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S1 Regionalization example

Two general possibilities to obtain precipitation amount distributions at ungauged locations
exist. The first approach is the interpolation of rainfall values for every time step to the tar-
get location, followed by an estimation of the distribution function with the interpolated
values (valuesnier). The second approach is first fitting a distribution function to all control
locations, which is followed by an interpolation of these distributions to the target location
(cdfinter). In the following, these possibilities will be compared with each other to moti-
vate the use of the cdf;,t., approach, which is the method used within our investigations.
Although it is commonly accepted to follow the cdfinir approach to obtain precipitation
amount distributions at ungauged locations for stochastic rainfall models, we still want to
illustrate the deficiencies of the values;ntr method to motivate the cdfint.r approach em-
pirically. Additionally, the resulting estimation errors also appear when rainfall values are
interpolated without considering the CDF explicitly. For example the use of interpolated
rainfall values for hydrological models may introduce a bias in the discharge estimation
caused by poor interpolation results.

In order to ensure equal interpolation weights ¢; of the control gauges i for both possibil-
ities, a simple inverse distance weighting (IDW) is used as interpolation technique in this
example, which is based on the following Eq. S1:

(S1)

where d; is the distance between control gauge 7 and the respective target gauge. For this
interpolation example IDW is preferred over OK for the following reasons: (i) Using OK
with daily precipitation values (valuesinier) would lead to the additional challenge of in-
cluding zero rainfall values within the estimation of the variogram and the kriging itself.
The focus of this paper, however, does not lie on interpolating rainfall values, therefore, the
simpler IDW method is used for interpolating rainfall values. (ii) IDW leads to the same
interpolation weights for both approaches and therefore assures that the better performance
of one of the approaches does not originate from the calculation of the weights, but from the
chosen interpolation scheme (cdfinter Or valuesinter). In the research article, OK is preferred
over IDW, because OK is considered as a better interpolation method than the simpler IDW.
The nonparametric KDE using SRT for the bandwidth selection is applied for estimating
distribution functions at the control gauges.

Another exception within this regionalization example is the inclusion of zero values to
show the advantages of interpolating distributions instead of precipitation values regarding
Py. Zero values can be included within the interpolation of nonparametric distributions
by applying the following steps. (i) Fitting a distribution to all precipitation values at each
gauge. (ii) Estimate the quantile values for certain quantiles (non-exceedance probabilities)
over the whole probability range (0-1) with the inverse of the fitted distributions at each
gauge. (iii) Use the interpolation weights from IDW to interpolate the quantile values of
different gauges for each chosen quantile. (iv) If the quantile is below Py for some (or all)



Table S1: Regionalization example: Basic daily rainfall statistics of observed values at
the validation gauge (data), interpolated rainfall values (valuesinter), randomly
sampled rainfall values of the interpolated nonparametric distribution function
(cdfinter) and the respective ranges of the calibration gauges. The rainfall statistics
are the arithmetic mean (z), the standard deviation (s;) of all rainfall values, the
arithmetic mean (Z-o) of non zero values, the probability of zero rainfall Py and
the maximum value (mazx).

Data valuesipter cdfinter Range calibration set

T 2.18 2.17 2.27 1.77 -3.18
Sg 4.56 4.04 4.93 3.88 - 6.47
Tso 439 297 4.20 3.73-4.47
Py 0.50 0.27 0.46 0.46 - 0.54
maz  56.0 49.12 62.29 42.5-102.3

gauges, the quantile value at these gauges will be 0 mm, which are then just included in
the interpolation. (v) The highest quantile with 0 mm at the target gauge defines Py at the
target.

In our example the distribution of daily rainfall values (1D) for the gauge Esslingen /
Neckar is estimated from rainfall values of 30 neighboring gauges (see Fig. S1 (a)). In Fig. S1
(b) and (c), parts of the distribution functions resulting from both methods and the original
EDF are shown. Clear disadvantages of the values;,i., method are the overestimation of
days with rainfall and thus an underestimation of the probability of no rainfall (Fig. S1 (b))
and a clear underestimation of the CDF for higher quantiles (Fig. S1 (c)).

As the cdfinier method does not provide rainfall values automatically, which are needed
to calculate basic statistical measures, random rainfall values are generated with the inverse
of the interpolated CDF. The number of these random values is equivalent to the number of
observed daily rainfall values of the validation gauge. In Table S1 basic statistics of precip-
itation amounts are listed for both methods and observations. Looking at the mean values
of all rainfall (Z) values, the values;ni.r method seems to reproduce this statistic very well.
Considering the other statistics in Table S1 and Fig. S1 this is most probably caused by two
disadvantages of this method: an overestimation of days with small rainfall amounts (see
Py) and a simultaneous underestimation of higher rainfall intensities (see Z~o and max).
This argument is reaffirmed by the smaller standard deviation of values;yier and the illus-
trations of the precipitation amount distributions in Fig. S1. The cdfinter method mainly
provides better results summarizing the listed statistics. Only a tendency of overestimating
high rainfall intensities can be observed.

As the values;nter method has great problems in reproducing probabilities of zero rainfall
and the shape of the distribution function, this method is not recommended to be used with
rainfall over a great range of aggregations. For higher aggregations these disadvantages
may have no noticeable effect, but for smaller aggregations with a greater skewness the
problems might even increase. This would lead to a more pronounced underestimation of
high quantile values, which are mostly the decisive ones for subsequent applications. As
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Figure S1: Regionalization example: (a) shows the daily target gauge (black cross) and the
30 neighboring daily gauges (black dots) of the regionalization example. In (b)
and (c) parts of the EDF of the target gauge (data), the EDF of the interpolated
rainfall values (values;yier) and the interpolated nonparametric estimate (cdfinter)
of the target CDF are depicted.

the cdfinier method exhibits better results concerning the basic rainfall volume statistics, it
seems to be the better choice for the purpose of interpolating precipitation amount models.



S2 Probability distributions of precipitation amounts in a spatial
context (corresponds to section 5 in the research article)
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Figure S2: T statistic over distance: The graph shows the mean values of the T’ statistic for
temporal resolutions from 1D to M.
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S3 Usage of daily values for sub-daily values - Empirical cross
validation (corresponds to section 9 in the research article)

To estimate the usage of daily observations for sub-daily distribution functions with the
rescaling procedure described in section 9 of the research article, a cross validation is ap-
plied based on the high resolution gauges only, which are used as daily gauges one after
another. The resulting sub-daily statistics of scaled values for these pseudo daily gauges are
compared to their original sub-daily values by calculating the mean squared errors over all
gauges. The scaled nearest neighbor values are compared to nearest neighbor values and to
interpolated rainfall values. The interpolation is done by OK with ten neighbors using a sin-
gle variogram model. During the cross validation a nearest neighbor gauge is defined as the
gauge with the closest distance and at least 50 % of data overlapping. For the interpolation
of the rainfall values with OK then again only this data overlapping period is chosen.

In Fig. S3 the results are shown for quantile values, but the standard deviation, the mean
values and QV;;, were also investigated. The cross validation of the different statistical vari-
ables are very similar. For all of them the scaled nearest neighbor values (NNS) lead to
the best results in summer and winter. Therefore daily gauges seem to be useful for the
interpolation of sub-daily nonparametric and parametric models.
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Figure S3: The mean squared errors (mse) for quantile values of discrete quantiles (in 0.001
steps) greater than (), (see Table 1 in the research article) (a) and greater than
0.995 (b) in winter (dotted) and summer (dashed) for nearest neighbor (NN), near-
est neighbor scaled (NNS) and OK of rainfall values over different aggregations.
At first the mean squared error over discrete quantiles is calculated for each gauge
which is followed by calculating the mean of these over the whole study region.



S4 Performance of point models (corresponds to section 10.2 in
the research article)

Table S2: Ranking numbers including only median and mean of the W? criterion for point
wise estimation.The bold numbers indicate the overall best model for each tempo-
ral resolution.

Winter season
1H 2H 3H 6H 12H 1D 5D M
P-Exp-MLM 69.36 5529 4137 23.09 15.01 1555 6.10 79.80
P-Gamma-MLM 1853 1217 830 496 394 502 415 424
P-Mixed-Exp-MLM  4.50 3.61 338 3.09 276 315 631 79.80

P-Pareto-MLM 3.60 4.04 415 395 385 377 370 724.63
P-Weibull-MLM 10.67  6.56 451 322 291 360 344 1292
P-Gamma-MOM 185.72 89.81 52.09 2097 11.07 1154 439 282
P-Pareto-MOM 5.98 6.12 6.17 524 485 471 351 2192
P-Weibull-MOM 83.01 38.01 2244 972 648 672 382 311
NP-SRT 2.10 2.03 201 200 200 211 209 2.00
NP-SJ] 2.00 2.03 204 208 209 2.00 200 234

Summer season
1H 2H 3H 6H 12H 1D 5D M
P-Exp-MLM 16798 98.67 57.06 20.66 958 10.70 7.57 66.59
P-Gamma-MLM 3410 1741 1024 548 367 398 417 3.39
P-Mixed-Exp-MLM  7.25 3.93 331 271 275 279 778 66.59

P-Pareto-MLM 341 4.30 388 312 296 328 376 484.25
P-Weibull-MLM 14.01 6.91 482 351 3.03 320 332 1447
P-Gamma-MOM 262.32 103.55 4855 1554 741 720 412 343
P-Pareto-MOM 1448 11.02 739 426 3.63 385 344 2237
P-Weibull-MOM 87.51 3370 1778 734 477 456 346 3.05
NP-SRT 2.00 2.00 2.00 200 200 200 207 2.00

NP-SJ] 2.15 2.19 214 220 214 205 200 221
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Table S3: Ranking numbers including only median and mean of the L, criterion for point
wise estimation.The bold numbers indicate the overall best model for each tempo-
ral resolution.

Winter season
1H 2H 3H 6H 12H 1D 5D M
P-Exp-MLM 155.82 9056 88.07 46.07 22.66 26.09 850 662.51
P-Gamma-MLM 4146 1849 1449 547 305 649 488 9.00
P-Mixed-Exp-MLM  8.42 2.11 2.00 200 203 200 934 662.86
P-Pareto-MLM 2.79 2.08 3.14 314 253 263 249 25429
P-Weibull-MLM 20.16 7.45 5.23 252 202 391 301 1141
P-Gamma-MOM 80.17 4833 4268 2049 9.17 1193 225 2.68

P-Pareto-MOM 2.13 2.69 4.06 401 312 337 220 2924
P-Weibull-MOM 4071 2372 2221 1156 5.89 6.99 2.00 2.00
NP-SRT 1144 20.03 3343 40.16 34.22 2910 1524 1040
NP-SJ 9.23 20.09 31.78 41.13 36.07 2715 14.77 15.01

Summer season
1H 2H 3H 6H 12H 1D 5D M
P-Exp-MLM 7726 134.82 131.76 49.97 16.56 15.13 14.10 783.93
P-Gamma-MLM 1741 2312 19.89 734 375 400 5.83 3.83
P-Mixed-Exp-MLM  3.11 2.00 2.00 2.00 2.02 2.00 15.32 78393

P-Pareto-MLM 4.17 9.14 8.91 401 259 230 290 22544
P-Weibull-MLM 7.07 7.01 5.60 313 245 282 328 11.15
P-Gamma-MOM 2683 4172 3918 1755 810 624 233 3.83
P-Pareto-MOM 2.00 3.44 4.16 3.02 236 223 238 2544
P-Weibull-MOM 10.89 1732 1746 9.03 514 392 2.00 2.00
NP-SRT 4.15 17.05 2954 3541 34.15 2876 1693 7.27

NP-SJ 4.76 1990 3397 4422 39.03 31.09 1564 10.11




S5 Variogram estimation (corresponds to section 10.3.1 in the
research article)

0.35 0.14

030} 012}
0.25 0.10
020} 008t
¢ < X = x X
L s g Keriygmminnn 0.06} X T (s
X X)X L XX
0.10 L7 0.04 Srhs
X X
. "
0,05} 7 : : 002} "
X X
? i
7 ¥
U’(")n 20 10 60 80 100 U’Ul)n 20 10 60 80 100
distance(km) distance(km)
(a) QV. of NP-SRT (b) QVin
0.030 040
035}
0.025 % X
030 X. -
0.020 vl
% 025 % )X
X g -
0015 Late- X- X «0.20 .
X--% X X
>,<' + 0.15 +
0.010 g
p .
X 010} o ’,X
0.005 -, % : e
x 0.05 L,
2 b
3 ,
0.000 0.00 s
0 20 10 60 30 100 0 20 10 60 30 100
distance(km) distance(km)
(¢) A1 of P-Mixed-Exp-MLM (d) A2 of P-Mixed-Exp-MLM
0.40 0.20
035}
030} 015}
025}
=020} =010
R Sl
015} e X X --X—--’—( ______ X |
i e e st X 0%
010} ’)'(’ + ; 0.05F ,)«(’ } X :
0.05 o’ X
Ix I,
" ;
0.00 i 0.00 i
0 20 10 0 30 100 0 20 10 60 30 100
distance(km) distance(km)
(e) mean of P-Weibull-MOM (f) standard deviation P-Weibull-MOM

Figure S4: Winter calibration sample 2 for 1H. The black crosses represent the empirical var-
iogram values of the 10 km distance classes, which are used for the least squares
fit. The grey crosses represent the empirical variogram values of 1 km distance
classes.
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Figure S5: Winter calibration sample 2 for 12H. The black crosses represent the empirical
variogram values of the 10 km distance classes, which are used for the least
squares fit. The grey crosses represent the empirical variogram values of 1 km
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Figure S6: Summer calibration sample 2 for 1H. The black crosses represent the empirical
variogram values of the 10 km distance classes, which are used for the least
squares fit. The grey crosses represent the empirical variogram values of 1 km
distance classes.
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Figure S7: Summer calibration sample 2 for 12H. The black crosses represent the empiri-
cal variogram values of the 10 km distance classes, which are used for the least
squares fit. The grey crosses represent the empirical variogram values of 1 km

distance classes.



