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Abstract. The land surface forms an essential part of the cli-
mate system. It interacts with the atmosphere through the ex-
change of water and energy and hence influences weather and
climate, as well as their predictability. Correspondingly, the
land surface model (LSM) is an essential part of any weather
forecasting system. LSMs rely on partly poorly constrained
parameters, due to sparse land surface observations. With the
use of newly available land surface temperature observations,
we show in this study that novel satellite-derived datasets
help improve LSM configuration, and hence can contribute
to improved weather predictability.

We use the Hydrology Tiled ECMWEF Scheme of Sur-
face Exchanges over Land (HTESSEL) and validate it com-
prehensively against an array of Earth observation reference
datasets, including the new land surface temperature product.
This reveals satisfactory model performance in terms of hy-
drology but poor performance in terms of land surface tem-
perature. This is due to inconsistencies of process representa-
tions in the model as identified from an analysis of perturbed
parameter simulations. We show that HTESSEL can be more
robustly calibrated with multiple instead of single reference
datasets as this mitigates the impact of the structural incon-
sistencies. Finally, performing coupled global weather fore-
casts, we find that a more robust calibration of HTESSEL
also contributes to improved weather forecast skills.

In summary, new satellite-based Earth observations are
shown to enhance the multi-dataset calibration of LSMs,
thereby improving the representation of insufficiently cap-
tured processes, advancing weather predictability, and under-
standing of climate system feedbacks.

1 Introduction

The land surface forms an essential part of the climate sys-
tem. It interacts with the atmosphere through the exchange
of water and energy and hence influences weather and cli-
mate (Seneviratne et al., 2010). Soils, vegetation and water
bodies store large amounts of energy and moisture. Through
this storage and control capacity, the land surface can accu-
mulate and maintain anomalies induced by the atmospheric
forcing (Orth, 2013). These persistence characteristics and
the associated predictability make the land surface an im-
portant potential contributor of weather and climate forecast
skill (Orth and Seneviratne, 2014; Orth et al., 2016). Fur-
thermore, the land surface can play an important role during
extreme events (Mueller et al., 2013; Miralles et al., 2014;
Hauser et al., 2016). For instance, dry soils can contribute to
the intensification of heat waves but buffer floods, whereas
wet soils can mitigate hot extremes but enhance the risk of
flood events.

However, state-of-the-art land surface models have diffi-
culties in correctly capturing land surface dynamics and the
related coupling with the atmosphere (Beven and Binley,
1992; Beven, 2001; Wang et al., 2014; Trigo et al., 2015)
and show margins for improvement when compared to sim-
ple well-tuned models (Best et al., 2015; Haughton et al.,
2016). This is hampering a full exploitation of related pre-
dictability, and the accurate representation of extreme events.

The shortcomings of the models are partly related to sparse
observations and the spatial heterogeneity of soils and veg-
etation. Until recently, available observations were not suffi-
cient to satisfactorily constrain complex land surface models
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which include relevant physical processes required to repre-
sent the land—atmosphere coupling. This leads to the paradox
situation that these complex models could not outperform
simple conceptual models with a very simplified representa-
tion of processes, as these can be more accurately calibrated
with the few available observations (Orth and Seneviratne,
2015; Best et al., 2015).

This might change in the coming years thanks to new
satellite-derived datasets which have become increasingly
available. Related products are already available for essential
variables such as surface soil moisture (Liu et al., 2011, 2012;
Wagner et al., 2012) or terrestrial water storage (Swenson
and Wahr, 2006; Landerer and Swenson, 2012). Also, infor-
mation on the heterogeneity of the land surface has strongly
improved thanks to satellite-based observations (e.g. global
land cover facility, http://glcf.umd.edu, and the harmonized
world soil database, http://webarchive.iiasa.ac.at/Research/
LUC/External-World-soil-database/HTML/). The unprece-
dented spatial and temporal coverage of these data offers the
potential to enhance the calibration/optimization of uncon-
strained parameters in land surface models taking into ac-
count the variability in soil and vegetation types.

In this study we employ satellite-derived observations of
land surface temperatures (LSTs) which have a high informa-
tion content on the surface turbulent flux partitioning and on
the global surface properties (Mildrexler et al., 2011). Sur-
face temperatures are inferred from emitted infrared radia-
tion at high temporal frequency such that even the diurnal
cycle can be observed (Trigo et al., 2011). While the above-
mentioned products help to constrain the land water balance,
LST products provide complementary information on the
land energy balance. Consequently the LST data are expected
to bring further constraints to the surface water/energy bud-
gets and improve the land—atmosphere coupling in land sur-
face models. The product considered in this study is based
on data from the geostationary Meteosat Second Genera-
tion satellite and provides LST information at high temporal
and spatial resolutions for Europe and Africa. Especially for
the latter region, such satellite-based datasets are essential as
ground observations are particularly sparse.

Previous studies used LST data from particular days or
particular locations to evaluate land surface models (e.g.
Wang et al., 2014; Trigo et al., 2015). It is the first objective
of this study to comprehensively assess model performance
at large spatial scales and with multi-year LST data. Our sec-
ond objective is to use an increasing number of Earth obser-
vation datasets in addition to the LST data to demonstrate
that land surface model performance benefits from a com-
prehensive calibration against a wide range of observational
datasets. While they all include characteristic uncertainties
and shortcomings, their joint use could help better constrain
land surface models. Furthermore, by assessing land surface
model output with all the employed datasets we can better
understand the functioning of the model and identify incon-
sistencies and insufficiently represented processes.
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Finally, we also investigate the influence of the land sur-
face model calibration on the skill of related coupled weather
forecasts. In this way, we test to which extent an improved
representation of land surface processes can propagate into
the (modelled) climate system to yield improved predictions.

2 Methodology

In this study we follow the methodology proposed by Orth
et al. (2016) (hereafter referred to as O16) regarding the
modelling environments and analysis. Sections 2.1-2.4 pro-
vide an overview of the model simulations and their analy-
sis, while full details can be found in O16. O16 used these
simulations to analyse the sensitivity of the performance of
the land surface model and of the weather forecasting system
with respect to particular land surface model parameters. In
contrast, we will analyse to which extent the simulations cap-
ture observed LST and its dynamics, and show that the use of
LST data alongside further reference datasets enables a com-
prehensive and robust land surface model calibration which
is also beneficial for weather forecast skill.

2.1 Model description
2.1.1 HTESSEL land surface model

The ECMWEF’s Hydrology Tiled ECMWF Scheme for Sur-
face Exchanges over Land (HTESSEL, Balsamo et al., 2011)
land surface model is an integral component of the ECMWF
Integrated Forecasts System (IFS) that is used in the differ-
ent forecast and data assimilation systems, ranging from de-
terministic 10-day forecasts to the ensemble seasonal fore-
casts. The surface model is responsible for providing the at-
mospheric boundary conditions (heat, moisture, and momen-
tum) by simulating the surface water and energy budgets and
the temporal evolution of the underlying soil (temperature
and moisture), snowpack, and vegetation interception.

The surface energy budget is computed in each grid box
independently for different tiles representing different land
cover types (e.g. bare ground, high/low vegetation). At each
grid cell, only the dominant types of high and low vegeta-
tion, respectively, are considered. The surface energy balance
is coupled to the underlying soil (or snow) via the skin con-
ductivity, which is currently a single parameter depending
on land cover. This is a simplified approach to represent very
complex processes such as within-canopy energy exchanges,
while it is crucial for the LST computation.

2.1.2 ECMWEF ensemble prediction system

The ECMWF ensemble prediction system (Vitart et al., 2008,
2014) is used daily for global forecasts up to the monthly
range and it allows us to characterize the uncertainty in the
meteorological forecast expressed by the spread of the en-
semble members (51 forecast realizations in the operational
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Table 1. Overview of performed model experiments.
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Model Type Domain Spatial resolution ~ Time period  Number of simulations

HTESSEL uncoupled  Europe 0.5° x 0.5° 1983-2014 50, with different parameter sets
(10° W=50° E, 35-70° N)

ECMWEF ensemble  coupled global 0.7° x 0.7° 2001-2010 11, with different parameter sets

prediction system forecasts

configuration). The spread of the ensemble varies with the
difficulty of predicting a given meteorological event, due to
the complex evolution of the atmospheric flow and the local
climate and seasonal conditions, and it is highly valuable in-
formation on the likelihood of the forecast being accurate. In
this study we use 15-member ensemble forecasts.

2.2 Model simulations

Our main objectives are (i) to study the performance of
HTESSEL against multi-year LST data covering two con-
tinents, and (ii) to analyse the benefits of calibrating HTES-
SEL against multiple reference datasets, including LST data.
For this purpose we employ two sets of simulations with per-
turbed model parameters. The corresponding uncoupled HT-
ESSEL simulations and the coupled forecasts with the en-
semble prediction system (that includes HTESSEL) are listed
in Table 1 and described in this section.

2.2.1 Uncoupled HTESSEL simulations

The use of HTESSEL in an uncoupled, standalone setting is
computationally inexpensive and allows us to perform long-
term simulations across the entire European continent. We
analyse 50 simulations of HTESSEL with default and per-
turbed parameters (see Sect. 2.2.3). The simulations are com-
puted from 1983 to 2014, and forced with observed meteo-
rological information such as that used in the computation
of the ERA-Interim/Land dataset (Balsamo et al., 2015). The
first 6 years are used to spin up the model, and are therefore
not considered in the analysis.

2.2.2 Coupled forecasts

Coupled forecasts with the ECMWF’s ensemble prediction
system were computed to assess the response of weather
forecast skills to different (parameter) configurations of the
land surface model. We employ 11 sets of global forecasts
with default and perturbed land surface model configura-
tions. The analysis of the forecasts focuses on the European
domain used for the uncoupled HTESSEL simulations, and
on northern hemispheric summer. This allows us to study
impacts of the land—atmosphere coupling in Europe as this
is strongest at that time, and to exclude confounding effects
from snow and ice on our analysis.
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Correspondingly, the forecasts are initialized on eight start
dates (1 May, 15 May, 1 June, 15 June, 1 July, 15 July, 1 Au-
gust, and 15 August) during 2001-2010 and computed un-
til 45 days lead time. Even though weather predictability is
low at such long lead times, the land surface may play a role
for forecast skills at these lead times given its profound per-
sistence characteristics (Orth and Seneviratne, 2012). Each
forecast constitutes an ensemble of 15 members which en-
ables us to perform deterministic and probabilistic skill eval-
uations. Note that as the forecast sets differ with respect to
the land surface model configuration, the initial land condi-
tions for the forecasts may also be different. They are taken
from the uncoupled HTESSEL simulations with the respec-
tive configuration. Consequently, the forecast skill is not only
impacted by the altered HTESSEL configurations during the
forecasting period, but also by correspondingly different ini-
tial land conditions. All further required initial conditions are
taken from the ERA-Interim dataset (Dee et al., 2011) and
from the ECMWF ocean reanalysis (Balmaseda et al., 2013).
This forecast initialization methodology is also used for the
ECWMF operational sub-seasonal forecasts.

2.2.3 Parameter perturbations

016 perturbed a set of six poorly constrained parameters
which are deemed important for the performance of the HT-
ESSEL model. They are listed in Table 2.

All selected parameters are perturbed at once (Saltelli et
al., 2008). For this purpose, multiplicative factors between
0.25 and 4 (between 0.5 and 2 in the case of the soil depth)
were applied to the default values of each of the chosen pa-
rameters. This range is chosen to still yield meaningful pa-
rameter values while allowing some variation in order to
study the sensitivity of model performance to the perturbed
parameters. The multiplicative factors were determined with
a quasi-random sampling approach (Sobol, 1967) which al-
lows us to efficiently sample the entire parameter space with-
out introducing correlations between the perturbations of the
considered parameters. In this way, a large sample of per-
turbed parameter sets was generated, of which 50 parame-
ter sets were chosen by O16 to limit the computation effort
for the uncoupled HTESSEL simulations covering Europe.
We use the same parameter sets in this study. Out of these
50 parameter sets, 25 were chosen randomly while ensuring
that the resulting multiplication factors applied to particular
parameters are not correlated. The remaining 25 parameter
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Table 2. Summary of perturbed model parameters and their characteristics (adapted from O16).

Surface runoff effective
depth

Skin conductivity

Minimum stomatal
resistance

Maximum interception

Soil moisture stress
function

Total soil depth

Depth over which soil
water content and soil
water content at sat-
uration are integrated
vertically to derive

maximum infiltration
and eventually surface

Determines coupling of
surface energy balance
with the underlying
surface  temperature;
dependent on vegeta-
tion and stable/unstable
conditions

Scales leaf area index
in the computation of
canopy resistance

Maximum water over a
single layer of leaves or
bare ground; used to de-
fine the interception tile
fraction

Determines the shape
(e.g. 1 for linear) of de-
pendency of canopy re-
sistance on soil mois-
ture

Lower boundaries of
the particular soil lay-
ers; top layer not im-
pacted by perturbations
to avoid impacts on the
fast thermal response

runoff

sets were selected from corresponding HTESSEL simula-
tions that agreed best with a suite of Earth observations at six
locations across Europe. For this purpose the parameter sets
were ranked in terms of each reference dataset, and then for
each particular parameter set the sum of all ranks was com-
puted. The resulting best-ranked 25 parameter sets include
the default configuration of the model.

As coupled global forecasts are computationally demand-
ing, they were only computed for a subset of 11 out of the
50 sets of perturbed parameters. This subset includes the de-
fault configuration, 5 configurations of the randomly chosen
parameter sets, and 5 configurations of the best-performing
parameter sets. For the selection of 5 (out of 25, or 24 in
the case of the best-performing parameter sets as the de-
fault parameter set is already considered for computing the
forecasts), all possible sets of 5 configurations were tested
to choose the configurations with the lowest correlations be-
tween the multiplicative factors of the particular parameters.

2.3 Performance measures

The uncoupled HTESSEL simulations and the coupled fore-
casts are validated against a range of reference datasets (see
Sect. 3.2), using multiple measures of agreement introduced
in this section. These different measures have been applied
previously by O16. The variety of considered measures al-
lows us to make more efficient use of the information con-
tained in the reference data (Vrugt et al., 2003). In particular,
we consider the following.

Anomaly correlation We subtract the mean seasonal cycle
at each grid cell in both the model output and the refer-
ence dataset and correlate the resulting anomalies. The
mean seasonal cycle is determined from the entire con-
sidered time series at each grid cell.

Bias The bias is derived by subtracting the mean of the refer-
ence dataset from the mean of the model output at each
grid cell. Only the time period in which reference data
are available is considered in this computation.

While these measures are used to evaluate the uncoupled
HTESSEL simulations and the coupled forecasts, we use an-
other measure for the coupled forecasts only.
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Reliability The reliability measures the ability of ensemble
forecasts to accurately capture the occurrence probabil-
ity of an event. We consider four events which comprise
temperature and precipitation anomalies in the lower
and upper terciles, respectively. For the assessment of
the reliability, all forecasts from grid cells in a particu-
lar region are grouped with respect to the forecasted oc-
currence probability of a particular event. Then the ob-
served frequency of the considered event across all fore-
cast dates in the group is computed and compared with
the forecasted occurrence probability. The resulting re-
lationship between all groups of forecasted probabilities
and the respective average observed frequencies (relia-
bility diagram; see e.g. Weisheimer and Palmer, 2014)
can be assessed through a slope of a linear least-squares
regression fit (see O16 for details).

All forecast performance measures are computed for par-
ticular regions and lead times. In this context we consider
the northern, central, and southern European regions (as in-
troduced in Seneviratne et al., 2012), and the forecasts are
averaged and evaluated for lead times between 1 and 15 days,
between 16 and 30 days, and between 31 and 45 days. Fore-
cast performances for the entire European domain in terms
of anomaly correlation, bias, and reliability, respectively, are
then determined by (i) ranking the forecasts obtained with
the 11 HTESSEL parameter sets in each of the three sub-
regions, and then (ii) ranking the sum of the resulting three
ranks for each skill measure. This means the HTESSEL pa-
rameter set performing best across Europe in terms of a par-
ticular skill metric (e.g. temperature bias) must not necessar-
ily be the best in all considered subregions, but has the lowest
sum of the ranks from all subregion rankings.

In line with our forecasts that are initialized and com-
puted during late spring and summer, the evaluation of the
uncoupled HTESSEL simulations focuses on May—October
to exclude impacts of ice and snow on the quality of the ref-
erence datasets and on the strength of the land—atmosphere
coupling.
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2.4 Computation of parameter sensitivities

We assess the performance of the uncoupled HTESSEL
model against LST data and further reference datasets, and
analyse its sensitivity to variations in particular parameters.
In this context all combinations of performance metrics (con-
sidered measures of agreement with all employed reference
datasets) and perturbed parameters are considered. Sensitiv-
ities are computed from the relationship between model per-
formance and underlying multiplicative factors applied to the
considered model parameter. A smoothing function (cubic
spline function) is fitted to capture the models’ performance—
multiplicative factor relationship (see Supplement Fig. S1 in
016 for illustration). The sensitivity is then expressed as the
fraction of performance variability captured by the smooth-
ing function, i.e. it is calculated by dividing the performance
variability captured with the smoothing by the performance
variability computed across all involved multiplicative fac-
tors.

2.5 Processing of LST data

LST data are new satellite-derived Earth observations which
help to better constrain the land energy balance that was so
far only captured by the evapotranspiration reference data.

The LST dataset used in this study (see Sect. 3.2.1) is
available at very high spatial (geostationary projection, 3 km
at the sub-satellite point) and temporal resolution (15 min)
across the Meteosat disk (Freitas et al., 2010; Trigo et al.,
2011). Here we use hourly fields re-projected onto a regular
0.05° x 0.05° grid covering Europe and Africa, which were
subsequently processed to obtain mean daily LSTs and the
daily LST range at the resolution of the HTESSEL simula-
tions (0.5° x 0.5°). We refer to the daily LST range as the
difference between the maximum and minimum hourly val-
ues of a given day at a particular location (also referred to as
the daily temperature range). In addition, the modelled LST
data are also filtered to exclude (modelled) cloudy days from
the comparison. For the data processing we follow several
steps.

1. If any 0.05° x 0.05° grid cell has more than 2 missing
values (i.e. less than 22 hourly values) on a particu-
lar day, all data of that day are disregarded. This ensures
that any daily values we compute are based on a repre-
sentative set of at least 22 hourly observations.

2. Any 0.5°x0.5° grid cell is composed of 100
0.05° x 0.05° grid cells. If at least 80 of these contain
observations, we compute an hourly average across the
available (80-100) grid cells.

3. From these hourly averages the daily mean LST and
daily LST range of the particular 0.5° x 0.5° grid cell
is computed.

www.hydrol-earth-syst-sci.net/21/2483/2017/
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4. The modelled LST data are filtered with respect to the
concurrent simulated cloud cover. HTESSEL outputs
cloud cover at each grid cell for 3-hourly periods. LST
data from a particular grid cell and day are considered
if total cloud cover is below 10 % in every 3 h period of
that day.

Note that these filtering steps are rather strict to guarantee
the best possible comparison with the simulations. Some of
the filtering steps might be relaxed for other applications, but
a detailed evaluation of this filtering is beyond the scope of
this study.

3 Data
3.1 Forcing data

As we are aiming to compare the uncoupled HTESSEL
simulations against observation-based reference datasets, we
use observation-based meteorological forcing to compute
all simulations. For this purpose we employ the “Watch
Forcing Data methodology applied to Era-Interim data”
dataset (WFDEI, Weedon et al., 2014), which is based on
ERA-Interim data and additionally adjusted with respect to
monthly gridded observations of temperature, precipitation,
cloud cover, and atmospheric aerosol loading.

3.2 Validation data
3.2.1 Validation of uncoupled HTESSEL simulations

In addition to comprehensively evaluating the LST perfor-
mance of HTESSEL, it is a main objective of this study to
analyse and illustrate the value of using an array of Earth
observation datasets instead of single datasets to calibrate a
land surface model. For this purpose we consider several ref-
erence datasets.

Soil moisture We use data from 11 stations across Europe,
which are displayed in Fig. S1. Stations are located in
Finland (4), Switzerland (5), and Italy (2), and there-
fore provide data from all relevant European climate
regimes. Data are available from different soil depths,
and during different time periods, which both vary with
respect to the station (see Table S1 in the Supplement).
For every station, however, there are at least 4 years of
data (Fig. S1). Aggregating the data from the different
depths, we derive a weighted average (with respect to
observed depths) to represent soil moisture within the
top metre of the soil. The same is done with the HTES-
SEL data, using the three uppermost soil layers.

Total terrestrial water storage This quantity is derived
from satellite measurements of temporal variations in
the Earth’s gravity field. The resulting GRACE dataset
(Swenson and Wahr 2006; Landerer and Swenson,
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2012) provides gridded quasi-monthly water storage
anomalies, and spans from 2003 to 2012. We use the re-
lease of the Center for Space Research of the University
of Texas at Austin. Note the relatively low spatial res-
olution of about 2° x 2° in Europe. These observations
are compared with a weighted average (with respect to
soil depth) of HTESSEL soil moisture from all model
layers.

Evapotranspiration (ET) Gridded monthly ET data are
used from the LandFlux-EVAL dataset (Mueller et al.,
2013). This dataset is a blend of diagnostic and mod-
elled datasets. Whereas the diagnostic datasets are based
on (point-scale and satellite) observations, the modelled
datasets are obtained by forcing land surface models
with observed meteorological forcing. The dataset cov-
ers the period 1989-2005 and is provided at a spatial
resolution of 1° x 1°.

Streamflow We employ daily streamflow data from over
400 near-natural, small (~ 10-100 kmz) catchments
distributed across Europe from Stahl et al. (2010).
Their locations are shown in Fig. S1. The dataset spans
through 1984-2007, but we only employ data from 1989
to 2007 to allow sufficient time for the spin-up of the
model (Fig. S1). These observations are compared with
HTESSEL streamflow data from the respective grid cell
within which (most of) a particular catchment is located.

Land surface temperature We use land surface tempera-
ture data generated by the Satellite Application Facil-
ity on Land Surface Analysis (LSA SAF, Trigo et al.,
2011; Freitas et al., 2010), which is based on observa-
tions of the Spinning Enhanced Visible and InfraRed
Imager (SEVIRI) onboard the Meteosat Second Gen-
eration satellite. The gridded LST data are available for
2007-2014. We compare these data with daily skin tem-
perature data from HTESSEL (see Sect. 2.5). Except for
very moist atmospheric conditions, the error of the LST
data is below 1 K as compared with in situ ground ob-
servations.

All these reference datasets are complementary in terms
of spatial coverage and temporal availability. For example,
whereas the soil moisture stations represent particular loca-
tions, the GRACE and LST data fully cover the European
continent (except for cloudy regions in the latter case), but
at lower spatial resolution. And while the ET data help to
validate HTESSEL'’s energy balance during the early years
(1989-2005), the LST data cover the recent years (2007—
2014).

Note that for the in situ soil moisture and GRACE we only
consider anomaly correlations to compute the agreement be-
tween the reference data and the HTESSEL output. For ET,
streamflow, mean daily LST, and daily LST range we addi-
tionally consider the bias. This results in a total of 10 valida-
tion metrics which we use in our analysis.
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3.2.2 Validation of coupled forecasts

We determine the skill of the coupled forecasts against grid-
ded temperature and precipitation observations from the E-
OBS dataset version 12 (Haylock et al., 2008). It is based
on corresponding station observations from across Europe
which are filtered and interpolated to a regular grid using
state-of-the-art methods. See Sect. 2.3 for the employed mea-
sures of agreement between forecasted and observed data.

4 Results
4.1 Skin temperature performance of HTESSEL

We perform the most comprehensive large-scale evaluation
of LSTs from a land surface model performed so far, cover-
ing 8 years and two continents. The LST performance of HT-
ESSEL using its default configuration is displayed in Fig. 1.
There are significant biases in mean skin temperature (over-
estimated in HTESSEL by more than 5°C in the Arabian
Peninsula), and even more in the daily LST range (under-
estimated in HTESSEL by up to 10°C in southern Europe
and southern Africa). These biases clearly exceed the uncer-
tainty range of the LST reference data, indicating a dominant
role of model deficiencies. We find strong spatial differences
in terms of the performance of the temporal LST dynamics
in HTESSEL, with the lowest correlations in low latitudes.
Interestingly, the performances in terms of biases and dy-
namics do not correspond: we find regions with low biases
but low correlations (e.g. Sahel), or regions with strong bi-
ases but good representation of observed daily dynamics (e.g.
southern Europe). No results can be computed for tropical
Africa because the LST observations are not available over
very densely vegetation areas, as these are frequently cov-
ered by clouds.

We furthermore perform this evaluation for land cover
classes; for this purpose we only consider grid cells where
the respective land cover accounts for more than 80 % of the
grid cell area. Note that consequently not all areas are in-
cluded in this analysis as some regions are characterized by
mixed vegetation (e.g. Europe). In the lower part of Fig. 1
we find that HTESSEL’s performance in simulating the daily
skin temperature range depends on land cover, with better
performance over less vegetated areas. This points to short-
comings in the representation of the soil-vegetation energy
flux in HTESSEL. However, the dependency of HTESSEL
LST performance on vegetation cover is not found in the
case of mean skin temperature performance. The area de-
noted with the dashed rectangles is the European region on
which the rest of this study focuses as multiple Earth obser-
vations are available there.

In Fig. 2, we analyse the sensitivity of HTESSEL’s per-
formance with respect to perturbations in selected, poorly
constrained model parameters (x-axis). In this context, HT-
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Figure 1. Evaluation of HTESSEL against LST data. We consider biases (a) and daily anomaly correlation (b) of mean daily LSTs and of the
daily LST range. The dark grey colour indicates correlations which are not significantly different from zero. The light grey colour denotes
oceans and areas where no data are available. Bar plots (¢) summarize results for all vegetation types, and for particular vegetation types
only. The dashed rectangle in the top plots denotes the European area which most of this study is based on.

ESSEL’s average performance across Europe is determined
against several reference datasets (y-axis). All parameters in-
fluence model performance in some respect, except for runoff
depth and maximum interception. While the HTESSEL per-
formance in terms of hydrological datasets (upper part) is
sensitive mostly to stomatal resistance, its skin temperature
performance (lower part) is especially sensitive to the skin
conductivity parameter. The performance in terms of both
groups is partly sensitive to the shape of the soil moisture
stress function. An important implication of this is that skin
temperature performance can not be improved without im-
pacting the hydrological performance of the model. As in
Fig. 1, we find an apparent influence of land cover on skin
temperature performance, however, with similar parameter
sensitivities across the different land covers. This suggests
that any improvement of the skin temperature computation
in HTESSEL could improve skin temperature independent
of land cover.
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Adding to the sensitivities determined over Europe,
Fig. S2 shows the sensitivity of the LST performance of
HTESSEL determined over the entire domain displayed in
Fig. 1. The results are similar. Outside Europe we can also
analyse skin temperature performance over bare soils and
find similar sensitivities to those for the other considered land
covers. Generally, the spatially similar sensitivities support
the representativeness of European skin temperature results
and suggest that improvements of European LSTs would also
translate into African LSTs which correspond better to the
satellite observations.

4.2 Added value of calibrating HTESSEL against
multiple reference datasets

4.2.1 Comparing calibration results against single
reference datasets

In this section we analyse whether HTESSEL configurations
performing well against particular reference datasets also
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Figure 2. Variations of HTESSEL performance (averaged over the European domain) in terms of anomaly correlations and biases against
several reference datasets (y-axis) in response to variations in poorly constrained model parameters (x-axis). The colour of each box indicates
the sensitivity of the HTESSEL performance in terms of a particular metric against a particular parameter. Red circles indicate results for the
default HTESSEL calibration, and green circles denote results for areas with low/high vegetation only.
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perform well against other reference datasets, i.e. whether
a parameter set that yields for example good soil moisture
performance also yields realistic LSTs. For this purpose we
assess the performance of parameter perturbations perform-
ing best against particular reference datasets with respect to
all other reference datasets in Fig. 3. White colours mean
that parameter perturbations which perform well against par-
ticular reference datasets (x-axis) also perform well against
other reference datasets (y-axis). Vice versa, black colours
indicate that they do not also perform well against other ref-
erence datasets. Note that in the case of a perfect model and
perfect observations this plot would be completely white.
The many dark coloured fields in Fig. 3 indicate that the
parameter perturbations performing best against particular
reference datasets are different, i.e. there is no parameter
perturbation that performs best in all respects. This can be
explained by (1) equifinality (i.e. many different parameter
sets leading to equally well-performing model simulations)
as there are 25 pre-selected well-performing parameter sets
among all 50 considered parameter sets, and by (2) incon-
sistencies within HTESSEL, especially between hydrologi-
cal and skin-temperature-related processes. This is apparent
as for example HTESSEL configurations performing well in
terms of LSTs yield particularly poor performance in terms
of hydrology, and vice versa. These inconsistencies might be
partly associated with missing processes in HTESSEL, for
example the over-simplification that a single parameter rep-
resents the complex energy transfers between the top of the
canopy and the underlying soil.

Investigating the role of equifinality, we also perform this
analysis with the 25 randomly chosen HTESSEL configu-
rations only as displayed in Fig. S3. In general, results are
robust with respect to the employed set of parameter pertur-
bations, as indicated by the comparable patterns in the plots.
This indicates a higher importance of inconsistent process
representations in the HTESSEL model than of equifinality.
Consequently, all the reference datasets considered in this
study are needed to constrain HTESSEL, whereas for a per-
fect model, one dataset would be sufficient.

An analysis of this kind can moreover be used to assess
overall model performance which can be measured with the
mean rank (greyness) across all tested combinations. Note,
however, that the result is influenced by the selection and the
quality of reference datasets.

4.2.2 Comparing calibration results against multiple
reference datasets

In this section we assess the relative performance of the
50 HTESSEL configurations against multiple metrics, i.e.
against several reference datasets using different measures
of agreement between the reference and modelled data. In
this context, we compute the ranks of all simulations against
all considered metrics. Thereafter we calculate for each sim-
ulation the sum of the individual ranks obtained against the

www.hydrol-earth-syst-sci.net/21/2483/2017/
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Figure 3. Performance of HTESSEL simulations with the differ-
ent best-performing parameter sets as assessed against all particular
metrics, respectively. For example, the HTESSEL simulations with
the parameter sets that yield best results in terms of ET bias (see the
corresponding column) also perform well in terms of runoff bias
(white colour) but not in terms of ET correlation (dark colour).

considered metrics. This sum of ranks is then a measure of
the overall performance of each simulation, and can be used
to rank the overall performance against multiple metrics.

In Fig. 4, we test how the best- and worst-ranked param-
eter sets rank in the case that the validation metric(s) is/are
replaced by the same number of other validation metric(s).
For a perfect model and perfect observations we would find
that the best- and worst-ranked parameter sets in terms of
particular validation metrics are also best- and worst-ranked,
respectively, when compared against other validation met-
rics. For HTESSEL we find that for an increasing number
of employed metrics, worst-performing parameter sets tend
to also perform worse in the case of replaced validation met-
rics. This is a main result of this study: it means that poorly
performing model configurations can be more robustly iden-
tified when assessing model performance against multiple
validation metrics.

However, this behaviour is not found for the best-
performing parameter sets. There are two main reasons for
this.

1. The poor correspondence of model performance against
the considered single validation metrics as shown in
Fig. 1. The impact of the underlying partly inconsis-
tent process representations within HTESSEL on the
results in Fig. 4 increases when using more validation
metrics. When computing Fig. 4 without the two val-
idation metrics for which we find the highest average
ranks in Fig. 1 (runoff bias and LST range bias), the
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Figure 4. Comparing the rankings of HTESSEL simulations with
all considered parameter sets when replacing a given set of evalua-
tion metrics with an equal number of other metrics. The red curve
displays the average rank of the previously worst-ranked parameter
sets, and the green curve denotes the average rank of the previously
best-ranked parameter sets. For each number of metrics, all possi-
ble combinations out of the 10 metrics employed in this study are
considered, and the mean results are displayed.

best-performing parameter sets are more robustly iden-
tified with increasing number of employed validation
metrics (green dashed line). This can be explained by
the performance of HTESSEL assessed against the two
omitted metrics being most inconsistent with its perfor-
mance against the remaining metrics. The opposite is
found when re-computing Fig. 4 without the two val-
idation metrics which correspond best to the remain-
ing metrics, i.e. for which we find the lowest average
ranks (soil moisture anomaly correlation and GRACE
anomaly correlation).

This implies that the better the model performance rank-
ings against individual metrics correspond to each other
(i.e. the whiter colour there is in Fig. 3), the fewer met-
rics are required to robustly identify best- and worst-
performing parameter sets. This supports the previously
discussed importance of the mean rank in Fig. 3; it fur-
thermore provides an indication of the required num-
ber of metrics to calibrate the considered land surface
model.

2. Out of the 50 considered parameter sets, 25 were pre-
selected as they performed particularly well. Hence the
50 parameter sets are not randomly chosen but contain
more well-performing configurations than expected by
chance. Consequently, the performances of the best pa-
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Figure 5. Similar to Fig. 4 but comparing the performance (ranking)
of HTESSEL simulations with 11 parameter sets across uncoupled
evaluation (x axis) and coupled forecast skills (y axis).

rameter sets are more similar than the performances of
the worst-performing parameter sets such that for exam-
ple ranks 1-5 might correspond to very similar perfor-
mances. When computing the above analysis with only
the 25 randomly selected parameter sets, we find a more
robust identification of well-performing parameter sets
with increased validation metrics as shown in Fig. S4,
in contrast to the results in Fig. 4.

4.2.3 Added value of using multiple reference datasets
for coupled forecast skill

Adding to the above analyses, we finally investigate whether
a more robust calibration of HTESSEL against multiple
datasets yields more accurate weather forecasts. For this pur-
pose we perform a similar analysis to that in Fig. 4. We test
how the best- and worst-ranked parameter sets rank if the
(uncoupled) HTESSEL validation metrics are replaced by
(coupled) weather forecast skill metrics. The results are dis-
played in Fig. 5.

Also in this analysis we find benefits of using multiple val-
idation metrics. The parameter sets ranked best (worst) yield
better (worse) forecast performance for an increasing number
of employed validation metrics. It is another main finding of
this study that land surface model calibration against mul-
tiple reference datasets instead of a single reference dataset
can lead to better weather forecast performance. This result
is found at all considered forecast lead times (1-15, 16-30
and 31-45 days). However, the differences between few and
many considered metrics are smaller compared with Fig. 4.
This can be explained by (1) fewer tested parameter sets
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(lower signal-to-noise ratio) and by (2) low predictability of
temperature and especially precipitation at long lead times
(e.g. 31-45 days) such that there is poor forecast skill over-
all independent of the HTESSEL configuration. Interestingly,
forecast skills expressed as anomaly correlations or biases
are more related to land surface model calibration than the
reliability skill, as can be seen from the large distance be-
tween the dashed red and green lines in Fig. 5 compared with
that of the dotted lines.

In summary, these results underline the importance of the
land surface (model calibration) for coupled weather forecast
skill (Koster et al., 2011), especially in terms of anomaly cor-
relations and bias, and to a weaker extent also in terms of
reliability.

5 Conclusions

In this study we assess the performance of ECMWF’s HT-
ESSEL land surface model against comprehensive satellite-
based land surface temperature observations. In this novel
analysis, we focus on the mean LST bias and the simulated
LST temporal dynamics, and find overall unsatisfactory per-
formance. There is no region across Europe and Africa where
both the mean LST and the dynamics are well captured by the
model. The performance is poorest over high vegetation and
improves for low or no vegetation. The particularly poor per-
formance over high vegetation suggests model deficiencies
related to the representation of the energy exchanges between
the top of the canopy and the underlying soil.

Novel Earth observation data such as the LST dataset
add to existing reference datasets, and we furthermore high-
light the benefit of employing multiple reference datasets
altogether in LSM analysis and calibration. They enable a
more robust calibration and can therefore help to address
the problem of constraining increasingly complex state-of-
the-art LSMs. In this context, we also show that a better
constrained LSM also contributes to improved weather fore-
casts. These results suggest the use of comprehensive objec-
tive functions in model calibration. Such a function should be
composed of various parts assessing the agreement between
the model simulations and a variety of reference datasets,
using multiple metrics. In this way, model parameters can
be adjusted more reliably to yield reasonable model perfor-
mance in terms of various variables, and to capture possible
couplings between them.

Based on the analysis in Fig. 4, we can even infer how
many metrics (i.e. reference datasets and measures of agree-
ment with it) are sufficient to robustly calibrate HTESSEL.
While in the figure we only consider up to 5 metrics (as more
can not be replaced in case of a total of 10 metrics), extrapo-
lation of the results towards more metrics indicates that HT-
ESSEL can be robustly calibrated against the 10 metrics used
in this study. While this means that poorly performing param-
eter sets can be identified with the considered reference data,
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we can, however, not robustly determine the best-performing
parameter sets. This is due to shortcomings in physical pro-
cess representations in HTESSEL where for instance the bias
of the simulated daily LST range can not be improved with-
out degrading the simulated hydrology. While it is beyond
the scope of this study to improve HTESSEL, identifying its
shortcomings in representing LSTs and in capturing the cor-
responding links with land hydrology serves as a valuable
basis for future development efforts.

Even though the above-described main results of this study
should be very relevant for the land surface modelling com-
munity, there are caveats in our analysis.

1. The results are valid for the models used (HTESSEL
and ECMWF ensemble forecasting system) and the pa-
rameters we chose to perturb. Future research is needed
to analyse whether the methodology and results are
transferable to other models.

2. The results are based on the reference datasets and met-
rics applied here, and on their involved uncertainties.
Even though we partly assessed the role of the suite of
employed metrics (leaving out two metrics at a time), it
is not clear whether similar findings would be obtained
with different reference datasets which inherit different
uncertainty characteristics.

3. The assessment of the uncoupled HTESSEL simula-
tions is partly based on the time period considered in
the coupled forecasts (2001-2010). This might lead to
an overestimation of the benefits of a robustly calibrated
land surface model for coupled forecast performance.

4. Our findings might depend on the spatial (0.5° x 0.5°,
even though this had to be upscaled for the comparison
with the ET and GRACE datasets) and temporal resolu-
tion (daily) used for the analysis.

Improved constraining of complex LSMs is essential to
better exploit their potential and as a basis to represent addi-
tional physical processes or updated land-use maps as fore-
seen in future versions. A more robust model calibration
probably also helps to improve the representation of quan-
tities and processes which can not (yet) be constrained with
existing observations (e.g. evapotranspiration, sensible heat
flux). More physically based model simulations can also fos-
ter improved understanding of (future) climate system func-
tioning, which is particularly important in the context of cli-
mate change (IPCC, 2013) as the estimation of climate con-
ditions outside the calibration range of a model is more reli-
able with physically based, and therefore complex, models.
Finally, as shown in this study, a more robustly calibrated
LSM also contributes to improved weather forecasts and is
hence valuable for society.

Data availability. Our simulation data are available on request.
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