al., 2004; Hi-
jmans et al., 2005; Biemans et al., 2009; Zhou et al., 2012;
Kauffeldt et al., 2013; Greuell et al., 2015). It should be noted
that biases in PET are probably of secondary importance as
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compared with biases in P (Donohue et al., 2010; Sperna
Weiland et al., 2011; Seiller and Anctil, 2015).

The global-scale quantification and reduction of these P
biases should be a priority for future research. Satellite-
derived P offers unique opportunities in this regard (e.g.,
Funk et al., 2015) that extend beyond the tropics with the re-
cent launch of the Global Precipitation Measurement (GPM)
mission (Smith et al., 2007). Another little-explored way of
reducing P uncertainty is by “doing hydrology backwards”;
that is, to use information on other hydrological variables, for
example, satellite-derived surface soil moisture (e.g., Brocca
et al., 2014), streamflow observations (e.g., Adam et al.,
2006; Beck et al., 2017), and snow-depth observations (e.g.,
Cherry et al., 2005) to reconstruct P through hydrological
modeling. Arguably the most important obstacles to combin-
ing multiple data sources are the inconsistent temporal cov-
erage and scale of different data sources and the general lack
of error/uncertainty estimates.

Although the models all used the same P data, they used
different formulations to compute PET, which has likely con-
tributed to differences in simulated runoff among the models
in energy-limited regions (Weifl and Menzel, 2008; Kingston
et al., 2009; Haddeland et al., 2011; Weedon et al., 2011;
Sperna Weiland et al., 2011). However, PET data were avail-
able for only four models, which is insufficient to examine
whether the PET formulation has had a discernible influence
on the simulated runoff, given the numerous other differences
in structure and parameterization among the models.

4.6 How valuable are multi-model ensembles?

The multi-model ensemble MEAN-AII incorporated all 10
models, while MEAN-Best4 incorporated only LISFLOOD,
W3RA, WaterGAP3, and HBV-SIMREG (i.e., the four mod-
els that performed best in terms of OS; Table 5). MEAN-ALI
and MEAN-Best4 were found to perform better than all indi-
vidual models (with the exception of HBV-SIMREG, which
has been comprehensively calibrated; Table 5, and Figs. 1
and 2). These results highlight the benefits of multi-model
ensembles, in line with several previous studies (Ajami et al.,
2006; Duan et al., 2007; Viney et al., 2009; Materia et al.,
2010; Veldazquez et al., 2010; Gudmundsson et al., 2012a;
Xia et al., 2012; Yang et al., 2015). The similar 0OS scores
obtained by MEAN-AIl and MEAN-Best4 (0.57 and 0.60,
respectively; Table 5) suggests that the inclusion of less-
accurate models has only limited adverse effects. It may be
worthwhile for future studies to examine the benefits of more
sophisticated multi-model combination techniques involving
bias correction or model weighting (e.g., Ajami et al., 2006;
Duan et al., 2007; Bohn et al., 2010). These weights can sub-
sequently be transferred from gauged to ungauged areas us-
ing regionalization techniques typically used for hydrologi-
cal model parameters (Bloschl et al., 2013).

HBV-SIMREG differs from the other models because
it represents a “multi-parameterization ensemble”, which
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Figure 4. For the conterminous USA, (a) the bias in mean annual P from WFDETI relative to PRISM, (b) the bias in MAR from the MEAN-
All ensemble relative to the observations, and (c) the aridity index, the ratio of mean annual PET (computed from PRISM air temperature
using Hargreaves et al., 1985) to P (PRISM; note the nonlinear color scale). Each data point in (b) represents a catchment centroid. The
bias in (a) and (b) was computed following B = (X — R)/(X + R), where B is the bias, X the uncertain value, and R the reference value.
B values range from —1 to 1. A 100 % overestimation results in B = 1/3, whereas a 50 % underestimation results in B = —1/3.

means the model was run multiple (10) times globally using
different (regionalized) parameter sets representing differ-
ent catchment response behaviors (Beck et al., 2016). HBV-
SIMREG obtained slightly better performance than both
MEAN-AIl and MEAN-Best4 overall (Table 5), tentatively
suggesting that a multi-parameterization ensemble for a sin-
gle, sufficiently flexible model provides performance com-
parable to a multi-model ensemble (cf. Oudin et al., 2006;
Yang et al., 2011; Coxon et al., 2014). If this is confirmed,
it would negate the need to set up, run, and maintain mul-
tiple models, and incentivize the development of a single
community hydrological model (cf. Weiler and Beven, 2015)
as well as modeling systems allowing for the selection of
alternative model structures (cf. Bierkens, 2015), such as
the Framework for Understanding Structural Errors (FUSE;
Clark et al., 2008), Noah Multi-Parameterization (Noah-MP;
Niu et al., 2011), and SUPERFLEX (Fenicia et al., 2011).

4.7 Do all models show the early bias in runoff timing
in snow-dominated catchments previously
documented and what is the cause?

With the exception of ORCHIDEE and HBV-SIMREG, all
models showed early T50 biases in snow-dominated regions
(Fig. S1.3), indicating that the models produce the spring
snowmelt peak early, as has also been reported in several
previous studies using different models and forcing data
(Lohmann et al., 2004; Slater et al., 2007; Decharme and
Douville, 2007; Balsamo et al., 2009; Zaitchik et al., 2010;
Beck et al., 2015). The early runoff timing is probably pri-
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Figure 5. Scatterplot of the difference between simulated (MEAN-
All) and observed-transformed RC (Dgc) versus the difference be-
tween simulated (MEAN-AIl) and observed T50 (Dts0) for the
catchments (n = 966).

marily due to P underestimation, which leads to insuffi-
cient snow accumulation that subsequently melts too quickly
(Hancock et al., 2014). The fact that HBV-SIMREG per-
forms well in this regard is probably attributable to the snow-
fall gauge undercatch correction factor of the model. Indeed,
Fig. 5 tentatively shows that catchments in which the models
strongly underestimate runoff (i.e., negative Drc) generally
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tend to exhibit an early bias in TS50 (i.e., negative Dtsg) and
vice versa. The absence or misrepresentation of certain pro-
cesses that delay snowmelt runoff in the models may have
exacerbated the early runoff timing problem. Examples of
such processes include the isothermal phase change of the
snowpack, retainment of meltwater in the snowpack in pore
spaces, infiltration of meltwater into the soil, meltwater re-
freezing during cold days and nights, and ice jams in rivers.
On the whole, more research is needed to ascertain the exact
reasons of the early runoff timing.

5 Conclusions

The runoff estimates from 10 state-of-the-art macro-scale
hydrological models, all forced with the WFDEI dataset,
were evaluated using observations from 966 medium-sized
catchments around the globe. With reference to the questions
posed in the introduction, the following was found:

1. The performance differed markedly among models, un-
derscoring the importance of hydrological model uncer-
tainty in addition to climate input uncertainty, and sug-
gesting that model choice should be regarded as a criti-
cal step in any hydrological modeling study.

2. The models displayed similar MAR trends, although
they were in poor agreement with observed trends.
Model-based runoff trends in small-to-medium sized
catchments should thus be interpreted with considerable
caution.

3. Considering only the uncalibrated models, the GHMs
performed similarly to the LSMs in rainfall-dominated
regions but consistently better than the LSMs in snow-
dominated regions, perhaps due to the use of more data-
demanding snow routines or the misrepresentation of
frozen soil and snowmelt processes by the LSMs.

4. The models that have been calibrated obtained higher
scores for the performance metrics incorporated in the
respective objective functions used for calibration.

5. The WFDEI P forcing data still appear to contain sub-
stantial biases, despite adjustments using gauge obser-
vations. These P biases translate into biases in the simu-
lated runoff, which are amplified in (semi-)arid regions.
In snow-dominated regions there appears to be a consis-
tent underestimation in P and thus simulated runoff.

6. The multi-model ensembles obtained only slightly
worse performance than the best (calibrated) model, and
the inclusion of less-accurate models did not severely
degrade the performance. A multi-parameterization en-
semble for a single, sufficiently flexible model is easier
to realize but we speculate may yield the same perfor-
mance benefits as a multi-model ensemble.
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7. Most models were indeed found to generate the spring
snowmelt peak early, probably due to the previously
mentioned P underestimation and the absence or mis-
representation of certain processes that delay snowmelt
runoff in the models.

available via
(WCIL;  http:

Data availability. All  model
the eartH2Observe Water
/Iwci.earth2observe.eu).

outputs  are
Cycle Integrator

The Supplement related to this article is available
online at https://doi.org/10.5194/hess-21-2881-2017-
supplement.

Author contributions. H. B. designed and performed the model
evaluation and wrote most of the manuscript. A. v. D., A. d. R,,
E. D, G. F, R. O., and J. S. helped with the interpretation of the
results and contributed to writing of the manuscript. H. B., A. v. D.,
A.d.R.,E.D, G.F,andR. O. assisted in running the hydrological
models and making available the model output.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The Global Runoft Data Centre (GRDC) and
the US Geological Survey (USGS) are thanked for providing most
of the observed streamflow data. We gratefully acknowledge the
modeling groups participating in the eartH2Observe project for
providing the simulated runoff data. Lukas Gudmundsson and an
anonymous reviewer are thanked for their comments on an earlier
draft. This research received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 603608, “Global Earth Observation for integrated
water resource assessment”: eartH2Observe. The views expressed
herein are those of the authors and do not necessarily reflect those
of the European Commission.

Edited by: S. Schymanski
Reviewed by: L. Gudmundsson and one anonymous referee

References

Adam, J. C. and Lettenmaier, D. P.: Adjustment of global gridded
precipitation for systematic bias, J. Geophys. Res.-Atmos., 108,
4257, https://doi.org/10.1029/2002JD002499, 2003.

Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F.: Cor-
rection of global precipitation products for orographic effects, J.
Clim., 19, 15-38, https://doi.org/10.1175/JCLI3604.1, 2006.

Ajami, N. K., Duan, Q., Gao, X., and Sorooshian, S.: Multimodel
Combination Techniques for Analysis of Hydrological Simula-
tions: Application to Distributed Model Intercomparison Project
Results, J. Hydrometeorol., 7, 755-768, 2006.

www.hydrol-earth-syst-sci.net/21/2881/2017/


http://wci.earth2observe.eu
http://wci.earth2observe.eu
https://doi.org/10.5194/hess-21-2881-2017-supplement
https://doi.org/10.5194/hess-21-2881-2017-supplement
https://doi.org/10.1029/2002JD002499
https://doi.org/10.1175/JCLI3604.1

H. E. Beck et al.: Evaluation of runoff from 10 hydrological models 2897

Andréassian, V., Lerat, J., Loumagne, C., Mathevet, T., Michel, C.,
Oudin, L., and Perrin, C.: What is really undermining hydrologic
science today?, Hydrol. Process., 21, 2819-2822, 2007.

Andréassian, V., Le Moine, N., Perrin, C., Ramos, M. H., Oudin,
L., Mathevet, T., Lerat, J., and Berthet, L.: All that glitters is
not gold: the case of calibrating hydrological models, Hydrol.
Process., 26, 2206-2210, 2012.

Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk,
B., Hirschi, M., and Betts, A. K.: A revised hydrology for the
ECMWF model: verification from field site to terrestrial water
storage and impact in the integrated forecast system, J. Hydrom-
eteorol., 10, 623-643, 2009.

Balsamo, G., Pappenberger, F., Dutra, E., Viterbo, P., and van den
Hurk, B.: A revised land hydrology in the ECMWF model: a step
towards daily water flux prediction in a fully-closed water cycle,
Hydrol. Process., 25, 1046-1054, 2011.

Bastola, S., Murphy, C., and Sweeney, J.: The role of hydrological
modeling uncertainties in climate change impact assessments of
Irish river catchments, Adv. Water Resour., 34, 562-576, 2011.

Beck, H. E., van Dijk, A. I. J. M., Miralles, D. G., de Jeu, R. A. M.,
Bruijnzeel, L. A., McVicar, T. R., and Schellekens, J.: Global
patterns in baseflow index and recession based on streamflow ob-
servations from 3394 catchments, Water Resour. Res., 49, 7843—
7863, 2013.

Beck, H. E., van Dijk, A. I. J. M., and de Roo, A.: Global maps
of streamflow characteristics based on observations from several
thousand catchments, J. Hydrometeorol., 16, 1478-1501, 2015.

Beck, H. E., van Dijk, A. L. J. M., de Roo, A. Mi-
ralles, D. G., McVicar, T. R., Schellekens, J., and Brui-
jnzeel, L. A.: Global-scale regionalization of hydrologic
model parameters, Water Resour. Res., 52, 3599-3622,
https://doi.org/10.1002/2015WR018247, 2016.

Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens,
J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-
hourly 0.25° global gridded precipitation (1979-2015) by merg-
ing gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci.,
21, 589-615, https://doi.org/10.5194/hess-21-589-2017, 2017.

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. .
L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A.,
Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O.,
Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint
UK Land Environment Simulator (JULES), model description
— Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677—
699, https://doi.org/10.5194/gmd-4-677-2011, 2011.

Beven, K. J.: Changing ideas in hydrology — the case of physically-
based models, J. Hydrol., 105, 157-172, 1989.

Biemans, H., Hutjes, R. W. A., Kabat, P., Strengers, B. J., Gerten,
D., and Rost, S.: Effects of precipitation uncertainty on discharge
calculations for main river basins, J. Hydrometeorol., 10, 1011-
1025, 2009.

Bierkens, M. F. P.: Global hydrology 2015: state, trends,
and directions, Water Resour. Res., 51, 4923-4947,
https://doi.org/10.1002/2015WR017173, 2015.

Bierkens, M. F. P, Bell, V. A., Burek, P., Chaney, N., Condon, L. E.,
David, C. H., de Roo, A., Ddll, P, Drost, N., Famiglietti, J. S.,
Florke, M., Gochis, D. J., Houser, P., Hut, R., Keune, J., Kol-
let, S., Maxwell, R. M., Reager, J. T., Samaniego, L., Sudicky,
E., Sutanudjaja, E. H., van de Giesen, N., Winsemius, H., and

www.hydrol-earth-syst-sci.net/21/2881/2017/

Wood, E.: Hyper-resolution global hydrological modelling: what
is next?, Hydrol. Process., 29, 310-320, 2015.

Bloschl, G. and Sivapalan, M.: Scale issues in hydrological mod-
elling: A review, Hydrol. Process., 9, 251-290, 1995.

Bloschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije,
H., eds.: Runoff Prediction in Ungauged Basins: synthesis across
Processes, Places and Scales, Cambridge University Press, New
York, US, 2013.

Bock, A. R., Hay, L. E., McCabe, G. J., Markstrom, S. L., and
Atkinson, R. D.: Parameter regionalization of a monthly water
balance model for the conterminous United States, Hydrol. Earth
Syst. Sci., 20, 2861-2876, https://doi.org/10.5194/hess-20-2861-
2016, 2016.

Bohn, T. J., Sonessa, M. Y., and Lettenmaier, D. P.: Seasonal hydro-
logic forecasting: do multimodel ensemble averages always yield
improvements in forecast skill?, J. Hydrometeorol., 11, 1358—
1372, 2010.

Bontemps, S., Defourny, P., and van Bogaert, E.: GlobCover 2009,
products description and validation report, Tech. rep., ESA Glob-
Cover project, available at: http://ionial.esrin.esa.int (last access:
June 2016), 2011.

Bosch, J. M. and Hewlett, J. D.: A review of catchment experiments
to determine the effect of vegetation changes on water yield and
evapotranspiration, J. Hydrol., 55, 3-23, 1982.

Breuer, L., Huisman, J. A., Willems, P., Bormann, H., Bronstert, A.,
Croke, B. F. W., Frede, H., Griffe, T., Hubrechts, L., Jakeman,
A.J., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, D. P., Lind-
strom, G., Seibert, J., Sivapalan, M., and Viney, N. R.: Assessing
the impact of land use change on hydrology by ensemble model-
ing (LUCHEM). I: Model intercomparison with current land use,
Adv. Water Resour., 32, 129-146, 2009.

Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S.,
Hasenauer, S., Kidd, R., Dorigo, W., Wagner, W., and Levizzani,
V.: Soil as a natural rain gauge: estimating global rainfall from
satellite soil moisture data, J. Geophys. Res.-Atmos., 119, 5128—
5141, 2014.

Budyko, M. I.: Climate and life, Academic Press, New York, 1974.

Burek, P., van der Knijff, J., and de Roo, A.: LISFLOOD Distributed
Water Balance and Flood Simulation Model Revised User Man-
ual, Tech. Rep. EUR 26162 EN, Joint Research Centre (JRC),
Ispra, Italy, https://doi.org/10.2788/24719, 2013.

Cherry, J. E., Tremblay, L. B., Déry, S. J., and Stieglitz, M.: Re-
constructing solid precipitation from snow depth measurements
and a land surface model, Water Resour. Res., 41, W(09401,
https://doi.org/10.1029/2005WR003965, 2005.

Clark, M. P, Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A,
Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Under-
standing Structural Errors (FUSE): a modular framework to di-
agnose differences between hydrological models, Water Resour.
Res., 44, WO00BO02, https://doi.org/10.1029/2007WR006735,
2008.

Clark, M. P, Fan, Y., Lawrence, D. M., Adam, J. C., Bolster,
D., Gochis, D. J., Hooper, R. P., Kumar, M., Leung, L. R,
Mackay, D. S., Maxwell, R. M., Shen, C., Swenson, S. C., and
Zeng, X.: Improving the representation of hydrologic processes
in Earth System Models, Water Resour. Res., 51, 5929-5956,
https://doi.org/10.1002/2015WR017096, 2015.

Coxon, G., Freer, J., Wagener, T., Odoni, N. A., and Clark, M.: Di-
agnostic evaluation of multiple hypotheses of hydrological be-

Hydrol. Earth Syst. Sci., 21, 2881-2903, 2017


https://doi.org/10.1002/2015WR018247
https://doi.org/10.5194/hess-21-589-2017
https://doi.org/10.5194/gmd-4-677-2011
https://doi.org/10.1002/2015WR017173
https://doi.org/10.5194/hess-20-2861-2016
https://doi.org/10.5194/hess-20-2861-2016
http://ionia1.esrin.esa.int
https://doi.org/10.2788/24719
https://doi.org/10.1029/2005WR003965
https://doi.org/10.1029/2007WR006735
https://doi.org/10.1002/2015WR017096

2898

havior in a limits-of-acceptability framework for 24 UK catch-
ments, Hydrol. Process., 28, 6135-6150, 2014.

Criss, R. E. and Winston, W. E.: Do Nash values have value?
Discussion and alternate proposals, Hydrol. Process., 22, 2723—
2725, 2008.

Daly, C., Neilson, R. P., and Phillips, D. L.: A statistical-
topographic model for mapping climatological precipitation over
mountainous terrain, J. Appl. Meteorol., 33, 140-158, 1994.

Dawdy, D. R. and O’Donnell, T.: Mathematical models of catch-
ment behavior, J. Hydr. Eng. Div.-ASCE, 91, 123-137, 1965.

Debele, B., Srinivasan, R., and Gosain, A. K.: Comparison of
Process-Based and Temperature-Index Snowmelt Modeling in
SWAT, Water Resour. Manag., 24, 1065-1088, 2010.

Decharme, B.: Influence of runoff parameterization on conti-
nental hydrology: Comparison between the Noah and the
ISBA land surface models, J. Geophys. Res., 112, D19108,
https://doi.org/10.1029/2007JD008463, 2007.

Decharme, B. and Douville, H.: Uncertainties in the GSWP-2 pre-
cipitation forcing and their impacts on regional and global hy-
drological simulations, Clim. Dynam., 27, 695-713, 2006.

Decharme, B. and Douville, H.: Global validation of the ISBA sub-
grid hydrology, Clim. Dynam., 29, 21-37, 2007.

Decharme, B., Boone, A., Delire, C., and Noilhan, J.: Lo-
cal evaluation of the Interaction between Soil Biosphere At-
mosphere soil multilayer diffusion scheme using four pedo-
transfer functions, J. Geophys. Res.-Atmos., 116, D20126,
https://doi.org/10.1029/2011JD016002, 2011.

Decharme, B., Martin, E., and Faroux, S.: Reconciling soil ther-
mal and hydrological lower boundary conditions in land surface
models, J. Geophys. Res.-Atmos., 118, 7819-7834, 2013.

Dirmeyer, P. A.: A history and review of the Global Soil Wetness
Project (GSWP), J. Hydrometeorol., 12, 729-749, 2011.

Doll, P. and Fiedler, K.: Global-scale modeling of ground-
water recharge, Hydrol. Earth Syst. Sci., 12, 863-885,
https://doi.org/10.5194/hess-12-863-2008, 2008.

Doll, P., Kaspar, F., and Lehner, B.: A global hydrological model
for deriving water availability indicators: model tuning and vali-
dation, J. Hydrol., 270, 105-134, 2003.

Doll, P., Douville, H., Giintner, A., Miiller Schmied, H., and
Wada, Y.: Modelling Freshwater Resources at the global
scale: challenges and prospects, Surv. Geophys., 37, 1-26,
https://doi.org/10.1007/s10712-015-9343-1, 2015.

Donohue, R. J., McVicar, T. R., and Roderick, M. L.: Assessing
the ability of potential evaporation formulations to capture the
dynamics in evaporative demand within a changing climate, J.
Hydrol., 386, 186-197, 2010.

Duan, Q., Schaake, J., and Koren, V.: A Priori estimation of land
surface model parameters, in: Land Surface Hydrology, Meteo-
rology, and Climate: Observations and Modeling, edited by: Lak-
shmi, V., Albertson, J., and Schaake, J., no. 3 in Water Science
and Application, AGU, Washington, DC, US, 77-94, 2001.

Duan, Q., Gupta, H. V., Sorooshian, S., Rousseau, A. N., and Tur-
cotte, R.: Calibration of watershed models, vol. Water Science
and Application, American Geophysical Union, 2004.

Duan, Q., Schaake, J., Andréassian, V., Franks, S., Goteti, G.,
Gupta, H. V., Gusev, Y. M., Habets, F.,, Hall, A., Hay, L., Hogue,
T., Huang, M., Leavesley, G., Liang, X., Nasonova, O. N., Noil-
han, J., Oudin, L., Sorooshian, S., Wagener, T., and Wood,
E. F.: Model Parameter Estimation Experiment (MOPEX): An

Hydrol. Earth Syst. Sci., 21, 2881-2903, 2017

H. E. Beck et al.: Evaluation of runoff from 10 hydrological models

overview of science strategy and major results from the second
and third workshops, J. Hydrol., 320, 3-17, 2006.

Duan, Q., Ajami, N. K., Gao, X., and Sorooshian, S.: Multi-model
ensemble hydrologic prediction using Bayesian model averag-
ing, Adv. Water Resour., 30, 1371-1386, 2007.

Falcone, J. A., Carlisle, D. M., Wolock, D. M., and Meador, M. R.:
GAGES: A stream gage database for evaluating natural and al-
tered flow conditions in the conterminous United States, Ecol-
ogy, 91, 621, 2010.

Fekete, B. M., Vorosmarty, C. J., Roads, J. O., and Willmott, C. J.:
Uncertainties in precipitation and their impacts on runoff esti-
mates, J. Clim., 17, 294-304, 2004.

Fekete, B. M., Looser, U., Pietroniro, A., and Robarts, R. D.: Ratio-
nale for monitoring discharge on the ground, J. Hydrometeorol.,
13, 1977-1986, 2012.

Fenicia, G., Kavetski, D., and Savenije, H. H. G.: Elements of a
flexible approach for conceptual hydrological modeling: 1. Mo-
tivation and theoretical development, Water Resour. Res., 47,
https://doi.org/10.1029/2010WR010174, 2011.

Ferguson, R. I.: Snowmelt runoff models, Prog. Phys. Geog., 23,
205-227, 1999.

Franz, K. J., Hogue, T. S., and Sorooshian, S.: Operational snow
modeling: Addressing the challenges of an energy balance model
for National Weather Service forecasts, J. Hydrol., 360, 48—66,
2008.

Freeze, R. A. and Harlan, R. L.: Blueprint for a physically-based,
digitally-simulated hydrologic response model, J. Hydrol., 9,
237-258, 1969.

Funk, C., Verdin, A., Michaelsen, J., Peterson, P., Pedreros, D., and
Husak, G.: A global satellite assisted precipitation climatology,
Earth Syst. Sci. Data, 7, 275-287, https://doi.org/10.5194/essd-
7-275-2015, 2015.

Giuntoli, I., Vidal, J., Prudhomme, C., and Hannah, D. M.: Future
hydrological extremes: the uncertainty from multiple global cli-
mate and global hydrological models, Earth Syst. Dynam., 6,
267-285, 2015a.

Giuntoli, I., Vilarini, G., Prudhomme, C., Mallakpour, I., and Han-
nah, D. M.: Evaluation of global impact models’ ability to re-
produce runoff characteristics over the central United States, J.
Geophys. Rese.-Atmos., 120, 9138-9159, 2015b.

Gosling, S. N., Taylor, R. G., Arnell, N. W, and Todd,
M. C.: A comparative analysis of projected impacts of cli-
mate change on river runoff from global and catchment-scale
hydrological models, Hydrol. Earth Syst. Sci., 15, 279-294,
https://doi.org/10.5194/hess-15-279-2011, 2011.

Greuell, W., Andersson, J. C. M., Donnelly, C., Feyen, L., Gerten,
D., Ludwig, F., Pisacane, G., Roudier, P., and Schaphoff,
S.: Evaluation of five hydrological models across Europe
and their suitability for making projections under climate
change, Hydrol. Earth Syst. Sci. Discuss., 12, 10289-10330,
https://doi.org/10.5194/hessd-12-10289-2015, 2015.

Gudmundsson, L. and Seneviratne, S. I.: Towards observation-
based gridded runoff estimates for Europe, Hydrol. Earth Syst.
Sci., 19, 2859-2879, https://doi.org/10.5194/hess-19-2859-2015,
2015.

Gudmundsson, L., Tallaksen, L. M., Stahl, K., Clark, D. B., Du-
mont, E., Hagemann, S., Bertrand, N., Gerten, D., Heinke, J.,
Hanasaki, N., Voss, F., and Koirala, S.: Comparing Large-Scale

www.hydrol-earth-syst-sci.net/21/2881/2017/


https://doi.org/10.1029/2007JD008463
https://doi.org/10.1029/2011JD016002
https://doi.org/10.5194/hess-12-863-2008
https://doi.org/10.1007/s10712-015-9343-1
https://doi.org/10.1029/2010WR010174
https://doi.org/10.5194/essd-7-275-2015
https://doi.org/10.5194/essd-7-275-2015
https://doi.org/10.5194/hess-15-279-2011
https://doi.org/10.5194/hessd-12-10289-2015
https://doi.org/10.5194/hess-19-2859-2015

H. E. Beck et al.: Evaluation of runoff from 10 hydrological models 2899

Hydrological Model Simulations to Observed Runoff Percentiles
in Europe, J. Hydrometeorol., 13, 604-620, 2012a.

Gudmundsson, L., Wagener, T., Tallaksen, L. M., and Engeland, K.:
Evaluation of nine large-scale hydrological models with respect
to the seasonal runoff climatology in Europe, Water Resour. Res.,
48, W11504, https://doi.org/10.1029/201 1WR010911, 2012b.

Giintner, A.: Improvement of global hydrological models using
GRACE data, Surv. Geophys., 29, 375-397, 2008.

Guo, Z., Dirmeyer, P. A., Gao, X., and Zhao, M.: Improving the
quality of simulated soil moisture with a multi-model ensemble
approach, Q. J. R. Meteor. Soc., 133, 731-747, 2007.

Gupta, H. V., Wagener, T., and Liu, Y.: Reconciling theory with
observations: elements of a diagnostic approach to model evalu-
ation, Hydrol. Process., 22, 3802-3813, 2008.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling, J. Hydrol.,
370, 80-91, 2009.

Gupta, H. V., Perrin, C., Bloschl, G., Montanari, A., Kumar, R.,
Clark, M., and Andréassian, V.: Large-sample hydrology: a need
to balance depth with breadth, Hydrol. Earth Syst. Sci., 18, 463—
477, https://doi.org/10.5194/hess-18-463-2014, 2014.

Gustard, A., Bullock, A., and Dixon, J. M.: Low flow estimation
in the United Kingdom, Tech. Rep. 108, Institute of Hydrology,
Wallingford, UK, 1992.

Haddeland, 1., Clark, D. B., Franssen, W., F, L., VoB, F., Arnell,
N. W., Bertrand, N., Best, M., Folwell, S., Gerten, D., Gomes,
S., Gosling, S. N., Hagemann, S., Hanasaki, N., Harding, R.,
Heinke, J., Kabat, P., Koirala, S., Oki, T., Polcher, J., Stacke, T.,
Viterbo, P., Weedon, G. P., and Yehm, P.: Multimodel Estimate
of the Global Terrestrial Water Balance: Setup and First Results,
J. Hydrometeorol., 12, 869-884, 2011.

Hancock, S., Huntley, B., Ellis, R., and Baxter, R.: Biases in Re-
analysis Snowfall Found by Comparing the JULES Land Surface
Model to GlobSnow, J.Clim., 27, 624-632, 2014.

Hannah, D. M., Demuth, S., Van Lanen, H. A. J., Looser, U., Prud-
homme, C., Rees, G., Stahl, K., and Tallaksen, L. M.: Large-scale
river flow archives: importance, current status and future needs,
Hydrol. Process., 25, 1191-1200, 2011.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova,
S. A, Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J.,
Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice,
C. O., and Townshend, J. R. G.: High-resolution global maps of
21st-century forest cover change, Science, 342, 850-853, 2013.

Hargreaves, G. L., Hargreaves, G. H., and Riley, J. P.: Irrigation
water requirements for Senegal River Basin, J. Irrig. Drain. E.-
ASCE, 111, 265-275, 1985.

Harris, 1., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations — the
CRU TS3.10 dataset, Int. J. Climatol., 34, 623-642, 2013.

Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok,
E. J., Jones, P, and New, M.: A European daily high-
resolution gridded data set of surface temperature and precipi-
tation for 1950-2006, J. Geophys. Res.-Atmos., 113, D20119,
https://doi.org/10.1029/2008JD010201, 2008.

He, Y., Bardossy, A., and Zehe, E.: A review of regionalisation for
continuous streamflow simulation, Hydrol. Earth Syst. Sci., 15,
3539-3553, https://doi.org/10.5194/hess-15-3539-2011, 2011.

www.hydrol-earth-syst-sci.net/21/2881/2017/

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis,
A.: Very high resolution interpolated climate surfaces for global
land areas, Int. J. Climatol., 25, 1965-1978, 2005.

Hrachowitz, M., Savenije, H. H. G., Bloschl, G., McDonrell, J. J.,
Sivapalan, M., Pomeroy, J. W., Arheimer, B., Blume, T., Clark,
M. P., Ehret, U., Fenicia, F,, Freer, J. E., Gelfan, A., Gupta, H. V.,
Hughes, D. A., Hut, R. W., Montanari, A., Pande, S., Tetzlaff,
D., Troch, P. A., Uhlenbrook, S., Wagener, T., Winsemius, H. C.,
Woods, R. A., Zehe, E., and Cudennec, C.: A decade of Predic-
tions in Ungauged Basins (PUB) — a review, Hydrol. Sci. J., 58,
1198-1255, 2013.

Hunger, M. and Déll, P.: Value of river discharge data for global-
scale hydrological modeling, Hydrol. Earth Syst. Sci., 12, 841—
861, https://doi.org/10.5194/hess-12-841-2008, 2008.

Jain, S. K. and Sudheer, K. P.: Fitting of hydrologic models: a close
look at the Nash-Sutcliffe index, J. Hydrol. Engin., 13, 981-986,
2008.

Jiménez, C., Prigent, C., Mueller, B., Seneviratne, S. 1., Mc-
Cabe, M. F.,, Wood, E. E,, Rossow, W. B., Balsamo, G., Betts,
A. K., Dirmeyer, P. A., Fisher, J. B., Jung, M., Kanamitsu,
M., Reichle, R. H., Reichstein, M., Rodell, M., Sheffield, J.,
Tu, K., and Wang, K.: Global intercomparison of 12 land
surface heat flux estimates, J. Geophys. Res., 116, D02102,
https://doi.org/10.1029/2010JD014545, 2011.

Kauffeldt, A., Halldin, S., Rodhe, A., Xu, C.-Y., and West-
erberg, I. K.: Disinformative data in large-scale hydrolog-
ical modelling, Hydrol. Earth Syst. Sci., 17, 2845-2857,
https://doi.org/10.5194/hess-17-2845-2013, 2013.

Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P,
and Thielen, J.: Technical review of large-scale hydrologi-
cal models for implementation in operational flood forecasting
schemes on continental level, Environ. Modell. Soft., 75, 68-76,
https://doi.org/10.1016/j.envsoft.2015.09.009, 2016.

Kingston, D. G., Todd, M. C., Taylor, R. G., Thompson, J. R., and
Arnell, N. W.: Uncertainty in the estimation of potential evap-
otranspiration under climate change, Geophys. Res. Lett., 36,
L.20403, https://doi.org/10.1029/2009GL040267, 2009.

Kleidon, A., Renner, M., and Porada, P.: Estimates of the climato-
logical land surface energy and water balance derived from maxi-
mum convective power, Hydrol. Earth Syst. Sci., 18, 2201-2218,
https://doi.org/10.5194/hess-18-2201-2014, 2014.

Klemes, V.: Operational testing of hydrological simulation models,
Hydrol. Sci. J., 31, 13-24, 1986.

Knutti, R.: Should we believe model predictions of future climate
change?, Philos. T. R. Soc. Lond. S-A, 366, 4647-4664, 2008.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, 1. C.:
A dynamic global vegetation model for studies of the cou-
pled atmosphere-biosphere system, Global Biogeochem. Cy., 19,

GB1015, https://doi.org/10.1029/2003GB002199, 2005.

Lehner, B.: Derivation of watershed boundaries for GRDC gaug-
ing stations based on the HydroSHEDS drainage network, Tech.
Rep. 41, Global Runoff Data Centre (GRDC), Federal Institute
of Hydrology (BfG), Koblenz, Germany, 2012.

Lehner, B., Reidy Liermann, C., Revenga, C., Vorosmarty, C.,
Fekete, B., Crouzet, P., Doll, P., Endejan, M., Frenken, K.,
Magome, J., Nilsson, C., Robertson, J. C., Rodel, R., Sindorf, N.,
and Wisser, D.: High resolution mapping of the world’s reser-

Hydrol. Earth Syst. Sci., 21, 2881-2903, 2017


https://doi.org/10.1029/2011WR010911
https://doi.org/10.5194/hess-18-463-2014
https://doi.org/10.1029/2008JD010201
https://doi.org/10.5194/hess-15-3539-2011
https://doi.org/10.5194/hess-12-841-2008
https://doi.org/10.1029/2010JD014545
https://doi.org/10.5194/hess-17-2845-2013
https://doi.org/10.1016/j.envsoft.2015.09.009
https://doi.org/10.1029/2009GL040267
https://doi.org/10.5194/hess-18-2201-2014
https://doi.org/10.1029/2003GB002199

2900

voirs and dams for sustainable river flow management, Front.
Ecol. Environ., 9, 494-502, 2011.

Lidén, R. and Harlin, J.: Analysis of conceptual rainfall-runoff mod-
elling performance in different climates, J. Hydrol., 238, 231—
247, 2000.

Linsley, R. K. and Crawford, N. H.: Computation of a synthetic
streamflow record on a digital computer, International Associa-
tion of Scientific Hydrology, 526-538, 1960.

Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. FE., Schaake,
J. C., Robock, A., Cosgrove, B. A., Sheffield, J., Duan, Q.,
Luo, L., Higgins, R. W., Pinker, R. T., and Tarpley, J. D.:
Streamflow and water balance intercomparisons of four land
surface models in the North American Land Data Assimila-
tion System project, J. Geophys. Res.-Atmos., 109, DO7S91,
https://doi.org/10.1029/2003JD003517, 2004.

Materia, S., Dirmeyer, P. A., Guo, Z., Alessandri, A., and Navarra,
A.: The Sensitivity of Simulated River Discharge to Land Surface
Representation and Meteorological Forcings, J. Hydrometeorol.,
11, 334-351, 2010.

McCabe, M. F,, Ershadi, A., Jimenez, C., Miralles, D. G., Michel,
D., and Wood, E. F.: The GEWEX LandFlux project: eval-
uation of model evaporation using tower-based and globally-
gridded forcing data, Geosci. Model Dev., 9, 283-305,
https://doi.org/10.5194/gmd-9-283-2016, 2016.

McDonnell, J. J., Sivapalan, M., Vaché, K., Dunn, S., Grant,
G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Rod-
erick, M. L., Selker, J., and Weiler, M.: Moving be-
yond heterogeneity and process complexity: a new vision
for watershed hydrology, Water Resour. Res., 43, W07301,
https://doi.org/10.1029/2006WR005467, 2007.

Mendoza, P. A., Clark, M. P, Barlage, M., Rajagopalan,
B., Samaniego, L., Abramowitz, G., and Gupta, H.: Are
we unnecessarily constraining the agility of complex
process-based models?, Water Resour. Res., 51, 716-728,
https://doi.org/10.1002/2014WR015820, 2015a.

Mendoza, P. A., Clark, M. P., Mizukami, N., Newman, A. J., Bar-
lage, M., Gutmann, E. D., Rasmussen, R. M., Rajagopalan, B.,
Brekke, L. D., and Arnold, J. R.: Effects of hydrologic model
choice and calibration on the portrayal of climate change im-
pacts, J. Hydrometeorol., 16, 762-780, 2015b.

Milly, P. C. D., Dunne, K. A., and Vecchia, A. V.: Global pattern of
trends in streamflow and water availability in a changing climate,
Nature, 438, 347-350, https://doi.org/10.1038/nature04312,
2005.

Minville, M., Cartier, D., Guay, C., Leclaire, L.-A., Audet, C., Le
Digabel, S., and Merleau, J.: Improving process representation in
conceptual hydrological model calibration using climate simula-
tions, Water Resour. Res., 50, 5044-5073, 2014.

Miralles, D. G., Jimenez, C., Jung, M., Michel, D., Ershadi, A., Mc-
Cabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher,
J. B., Mu, Q., Seneviratne, S. 1., Wood, E. F., and Fernaindez-
Prieto, D.: The WACMOS-ET project — Part 2: evaluation of
global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci.,
20, 823-842, https://doi.org/10.5194/hess-20-823-2016, 2015.

Monk, W. A, Wood, P. J., Hannah, D. M., and Wilson, D. A.: Selec-
tion of river flow indices for the assessment of hydroecological
change, River Res. Appl., 23, 113-122, 2007.

Hydrol. Earth Syst. Sci., 21, 2881-2903, 2017

H. E. Beck et al.: Evaluation of runoff from 10 hydrological models

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models part I—a discussion of principles, J. Hydrol., 10,
282-290, 1970.

Nasonova, O. N., Gusev, Y. M., and Kovalev, Y. E.: Investigating the
Ability of a Land Surface Model to Simulate Streamflow with the
Accuracy of Hydrological Models: a Case Study Using MOPEX
Materials, J. Hydrometeorol., 10, 1128-1150, 2009.

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F, Ek,
M. B., Barlage, M., Kumar, A., Manning, K., Niyogi,
D., Rosero, E., Tewari, M., and Xia, Y.: The community
Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-
scale measurements, J. Geophys. Res.-Atmos., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.

Ol'dekop, E. M.: Ob isparenii s poverknosti rechnykh basseinov
(On evaporation from the surface of river basins), Transactions
on Meteorological Observations, University of Tartu 4, 1911.

Olden, J. D. and Poff, N. L.: Redundancy and the choice of hydro-
logic indices for characterizing streamflow regimes, River Res.
Appl,, 19, 101-121, 2003.

Orth, R. and Seneviratne, S.: Introduction of a simple-model-based
land surface dataset for Europe, Environ. Res. Lett., 10, 044012,
https://doi.org/10.1088/1748-9326/10/4/044012, 2015.

Orth, R., Staudinger, M., Seneviratne, S. L., Seibert, J., and Zappa,
M.: Does model performance improve with complexity? A case
study with three hydrological models, J. Hydrol., 523, 147-159,
https://doi.org/10.1016/j.jhydrol.2015.01.044, 2015.

Oudin, L., Andréassian, V., Mathevet, T., Perrin, C., and Michel,
C.: Dynamic averaging of rainfall-runoff model simulations from
complementary model parameterizations, Water Resour. Res.,
42, W07410, https://doi.org/10.1029/2005WR004636, 2006.

Parajka, J., Viglione, A., Rogger, M., Salinas, J. L., Sivapalan,
M., and Bloschl, G.: Comparative assessment of predictions in
ungauged basins — Part 1: Runoff-hydrograph studies, Hydrol.
Earth Syst. Sci., 17, 1783-1795, https://doi.org/10.5194/hess-17-
1783-2013, 2013.

Peel, M. C., Chiew, F. H. S., Western, A. W., and McMahon, T. A.:
Extension of unimpaired monthly streamflow data and regional-
isation of parameter values to estimate streamflow in ungauged
catchments, report prepared for the Australian National Land and
Water Resources Audit, Centre for Environmental Applied Hy-
drology, University of Melbourne, Australia, 2000.

Pike, J. G.: The estimation of annual run-off from meteorological
data in a tropical climate, J. Hydrol., 2, 116-123, 1964.

Pilgrim, D. H., Chapman, T. G., and Doran, D. G.: Problems of
rainfall-runoff modelling in arid and semiarid regions, Hydrol.
Sci. J., 33, 379-400, 1988.

Porporato, A., Daly, E., and Rodriguez-Iturbe, 1.: Soil water bal-
ance and ecosystem response to climate change, The American
Naturalist, 164, 625-632, 2004.

Prudhomme, C., Parry, S., Hannaford, J., Clark, D. B., Hagemann,
S., and Voss, F.: How Well Do Large-Scale Models Reproduce
Regional Hydrological Extremes in Europe?, J. Hydrometeorol.,
12, 1181-1204, 2011.

Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell,
N. W., Dankers, R., Fekete, B. M., Franssen, W., Gerten, D.,
Gosling, S. N., Hagemann, S., Hannah, D. M., Kim, H., Masaki,
Y., Satoh, Y., Stacke, T., Wada, Y., and Wisser, D.: Hydrologi-
cal droughts in the 21st century, hotspots and uncertainties from

www.hydrol-earth-syst-sci.net/21/2881/2017/


https://doi.org/10.1029/2003JD003517
https://doi.org/10.5194/gmd-9-283-2016
https://doi.org/10.1029/2006WR005467
https://doi.org/10.1002/2014WR015820
https://doi.org/10.1038/nature04312
https://doi.org/10.5194/hess-20-823-2016
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1088/1748-9326/10/4/044012
https://doi.org/10.1016/j.jhydrol.2015.01.044
https://doi.org/10.1029/2005WR004636
https://doi.org/10.5194/hess-17-1783-2013
https://doi.org/10.5194/hess-17-1783-2013

H. E. Beck et al.: Evaluation of runoff from 10 hydrological models

a global multimodel ensemble experiment, P. Natl. Acad. Sci.
USA, 111, 3262-3267, 2014.

Razavi, T. and Coulibaly, P.: Streamflow Prediction in Ungauged
Basins: Review of Regionalization Methods, J. Hydrol. Engin.,
18, 958-975, 2013.

Rockwood, D. M.: Streamflow synthesis and reservoir regulation,
Engineering Studies Project 171 Technical Bulletin No. 22, US
Army Engineer Division, North Pacific, Portland, Oregon, 1964.

Rosbjerg, D. and Madsen, H.: Concepts of Hydrologic Modeling,
in: Encyclopedia of Hydrological Sciences, chap. 10, John Wiley
& Sons, https://doi.org/10.1002/047048944, 2006.

Rosero, E., Gulden, L. E., and Yang, Z.: Ensemble Evaluation of
Hydrologically Enhanced Noah-LSM: partitioning of the Water
Balance in High-Resolution Simulations over the Little Washita
River Experimental Watershed, J. Hydrometeorol., 12, 45-64,
2011.

Schaefli, B. and Gupta, H. V.: Do Nash values have value?, Hydrol.
Process., 21, 2075-2080, 2007.

Schellekens, J., Dutra, E., Martinez-de la Torre, A., Balsamo,
G., van Dijk, A., Sperna Weiland, F., Minvielle, M., Cal-
vet, J.-C., Decharme, B., Eisner, S., Fink, G., Florke, M.,
PeBenteiner, S., van Beek, R., Polcher, J., Beck, H., Orth,
R., Calton, B., Burke, S., Dorigo, W., and Weedon, G. P.: A
global water resources ensemble of hydrological models: the
eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data Discuss.,
https://doi.org/10.5194/essd-2016-55, in review, 2016.

Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W.,
Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colon-
Gonzdlez, F. J., Gosling, S. N., Kim, H., Liu, X., Masaki, Y.,
Portmann, F. T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser,
D., Albrecht, T., Frieler, K., Piontek, F., Warszawski, L., , and
Kabat, P.: Multimodel assessment of water scarcity under climate
change, P. Natl. Acad. Sci. USA, 111, 3245-3250, 2013.

Schlosser, C. A. and Gao, X.: Assessing Evapotranspiration Esti-
mates from the Second Global Soil Wetness Project (GSWP-2)
Simulations, J. Hydrometeorol., 11, 880-897, 2010.

Seiller, G. and Anctil, F.: How do potential evapotranspiration for-
mulas influence hydrological projections?, Hydrol. Sci. J., 61,
https://doi.org/10.1080/02626667.2015.1100302, 2015.

Sen, P. K.: Estimates of the regression coefficient based on
Kendall’s tau, J. Am. Stat. Assoc., 63, 1379-1389, 1968.

Shafii, M. and Tolson, B. A.: Optimizing hydrological con-
sistency by incorporating hydrological signatures into model
calibration objectives, Water Resour. Res., 51, 3796-3814,
https://doi.org/10.1002/2014WR016520, 2015.

Siebert, S., Doll, P., Hoogeveen, J., Faures, J., Frenken, K.,
and Feick, S.: Development and validation of the global map
of irrigation areas, Hydrol. Earth Syst. Sci., 9, 535-547,
https://doi.org/10.5194/hess-9-535-2005, 2005.

Singh, V. P., ed.: Computer models of watershed hydrology, Water
Resources Publications, Colorado, USA, 1995.

Singh, V. P. and Frevert, D. K. (Eds.): Mathematical models of large
watershed hydrology, Water Resources Publications, Colorado,
USA, 2002.

Sivapalan, M.: Prediction in ungauged basins: a grand challenge for
theoretical hydrology, Hydrol. Process., 17, 3163-3170, 2003.
Slater, A. G., Schlosser, C. A., Desborough, C. E., Pitman, A. J.,
Henderson-Sellers, A., Robock, A., Vinnikov, K. Y., Entin, J.,
Mitchell, K., Chen, F., Boone, A., Etchevers, P., Habets, F., Noil-

www.hydrol-earth-syst-sci.net/21/2881/2017/

2901

han, J., Braden, H., Cox, P. M., de Rosnay, P., Dickinson, R. E.,
Yang, Z., Dai, Y., Zeng, Q., Duan, Q., Koren, V., Schaake, S.,
Gedney, N., Gusev, Y. M., Nasonova, O. N., Kim, J., Kowalczyk,
E. A., Shmakin, A. B., Smirnova, T. G., Verseghy, D., Wetzel, P.,
and Xue, Y.: The representation of snow in land surface schemes:
results from PILPS 2(d), J. Hydrometeorol., 2, 7-25, 2001.

Slater, A. G., Bohn, T. J., McCreight, J. L., Serreze, M. C.,
and Lettenmaier, D. P.: A multimodel simulation of pan-
Arctic hydrology, J. Geophys. Res.-Biogeo., 112, G04S45,
https://doi.org/10.1029/2006JG000303, 2007.

Smith, E. A., Asrar, G. R., Furuhama, Y., Ginati, G., Kummerow,
C., Levizzani, V., Mugnai, A., Nakamura, K., Adler, R., Casse,
V., Cleave, M., Debois, M., John, J., Entin, J., Houser, P., Iguchi,
T., Kakar, R., Kaye, J., Kojima, M., Lettenmaier, D., Luther,
M., Mehta, A., Morel, P., Nakazawa, T., Neeck, S., Okamoto,
K., Oki, R., Raju, G., Shepherd, M., Stocker, E., Testud, J., and
Wood, E.: The International Global Precipitation Measurement
(GPM) program and mission: An overview, in: Measuring Pre-
cipitation From Space, Springer, New York, 611-653, 2007.

Sooda, A. and Smakhtin, V.. Global hydrological mod-
els: a review, Hydrol. Sci. J., 470471, 269-279,
https://doi.org/10.1016/j.jhydrol.2012.09.002, 2015.

Sperna Weiland, F. C., Tisseuil, C., Diirr, H. H., Vrac, M., and
van Beek, L. P. H.: Selecting the optimal method to calculate
daily global reference potential evaporation from CFSR reanal-
ysis data for application in a hydrological model study, Hydrol.
Earth Syst. Sci., 16, 983-1000, https://doi.org/10.5194/hess-16-
983-2012, 2012.

Stahl, K., Tallaksen, L. M., Gudmundsson, L., and Christensen,
J. H.: Streamflow Data from Small Basins: A Challenging Test
to High-Resolution Regional Climate Modeling, J. Hydrometeo-
rol., 12, 900-912, 2011.

Stahl, K., Tallaksen, L. M., Hannaford, J., and van Lanen, H. A. J.:
Filling the white space on maps of European runoff trends: esti-
mates from a multi-model ensemble, Hydrol. Earth Syst. Sci., 16,
2035-2047, https://doi.org/10.5194/hess-16-2035-2012, 2012.

Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes to-
ward Earlier Streamflow Timing across Western North America,
J. Clim., 18, 11361155, 2005.

Sugawara, M.: The flood forecasting by a series storage type model,
in: Int. Symposium Floods and their Computation, International
Association of Hydrologic Sciences, 1967.

Tait, A., Henderson, R., Turner, R., and Zheng, X.: Thin plate
smoothing spline interpolation of daily rainfall for New Zealand
using a climatological rainfall surface, Int. J. Climatol., 26,
2097-2115, 2006.

Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble in
probabilistic climate projections, Philos. T. R. Soc. Lond. Ser. A,
365, 2053-2075, 2007.

Teutschbein, C. and Seibert, J.: Regional Climate Models for Hy-
drological Impact Studies at the Catchment Scale: A Review of
Recent Modeling Strategies, Geography Compass, 4, 834-860,
2010.

Trambauer, P., Maskeya, S., Winsemius, H., Werner, M., and Uhlen-
brook, S.: A review of continental scale hydrological models and
their suitability for drought forecasting in (sub-Saharan) Africa,
Phys. Chem. Earth, 66, 16-26, 2013.

Van Beek, L. P. H. and Bierkens, M. F. P.: The Global Hydro-
logical Model PCR-GLOBWB: conceptualization, Parameter-

Hydrol. Earth Syst. Sci., 21, 2881-2903, 2017


https://doi.org/10.1002/047048944
https://doi.org/10.5194/essd-2016-55
https://doi.org/10.1080/02626667.2015.1100302
https://doi.org/10.1002/2014WR016520
https://doi.org/10.5194/hess-9-535-2005
https://doi.org/10.1029/2006JG000303
https://doi.org/10.1016/j.jhydrol.2012.09.002
https://doi.org/10.5194/hess-16-983-2012
https://doi.org/10.5194/hess-16-983-2012
https://doi.org/10.5194/hess-16-2035-2012

2902

ization and Verification, Tech. rep., Utrecht University, http:
//vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf (last ac-
cess: June 2016), 2009.

Van Dijk, A. I. J. M.: AWRA Technical Report 3, Land-
scape  Model (version 0.5) Technical Description,
Tech. Rep., WIRADA/CSIRO Water for a Healthy
Country  Flagship,  Canberra,  Australia, http://www.
clw.csiro.au/publications/waterforahealthycountry/2010/
wthc-aus-water-resources-assessment-system.pdf ~ (last  ac-
cess: June 2016), 2010.

Van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., de Jeu, R. A. M.,
Liu, Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Mil-
lennium Drought in southeast Australia (2001-2009): Natural
and human causes and implications for water resources, ecosys-
tems, economy, and society, Water Resour. Res., 49, 1040-1057,
2013a.

Van Dijk, A. I. J. M., Pefia-Arancibia, J. L., Wood, E. F., Sheffield,
J., and Beck, H. E.: Global analysis of seasonal streamflow pre-
dictability using an ensemble prediction system and observations
from 6192 small catchments worldwide, Water Resour. Res., 49,
2729-2746, 2013b.

Veldzquez, J. A., Anctil, F., and Perrin, C.: Performance and re-
liability of multimodel hydrological ensemble simulations based
on seventeen lumped models and a thousand catchments, Hydrol.
Earth Syst. Sci., 14,2303-2317, https://doi.org/10.5194/hess-14-
2303-2010, 2010.

Verzano, K.: Climate change impacts on flood related hydrological
processes: Further development and application of a global scale
hydrological model, Tech. rep., Max Planck Institute for Meteo-
rology, Hamburg, Germany, 2009.

Viney, N. R., Bormann, H., Breuer, L., Bronstert, A., Croke, B.
F. W., Frede, H., Griiffe, T., Hubrechts, L., Jakeman, A. J., Kite,
G., Lanini, J., Leavesley, G., Lettenmaier, D. P., Lindstrom, G.,
Seibert, J., Sivapalan, M., and Willems, P.: Assessing the im-
pact of land use change on hydrology by ensemble modelling
(LUCHEM) II: Ensemble combinations and predictions, Adv.
Water Resour., 32, 147-158, 2009.

Vis, M., Knight, R., Pool, S., Wolfe, W., and Seibert, J.: Model
calibration criteria for estimating ecological flow characteristics,
Water, 7, 2358-2381, 2015.

Wagener, T.: Evaluation of catchment models, Hydrol. Proc., 17,
3375-3378, 2003.

Wandishin, M. S., Mullen, S. L., Stensrud, D. J., and Brooks,
H. E.: Evaluation of a Short-Range Multimodel Ensemble Sys-
tem, Mon. Weather Rev., 129, 729-747, 2001.

Weedon, G. P.,, Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth,
E., Osterle, H., Adam, J. C., Bellouin, N., Boucher, O., and Best,
M.: Creation of the WATCH Forcing Data and Its Use to As-
sess Global and Regional Reference Crop Evaporation over Land
during the Twentieth Century, J. Hydrometeorol., 12, 823-848,
2011.

Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J.,
and Viterbo, P.: The WFDEI meteorological forcing data set:
WATCH Forcing Data methodology applied to ERA-Interim re-
analysis data, Water Resour. Res., 50, 7505-7514, 2014.

Weiler, M. and Beven, K.: Do we need a community hy-
drological model?, Water Resour. Res., 51, 7777-7784,
https://doi.org/10.1002/2014WR016731, 2015.

Hydrol. Earth Syst. Sci., 21, 2881-2903, 2017

H. E. Beck et al.: Evaluation of runoff from 10 hydrological models

Weill, M. and Menzel, L.: A global comparison of four potential
evapotranspiration equations and their relevance to stream flow
modelling in semi-arid environments, Adv. Geosci., 18, 15-23,
https://doi.org/10.5194/adgeo-18-15-2008, 2008.

Westerberg, I. K. and McMillan, H. K.: Uncertainty in hydro-
logical signatures, Hydrol. Earth Syst. Sci., 19, 3951-3968,
https://doi.org/10.5194/hess-19-3951-2015, 2015.

WMO: Intercomparison of conceptual models used in operational
hydrological forecasting, Tech. Rep. WMO no. 429, Operational
Hydrology Report no. 7, World Meteorological Organization,
Geneva, Switzerland, 1975.

WMO: Results of an intercomparison of models of snowmelt
runoff, Tech. Rep. WMO no. 646, Operational Hydrology Report
no. 23, World Meteorological Organization, Geneva, Switzer-
land, 1986.

WMO: Simulated real-time intercomparison of hydrological mod-
els, Tech. Rep. WMO no. 779, Operational Hydrology Report
no. 38, World Meteorological Organization, Geneva, Switzer-
land, 1992.

Wu, H., Adler, R. F, Tian, Y., Gu, G., and Huffman, G. J.: Eval-
uation of quantitative precipitation estimations through hydro-
logical modeling in IFloodS river basins, J. Hydrometeorol., 18,
529-553, 2017.

Xia, Y., Mitchell, K., Ek, M., Cosgrove, B., Sheffield, J., Luo,
L., Alonge, C., H, W., Meng, J., Livneh, B., Duan, Q., and
Lohmann, D.: Continental-scale water and energy flux analy-
sis and validation for North American Land Data Assimilation
System project phase 2 (NLDAS-2): 2. Validation of model-
simulated streamflow, J. Geophys. Res.-Atmos., 117, D03110,
https://doi.org/10.1029/2011JD016048, 2012.

Xia, Y., Sheffield, J., Ek, M. B., Dong, J., Chaney, N., Wei,
H., and Wood, J. M. E. F.: Evaluation of multi-model sim-
ulated soil moisture in NLDAS-2, J. Hydrol., 512, 107-125,
https://doi.org/10.1016/j.jhydrol.2014.02.027, 2014.

Yang, H., Piao, S., Zeng, Z., Ciais, P, Yin, Y., Friedlingstein,
P, Sitch, S., Ahlstrom, A., Guimberteau, M., Huntingford, C.,
Levis, S., Levy, P. E., Huang, M., Li, Y., Li, X., Lomas, M. R.,
Peylin, P., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Zhao, E,
and Wang, L.: Multicriteria evaluation of discharge simulation
in dynamic global vegetation models, J. Geophys. Res.-Atmos.,
120, 7488-7505, 2015.

Yang, Z., Niu, G., Mitchell, K. E., Chen, F., Ek, M. B., Bar-
lage, M., Longuevergne, L., Manning, K., Niyogi, D., Rosero,
E., Tewari, M., and Xia, Y.: The community Noah land surface
model with multiparameterization options (Noah-MP): 2. Eval-
uation over global river basins, J. Geophys. Res.-Atmos., 116,
D12110, https://doi.org/10.1029/2010JD015140, 2011.

Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based di-
agnostic approach to model evaluation: Application to the NWS
distributed hydrologic model, Water Resour. Res., 44, W09417,
https://doi.org/10.1029/2007WR006716, 2008.

Zaitchik, B. F., Rodell, M., and Olivera, F.: Evaluation of the Global
Land Data Assimilation System using global river discharge data
and a source-to-sink routing scheme, Water Resour. Res., 46,
WO06507, https://doi.org/10.1029/2009WR007811, 2010.

Zeinivand, H. and De Smedt, F.: Hydrological Modeling of Snow
Accumulation and Melting on River Basin Scale, Water Resour.
Manage., 23, 2271-2287, 2009.

www.hydrol-earth-syst-sci.net/21/2881/2017/


http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf
http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf
http://www.clw.csiro.au/publications/waterforahealthycountry/2010/wfhc-aus-water-resources-assessment-system.pdf
http://www.clw.csiro.au/publications/waterforahealthycountry/2010/wfhc-aus-water-resources-assessment-system.pdf
http://www.clw.csiro.au/publications/waterforahealthycountry/2010/wfhc-aus-water-resources-assessment-system.pdf
https://doi.org/10.5194/hess-14-2303-2010
https://doi.org/10.5194/hess-14-2303-2010
https://doi.org/10.1002/2014WR016731
https://doi.org/10.5194/adgeo-18-15-2008
https://doi.org/10.5194/hess-19-3951-2015
https://doi.org/10.1029/2011JD016048
https://doi.org/10.1016/j.jhydrol.2014.02.027
https://doi.org/10.1029/2010JD015140
https://doi.org/10.1029/2007WR006716
https://doi.org/10.1029/2009WR007811

H. E. Beck et al.: Evaluation of runoff from 10 hydrological models 2903

Zhang, L., Dawes, W. R., and Walker, G. R.: Response Zhou, X., Zhang, Y., Wang, Y., Zhang, H., Vaze, J., Zhang, L., Yang,

of mean annual evapotranspiration to vegetation changes Y., and Zhou, Y.: Benchmarking global land surface models
at catchment scale, Water Resour. Res., 37, 701-708, against the observed mean annual runoff from 150 large basins,
https://doi.org/10.1029/2000WR900325, 2001. J. Hydrol., 470471, 269-279, 2012.

Zhang, Y., Zheng, H., Chiew, F., Pefia-Arancibia, J., and Zhou,
X.: Evaluating regional and global hydrological models against
streamflow and evapotranspiration measurements, J. Hydromete-
orol., 17, 995-1010, https://doi.org/10.1175/JHM-D-15-0107.1,
2016.

www.hydrol-earth-syst-sci.net/21/2881/2017/ Hydrol. Earth Syst. Sci., 21, 2881-2903, 2017


https://doi.org/10.1029/2000WR900325
https://doi.org/10.1175/JHM-D-15-0107.1

	Abstract
	Introduction
	Data
	Forcing
	Simulated runoff
	Observed streamflow

	Methodology
	Model evaluation
	Multi-model ensembles
	Caveats

	Results and discussion
	How well do the different models simulate runoff?
	How well do the models perform in terms of long-term runoff trends?
	How do the results of the GHMs differ, if at all, from those of the LSMs?
	Are calibration and regionalization important or even essential?
	What is the impact of the forcing data on the simulated runoff?
	How valuable are multi-model ensembles?
	Do all models show the early bias in runoff timing in snow-dominated catchments previously documented and what is the cause?

	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	References

