

Supplement of

Global evaluation of runoff from 10 state-of-the-art hydrological models

Hylke E. Beck et al.

Correspondence to: Hylke E. Beck (hylke.beck@gmail.com)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

Figure S1.1: The new world map of the Köppen-Geiger climate classification.

			Uncalibrated	l models				Calibrate	d models		Ensen	nbles
	HTESSEL	JULES	ORCHIDEE	PCR-	SURFEX	W3RA	LISFLOOD	SWBM	WaterGAP3	HBV-	MEAN-	MEAN-
			U	GLOBWB						SIMREG	All	Best4
= 641)	-0.38	-1.15	-1.03	-0.12	-1.23	-0.12	0.12	-2.37	-0.93	-0.05	-0.14	0.06
i = 641)	-0.22	-1.04	-2.65	-0.50	-1.76	-0.09	-0.01	-12.64	-0.27	0.21	0.07	0.18
= 641)	-0.04	-0.48	-0.45	-0.01	-0.63	-0.03	0.13	-0.66	-0.07	0.14	0.17	0.26
= 966)	00.00	-0.24	-0.32	0.02	-0.50	-0.00	0.14	-0.23	0.21	0.22	0.24	0.33
(n = 966)	0.04	-0.26	-0.42	-0.03	-0.65	-0.07	0.08	-0.22	0.29	0.27	0.25	0.34
996)	-1.51	-1.38	-3.80	-3.01	-1.81	-1.89	-2.70	-2.03	-0.89	-1.67	-1.28	-1.25

Table S1: For the ten models and two ensembles, median NSE scores computed between simulated and observed runoff time series.

Figure S1.2: Simulated minus observed square-root transformed runoff coefficient (RC) for the catchments. Red (blue) indicates an overestimated (underestimated) RC relative to the observations. Each data point represents a catchment centroid (n = 966).

Figure S1.3: Simulated minus observed square-root transformed mean annual runoff (MAR) for the catchments. Red (blue) indicates an overestimated (underestimated) MAR relative to the observations. Each data point represents a catchment centroid (n = 966).

Figure S1.4: Simulated minus observed flow timing (T50) for the catchments. Red (blue) indicates an overestimated (underestimated) T50 relative to the observations. Each data point represents a catchment centroid (n = 966).

Figure S1.5: Simulated minus observed baseflow index (BFI) for the catchments. Red (blue) indicates an overestimated (underestimated) BFI relative to the observations. Each data point represents a catchment centroid (n = 641).

Figure S1.6: Simulated minus observed square-root transformed 1st percentile flow (Q1) for the catchments. Red (blue) indicates an overestimated (underestimated) Q1 relative to the observations. Each data point represents a catchment centroid (n = 641).

Figure S1.7: Simulated minus observed square-root transformed 99th percentile flow (Q99) for the catchments. Red (blue) indicates an overestimated (underestimated) Q99 relative to the observations. Each data point represents a catchment centroid (n = 641).

Figure S1.8: Simulated minus observed trend in mean annual runoff (MAR trend, mm yr⁻¹) for the catchments. Red (blue) indicates an overestimated (underestimated) MAR trend relative to the observations. Each data point represents a catchment centroid (n = 966).

Figure S1.9: Correlation between simulated and observed daily flows (r_{dly}) for the catchments. Each data point represents a catchment centroid (n = 641).

Figure S1.10: Correlation between simulated and observed daily log-transformed flows (r_{dlylog}) for the catchments. Each data point represents a catchment centroid (n = 641).

Figure S1.11: Correlation between simulated and observed 5-day flows ($r_{5 day}$) for the catchments. Each data point represents a catchment centroid (n = 641).

Figure S1.12: Correlation between simulated and observed monthly flows (r_{mon}) for the catchments. Each data point represents a catchment centroid (n = 966).

Figure S1.13: Correlation between simulated and observed monthly climatic flows (r_{monclim}) for the catchments. Each data point represents a catchment centroid (n = 966).

Figure S1.14: Correlation between simulated and observed annual flows (r_{yr}) for the catchments. Each data point represents a catchment centroid (n = 966).