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Abstract. Catchment flood response consists of multiple
components of flow originating from different surface and
subsurface layers. This study proposes an extension of
Viglione et al. (2010a) analytical framework to represent
the dependence of catchment flood response to the differ-
ent runoff generation processes. The analytical framework
is compared to simulations from a distributed hydrologic
model. A large number of rainfall–runoff events from three
catchments of Tar River basin in North Carolina are used to
illustrate the analytical framework. Specifically, the frame-
work is used to estimate three flood event characteristics (cu-
mulative runoff volume, centroid, and “spreadness” of hy-
drograph) through three corresponding framework parame-
ters: the rainfall excess and the mean and variance of catch-
ment response time. Results show that, under the smooth to-
pographic setups of the study area, the spatial and/or tem-
poral correlation between rainfall and runoff generation are
insignificant to flood response; delay in flood response due
to runoff generation and routing are of equal importance; the
shape of the flood is mainly controlled by the variability in
runoff generation stage but with non-negligible contribution
from the runoff routing stage. Sensitivity tests show that the
framework’s main error source is the systematic underesti-
mation of the flood event’s centroid and spreadness, while
the random error is relatively low.

1 Introduction

Catchment flood response, or in a more general sense, the
water balance at basin scale, is controlled by a range of hy-
drological processes with each of them contributing a differ-
ent level of spatiotemporal variability (precipitation, surface

runoff, infiltration, routing, etc.) (Skøien et al., 2003; Skøien
and Blöschl, 2006; Merz and Blöschl, 2009; Rodríguez-
Blanco et al., 2012; Palleiro et al., 2014; Zoccatelli et al.,
2015). Many of these studies have investigated how these
processes are linked with the catchment flood response and
what the relative importance of each of these processes is in
controlling the properties of the flood being generated. For
example, it has been argued that only a portion of space–
time characteristics of the flood response process will emerge
to control the dynamics of a flood hydrograph due to the
catchment dampening effect (Skøien et al., 2003; Smith et
al., 2004; Skøien and Blöschl, 2006), and this dampening
effect varies dynamically according to the hydrogeological
properties of the catchment and features of the triggering
storm, implying a shift of relative importance of processes
in catchment flood response under different flood regimes
(Sivapalan, et al., 2004; Smith et al., 2002, 2005; Sangati et
al., 2009; Mejía and Moglen, 2010; Volpi et al., 2012; Mei
et al., 2014). The answers to these questions are intimately
related to the development of a comprehensive framework
that can generalize the estimation of streamflow spatiotem-
poral variability by a synthesis of various catchment pro-
cesses under different hydrometeorological and geomorpho-
logical controls (Blöschl, 2006).

Describing catchment flood response based on a set of spa-
tiotemporal variables in storm response (i.e., rainfall, runoff
generation, and routing) has been established and utilized
since the late 1990s (Woods and Sivapalan, 1999; Smith et
al., 2005; Viglione et al., 2010a; Mejía and Moglen, 2010;
Mei et al., 2014; Zoccatelli et al., 2011, 2015). The essence
of such an analytical framework is to diagnose the relative
importance of rainfall space–time processes that influence
the runoff generation (i.e., cumulative flow volume, hydro-
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Figure 1. Schematic of the analytical framework.

graph timing, and shape). The first work that synthesized the
space–time variables into a holistic analytical framework is
that of Woods and Sivapala (1999). That framework used the
“stationary rainfall” assumption, which can be interpreted as
no movement of rainfall over the catchment. This assump-
tion is strong, but it is considered reasonable only for short-
duration or orographic-enhanced storms, which have rela-
tively fixed spatial patterns over time. This framework as-
sumption was applied in subsequent studies by Mejía and
Moglen (2010) and Zoccatelli et al. (2010). Specifically, Zoc-
catelli et al. (2010) investigated the influence introduced by
neglecting the spatial information of rainfall distribution in
flow generation. Their study showed a larger delay in the
arrival of a hydrograph mass center, as rainfall mass center
tends to be located closer to the headwater of the basin. Mejía
and Moglen (2010) investigated the flood response to the dis-
tribution of impervious surface by partitioning rainfall excess
generation to pervious and impervious areas of a catchment.
The study concluded that the imperviousness pattern is im-
portant when it is collocated with the mass center of rainfall.

Viglione et al. (2010a) generalized the Woods and Siva-
palan (1999) framework by relaxing the “stationary rainfall”
assumption. Their framework has terms to describe the rel-
ative movement of rainfall to the other variables. Viglione
et al. (2010b) utilized their generalized framework to study
the relative importance among rainfall space–time processes
in controlling runoff generation for different types of floods.
The study pointed out that the space and time covariance
are important in runoff generation for short-duration rainfall
events due to their highly localized feature; the spatial co-
variance is irrelevant for long-duration rainfall events since
the rainfall field tends to be uniformly distributed over the
catchment. Zoccatelli et al. (2011) derived the spatial mo-
ment of catchment rainfall and catchment scale storm ve-
locity under the constant runoff coefficient assumption. The
results indicate that the closer the rainfall mass center is to
the catchment outlet, the earlier the arrival of the hydrograph
mass center is. This aspect was also revealed in the study of

Mei et al. (2014) that examined 164 (mostly moderate) flood
events. The study further concluded that the shape of rain-
fall and its movement are relatively insensitive in shaping the
event hydrograph mainly because of the unsaturated rainfall
excess. Nikolopoulos et al. (2014) paid particular attention to
the catchment-scale storm velocity and were able to demon-
strate the scale dependency and rainfall intensity dependency
to storm magnitude.

The Viglione et al. (2010a) analytical framework (here-
after referred to as V2010) is relevant to only one rainfall
excess (event flow) component. In this sense, the different
runoff generation processes associated with vertical hetero-
geneous catchment layers are lumped together into a sin-
gle flood response (Woods and Sivapalan, 1999; Viglione
et al., 2010b). Numerous experimental studies, though, have
demonstrated that catchment flood response can be identified
as multiple components originating from different catchment
layers and associated with different flow paths (Weiler et al.,
2003; Liu et al., 2004; Gonzales et al., 2009). This is also pre-
scribed in distributed hydrologic model where rainfall excess
is often partitioned into different linear reservoirs represent-
ing different routing mechanisms (Koren et al., 2004; Blöschl
et al., 2008; Wang et al., 2011). Thus, we see the necessity
of further generalizing V2010 to represent multicomponent
flood responses. The analytical framework presented in this
paper is visualized in Fig. 1. Catchment rainfall forcing is
converted to more than one rainfall excess component asso-
ciated with various surface and subsurface layers. These rain-
fall excess components are subjected to different flow paths
and routing schemes. The output hydrograph is a combina-
tion of hydrographs from the different components. A point
to note is that our discretization of streamflow is still within
the context of event flow and is not extended to the very slow
response (e.g., baseflow). To sum up, our expanded frame-
work introduces parallel channels to represent the different
components of catchment flood response. This new capabil-
ity relative to V2010 and other previous frameworks can sup-
port studies to help us understand which space–time process
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is the most dominant for a component of catchment response
and how the contributions of different rainfall excess com-
ponents are changing across disparate hydrologic regimes
(basin scales, rainfall duration, and space–time distribution,
etc.).

We illustrate the multicomponent flood response frame-
work based on a two-component assumption consistent with
a distributed hydrologic model structure. The illustration is
built based on a relatively large number of rainfall–runoff
events from three catchments in the Tar River basin in North
Carolina. The paper is organized as follows. In Sect. 2, the
study basin and data used in the study are described. Sec-
tion 3 illustrates the experimental design with the hydrologic
model. The analytical framework equations together with the
demonstrations are presented in Sect. 4. Tests to understand
the framework sensitivity to flood characteristics are pro-
vided in Sect. 5. Conclusions (including limitations and fu-
ture works) are discussed in Sect. 6.

2 Study area and dataset

2.1 Tar River basin and hydrometeorology data

We conducted our analysis over three nested catchments
(namely Swift, Fishing and Tar) in the Tar River basin, a low-
elevation basin located in North Carolina (maximum eleva-
tion is 220 m a.s.l. – above sea level). The study catchment
areas are 426, 1374, and 2406 km2, characterized by mild
slopes (mean slope at 0.90, 0.81, and 0.83 %, respectively).
The prevailing climate of the area is humid subtropical, caus-
ing annual precipitation and runoff around 1100 and 250 mm,
respectively. The reader is referred to Mei and Anagnos-
tou (2015) and Mei et al. (2014) for details on the hydrology
of the study area.

The stage 4 radar-based multi-sensor precipitation esti-
mates (STIV hereafter) from the National Center for Envi-
ronmental Prediction is used as our reference rainfall (Lin,
2011). The product is mosaicked from the Regional Multi-
sensor Precipitation Analysis (RMPA) produced by the Na-
tional Weather Service River Forecast Centers and bene-
fits from some manual quality control process (Lin and
Mitchell, 2005). The RMPA includes rain rates from merged
operational radar estimates (150 Doppler Next-Generation
Weather Radar) and 5500 hourly rain gauge measurements.
The STIV data are hourly and available at approximately
4 km spatial resolution. The data used in this study have
been spatially interpolated to 1 km by the bilinear method.
Another atmospheric forcing dataset used in this study is
the potential evapotranspiration (PET), available from the
North American Regional Reanalysis (NARR) at 3-hourly
and 32 km resolution (Mesinger et al., 2006). The NARR
PET product accounts for evaporation from the soil, transpi-
ration from the vegetation canopy, evaporation of dew and
frost or canopy-intercepted precipitation, and snow sublima-

tion. We also used hourly flow rates that were aggregated
from the 15 min flow rate records available from the United
States Geology Survey (USGS) for the three study catch-
ments.

2.2 Rainfall–runoff event selection

The study rainfall–runoff events are extracted from the obser-
vation datasets using the characteristic point method (CPM)
introduced in Mei and Anagnostou (2015). The advantages
of CPM are its parsimonious data requirement (basin area
and time series of rainfall and flow) and automatic extrac-
tion of events based on time series features. Event runoff and
rainfall periods are identified from the long-term continuous
time series of observed flow and rainfall records. Rainfall pe-
riods satisfying the following conditions are associated with
each of the flood periods:

– rainfall period(s) occurring before the flood period but
within the time of concentration of the basin;

– rainfall period(s) located on the rising limb of the flood
period; and

– rainfall period(s) occurring prior to the end of the flood
period by a time length equal to the time of concentra-
tion.

All of the rainfall periods associated with the same flood pe-
riod are integrated as one rainfall event and are considered
as the inducing rainfall of the flood. Each of the rainfall and
flood pairs forms a rainfall–runoff event. The CPM is ap-
plied on the USGS streamflow observations and catchment-
average STIV rainfall data for the three study catchments.
The method identified nearly 300 flood events from the study
period, and these events were further filtered according to the
hydrologic model performance as described in Sect. 3.2.

3 Hydrologic model and experiment

3.1 Distributed hydrologic model

The Coupled Routing and Excess STorage (CREST) model
version 2.1 is used for the hydrologic simulations in our
study (Shen and Hong, 2014). CREST is a fully distributed
rainfall–runoff model designed to simulate flow discharges
over watersheds at global scale. CREST integrates a water
balance model for the vertical fluxes with a horizontal rout-
ing model for the surface and subsurface runoff (Wang et al.,
2011; Shen, et al., 2016). The water balance model considers
four processes: canopy interception, infiltration, evapotran-
spiration (ET), and runoff generation. The infiltration rate is
calculated based on the variable infiltration curve developed
in the Xinanjiang model (Zhao, 1992). For each grid cell,
the actual ET (AET) is determined in terms of water and en-
ergy budget using precipitation, soil water availability, and
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PET. In the runoff generation process, CREST separates rain-
fall excess into two components, the surface and subsurface
runoff modeled by two linear reservoirs – the overland and
interflow reservoirs. In the routing process, the subgrid rout-
ing inhomogeneity is accounted for by employing these two
runoff components. The model version used in this study im-
plements the fully distributed linear reservoir routing method
that overcomes the severe underestimation of flow in previ-
ous versions (Shen et al., 2016). The parameter optimization
algorithm adapted in CREST is the shuffled complex evolu-
tion (SCE-UA) developed by Duan et al. (1992).

3.2 Experimental design

As a first step, the model is set up over the three study catch-
ments with 1 km spatial resolution. The geomorphologic and
hydrologic variables (i.e., flow direction, flow accumulation,
slope, and stream channel) of the catchment areas are pro-
vided by the Hydrological data and maps based on SHut-
tle Elevation Derivatives at multiple Scales (HydroSHEDS)
(Lehner et al. 2008). The STIV precipitation and NARR PET
product force the model to compute the through precipita-
tion, actual evapotranspiration, infiltration capacity, soil wa-
ter content, and rainfall excess. We keep the model setting
relatively simple by “turning off” the canopy interception,
meaning that the process is conceptualized by a multiplier
of the precipitation data, which is optimized by a calibra-
tion process. In addition, the fraction of impervious surface
in this study is represented by an imperviousness parame-
ter that was optimized through model calibration. The model
was calibrated in the three catchments with respect to the ob-
served hourly flow rate from 2004 to 2006 (the years 2002
to 2003 are used as the spinning period). The Nash–Sutcliffe
coefficients of efficiency (NSCEs) of the flow simulations in
the Swift, Fishing, and Tar catchments determined at hourly
scale are 0.69, 0.62, and 0.66, respectively, indicating rea-
sonable performance of the model over the study catchments
(Moriasi et al., 2007).

Rainfall–runoff events from the 2003 to 2012 period with
duration shorter than 500 h are identified from the continu-
ous flow simulations during the time periods provided by the
CPM. The mean error (ME), correlation coefficient (CC), and
NSCE are calculated with respect to the observed flow rate
for each event and these error metrics are ranked in ascend-
ing order (consider only the magnitude when ranking ME).
Flood events of ME higher than the 95th percentile and CC
and NSCE lower than their respective 5th percentile were
discarded from the analysis to keep our results representa-
tive in the context of hydrologic simulation. These selection
criteria resulted in 180 events (62, 57, and 61 events, respec-
tively, for the smallest to largest catchments) with overall rel-
ative centered root mean square error being equal to 42.0,
43.0, and 34.4 %, respectively. Two pilot events used in the
framework demonstrations are exhibited in Fig. 2. They are
characterized by high CC and low relative centered root

mean square (CRMS) values with respect to the observed
flow time series. The CC for the two events are above 0.94
and 0.82 with relative CRMS at about 50 % (Swift catchment
for event 2 is an exception with CRMS at about 100 %). The
first is an intermittent event that lasted for 93 h in June 2006;
the second is a 66 h long event in November 2009. Mean rain
rates (in mm h−1) for the three catchments are 1.33, 0.87, and
1.31 for the first event and 1.34, 1.22, and 1.59 for the sec-
ond event. It is noted that the concentration time increases
as function of drainage area. The rainfall mass that triggered
the June 2006 event is distributed around the outlet while the
November 2009 event is spatially bimodal.

Our last step is to remove the influences of the non-zero
initial condition of each event in the continuous simulations.
For each event period, we run CREST by setting both rainfall
and PET data to zero so as to output the “baseflow hydro-
graph”. This baseflow hydrograph gives or mimics the reces-
sion of flow with the initial condition over the event time pe-
riod. The event flow hydrographs are subtracted by the base-
flow hydrographs and the new event flow hydrographs are
obtained for the subsequent analysis.

4 Analytical framework of catchment response

The V2010 analytical framework quantifies the effects of
spatiotemporal variability of rainfall, runoff generation, and
routing on a basin’s flood response. The follow-up applica-
tion by Viglione et al. (2010b) isolated the event flow com-
ponent from baseflow, simulated using the Kamp model, and
demonstrated the magnitudes of terms of catchment space–
time processes represented in V2010. In our study, we extend
the V2010 framework with the consideration that event flow
consists of multiple components from the vertical layers of
catchment (Fig. 1). We illustrate the new framework using
a two-component (surface and subsurface) flow generation
process, consistent with the overland and interflow reservoir
of CREST. Similar to V2010, our analytical framework esti-
mates catchment response by three quantities: (a) the amount
of rainfall excess, (b) the mean catchment response time,
and (c) the variance of catchment response time. These three
quantities are proxies of the corresponding flood character-
istics, namely (a) the cumulative event flow volume, (b) the
hydrograph centroid, and (c) the spreadness of hydrograph.
A two-stage framework structure that decomposes the catch-
ment response to rainfall excess generation and runoff rout-
ing is adopted (Mejía and Moglen, 2010; Zoccatelli et al.,
2011; Mei et al., 2014). Although a more detailed multi-stage
framework could increase the rational of modeling (Zoc-
catelli et al., 2015), in this study, we considered the hillslope
and channel routing processes as part of the runoff routing
(described later in Eq. 3). Specifically, we focus on deriving
the analytical framework equations under the multicompo-
nent scenario described in Sect. 4.2 and 4.3. The variables
used in the framework (rainfall, runoff coefficient, and runoff
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Figure 2. Event rainfall map and time series of rainfall and runoff for the two representative events.

routing time) are attained from the CREST model parameters
and are described in Sect. 4.1.

4.1 Analytical framework variables

The analytical framework has three input variables – the rain-
fall, the runoff coefficient, and the runoff routing time. The
rainfall variable for the framework refers to the net amount of
precipitation that reaches the catchment surface after actual
evaporation loss and vegetation intercepted rainfall is sub-
tracted and its partition in surface and subsurface runoff. The
rainfall variable, P(a, t), is determined in this study as

P(a, t)= CIP
′(a, t)−Ea(a, t), (1)

where P ′(a, t) and Ea(a, t) are actual precipitation (STIV
precipitation) and evaporation rates (calculated by CREST in
this study). Indexes a and t stand for the location and time di-
mensions. CI is the multiplier that conceptualizes the canopy.

Most distributed hydrologic models separate the rainfall
excess into two components – the surface and the subsur-

face rainfall excess – and route them by two parallel flow
paths with different speeds and outflow rates. Namely, the
flood response for catchment surface and subsurface are as-
sociated with different generations and routing mechanisms
characterized by different runoff coefficients and runoff rout-
ing time. The surface process is intimately related to the frac-
tion of impervious surface over the basin where the through-
rainfall is converted to rainfall excess, which can be repre-
sented as a uniform parameter, IM, optimized through the
hydrologic model calibration. Thus, the surface runoff coeffi-
cient, W2(a, t), is represented in the proposed framework by
the imperviousness parameter, IM. Values of IM for the three
catchments (from small to large) are 13.1, 10.9, and 11.3 %.
On the other hand, the amount of runoff generated from the
subsurface is positively correlated to the soil wetness based
on the variable infiltration curve adopted by CREST. Thus,
the subsurface runoff coefficient, W1(a, t), is estimated as

W1(a, t)=
SM(a, t)
WM

, (2)
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Figure 3. Runoff routing time for the study basins.

where SM(a, t) is the volumetric soil moisture (one of
the model outputs), and WM is the maximum water capac-
ity calibrated from the model. Overall, WM increases from
the smallest to the largest basin (values are 106, 198, and
249 mm).

For runoff routing, CREST modeled the basin surface
as hillslope and channel grids with different concentration
times. The concept of concentration time is a measurement
of the required time for the rainfall excess to drain from its
originating grid to the next downstream grid. Traveling time
of water from a given grid cell is calculated as the summation
of all the concentration time along its flow path to the basin
outlet. Therefore, the runoff routing time is written as

2(a)= α


∑
Lh(a)

l(a)

s(a)β︸ ︷︷ ︸
Hillslope

+
1
K

∑
Lc(a)

l(a)

s(a)β︸ ︷︷ ︸
Channel

 , (3)

where l(a) and s(a) are the length of flow path from a grid
to its adjacent downstream grid and the slope at that grid,
respectively; Lh(a) and Lc(a) represent the space of hills-
lope and channel flow path from a grid cell to the catchment
outlet; K is the overland runoff velocity coefficient used
to distinguish hillslope routing to channel routing; β is the
flow speed exponent. Although hillslope and channel routing
times are modeled by the same method, they differ by the
length of the respective flow paths and velocity; the sum of
these two routing times yields the runoff routing time. The
term α is a velocity coefficient that is used to distinguish the
surface and subsurface routing. In our study, α is unity in
Eq. (3) for the subsurface runoff routing time,21(a); it takes
values smaller than 1 to represent 22(a), the surface runoff
routing time, since surface routing should be faster than sub-
surface routing. Values of α are 0.31, 0.63, and 0.67 for the
study catchments. Therefore, routing times for the surface
and subsurface processes are proportional to each other:

22(a)

21(a)
= α. (4)

Magnitudes of the spatially variable runoff routing time for
the surface and subsurface processes are illustrated in Fig. 3.
The figure shows that runoff routing time increases going up-
stream. The Tar catchment (the largest one) is characterized
by the widest value range compared to the other two sub-
basins. The Swift catchment shows distinctively lower over-
all values for the surface runoff routing time (22) due to its
low α value (0.3 compared to above 0.6 for the other two).
This is expected given that model parameters of the three
catchments are independently calibrated.

4.2 Generation of rainfall excess

The generation of rainfall excess at location and time (a, t)
is calculated as

Ri = PWi, (5)

where Ri , P , and Wi are the space–time variable rainfall ex-
cess, precipitation, and runoff coefficient field. Index i in-
dicates different rainfall excess components generated from
the different vertical layers of surface and subsurface. In this
study, we used two layers (i= 1 and 2) to denote the subsur-
face and surface rainfall excess, respectively. The total rain-
fall excess is the summation of all the rainfall excess compo-
nents:

R = P

N∑
i=1

Wi . (6)

Note that the sum of all Wi is the total runoff coefficient W .
To calculate the instantaneous basin-average rainfall excess,
we take the spatial expectation of Eq. (6):

[R]a = [P ]a

N∑
i=1

[Wi]a+

{
P,

N∑
i=1

Wi

}
a

, (7)

where [ ]a and { }a stand for the expectation and covariance
(variance if the variables are the same) operator applied over
the catchment area. The distributed storm-average rainfall
excess is given by taking the temporal expectation of Eq. (6):

[R]t = [P ]t

N∑
i=1

[Wi]t+

{
P,

N∑
i=1

Wi

}
t

. (8)
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Figure 4. Time series showing the spatial averaged terms in Eq. (7) for the different rainfall excess components of the two representative
events.

The first term in Eqs. (7) and (8) is the product between
spatial or temporal average rainfall and runoff coefficient,
while the second term quantifies the spatial or temporal vari-
ability between rainfall and runoff coefficient at every time
step/catchment grid.

Figures 4 and 5 show the magnitudes of the different terms
of Eq. (7) and (8), respectively. Note that since the sur-
face runoff coefficient W2 is estimated as a space–time con-
stant, the space and time covariance term between W2 and
P (i.e., {P , W2}a and {P , W2}t) are 0 and are not shown.
It is noted from Fig. 4 that the catchment-average rainfall
excess [R]a is strongly correlated to the catchment-average
rainfall ([P ]a shown in Fig. 2) mainly because of the spatial
covariance term {P , W1}a that is irrelevant to [R]a. This low
magnitude of {P , W1}a indicates that rainfall and runoff co-
efficients are not collocated in space for the two pilot events.
Meanwhile, the relative importance between [P ]a[W1]a and
[P ]a[W2]a changes dynamically throughout the event where
[P ]a[W1]a and [P ]a[W2]a are comparable during the early
phase but [P ]a[W1]a overwhelms in the mature and decaying
phase of the event. This is attributed to the dynamics of [W1]a
and [W2]a during the event, as shown by the differences be-
tween [W1]a and [W2]a on the top two panels of Fig. 6. Dur-
ing the evolution of the event, [W1]a–[W2]a start negative
and change to positive, reflecting the increase in subsurface
runoff coefficient [W1]a due to the increase in wetness con-
dition of the catchment. This dynamic change in [W1]a and
[W2]a also demonstrates why the surface rainfall excess com-
ponent is the quick response from the model. In addition, the
differences between [W1]a and [W2]a of the Swift catchment

are noticeably larger than the other two catchments in Fig. 6;
this could be attributed to the lower maximum water capacity
of the Swift catchment compared to the other two.

Figure 5 illustrates the temporal aggregated maps for terms
in Eq. (8). The products between temporal average rainfall
and runoff coefficient (i.e., [P ]t[W1]t and [P ]t[W2]t) account
for the major contribution of the storm-average rainfall ex-
cess. The product term [P ]t[W1]t is generally larger than
[P ]t[W2]t because [W1]t is larger than [W2]t, as shown in the
bottom two panels of Fig. 6. This is exemplified for the Swift
catchment due to its lower maximum water capacity. The
temporal covariance between rainfall and subsurface runoff
coefficient, {P , W1}t, is higher for the June 2006 event that
exhibits more distinct rainfall bursts and for the Swift catch-
ment, where W1 is more sensitive to rainfall dynamics.

The temporal or spatial integration of Eqs. (7) and (8)
yields the catchment-average storm rainfall excess, [R]at (see
Appendix A for details):

[R]at= [P ]at

N∑
i=1

[
Wi
]
at︸ ︷︷ ︸

R1

+

{
[P ]a

N∑
i=1

[
Wi
]
a

}
t︸ ︷︷ ︸

R2

+

{
[P ]t

N∑
i=1

[
Wi
]
t

}
a︸ ︷︷ ︸

R3

+

[{
(P − [P ]t) ,

N∑
i=1

(
Wi −

[
Wi
]
t
)}

a

]
t︸ ︷︷ ︸

R4

, (9)

where [ ]at is the space–time aggregation on the catch-
ment area and event period. This equation indicates that the
amount of total catchment-average storm rainfall excess is
the sum of catchment-average storm rainfall excess from all
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Figure 5. The same as Fig. 4 but for temporal averaged terms in Eq. (8).

components. Term R1 represents the sum of product between
the catchment-average storm rainfall and runoff coefficient
for all components. Terms R2 and R3 are the sum of tempo-
ral/spatial covariance between the catchment-/storm-average
rainfall and runoff coefficient. R4 is the sum of temporal co-
variance between spatial variation of precipitation and runoff
coefficient. Moreover, V2010 has shown that the effect of
storm movement can be isolated as R4−R2 ·R3/R1. This
movement effect is also studied later.

The magnitudes of terms in Eq. (9) along with the move-
ment effect (MV) for the study events are illustrated in Fig. 7
with statistics summarized in Table 1 (the two sample events
are highlighted in the figure). Note that the R2, R3, R4, and
MV for the surface component are 0 due to the space–time
constant surface runoff coefficient and thus are not shown. A
term-wise comparison shows clearly thatR1 is the most dom-
inant contributor to [R]at. The figure and table reveal that the
spatial and temporal correlation between rainfall and runoff
coefficients is almost negligible. This is consistent with the
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Figure 6. Differences between catchment-average and storm-average runoff coefficient.

Figure 7. Boxplot showing the spatiotemporal averaged terms in
Eq. (9) based on all events from the study basins.

previous studies which show generally low magnitudes of the
R2, R3, and R4 but high R1 (Viglione et al., 2010b; Mejía
and Moglen, 2010). The relatively low magnitudes of term
{P , W1}a and {P , W1}t in Figs. 4 and 5 also agree with this
observation. The fairly low magnitudes of space and time co-
variance will lead to an insignificant movement effect (mean
at 10−3 mm h−1 from Table 1). Investigation on R1 (the most
significant term) shows a decrease in magnitude with basin

scale. This dampening effect has different reasons for the two
rainfall excess components. For the surface component, the
diminishing magnitude with increase in scale is a result of the
decrease in catchment-average rainfall given that W2 is con-
stant among catchments. For the subsurface process, this is
due to both the decrease in runoff coefficient and catchment-
average rainfall. Moreover, Table 1 reveals that the subsur-
face component generally outperforms the surface compo-
nent in contribution to R1. Yet these magnitude differences
are diminishing from the smallest to the largest catchment
since the gap between W1 and W2 is narrowing.

4.3 Catchment response time

The catchment response is conceptualized by two stages –
rainfall on the catchment and a portion of it turning into rain-
fall excess; then, the rainfall excess is routed to the catch-
ment outlet (Zoccatelli et al., 2011; Mei et al., 2014). These
two stages are associated with their own “holding times”
which are treated as random variables (Rodríguez-Iturbe and
Valdés, 1979). The catchment response time is the sum of
these two holding times and thus is also a random variable. It
measures the time needed from the beginning of a storm to a
drop of rainwater exiting the catchment outlet, whose prob-
ability distribution function (PDF) for the ith rainfall excess
component, fRi , is

fRi =
Ri

[Ri]at
. (10)

Note that fRi is a space–time variable. Thus, the PDF for
total rainfall excess, fR, can be written as
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Table 1. Mean magnitudes of terms in Eq. (9) in mm h−1.

Term Swift Fishing Tar

Subsurface Surface Total Subsurface Surface Total Subsurface Surface Total

R1 0.212 0.149 0.361 0.138 0.100 0.238 0.103 0.088 0.193
R2 −0.005 – −0.005 −0.001 – −0.001 0.000 – 0.000
R3 0.011 – 0.008 0.005 – 0.005 0.004 – 0.004
R4 0.004 – 0.005 0.001 – 0.001 0.002 – 0.002
Rat 0.222 0.149 0.371 0.144 0.100 0.243 0.108 0.090 0.198
MV 0.005 – 0.005 0.001 – 0.001 0.002 – 0.002

fR =

N∑
i

ψifRi , (11)

where ψi is the rainfall excess ratio defined as the ratio of
catchment-average storm rainfall excess for a component to
that for the total rainfall excess:

ψi =
[Ri]at

[R]at
. (12)

The sum of ψi goes up to 1 by definition. Equation (11)
shows that the PDF of catchment response time is a convex
combination for each PDF of the rainfall excess component.

4.3.1 Expectation of catchment response time

For the two-stage analytical framework in this study, the ex-
pectation of catchment response time E(Tq) can be decom-
posed to the expectation of holding time of the two stages:

E
(
Tq
)
= E(Tr)︸ ︷︷ ︸

Stage1

+E(Tn)︸ ︷︷ ︸
Stage2

, (13)

where Tr and Tn correspond to the rainfall excess generation
time and runoff routing time. The rainfall excess generation
time is represented by the instantaneous time, T . Thus, the
expected rainfall excess generation time, Ei(Tr,i), for any
component is provided as (see Appendix B)

Ei
(
Tr,i
)
=
|TP|

2
+
{T , [Ri]a}t

[Ri]at
, (14)

where |TP| is the duration of the rainfall event. Ei(Tr,i) is a
measurement of the temporal mass center of rainfall excess.
If the rainfall mass is symmetric with respect to its midpoint,
the half-duration is sufficient to describe the expectation of
rainfall excess generation. Following the distribution func-
tion of Eq. (11), we derived the expected rainfall generation
time for total rainfall excess E(Tr) as (see Appendix B for
the derivation)

E(Tr)=

N∑
i

ψiEi
(
Tr,i
)
. (15)

Figure 8. The same as Fig. 7 but for Eqs. (16) and (23).

Equation (15) indicates that the temporal mass center of total
rainfall excess is a linear combination (or the expectation) of
the mass centers of all the other rainfall excess components
with respect to the rainfall excess ratio. The equation also
implies that the larger the magnitude of a component, the
greater impact it has on the timing of the total rainfall excess.
Substituting Eqs. (12) and (14) into Eq. (15), we have

E(Tr)=
|TP|

2︸︷︷︸
E1

+

{
T ,

N∑
i

[Ri]a

}
t

[R]at︸ ︷︷ ︸
E2

. (16)

E1 refers to the event half-duration and E2 is the expecta-
tion of time distance from the event midpoint to the temporal
mass center of catchment-average rainfall excess.

The magnitudes of terms in Eq. (16) are illustrated in
Fig. 8 (left panel) and summarized in Table 2 (first three
rows). At a first glance, the expectation of catchment re-
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Table 2. The same as Table 1 but for Eqs. (16) and (23).

Term Swift Fishing Tar

Subsurface Surface Total Subsurface Surface Total Subsurface Surface Total

E1 32 32 32 38 38 38 40 40 40
E2 −0.78 −4.5 −2.3 −4.3 −6.3 −5.1 −2.0 −4.1 −3.0
E(Tr) 32 28 30 33 31 32 38 36 37
E3 30 9 21 33 20 27 37 25 32
E4 −1.2 −0.22 −0.64 −1.0 −0.37 −0.68 −2.6 −1.2 −1.8
E(Tn) 29 9.2 21 32 20 27 35 24 30
ψ 0.57 0.43 – 0.57 0.43 – 0.54 0.46 –
ξ 0.70 2.27 – 0.84 1.34 – 0.85 1.27 –
E(Tq ) 61 37 51 65 51 59 72 59 66

sponse time is increasing with the basin area due to the in-
crease in event duration. The magnitude of the half-duration
is of more relevance to E(Tr), while the temporal covari-
ance term can be an important contributor for a portion of
events. This means that rainfall excess is not symmetric with
respect to the event’s midpoint. E2 of the surface compo-
nent is higher than the subsurface counterpart in magnitude.
This is interpreted to mean that the surface rainfall excess
preserves the temporal dynamics of catchment-average rain-
fall due to the constant runoff coefficient. On the other hand,
for the subsurface component, the temporal characteristics
of rainfall have been dampened through its interaction with
runoff coefficients. This leads to a more symmetrically dis-
tributed time series based on the midpoint. Besides, Table 2
implies that the temporal locations of rainfall excess mass
center appear earlier than the event’s midpoint by rendering
negative mean values of E2. Lastly, we observe that the E2
term of the June 2006 event is characterized by a larger value
(20 h) than the other events (means of E2 are all within 7 h
in Table 2). This can be interpreted by its increasing trend in
rain rate with time exhibited in the time series of Fig. 2.

Holding time for the runoff routing stage is modeled by the
spatial variable runoff routing time (2i) detailed in Sect. 4.1.
The expectation of the runoff routing time, Tn,i , for the rain-
fall excess component is derived as (Appendix C)

Ei
(
Tn,i

)
= [2i]a+

{2i, [Ri]t}a

[Ri]at
. (17)

The first term stands for the catchment-average runoff rout-
ing time and the second term quantifies the delay in response
due to spatial covariance between runoff routing time and
storm-average rainfall excess. Analogously, we describe the
relationship between Ei(Tn,i) and E(Tn). As a first step, an
analytical relationship linking2i and2 together is required.
Knowing that runoff routing time for the total rainfall excess
should be between those for the slowest and fastest compo-
nents, we assume 2 is a linear combination of all 2i with
respect to the rainfall excess ratio ψi :

2=

N∑
i

ψi2i . (18)

Under such an assumption,2 neither goes beyond nor below
the slowest and quickest responses. Also, we simply assume
that the ratio between each two 2i is a space–time constant:

αi =
2i

21
. (19)

This is consistent with the CREST model, as shown in
Eq. (4). Based on Eq. (19), α1 is always 1 and α2 is the α pa-
rameter of Eq. (4). From Eqs. (18) and (19), we may further
write

2= ξi2i, (20)

where

ξi =
1
αi

N∑
i

ψiαi . (21)

ξi is the ratio between the weighted average of αi (with re-
spect to ψi) and αi . It is a measure of disparity in routing
time from a rainfall excess component to the total one. It ac-
counts for the hydrologic and geomorphologic effects as the
inclusion of ψi and αi . With Eq. (20), the expectation of Tn
is derived as (see Appendix C)

E(Tn)=

N∑
i

ψiξiEi
(
Tn,i

)
. (22)

Mathematically, Eq. (22) indicates that E(Tn) is the expecta-
tion of ξi Ei(Tn,i), but not Ei(Tn,i), with respect to ψi . Equa-
tion (22) implies that both the hydrologic and geomorpho-
logic effects are accounted for by combining all the Ei(Tn,i)

components in E(Tn). Substituting Eqs. (12) and (17) into
Eq. (22), E(Tn) can be written as

E(Tn)= ξi[2i]a︸ ︷︷ ︸
E3

+

ξi

{
2i,

N∑
i

[Ri]t

}
a

[R]at︸ ︷︷ ︸
E4

. (23)
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E3 stands for the spatial mean of runoff routing time in the
hillslope and channel network. E4 is the expected distance
from the geomorphologic center of catchment to the centroid
of storm-average rainfall excess.

The right panel of Fig. 8 shows the magnitude of terms
from Eq. (23) for all events with the mean magnitude re-
ported in the middle three rows of Table 2. As expected,
E(Tn) increases according to catchment drainage area, which
is mainly attributed to the elongation in flow path (i.e., in-
creases in E3). The spatial covariance term (E4) is low, in-
dicating that the contours of rainfall excess are not followed
by the contours of isochrones for runoff routing (Woods and
Sivapalan, 1999; Sangati et al., 2009; Viglione et al., 2010b;
Volpi et al., 2012). This is anticipated given the low eleva-
tion and mild slope topographic setups of the study region
causing no orographic pattern in rainfall excess. Component-
wise, the subsurface routing takes longer than the surface
one as shown in Fig. 3. Under the relationship specified by
Eq. (22), values of the total E(Tn) are in between the sub-
surface and surface E(Tn). We also observe from the figure
that E(Tn) values of the two components are getting closer
to the total E(Tn) with the increase of the drainage area. This
reflects the trend of change in mean ξ where mean ξ val-
ues for the two components are getting closer from Swift to
Tar given that the two ψ values remain relatively unchanged.
The June 2006 event is an example showing that the sub-
surface process is characterized by negative spatial covari-
ance (E4 is about −4 h for all catchments). This is explained
by its outlet-concentrated cumulative rainfall (Fig. 2). More-
over, comparing E(Tr), E(Tn), and E(Tq) in Table 2, we
note that the delay in catchment response is increasing with
drainage area; contributions to E(Tq) from the two stages
are comparable in magnitude, withE(Tr) being mostly larger
than E(Tq).

4.3.2 Variance of catchment response time

In the two-stage analytical framework, the variance of catch-
ment response time is contributed by the variances intro-
duced from the holding time of each of the stages and the
covariance between the holding time of the two stages. We
write that

var
(
Tq
)
= var(Tr)︸ ︷︷ ︸

Stage1

+ var(Tn)︸ ︷︷ ︸
Stage2

+ 2cov(Tr,Tn)︸ ︷︷ ︸
Movement

. (24)

For stage 1, the variance of delay in rainfall excess genera-
tion for a rainfall excess component is provided as (see Ap-
pendix D)

vari
(
Tr,i
)
=
|TP|

2

12

+

{
T 2, [Ri]a

}
t− |TP| {T , [Ri]a}t−

({T ,[Ri ]a}t)
2

[Ri ]at

[Ri]at
. (25)

Here, vari(Tr,i) represents the variance of instantaneous time
with respect to the temporal distribution of rainfall excess;
the second term is null for temporal uniform rainfall excess
or rainfall excess concentrated purely on the event midpoint.

For total rainfall excess, the variance of delay in rainfall
excess generation, var(Tr), is correlated with vari(Tr,i) as (see
Appendix D for derivations)

var(Tr)=

N∑
i

ψivari
(
Tr,i
)
+

N∑
i

ψi
[
Ei
(
Tr,i
)
−E(Tr)

]2
. (26)

The first term is clearly the expectation of variance from all
the other components. It signifies that the larger the rainfall
excess component, the stronger the control in dispersion of
the total rainfall excess. The second term is the variability
of Ei(Tr,i) that arises since variance is not a linear operator.
It measures the mean difference in the temporal mass cen-
ter between each of the components to the total rainfall ex-
cess. The first and the second term account for the intra- and
inter-component variability. Substituting in Eqs. (14), (16),
and (25) to Eq. (26), a complete form is given as

var(Tr)=
[TP]2

12︸ ︷︷ ︸
v1

+

{
T 2,

N∑
i

[Ri]a

}
t
− |TP|

{
T ,

N∑
i

[Ri]a

}
t
−

N∑
i
({T ,[Ri ]a}t)

2

[Ri ]at

[R]at︸ ︷︷ ︸
v2

+

N∑
i

ψi

 {T , [Ri]a}t

[Ri]at
−

{
T ,

N∑
i

[Ri]a

}
t

[R]at


2

︸ ︷︷ ︸
Lr

. (27)

Term v1 stands for the variance in time generated by a tempo-
ral invariant catchment-average rainfall excess. Term v2 rep-
resents component-wise mean of additional variance caused
by the temporal variation in catchment-average rainfall ex-
cess. The last term is named Lr and represents the mean
square of “time lag” (between each component to the total)
in rainfall excess generation.

Results for Eq. (27) are illustrated in the left panel of
Fig. 9 and the first four rows of Table 3. The major source
of var(Tr) is the variance of event duration (v1). However,
the additional variance caused by the temporal interaction
between rainfall excess and time (v2) is not negligible. This
states that the distributions of rainfall excess of the events are
not uniform in time (Woods and Sivapalan, 1999; Viglione et
al., 2010b). Additionally, event time series of the two rainfall
excess components are equally dispersed during the event
period given the fairly close var(Tr) values (only the Swift
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Table 3. The same as Table 1 but for Eqs. (27), (30), and (33).

Term Swift Fishing Tar

Subsurface Surface Total Subsurface Surface Total Subsurface Surface Total

v1 536 536 536 769 769 769 740 740 740
v2 73 103 86 19 22 21 60 60 61
Lr – – 7.6 – – 2.4 – – 2.5
var(Tr) 609 638 629 788 791 792 800 800 803
v3 223 21 112 150 59 106 340 152 244
v4 −22 −1.0 −8.8 −7.7 −2.6 −5.1 −10 −3.4 −6.7
Ln – – 0.65 – – 0.18 – – 0.58
var(Tn) 201 20 103 142 56 101 330 149 238
c 3.3 −1.1 −1.2 −26 −16 −22 −28 −19 −23
Lr,n – – −0.59 – – −0.56 – – −0.82
cov(Tr, Tn) 3.3 −1.1 −1.8 −26 −16 −23 −28 −19 −24
var(Tq ) 813 658 730 904 831 871 1102 930 1017

Figure 9. The same as Fig. 7 but for Eqs. (27), (30), and (33).

case shows medium difference). This is exemplified by Fig. 4
where the shapes of time series for the two components are
quite close in the Fishing and Tar cases but a bit more devi-
ated in the Swift. Besides, by comparing the time series of the
two test events we can see that the June 2006 event is charac-
terized by multiple peak rainfall values, while the November
2009 is closer to a single-peak event. These general differ-
ences in shapes are well described by the positive and nega-
tive signs of term v2 for the first and second events. Results
from the figure and table also suggest that the magnitude of
the time lag term (Lr) is irrelevant. A better visualization of
reason is provided by the sample events’ time series in Fig. 4.

Most of the temporal variability of rainfall is preserved in
the time series as we can see from the shapes of [P ]a[W1]a
and [P ]a[W2]a. Inspection of var(Tr) reveals that although
the magnitudes of v1, v2, and Lr show no scale dependency,
their combination, var(Tr), is increasing with drainage area.

For the runoff routing stage, we derive the variance
of runoff routing time for any rainfall excess component,
vari(Tn,i), as (refer to Appendix E)

vari
(
Tn,i

)
= {2i}a

+

{
22
i , [Ri]t

}
a− 2[2i]a{2i, [Ri]t}a−

({2i ,[Ri ]t}a)
2

[Ri ]at

[Ri]at
. (28)
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The first term is the spatial variance of the runoff routing
time. The second one accounts for the additional variance
introduced by the interaction between time-average rainfall
excess and the runoff routing time. If the rainfall excess is
spatially uniform or concentrated on the isochrones repre-
senting the mean runoff routing time (i.e., [2]a), the second
term vanishes.

We may derive the variance of delay in runoff routing,
var(Tn), as (see Appendix E)

var(Tn)=

N∑
i

ψiξ
2
i vari

(
Tn,i

)
+

N∑
i

ψi
[
ξiEi

(
Tn,i

)
−E(Tn)

]2
. (29)

Similarly, var(Tn) has two terms accounting for the intra-
and inter-component variability of runoff routing. The first
term is a linear combination of ξ2

i vari(Tn,i); it highlights the
combined effect from hydrology and geomorphology in the
intra-component variability. The second term is the variance
of ξi Ei(Tn,i); it quantifies the squared mean distance in spa-
tial mass center between all components to the total. Hence,
var(Tn) may be rewritten as

var(Tn)= ξ
2
i {2i }a︸ ︷︷ ︸
v3

+

ξ2
i

{
22
i
,
N∑
i

[
Ri
]
t

}
a

− 2ξ2
i

[
2i
]
a

{
2i ,

n∑
i

[
Ri
]
t

}
a

−

N∑
i

ξ2
i ({2i ,[Ri ]t})

2

[Ri ]at

[R]at︸ ︷︷ ︸
v4

+

N∑
i

ψiξ
2
i


{
2i ,

[
Ri
]
t
}

a[
Ri
]
at

−

{
2i ,

N∑
i

[
Ri
]
t

}
a

[R]at


2

︸ ︷︷ ︸
Ln

. (30)

Term v3 represents the variance in time generated by a spa-
tial invariant storm-average rainfall excess. Term v4 is the
mean of additional variance caused by the spatial variation
in storm-average rainfall excess. The term Ln represents the
mean of time lag in runoff routing between rainfall excess
components to the total.

The magnitudes of terms in Eq. (30) are plotted in the mid-
dle panel of Fig. 9 with mean statistics listed in Table 3 (the
middle four rows). Results suggest that v3 is the main con-
tributor of var(Tn) compared to the additional spatial vari-
ance (v4). v4 is positively skewed as shown in the figure with
negative mean, indicating that the event rainfall excess tends
to be concentrated by the catchment (i.e., spatially unimodal
pattern) (Zoccatelli et al., 2011; Mei et al., 2014). v4 is low
in magnitude because, again, there is little spatial correla-
tion between the location of isochrones for runoff routing
and the rainfall excess under the study area’s topographic

setups. Component-wise comparison reveals that the vari-
ance of delay in runoff routing of the surface rainfall excess
is smaller than the subsurface one. This is ascribed to the
larger magnitude of 21 and [R1]at than 22 and [R2]at. Be-
sides, results suggest a negligible time lag term (Ln) in con-
tribution to the total variance of runoff routing, meaning that
the spatial mass center of rainfall excess for the two rain-
fall excess components is fairly close to the total one. This is
an expected result because of the highly similar spatial pat-
tern of rainfall excess and runoff routing for the two com-
ponents. Observations of the two sample events demonstrate
that v4 for the November 2009 event is closer to null (for
instance, v4 of the Tar catchment is 4 h2 compared to 50 h2

of the June 2006 event). This is substantiated by the gen-
erally more uniformly distributed rainfall excess pattern of
the November event ([R]t in Fig. 5). Moreover, we compare
the values of var(Tn) and var(Tr) from the results. Obviously,
var(Tr) dominates var(Tq ) where the mean of var(Tr) is at
least more than 3 times the mean of var(Tn).

The covariance term in Eq. (17) is often interpreted as an
indicator of “movement of storm”, resulting from the relax-
ation of the “stationary rainfall” assumption. The so-called
movement of storm is not just the geographic movement; it
also accounts for the change in the space–time dynamic of
rainfall excess with respect to the runoff routing during the
storm period (Viglione et al., 2010a; Zoccatelli et al., 2011;
Nikolopoulos et al., 2014; Mei et al., 2014). The form of
covi(Tr, Tn) is written as (refer to Appendix F for details)

covi
(
Tr,i,Tn,i

)
=
{T , {2i,Ri}a}t

[Ri]at

−
{T , [Ri]a}t{2i, [Ri]t}a

[Ri]2
at

. (31)

This term is the additional variance generated from the corre-
lation in runoff generation and routing. Positive and negative
covariance are interpreted as the centroid of rainfall excess
moving towards the catchment portion with longer or shorter
runoff routing time (near periphery or outlet) as the event
evolves.

The covariance term in our multicomponent assumption
may be written as (see Appendix F)

cov(Tr,Tn)=

N∑
i

ψiξicovi
(
Tr,i,Tn,i

)
+

N∑
i

ψi
[
Ei
(
Tr,i
)
ξiEi

(
Tn,i

)
−E(Tr)E (Tn)

]
. (32)

The covariance operator also results in two terms where the
first one is the component-wise expectation of covariance be-
tween Tr,i and ξi Tn,i with respect to ψi ; it measures the co-
evolution of all rainfall excess components over catchment
and event period. The second term is the covariance between
Ei(Tr,i) and ξi Ei(Tn,i); a positive or negative value of the
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second term implies that rainfall excess components with
temporal mass centers’ distance from the early phase of event
are located closer to the catchment portion with larger or
smaller routing time (catchment periphery or outlet). Based
on this interpretation, the inter-component covariance should
be very small in most of the cases happening in nature; this
is because there is no restriction that a rainfall excess compo-
nent with a time center further away from the event midpoint
should be centered over isochrones with longer routing time
or vice versa. ξi is not subjected to the covariance operator
and can be moved out. Combining Eqs. (31) and (32), cov(Tr,
Tn) may be further written as

cov(Tr,Tn)=

N∑
i

ξi

(
{T , {2i ,Ri }a}t−

{T ,[Ri ]a}t{2i ,[Ri ]t}a
[Ri ]at

)
[R]at︸ ︷︷ ︸
c

+

N∑
i

ψiξi

 {T , [Ri ]a}t{2, [Ri ]t}a

[Ri ]2
at

−

{
T ,

N∑
i

[Ri ]a

}
t

{
2i ,

N∑
i

[Ri ]t

}
a

[R]2at


︸ ︷︷ ︸

Lr,n

. (33)

Magnitudes of terms in Eq. (33) for the surface and subsur-
face components and the total are rendered in the right panel
of Fig. 9 with mean of terms reported in Table 3. Note that
the magnitudes of terms have been multiplied by 2 given the
mass conservation in Eq. (24). Values of the covariance terms
are almost symmetrically distributed at 0 and slightly pos-
itively skewed. This observation indicates that there is no
clear tendency for the storm movement. This is again ex-
plained by the fact that there is no preferred spatial pattern
of rainfall over the study region with negligible orographic
enhancement. The Lr,n term reveals an insignificant effect
from the inter-component covariance between the temporal
and spatial mass center of rainfall excess. This result supports
our first guess on the magnitude of Lr,n. Due to the low Lr,n,
cov(Tr, Tn) is mainly manipulated by c. Inspection of mag-
nitudes of the two rainfall excess components demonstrates
that the correlation between Tr and Tn for the subsurface one
is higher. Meanwhile, we observe an increase of cov(Tr, Tn)
magnitude from the Swift to the Tar catchment, consisting of
the positive scale dependency in magnitude of storm move-
ment concluded in Mei et al. (2014) over the same area. In all,
the movement effect of rainfall excess in variance of catch-
ment response is relatively insignificant in the study region.

5 Role of the analytical framework on flood
characteristics

The rainfall and catchment surface properties are intimately
related with the generation of the flood. Specifically, the an-
alytical framework quantities, [R]at, E(Tq), and var(Tq ), are
correlated with the cumulative volume (V ), centroid (C), and
spreadness (S) of event flow time series, respectively (San-
gati et al., 2009; Viglione et al., 2010a, b; Mejía and Moglen,

2010; Volpi et al., 2012). To address the question of how
sensitive the framework quantities are to the flood charac-
teristics, we conducted sensitivity tests with respect to the
flow simulations and observations in this section. The V , C,
and S, which quantify the catchment flood response, are de-
fined as

V =

∫
TF

Q(t)dt (34)

C =

∫
TF

t ·Q(t)dt∫
TF

Q(t)dt
(35)

S =

√√√√√√
∫
TF

(t −C)2Q(t)dt∫
TF

Q(t)dt
, (36)

where Q(t) is either the simulated or observed event flow
time series; TF corresponds to the flood event period. V re-
flects the magnitude of cumulative flow of a flood event while
C and S are related to the shape of the flood event hydro-
graph. Specifically, C is the temporal location of mass center
of the hydrograph which can be used to surrogate the time
to peak (for single-peak hydrographs); S represents the tem-
poral degree of dispersion with respect to C; typically, for
a unimodal event, the larger S indicates a less-concentrated
peak for the hydrograph.

Results of the sensitivity tests with respect to simulations
and observations are illustrated in Figure 10 and Table 4.
Overall, the catchment-average cumulative rainfall excess
([R]at|TP|) shows relatively high consistency with the cu-
mulative flow volume derived by the model simulations (up-
per left panel), especially for the Fishing and Tar catchments
where the means of mean error (ME) are within 1 mm for
the events. For the Swift cases, a fairly slight overestimation
of V by merely 3 mm (in terms of mean ME) is observed.
Table 4 also provides the CRMS as an indicator of the ran-
dom error in estimating V . Magnitudes of CRMS are fairly
small at around 1.5 mm, considering that these are produced
based on cumulative volume. A comparison between ME and
CRMS gives more insights on the performance of the analyti-
cal framework. Random error is the main error source for the
Fishing and Tar cases, while in the Swift systematic overes-
timation is more dominated. On the other hand, comparisons
between the framework [R]at|TP| and V derived from the ob-
served flow show significant reduction in linearity of the rela-
tionship (upper right panel of Fig. 10). This is also reflected
by the higher CRMS values in Table 4 (CRMS of V com-
pared to the observations are at least 3 mm larger than those
compared with the model simulations). ME values, with re-
spect to the observed V for the Fishing and Tar catchments,
are still relatively low (lower than the CRMS of V ) while the
Swift case is characterized by 5.4 mm of ME. In all, the ana-
lytical framework provides reliable estimation on the cumu-
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Table 4. Statistics of the sensitivity tests.

Reference Basin Mean error Centered root mean square

type V (mm) C (h) S (h) V (mm) C (h) S (h)

Model Swift 2.9 −35.2 −12.7 1.6 7.6 5.7
simulation Fishing −0.6 −36.9 −10.7 1.6 3.8 5.5

Tar 0.6 −39.6 −15.2 1.3 6.5 5.4

Observation Swift 5.4 −26.8 −10.2 6.2 13.4 9.2
Fishing 1.5 −30.9 −8.2 4.8 10.5 8.7
Tar 1.7 −34.1 −7.6 5.7 12.5 7.6

Figure 10. Scatterplots of the analytical framework outputs vs. hy-
drograph properties.

lative volume, especially when compared to the model sim-
ulations, given the low magnitudes of ME and CRMS. The
sensitivity of framework-predicted cumulative volume shows
noticeable drop from comparing the model simulations to the
observed flow.

The middle panel of Fig. 10 demonstrates the correlation
between the expectation of catchment response time and cen-
troid of the flood event. Both of the sensitivity tests against
the flow simulations and observations show that E(Tq) val-
ues are positively correlated with C but with apparent un-
derestimations. For the simulation-based sensitivity test, the
systematic underestimation on event centroid is about 35 h
for events from the smallest basin and increases to 40 h
for events from the largest basin. The random components

of error are within 20 % of the systematic one in magni-
tude. Results of the observation-based sensitivity test indi-
cate lower systematic error by the analytical framework but,
as expected, a higher degree of random error (ME values are
about 80 % of the simulated-based tests but CRMS are twice
as those). This signifies that the main issue in estimation of C
is the systematic underestimation from the analytical frame-
work. This underestimation lies in the simplified structure of
the analytical framework compared to a distributed hydro-
logic model in both land surface and routing processes. In
the land surface process, during the early phase of the event,
precipitation is principally used to fill the water capacity of
catchment under the infiltration excess; after a certain time
period, flow rate rises rapidly with the existence of precipi-
tation because of the saturation excess process. This can be
visualized by the sample events’ time series in Fig. 2. Conse-
quently, the inclusion of precipitation before the functioning
of saturation excess advances the temporal mass center of
rainfall, leading to underestimation of the mass center loca-
tion. Furthermore, in the analytical framework, a water par-
cel is approximated traveling at a constant speed once it en-
ters the basin while the linear reservoir routing scheme of
CREST only discharges a portion of the water amount from
the total storage in a given grid cell, which in turn increases
the equivalent traveling time. Given that the hydrologic sim-
ulations provide reasonable performance with respect to the
observed flow, systematic underestimation by E(Tq) to the
observation-derived C is also seen.

The spreadness is compared to the standard deviation of
the catchment response time (square root of variance of the
catchment response time) in the last panel of Fig. 10. Sys-
tematic underestimation is still the major source of error in
the estimation for the simulation-based tests. Its magnitudes
are about −12 h and the magnitudes decrease with increas-
ing spreadness. ME values of the observed-based sensitiv-
ity tests also reveal systematic underestimation but to lesser
significance against the simulation-based ones. The random
error reaches similar magnitudes of systematic error (about
9 h) due to the increase in nonlinearity of the

√
var(Tq)-to-S

relationship. The underestimation in S also originates from
the differences in structure of a distributed hydrologic model
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and the framework. During the early phase of event, the in-
filtration excess is the dominant mechanism for runoff gen-
eration. Under such a condition, the flow rate rises gradu-
ally and the hydrograph tends to be smooth, implying high
spreadness. One can take the November 2009 event as an
example; instead of having one rapid rising, the Swift catch-
ment hydrograph has two rising limbs due to the switch in the
rainfall excess generation mechanism. This bi-modal shape
introduces larger spreadness compared to a unimodal rising
shape. A similar argument regarding the influence of infiltra-
tion excess on runoff generation has been reviewed in Mei et
al. (2014). Their study argues that the low sensitivity between
shape error of rainfall and simulated runoff shown for the
events is because most of the events from the Tar region do
not have a bank-full condition. On the other hand, the equiv-
alent travel time in the runoff routing is underestimated, and
this underestimation is increasing with the length of the wa-
ter path, given that 2 represents a cumulative sum along the
water path (Eq. 3). This leads to underestimation in the vari-
ability of traveling time by the framework. To sum up, the
analytical framework works better in predicting the spread-
ness of hydrograph compared to the centroid. Mean values
of ME for S are approximately 38 % of the C case for the
comparisons with simulated and observed flow, respectively.

6 Conclusions

We presented an expansion of V2010 hydrologic analytical
framework under the consideration of multiple components
in catchment flood response. To demonstrate the framework
in this study we fixed the number of flow generation com-
ponents to two (surface and subsurface), and used a dis-
tributed hydrological model (CREST) to provide the nec-
essary framework parameters and event flow hydrographs.
We demonstrated the framework based on a large number of
flood events that occurred between 2003 and 2012 over three
subcatchments of the Tar River basin. Two of the flood events
were used for a detailed demonstration of the framework.
Sensitivity tests were rendered to investigate the correlation
between framework and flood characteristics. The findings
from this study are summarized below.

For the aspect of rainfall excess generation, we showed
that the amount of rainfall excess generation is inversely pro-
portional to catchment size. The most significant contribution
came from the product term between space–time aggregated
rainfall and runoff coefficients, while spatial and temporal
correlation and movement effects were not significant. In ad-
dition, it was shown that the subsurface component outper-
formed the surface component of runoff in the contribution
to rainfall excess generation, but this difference diminished
in larger catchments.

The expectation of catchment response time was also in-
vestigated. We found that the total rainfall excess genera-
tion time is a linear combination of the expected generation

times of all rainfall excess components weighted by their
rainfall excess ratio. The total runoff routing time is also a
combination of routing times of all rainfall excess compo-
nents weighted according to their rainfall excess ratio. Re-
sults show that both rainfall excess generation and runoff
routing stages are important to the timing of the catchment
response. The length of the rainfall event and the magnitude
of the runoff routing time play a significant role in control-
ling the timing of the hydrograph. Delay in response due to
the spatial and temporal correlation term is low. The total
catchment response time was shown to be closer to the sub-
surface rainfall excess one, indicating a higher degree of in-
fluence, which agrees with the higher rainfall excess ratio for
the subsurface component. However, the value gap between
components narrows from small to large catchment areas.

For the variance of catchment response time, our findings
showed that the total variance in rainfall excess generation
comes from two parts – the linear combination of all com-
ponents’ variance and the variance of expected rainfall ex-
cess generation time for components. These two parts ac-
count for the intra- and inter-component variability, respec-
tively. The total variance in delay due to the runoff routing
stage consists of two parts – a combination of variances from
all the other components and the variance of expected runoff
routing time with the participation of the hydrologic and ge-
omorphologic related coefficients. Analogously, the covari-
ance between holding time of the two stages also consists
of two parts – the expectation of component covariance and
the covariance between expectations of rainfall excess gen-
eration and runoff routing. Results revealed that variance of
the rainfall excess generation stage is of higher importance
than that of the runoff routing stage. For stage 1, the variance
from rainfall duration was more important than the additional
variance from temporal interactions between rainfall excess
and time. For stage 2, the spatial variance of runoff routing
time outperformed the additional variance that rose from the
spatial interaction between rainfall excess and runoff routing.
Additionally, variance of the surface component was closer
to the total variance, indicating a higher degree of influence.
Furthermore, the inter-component variability was negligible
compared to the intra-component variability.

Results from the sensitivity analysis revealed that the
framework is characterized by relatively low random errors
in estimating the flood characteristics. The random errors
were larger in the observation-based sensitivity tests com-
pared to the simulation-based ones. A slight overestimation
was found in the Swift catchment on the estimation of cu-
mulative flow volume. Systematic underestimation in event
centroid and spreadness were notable, especially for the tim-
ing issue, which demonstrates an increasing trend with catch-
ment scale. Moreover, for the simulation-based sensitivity
tests, the underestimation of spreadness was reduced with the
increase in magnitude of spreadness.

From the herein analytical framework results, we showed
that magnitudes of the new time lag terms are low. We be-
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lieve this is not a general finding because the surface runoff
coefficient was represented by a constant imperviousness ra-
tio (IM) for this study and the runoff routing times for the two
components had the same spatial pattern (differed merely in
magnitude by the constant α). Future studies will need to re-
place the constant imperviousness ratio by a spatially dis-
tributed variable to mimic the spatial variability of the very
fast flood response of a catchment. Also, we suggest using
spatially varied αi to better represent the differences in rout-
ing among excess rainfall components. This is particularly
useful in analyzing the flood response of urbanized catch-
ments where the distribution of excess rainfall into different
vertical soil layers is quite different between the highly im-
pervious urban areas (roads, rooftops, parking lots, etc.) and
the more pervious suburban or rural areas of the basin (Smith
et al., 2002; Mejía and Moglen, 2010; Mejía et al., 2015).
We believe the time lag terms could be important for flood
response of the urbanized catchment and our new framework
can serve as a diagnostic tool to verify the significance of
these terms.

We acknowledge certain limitations of our analytical
framework study. The framework variables and flow simu-
lation are dependent on the distributed hydrologic model de-
vised in this study (vegetation interception, imperviousness
areas, coefficient α, etc.). Since the retrievals of framework
variables are based on the model structure and parameteriza-
tion, the way a variable is calculated could vary across mod-
els, while in certain models such an explicit parameter may
not be available. An alternative path to circumventing this is-
sue is to apply directly observed data for the calculation of
the analytical framework variables. For instance, the vegeta-
tion interception can be estimated from the leaf area index
data (Xiao et al., 2014), databases of the impervious area are
provided in certain data-rich locations (Homer et al., 2015),
and the spatial patterns of runoff coefficients could be re-
trieved in highly gauged catchments or from satellite-derived
soil moisture fields at global scale (Merz and Blöschl, 2009;
Penna et al., 2011; Dhakal et al., 2012; Massari et al., 2014).
The parameters related to runoff routing could be estimated
based on the geomorphologic properties of catchments (Shen
et al., 2017).

Data availability. The 30 s resolution HydroSHEDS datasets used
to build the catchments are available at https://hydrosheds.cr.usgs.
gov/datadownload.php?reqdata=30demg (Lehner et al., 2008).

The stage 4 radar-based multi-sensor precipitation estimates
may be obtained upon request from http://data.eol.ucar.edu/cgi-bin/
codiac/fgr_form/id=21.093 (Lin, 2011).

The North America Regional Reanalysis (NARR) product was
obtained from ftp://nomads.ncdc.noaa.gov/NARR/ (Mesinger et al.,
2006).

The USGS IDs of the three gauge stations are 02082950,
02083000, and 02082585. The instantaneous flow data of the
three stations from before October 2007 were shared by Zach-
ery Flamig at the University of Oklahoma via http://flash.ou.edu/
USGS/, and the records after October 2007 were downloaded via
http://waterdata.usgs.gov/nwis, the USGS National Water Informa-
tion System (NWISWeb).

The Coupled Routing and Excess STorage (CREST) distributed
hydrological model version 2.1 (Matlab) was obtained from http:
//hydro.ou.edu/research/crest/ (Shen et al., 2016; Shen and Hong,
2014).

The Matlab codes of CPM together with the user manual
are available from http://ucwater.engr.uconn.edu/models-data/ (Mei
and Anagnostou, 2015).
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Appendix A: Catchment-average storm rainfall excess

The catchment-average storm rainfall excess is calculated by
integrating either [R]a over the storm period or [R]t over the
catchment area. This means

[R]at =

1
|TP|

∫
TP

[R]adt = [P ]at

N∑
i=1

[Wi ]at+

{
[P ]a,

N∑
i=1

[Wi ]a

}
t

+

[{
P,

N∑
i=1

Wi

}
a

]
t

1
|A|

∫
A

[R]tda = [P ]at

N∑
i=1

[Wi ]at+

{
[P ]t,

N∑
i=1

[Wi ]t

}
a

+

[{
P,

N∑
i=1

Wi

}
t

]
a

.

The last term of the second equation can be rewritten as[{
P,

N∑
i=1

Wi

}
t

]
a

=
1
|A|

∫
A

1
|TP|

∫
TP

(P − [P ]t)

(
N∑
i=1

Wi

−

N∑
i=1

[Wi]t

)
dtda,

where

P ∗ = P − [P ]t and W ∗ =
N∑
i=1

Wi −

N∑
i=1

[Wi]t,

and the equation becomes

1
|A|

∫
A

1
|TP|

∫
TP

P ∗W ∗dtda =
1
|TP|

∫
TP

1
|A|

∫
A

P ∗W ∗dadt

=
[[
P ∗W ∗

]
a

]
t.

The second term of the first [R]at equation can be rewritten
as{

[P ]a,

N∑
i=1

[Wi]a

}
t

=
1
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By replacing

[{
P,

N∑
i=1

Wi

}
a

]
t

in the first equation of [R]at,

Eq. (9) is attained.

Appendix B: Expectation of rainfall excess generation
time

The rainfall excess generation time is modeled by the instan-
taneous time, T . T is a variable in time and follows a uniform
distribution over the event period TP. Therefore,

Ei
(
Tr,i
)
=

1
|TP|

∫
TP

1
|A|

∫
A

T ·Ri

[Ri]at
dadt =

1
|TP|

∫
TP

T · [Ri]a

[Ri]at
dt

= [T ]t+
{T , [Ri]a}t

[Ri]at
.

Since T follows a uniform distribution on TP, the solution
of [T ]t is

[T ]t =

∫
TP

T

|TP|
dT =

|TP|

2
.

For the case of total rainfall excess generation time, write

E(Tr)=
1
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1
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Appendix C: Expectation of runoff routing time

The runoff routing time is modeled by a spatial variable rout-
ing time, 2i ; write

Ei
(
Tn,i

)
=

1
|TP|

∫
TP

1
|A|

∫
A

2iRi

[Ri]at
dadt =

1
|A|

∫
A

2i[Ri]t
[Ri]at
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= [2i]a+
{2i, [Ri]t}a

[Ri]at
.

The channel routing time for the total flow is modeled by 2
which is a function of 2i (Eq. 20). Write

E(Tn)=
1
|TP|

∫
TP

1
|A|

∫
A

(
2 ·
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i
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=
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Appendix D: Variance of rainfall excess generation time

For the variance of rainfall excess generation time, we first
define Ei(T 2

r,i) as

Ei
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T 2
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The variance of rainfall excess generation time for compo-
nent i is then calculated as
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The solution for {T 2
}t is provided as{
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For the case of var(Tr), it is trivial to show
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Appendix E: Variance of runoff routing time

Similarly, for the variance of runoff routing time, as the first
step, we find Ei(T 2

n,i) as
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[Ri]at
.

The variance of runoff routing time for one component is
then calculated as

vari
(
Tn,i

)
= Ei

(
T 2

n,i

)
−
[
Ei
(
Tn,i

)]2
= {2i}a+

{
22
i , [Ri]t

}
a− 2[2i]a{2i, [Ri]t}a

[Ri]at

−

(
{2i, [Ri]t}a

[Ri]at

)2

.

For the var(Tn), we know the following:

E
(
T 2

n

)
=

N∑
i

ψiξ
2
i Ei

(
T 2

n,i

)
.

Using the property of variance, write

var(Tn)= E
(
T 2

n

)
− [E(Tn)]2

=

N∑
i

ψiξ
2
i Ei

(
T 2

n,i

)
− [E(Tn)]2

=

N∑
i

ψiξ
2
i Ei

(
T 2

n,i

)
−

N∑
i

ψiξ
2
i

[
Ei
(
Tn,i

)]2
+

N∑
i

ψiξ
2
i

[
Ei
(
Tn,i

)]2
− 2[E(Tn)]2

+ [E(Tn)]2
=

N∑
i

ψiξ
2
i

{
Ei

(
T 2

n,i

)
−
[
Ei
(
Tn,i

)]2}
+

N∑
i

ψi

{[
ξiEi

(
Tn,i

)]2
−2ξiEi

(
Tn,i

)
[E(Tn)]+ [E(Tn)]2

}
=

N∑
i

ψiξ
2
i vari

(
Tn,i

)
+

N∑
i

ψi
[
ξiEi

(
Tn,i

)
−E(Tn)]2.

Appendix F: Covariance between rainfall excess
generation and runoff routing time

The covariance between holding times of the two stages is
calculated by finding Ei(Tr,iTn,i):

Ei
(
Tr,iTn,i

)
=

1
|TP|

∫
TP

1
|A|

∫
A

(
T ·2i ·Ri

[Ri]at

)
dadt
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= [T ]t[2i]a+
[2i]a{T , [Ri]a}t

[Ri]at

+
[T ]t{2i, [Ri]t}a

[Ri]at
+
{T , {2i,Ri}a}t

[Ri]at
.

Then, the covariance is defined as

covi
(
Tr,i,Tn,i

)
= Ei

(
Tr,iTn,i

)
−Ei

(
Tr,i
)
Ei
(
Tn,i

)
=
{T , {2i,Ri}a}t

[Ri]at
−
{T , [Ri]a}t{2i, [Ri]t}a

[Ri]2
at

.

For the cov(Tr, Tn), it is trivial to show

E(TrTn)=

N∑
i

ψiξiEi
(
Tr,iTn,i

)
.

Write

cov(Tr,Tn)= E(TrTn)−E(Tr)E (Tn)

=

N∑
i

ψiξiEi
(
Tr,iTn,i

)
−E(Tr)E (Tn)

=

N∑
i

ψiξiEi
(
Tr,iTn,i

)
−

N∑
i

ψiEi
(
Tr,i
)
ξiEi

(
Tn,i

)
+

N∑
i

ψiEi
(
Tr,i
)
ξiEi

(
Tn,i

)
−E(Tr)E (Tn)

=

N∑
i

ψiξicovi
(
Tr,i,Tn,i

)
+

N∑
i

ψi
[
Ei
(
Tr,i
)
ξiEi

(
Tn,i

)
−E(Tr)E (Tn)

]
.
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