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Abstract. This study provides a comprehensive evaluation
of soil moisture simulations in the Coupled Model Intercom-
parison Project Phase 5 (CMIP5) extended historical exper-
iment (2003 to 2012). Soil moisture from in situ and satel-
lite sources is used to evaluate CMIP5 simulations in the
contiguous United States (CONUS). Both near-surface (0–
10 cm) and soil column (0–100 cm) simulations from more
than 14 CMIP5 models are evaluated during the warm sea-
son (April–September). Multimodel ensemble means and the
performance of individual models are assessed at a monthly
timescale. Our results indicate that CMIP5 models can repro-
duce the seasonal variability in soil moisture over CONUS.
However, the models tend to overestimate the amount of both
near-surface and soil column soil moisture in the western
US and underestimate it in the eastern US. There are large
variations across models, especially for the near-surface soil
moisture. There are significant regional variations in perfor-
mance as well. Results of a regional analysis show that in
the deeper soil layers, the CMIP5 soil moisture simulations
tend to be most skillful in the southern US. Based on both the
satellite-derived and in situ soil moisture, CESM1, CCSM4
and GFDL-ESM2M perform best in the 0–10 cm soil layer
and CESM1, CCSM4, GFDL-ESM2M and HadGEM2-ES
perform best in the 0–100 cm soil layer.

1 Introduction

Soil moisture plays a critical role in hydrological pro-
cesses, land–atmosphere interactions and climate variabil-
ity. Through controlling water mass transfer, soil mois-
ture affects runoff (Penna et al., 2011; Latron and Gallart,

2008; Zhang et al., 2001) and evapotranspiration (Wetzel and
Chang, 1987; Vivoni et al., 2008; Detto et al., 2006). Soil
moisture also influences the surface energy balance by af-
fecting latent heat and ground fluxes (Ek and Holtslag, 2004;
Ford and Quiring, 2014a). Soil moisture is one of the direct
measures of drought used to assess future drought conditions
in the latest IPCC report (Hartmann et al., 2013). Therefore,
accurate soil moisture simulation is useful for many applica-
tions.

There are three main types of soil moisture data: in situ
observations, remote sensing observations and model simu-
lations. In situ observations provide point measurements at
a variety of depths. The spatial and temporal coverage of
in situ observations is quite limited and each in situ net-
work may utilize different instruments and calibration tech-
niques. These factors make it more challenging to use in situ
soil moisture; however, recent developments have improved
the utility of these measurements. For example, the Interna-
tional Soil Moisture Network (ISMN; Dorigo et al., 2011),
which was initiated in 2010, collects in situ soil moisture
from more than 1400 stations internationally and provides
quality-controlled hourly-to-weekly soil moisture data. The
North American Soil Moisture Database (NASMD; Quiring
et al., 2016) provides quality-controlled daily soil moisture
from approximately 1800 stations, most of which are lo-
cated in the United States. NASMD has been used for val-
idating the North American Land Data Assimilation System
(NLDAS; Xia et al., 2015b, a) and examining the nature of
land–atmosphere interactions (Ford et al., 2015b, c; Wang
et al., 2015). There are numerous other studies that use in
situ soil moisture from NASMD and ISMN. Ford and Quir-
ing (2014a) used quantile regression to examine the relation-
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ship between in situ soil moisture and extreme temperature
in Oklahoma. They found the soil moisture anomalies can be
used for predicting the percentage of hot days in the follow-
ing month. Ford et al. (2015a) found that soil moisture can
also be used to better predict the onset of flash drought events
in Oklahoma. Brocca et al. (2013) found in situ soil moisture
can be used to improve daily precipitation estimation at the
catchment scale.

Soil moisture observations from satellite remote sensing,
such as the Soil Moisture and Ocean Salinity (SMOS) mis-
sion (Kerr et al., 2001), NASA’s Aquarius (Le Vine et al.,
2007) and Soil Moisture Active-Passive (SMAP) missions
(Brown et al., 2013), can provide global soil moisture data.
Previous studies have shown that satellite-derived soil mois-
ture can accurately capture the annual cycle (Albergel et al.,
2012b; Brocca et al., 2011); however, the accuracy of the
satellite-derived soil moisture varies significantly both geo-
graphically and from product to product (Fang et al., 2016;
Wanders et al., 2012). Rötzer et al. (2015) investigated the
spatial and temporal behavior of the SMOS and the MetOp-
A Advanced Scatterometer (ASCAT) soil moisture. They
demonstrated that SMOS is more strongly affected by tem-
porally invariant factors, such as topography and soil prop-
erties, while ASCAT soil moisture is influenced by tempo-
rally variant factors, such as precipitation and evaporation.
To overcome the limitations of satellite-derived soil mois-
ture estimates, assimilated satellite products have been devel-
oped. Renzullo et al. (2014) used the ensemble Kalman filter
method to assimilate the Advanced Microwave Scanning Ra-
diometer for EOS (AMSR-E) and ASCAT-derived soil mois-
ture. They found that data assimilation can significantly im-
prove the accuracy of root-zone soil moisture estimates. A
merged soil moisture product from active and passive sen-
sors was released by the European Space Agency (ESA) in
2010 (Liu et al., 2011). This is a part of the European Space
Agency Programme on Global Monitoring of Essential Cli-
mate Variables (ECVs), and hereafter it will be referred to
as ECV soil moisture. ECV soil moisture has been validated
globally (Dorigo et al., 2015) and in regional studies in places
such as in China (An et al., 2016) and east Africa (McNally
et al., 2016). One of the primary limitations of satellite-based
approaches is that they can typically only measure water in
the top few centimeters of the soil (Crow et al., 2012).

Model simulation from land surface models (Koster et al.,
2009) and fully coupled general circulation models (GCMs;
Srinivasan et al., 2000) is another source of spatially con-
tinuous soil moisture at a variety of depths. However, vali-
dation studies have shown that these models can have sig-
nificant biases. Guo and Dirmeyer (2006) compared 11 land
surface models from the Second Global Soil Wetness Project
(GSWP-2) and found that although models can reproduce
soil moisture anomalies, they do not accurately simulate
the absolute soil water content. Xia et al. (2015b) evalu-
ated four land surface models within the North American
Land Data Assimilation System Project Phase 2 (NLDAS-

2). They concluded that Noah and VIC models are wetter,
while Mosaic and SAC are drier. Compared with land sur-
face models, coupled GCMs are more commonly used to
investigate soil moisture–atmosphere interactions (Senevi-
ratne et al., 2010). Koster et al. (2004) is a benchmark study
of soil moisture–temperature and soil moisture–precipitation
coupling strength using 12 GCMs in the Global Land–
Atmosphere Coupling Experiment (GLACE). They identi-
fied three global “hot spots” where one finds strong land–
atmosphere coupling. However, they also demonstrated that
there are substantial inconsistencies in coupling strength be-
tween models. van den Hurk et al. (2010) used realistic
soil moisture initializations in the second phase of GLACE
(GLACE-2) to improve the forecast skill of summertime tem-
perature and precipitation in Europe.

In 2012, the fifth phase of the Coupled Model Intercom-
parison Project (CMIP5) was completed to provide a state-
of-the-art multimodel dataset for advancing the knowledge of
climate variability and climate change (Taylor et al., 2012).
Li et al. (2007) concluded, based on previous versions of the
CMIP models, that these models have difficulties to accu-
rately simulate the seasonal cycle of soil moisture. They also
found that improved simulation of solar radiation and pre-
cipitation leads to more accurate soil moisture simulations.
Although the CMIP5 models have been used to investigate
land–atmosphere interactions (Dirmeyer et al., 2013; Senevi-
ratne et al., 2013; May et al., 2015; Lorenz et al., 2016), to
date, there has not been a comprehensive evaluation of the ac-
curacy of the CMIP5 soil moisture simulations in the United
States. Therefore, this paper will address this knowledge gap.

In this study, we evaluate CMIP5 soil moisture simulations
in two soil layers (0–10 and 0–100 cm) over the contiguous
United States (CONUS) using in situ and satellite-derived
soil moisture. We evaluate both individual models and the
multimodel ensemble mean using in situ soil moisture from
363 sites as well as satellite observations. A description of the
data and methods used in this study is presented in Sect. 2.
This is followed by the presentation of the results and a dis-
cussion in Sect. 3, and the limitations and conclusions of the
study are summarized in Sects. 4 and 5, respectively.

2 Data and methods

2.1 Study regions

We evaluate the CMIP5 soil moisture simulations over
CONUS and in eight subregions (Fig. 1). These subregions
were defined using a land cover classification from US Ge-
ological Survey (Loveland et al., 2000). These subregions
(dashed boxes in Fig. 1) were utilized by Notaro et al. (2006)
and they have been applied in other land–atmosphere studies
(Mei and Wang, 2012; Sanchez-Mejia et al., 2014; Wu and
Zhang, 2013). In this study, we made some small adjustments
to these subregions so that they included more in situ sites
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Table 1. List of 17 CMIP5 models in this study.

Soil moisture simulation

Model name Model center (or groups) Spatial resolution 0–10 cm 0–100 cm

ACCESS1.3 Commonwealth Scientific and Industrial Research Organization (CSIRO) 145× 192
√ √

and Bureau of Meteorology (BOM), Australia
BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration 64× 128

√ √

BNU-ESM College of Global Change and Earth System Science, Beijing Normal University 64× 128
√ √

CanESM2 Canadian Centre for Climate Modelling and Analysis 64× 128
√ √

CCSM4 National Center for Atmospheric Research 192× 228
√ √

CESM1(CAM5) Community Earth System Model Contributors 192× 228
√ √

CNRM-CM5 Centre National de Recherches Météorologiques and 192× 228
√ √

Centre Européen de Recherche et Formation Avancée en Calcul Scientifique
CSIRO-MK3.6.0 Commonwealth Scientific and Industrial Research Organization in 96× 192

√

collaboration with Queensland Climate Change Centre of Excellence
FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 60× 128

√ √

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory 90× 144
√ √

GISS-E2-H NASA Goddard Institute for Space Studies 90× 144
√ √

HadGEM2-ES Met Office Hadley Centre (additional realizations 145× 192
√ √

contributed by Instituto Nacional de Pesquisas Espaciais)
INM-CM4 Institute for Numerical Mathematics 120× 180

√ √

IPSL-CM5A-LR Institut Pierre-Simon Laplace 96× 96
√

MIROC-ESM Japan Agency for Marine-Earth Science and Technology Atmosphere 64× 128
√ √

and Ocean Research Institute (The University of Tokyo)
and National Institute for Environmental Studies

MRI-CGCM3 Meteorological Research Institute 160× 320
√

NorESM1-M Norwegian Climate Centre 96× 144
√ √

Figure 1. Spatial distribution of in situ soil moisture stations and the boundaries of the eight subregions.

(solid boxes in Fig. 1). The eight subregions are the Midwest
(MW: 38–47.5◦ N, 94–80◦W), Northeast (NE: 38–47.5◦ N,
80–67◦W), Northern Great Plains (NGP: 34.4–49◦ N, 105–
94◦W), Northern Shrubland (NS: 40–49◦ N, 119.4–105◦W),
Northwest (NW: 40–49◦ N, 124–119.4◦W), Southeast (SE:
30–38◦ N, 92.5–75◦W), Southern Great Plains (SGP: 25–

34.4◦ N, 105–94◦W) and Southern Shrubland (SS: 30.8–
40◦ N, 119.4–105◦W).

2.2 CMIP5 models

All the Earth system models (ESMs) in the CMIP5 archive
that have soil moisture data are evaluated in this study. We
evaluate monthly near-surface (0–10 cm) soil moisture from

www.hydrol-earth-syst-sci.net/21/2203/2017/ Hydrol. Earth Syst. Sci., 21, 2203–2218, 2017



2206 S. Yuan and S. M. Quiring: Evaluation of soil moisture in CMIP5 simulations

17 ESMs and soil column (0–100 cm) soil moisture from 14
ESMs that are part of the CMIP5 archive (Table 1). Our anal-
ysis uses data from 2003 to 2012 because more in situ sites
are available in this 10-year time period. Although the tra-
ditional CMIP5 experiment ends in 2005, some ESMs, such
as BCC-CSM1.1 and CanESM2, have an extended histori-
cal simulation through 2012. Therefore, we extend all the
model simulations to 2012 by combining the 2006–2012 out-
puts from the future emission scenario, the Representative
Concentration Pathways (RCP) 4.5, to the regular histori-
cal experiment outputs. RCP4.5 is a pathway for stabiliza-
tion of radiative forcing at 4.5 W m−2 by 2100 (Thomson et
al., 2011). A similar approach was adopted in the IPCC AR5
report (Bindoff et al., 2013). Jones et al. (2013) also used
RCP4.5-forced CMIP5 simulations from 2005 to 2010 to
investigate near-surface temperature variations. To validate
this approach, we compared simulated precipitation based
on different RCP scenarios with the Climatic Research Unit
(CRU) precipitation in CONUS from 2006 to 2012 (results
not shown) and found that the RCP4.5 simulations closely
match the CRU observations.

Because all of the ESMs have a different spatial resolu-
tion, model output is regridded to a uniform resolution of
0.25◦× 0.25◦ using a bilinear interpolation method. This res-
olution was chosen to match the spatial resolution of the
satellite observations. Bilinear interpolation is a common
method for interpolating precipitation (Chen and Frauenfeld,
2014; Hsu et al., 2013; Qu et al., 2013). Crow et al. (2012)
demonstrated that large-scale spatial patterns of soil moisture
are dominated by precipitation. Therefore, we believe that
the bilinear interpolation method is an appropriate method.

2.3 In situ observations

Daily in situ soil moisture data from 2003 to 2012 were ob-
tained from North American Soil Moisture Database (http:
//soilmoisture.tamu.edu/). The North American Soil Mois-
ture Database archives data from a variety of national and
state networks (Quiring et al., 2016). Data from 363 sta-
tions are used in this study (Fig. 1). These stations belong to
eight observational networks, as shown in Table 2. Quality-
controlled daily soil moisture data have been used to vali-
date model simulations in previous studies (Xia et al., 2015c;
Dirmeyer et al., 2016). In this study, any stations with short
periods of missing data (< 10 days) are infilled using the
daily average replacement (DAR) method (Ford and Quiring,
2014b). Soil moisture measurements at different depths are
used to estimate the volumetric water content (VWC) in the
top 10 cm and top 100 cm of the soil column. For example,
the VWC measured at 5 cm is assumed to represent the VWC
in 0–10 cm soil layer. When there are multiple soil moisture
sensors within the top 100 cm, the measurements are com-
bined using a depth-weighted average. Daily soil moisture
measurements are then averaged to a monthly value to match
the temporal resolution of the ESMs. The in situ measure-

ments are also aggregated spatially to facilitate comparison
with the CMIP5 models. We use a simple spatial average to
aggregate all of the stations within each 0.25◦× 0.25◦ grid
cell. Then, all of the grid cells with stations in them are aver-
aged to produce a regional or national dataset for comparing
the in situ and modeled soil moisture. Although this spatial
average method is not the optimal technique to reduce sam-
pling errors (Crow et al., 2012), it is simple and has been
widely used in previous model evaluations (Robock et al.,
2003; Albergel et al., 2012a; Xia et al., 2015b). This ap-
proach reduces some of the bias associated with the point-
versus-grid scale mismatch. Utilization of this approach over
the entire CONUS provides general soil moisture conditions
simulated by CMIP5 models over the CONUS. However, we
are also interested in spatial variations in model performance.
Therefore, we also evaluated model performance after divid-
ing CONUS into eight subregions.

Measuring water content in frozen soils is a challenge (Xia
et al., 2015c). Therefore, the CONUS analysis only evalu-
ates the CMIP5 simulations during the warm season (April–
September). For a regional evaluation, we use data from
all the months in the three southern subregions (Southeast,
Southern Great Plains and Southern Shrubland) where frozen
soils do not occur. All other subregions only use data from
the warm season.

2.4 Satellite observations

Satellite-derived soil moisture from the soil mois-
ture climate change initiative (CCI) project (http:
//www.esa-soilmoisture-cci.org/) is used in this study.
This project is a part of the European Space Agency
Programme on Global Monitoring of Essential Climate
Variables (ECVs; Liu et al., 2012). ECV soil moisture is
based on active and passive remote sensing data and it has
been validated using reanalyses (Albergel et al., 2013a, b)
and in situ observations (Pratola et al., 2014). The spatial
resolution of monthly ECV soil moisture is 0.25◦. ECV
soil moisture is not available during the cold season in the
northern United States. Therefore, similar to the in situ
observations, only warm season evaluations are undertaken
for CONUS and the five northern subregions. Data from all
months are used in the three southern subregions.

2.5 Evaluation metric

Pearson correlation (r), mean absolute error (MAE) and the
coefficient of efficiency (E; Legates and McCabe, 1999) are
used to quantify the agreement between observations and
model simulations. Taylor’s skill score (S; Taylor, 2001) is
also used to measure the ability of individual CMIP5 mod-
els to reproduce the climatological soil moisture distribution.
The equation of S is shown as the following:

S =
4(1+R)[

σ + (1/σ)
]2
(1+R0)

, (1)
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Table 2. List of observational networks in this study.

Network Number of sites Reference
(used in this study)

AmeriFlux 4 Baldocchi et al. (2001)
North Carolina Environment and Climate Observing Network 24 Pan et al. (2012)
Illinois Climate Network 16 Hollinger et al. (1994)
Michigan Automated Weather Network 34 Andresen et al. (2011)
Oklahoma Mesonet 104 Scott et al. (2013)
Soil Climate Analysis Network 66 Schaefer et al. (2007)
Snowpack Telemetry 97 Schaefer and Paetzold (2001)
West Texas Mesonet 18 Schroeder et al. (2005)

Figure 2. Comparison of soil moisture from the CMIP5 ensemble with in situ and satellite-derived (ECV) soil moisture. Each point represents
monthly soil moisture data from the warm season (April to September) that have been spatially averaged over CONUS (2003–2012). Panel
(a) indicates CMIP5 ensemble versus in situ observations in the 0–10 cm soil layer; (b) CMIP5 ensemble versus ECV in the 0–10 cm soil
layer; (c) CMIP5 ensemble versus in situ observations in the 0–100 cm soil layer during the warm season (April to September).

where R is the correlation between the simulated and ob-
served soil moisture. σ is the ratio of standard deviation of
model simulation over standard deviation of observation and
R0 is the theoretical maximum correlation, equal to 1.

3 Results and discussion

3.1 Evaluation of model ensemble over CONUS

Figure 2 shows the relationship between the CMIP5 ensem-
ble mean and satellite-derived and in situ soil moisture dur-
ing the warm season. All three of these datasets were aver-
aged over CONUS. The multimodel ensemble mean is highly
correlated with the in situ observations (Fig. 2a and c). The
correlation (r) between the in situ and model-derived soil
moisture is 0.92 in the 0–10 cm soil layer and it is 0.91 in
the 0–100 cm soil layer. Both of these correlations are statis-
tically significant (p < 0.05). In the 0–100 cm soil layer, the
CMIP5 soil water content is systematically higher than the in
situ observations, especially during drier months (i.e., when
soil water content is < 0.25 cm3 cm−3). Figure 2b shows that

there is a weaker relationship between the CMIP5 ensemble
and ECV soil moisture and the correlation is only 0.65. It
appears that the variance of the satellite-derived soil mois-
ture is much less than the CMIP5 ensemble. The ECV soil
moisture only varies from ∼ 0.18 to 0.24 cm3 cm−3, while
CMIP5 varies from ∼ 0.16 to 0.27 cm3 cm−3. Therefore, the
ECV soil moisture tends to be systematically greater than
CMIP5 during drier months and systematically lower than
CMIP5 during wetter months.

We also examined the mean monthly soil moisture in the
0–10 and 0–100 cm soil layers from April to September. Fig-
ure 3a shows the seasonal cycle in the 0–10 cm soil moisture
for the in situ observations, ECV satellite data and CMIP5
models. Although there are substantial intermodel variations
among the CMIP5 models, particularly with regards to the
absolute soil water content, the CMIP5 ensemble (black line)
shows strong agreement with in situ observations (red line).
Both show that soil moisture decreases from April until Au-
gust and then soil moisture recharge begins in September.
Both the CMIP5 ensemble and the in situ observations have
a similar seasonal cycle in terms of both the magnitude and
timing. In comparison, the satellite-derived ECV soil mois-
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Figure 3. Mean monthly soil moisture (2003–2012) during the warm season (April to September) in the 0–10 cm soil layer (a) and in the
0–100 cm soil layer (b). Data are spatially averaged over CONUS. Figures show the monthly mean soil moisture from the in situ observations
(red line), ECV satellite data (blue line), CMIP5 ensemble mean (black line) and the individual CMIP5 models (grey lines).

ture (blue line) shows little month-to-month variability and
has a very weak seasonal cycle. Neither the timing nor the
magnitude of these variations matches the in situ observa-
tions and the CMIP5 ensemble.

Figure 3b shows the seasonal cycle in the 0–100 cm soil
moisture for the in situ observations and the CMIP5 mod-
els. ECV soil moisture data are not shown since satellites
are only able to estimate near-surface soil moisture. The sea-
sonal cycle of soil moisture in the 0–100 cm layer is similar
to the 0–10 cm layer. Soil water content is highest during the
early part of the warm season (April/May) and it declines un-
til it reaches a minimum in August. There is general agree-
ment between the in situ observations and CMIP5 ensemble
with regards to the seasonal pattern of soil moisture; how-
ever, there are notable differences in the magnitude of the
soil water content. In addition, the dry-down shown in the
CMIP5 ensemble is less pronounced than in the in situ obser-
vations. There are substantial intermodel variations among
the CMIP5 models, particularly with regards to the absolute
soil water content. Similar results are found for the 0–10 cm
soil layer. We will focus on evaluating the performance of
individual models in the following sections of the paper.

We also compared the spatial pattern of the mean soil
moisture (2003–2012) during the warm season (April–
September; Fig. 4). Based on the CMIP5 ensemble, the soils
with the lowest soil water content in the 0–10 cm layer are
typically found in the southwestern US and the soils with the
highest soil water content tend to be found in the northeast-
ern US (Fig. 4a). This pattern is also evident in the 0–100 cm
soil layer; however, the gradient is less pronounced (Fig. 4b).
The patterns are somewhat less spatially consistent when one
examines the in situ observations because of the influence
of local factors (e.g., edaphic, climatic, topographic, vegeta-
tion).

The differences between CMIP5 and the in situ observa-
tions are shown in Fig. 4e and f. Generally, CMIP5 tends
to be significantly wetter than the in situ observations in the
western US and it tends to be significantly drier than the in
situ observations in the eastern US. In fact, 79.3 % of the
differences between CMIP5 and the in situ observations in
the 0–10 cm layer are statistically significant. The same pat-
terns are evident in the differences between CMIP5 and the
in situ observations in the 0–100 cm layer (Fig. 4f). How-
ever, a greater number (8.8 % more) of the positive biases
in the western US and the negative biases in the eastern US
are statistically significant than in the 0–10 cm layer. These
results agree with previous research. Sheffield et al. (2013)
concluded that the CMIP5 models tend to overestimate pre-
cipitation in western North America. Given that precipitation
is a principal control of soil moisture, a positive bias in pre-
cipitation can cause soils to be too wet. Sheffield et al. (2013)
also found that CMIP5 models tend to overestimate evapora-
tion in eastern North America. This would lead to drier soils
and could help to explain the dry biases in CMIP5 that were
observed in the eastern US.

Figure 5 compares the mean warm season (April–
September) soil moisture (2003–2012) in 0–10 cm soil layer
from the CMIP5 ensemble to the satellite-derived ECV soil
moisture. ECV soil moisture is a product based on remote
sensing observations that are rescaled using the Noah land
surface model (Noah LSM) from Global Land Date Assimi-
lation System (GLDAS). Although the spatial pattern of ECV
soil moisture is influenced by the Noah LSM simulation, it is
independent of the GCMs evaluated in this study and there-
fore can be used to evaluate model performance. The gen-
eral spatial pattern of ECV is consistent with CMIP5; how-
ever, ECV has greater spatial heterogeneity. This is partly
due to the finer spatial resolution of the ECV data as com-
pared to CMIP5. It is also apparent that there are signif-
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Figure 4. Mean soil moisture (m3 m−3) over CONUS (2003–2012) during the warm season (April to September). Left panels show the
0–10 cm soil moisture for (a) CMIP5 ensemble, (c) in situ observations and (e) the difference between them (CMIP5 – in situ). Right panels
show the 0–100 cm soil moisture for (b) CMIP5 ensemble, (d) in situ observations and (f) the difference between them (CMIP5 – in situ).

icant differences in the near-surface soil water content in
ECV versus CMIP5. For example, ECV shows that the re-
gions with relatively low soil water content during the warm
season (VWC < 0.2) are much more spatially extensive than
in CMIP5. Similarly, the areas with relatively high soil wa-
ter content (VWC > 0.3) are also more extensive with ECV.
There has also been a shift in the soil water maxima in ECV
into Maine and New Hampshire, with secondary maxima in
Washington. The spatial patterns of the differences between
ECV and CMIP5 are similar to those seen with the in situ
observations. CMIP5 tends to have wet biases in the western
US and dry biases in the eastern US. The majority of statis-
tically significant (p < 0.05) differences are concentrated in
the places where CMIP5 is wetter than ECV.

3.2 Evaluation of individual models over CONUS

We evaluate the performance of each CMIP5 model over
CONUS during the warm season using Taylor’s skill score,
as shown in Fig. 6. Based on the skill score, the individ-
ual models show a varying ability to capture the soil mois-
ture distribution over CONUS. In the 0–10 cm soil layer,
CCSM4, NorESM1-M, CESM1 and GFDL-ESM2M all per-
form well (when compared to in situ observations) and have
higher skill scores (S = 0.89, 0.87, 0.87 and 0.85) than the
CMIP5 ensemble (S = 0.84). CanESM2 (S = 0.39), INM-
CM4 (S = 0.47) and HadGEM2-ES (S = 0.46) have the low-
est scores.

When model performance is evaluated using ECV soil
moisture, the skill scores decrease for all the models.
Among the 17 CMIP5 models that were evaluated, 8 have
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Figure 5. Same as Fig. 4, except it compares the mean soil mois-
ture (m3 m−3) over CONUS (2003–2012) during the warm season
(April to September) from the CMIP5 ensemble with the satellite-
derived ECV soil moisture.

higher skill scores than the CMIP5 ensemble mean (BCC-
CSM1.1, CCSM4, CESM1, FGOALS-g2, GFDL-ESM2M,
GISS-E2-H, IPSL-CM5A-LR and MIROC-ESM). In the 0–
100 cm soil layer, CCSM4 (S = 0.86), CESM1 (S = 0.88),
GFDL-ESM2M (S = 0.80) and HadGEM2-ES (S = 0.89)
perform well. The performance of CanESM2, INM-CM4
and HadGEM2-ES improves in this layer as compared to
the 0–10 cm layer. Generally, CCSM4, CESM1 and GFDL-
ESM2M consistently perform well over CONUS in both the
near-surface and deeper soil layers.

The performance of each CMIP5 model is also evaluated
using correlation, RMSE and “amplitude of variations” (rel-
ative standard deviation). These metrics are represented in
Fig. 7 using a Taylor diagram (Taylor, 2001). Correlations
between soil moisture simulated by CMIP5 models and ECV
and in situ observations are indicated by the azimuthal posi-
tion of each dot in Fig. 7. Correlations (r) between simu-
lated 0–10 cm soil moisture and ECV observations (Fig. 7a)
are all lower than 0.7. They tend to be clustered around 0.6,
with the exception of BNU-ESM. Correlations between the
CMIP5 models and the in situ soil moisture observations are
more variable, as shown in Fig. 7b. CCSM4 and CESM1
(r = 0.79) have the highest correlations, while IPSL-CM5A-
LR (r = 0.55) and GISS-E2-H (r = 0.56) have the lowest
correlations. The radial distance from the origin represents
the standardized deviation of the CMIP5 models relative to
the standardized deviation of the observations. When exam-
ining the performance of the CMIP5 models in the 0–10 cm
soil layer, CanESM2, INM-CM4 and HadGEM2-ES are out-
liers showing much larger (σsim/σobs > 2) variations than ei-
ther ECV or in situ observations. This leads to low Tay-
lor skill scores for these three models. All the models show
larger variations than ECV soil moisture, while only 10 (out
of 17) models demonstrate larger variations than in situ soil
moisture. In the 0–100 cm soil layer, the models in Fig. 7c
are more clustered than in the 0–10 cm soil layer. In gen-
eral, the models tend to underestimate the variability in the
0–100 cm layer. A total of 12 of the 14 models have stan-
dardized deviations that are lower than the observations. This
indicates that most of the models cannot capture the true vari-
ability of soil moisture in this layer. INM-CM4 significantly
overestimates the standardized deviation, which is consis-
tent with the results for the 0–10 cm soil layer. FGOALS-g2
(S = 0.56) has the lowest Taylor skill score in the 0–100 cm
layer. This is due to the low correlation (r = 0.69), and the
model also significantly underestimates soil moisture vari-
ability (σsim/σobs = 0.51).

There are many factors that influence the accuracy of soil
moisture in ESMs. This includes the quality of the forcing
data, the land–atmosphere coupling algorithms, the struc-
ture and parameters of the land surface scheme, the repre-
sentation of physical processes, the spatial resolution of the
model, etc. Therefore, it is challenging to identify why cer-
tain models are able to simulate soil moisture more accu-
rately than others. Generally, the land surface model used
by each ESM plays a critical role in simulating soil mois-
ture. CESM1, CCSM4 and GFDL-ESM2M (which all per-
formed better based on Taylor’s skill score) divide the 0–
1 m soil column into 7, 7 and 10 layers, respectively. These
models provide more detailed soil moisture simulations than
CanESM2 and HadGEM2-ES (two layers in 0–1 m soil layer;
both performed poorly based on Taylor’s skill score). Addi-
tionally, the spatial resolutions of CMIP5 models also differ.
ESMs with a coarser spatial resolution may also have lower
skill because they cannot capture for the spatial variability of
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Figure 6. Taylor skill scores of CMIP5 over CONUS based on the ECV satellite data (blue) and in situ observations in the 0–10 cm soil layer
(green) and in 0–100 cm soil moisture (brown). The solid lines indicate the skill of the CMIP5 ensemble average.

Figure 7. Taylor diagrams for the CMIP5 models based on the (a) ECV satellite data, (b) in situ observations in the 0–10 cm layer and
(c) in situ observations in the 0–100 cm layer. The azimuthal angle represents the correlation coefficient, and radial distance is the standard
deviation normalized to observations.

soil moisture. Relative to CESM1 and CCSM4 (192× 288),
CanESM2 has much coarser spatial resolution (64× 128)
and a much lower skill score.

3.3 Regional evaluation

The CMIP5 models are also evaluated in eight subregions
in CONUS (Fig. 8). Correlations between model-simulated
and in situ surface soil moisture (green bar) are higher in all
subregions than the correlations (blue bar) based on ECV soil
moisture, except in the NGP region (Fig. 8a). Focusing on the
correlations between CMIP5 ensemble and in situ soil mois-
ture, correlations for 0–100 cm soil moisture (brown bar) are
similar to the correlations for 0–10 cm soil moisture. Only in
the NGP region, correlation in 0–100 cm soil layer is substan-
tially higher than in 0–10 cm soil layer. Examining the MAE
gives a different perspective. In most subregions, the CMIP5
ensemble has a lower MAE when compared to ECV versus
the in situ observations. Only in the Northern Shrubland and
Southern Shrubland regions, the MAE is lower when com-
pared to the in situ observations. Figure 8b indicates that

MAE in the 0–100 cm soil layer is substantially higher than
MAE in 0–10 cm soil layer in seven of the eight subregions.
Similarly, the coefficient of efficiency is generally higher in
the 0–10 cm layer than in 0–100 cm.

Model performance varies from subregion to subregion.
Based on the ECV soil moisture, the CMIP5 ensemble
has relatively high correlations (r = 0.64 and 0.66) in the
MW and NE and relatively low correlations (r = 0.23) in
the SS region. Based on the in situ soil moisture, cor-
relations are consistently high (r > 0.85) in NS, NW, SE,
SGP and SS in both the near-surface and deep soil lay-
ers. The lowest correlation (r = 0.50) between the near-
surface in situ soil moisture and CMIP5 ensemble is in
the NGP. The MAE based on ECV soil moisture is rela-
tively low in the NE, NGP and NW (MAE= 0.021, 0.021
and 0.021 cm3 cm−3) and relatively high in NS and SS
(MAE= 0.042 and 0.046 cm3 cm−3). However, when com-
pared to the near-surface in situ soil moisture, MAE is rela-
tively high in the NW (MAE= 0.037 cm3 cm−3).
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Figure 8. Performance evaluation statistics for CMIP5 ensemble mean versus ECV satellite data and in situ soil moisture (2003–2012):
(a) correlation coefficient, (b) mean absolute error and (c) coefficient of efficiency for the eight subregions.

There is substantially more regional variability in
MAE for the 0–100 cm soil moisture. The MAE exceeds
0.07 cm3 cm−3 in NS and NW, while in the NGP it is only
0.03 cm3 cm−3. The regional variation in coefficient of effi-
ciency (E) is also substantial. When E is calculated based
on the in situ observations, it demonstrates that the CMIP5
ensemble can skillfully simulate the 0–10 cm soil mois-
ture in the NS, NW, SE, SGP and SS regions. The results
also demonstrate that CMIP5 can accurately simulate the 0–
100 cm soil moisture in the NS, SE, SGP and SS regions dur-
ing the warm season. However, these results do not agree
with the performance assessment based on the ECV soil
moisture. Based on ECV, E is best in the MW and NE re-
gions and CMIP5 model ensemble is worse than climatology
in the SS region.

Based on the results presented above, model performance
differs significantly when being evaluated with in situ ver-
sus ECV soil moisture. In addition, the selection of the best-
performing models is dependent on which statistic is used.
For example, based on the in situ soil moisture in 0–10 cm
layer, the NS and NW regions have relatively high MAE
(MAE= 0.037 and 0.037 cm3 cm−3) even though the corre-
lations are also strong (r = 0.87 and 0.89). This suggests that
the model is able to simulate the wetting and drying of the
soil, but there is a systematic bias in the absolute magnitude
of the model-simulated soil moisture.

Figure 9 shows the skill scores of each model in the eight
subregions using in situ observations from the warm season
as reference. There is substantial intermodel variability in
performance amongst the CMIP5 models as a function of soil
depth and location. CESM1 has consistently high skill in the
0–10 cm soil layer in all eight subregions. MRI-CGCM3 out-

performs all the other models in the MW region and it also
performs well in the NE along with ACCESS1.3. CanESM2
and HadGEM2-ES do not perform well in the majority of
subregions (six out of eight subregions) and GISS-E2-H does
not perform well in the MW and NE. For the 0–100 cm soil
layer, HadGEM2-ES performs well in all subregions, espe-
cially in NGP, NS, NW, SE and SGP. The models gener-
ally perform better in the NE, compared to other subregions.
FGOALS-g2 and GISS-E2-H perform relatively poorly in all
subregions.

Due to the availability of ECV data and the issues with
measuring soil moisture in frozen soils, the preceding anal-
ysis focused solely on the warm season. We also evaluated
model performance using data from all months in the three
southern subregions (SE, SGP and SS) where frozen soils
are not an issue. Figure 10 shows the seasonal cycle of soil
moisture based on the CMIP5 ensemble, in situ and ECV
data in the three southern subregions. CMIP5 ensembles in
the three subregions consistently show that soil moisture de-
creases first and then increases in a year. However, in SE,
soil moisture reaches the driest condition (in September) later
than soil moisture in SGP (August) and SS (July). Both the
in situ and ECV show more variable seasonal patterns than
the CMIP5 simulations, especially in the SGP and SS. In the
SE, both the in situ and ECV soil moisture decrease start-
ing in February and reach their lowest point in June. This is
3 months earlier than the CMIP5 ensemble. In situ observa-
tions are wetter than ECV soil moisture during the entire year
in the SE, but they are most similar in October. In the SGP, in
situ and ECV soil moisture generally decreases from April to
August and then increases after August. There is good agree-
ment between the in situ, ECV and CMIP5 in the SGP with
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Figure 9. Comparison of CMIP5 models with in situ observations over eight subregions based on Taylor skill scores: (a) 0–10 cm soil
moisture and (b) 0–100 cm soil moisture.

Figure 10. Seasonal variation of mean monthly (2003–2012) soil moisture based on in situ observations (red), CMIP5 ensemble (black) and
ECV satellite data (blue) in three subregions: (a) Southeast, (b) Southern Great Plains and (c) Southern Shrubland.

regards to the timing of the wettest and driest months. This is
the only subregion where the seasonal cycle is the same in all
three data sources. However, the magnitude of the seasonal
fluctuations differs substantially. CMIP5 is much more vari-
able than both the in situ and ECV. While in the SS region,
the ECV does not show much of a seasonal cycle. CMIP5
and the in situ observations show a similar drying of the soil
from March through June, but they do not agree as well dur-
ing the June to November period. Table 3 provides the cor-
relation, MAE and E based on the monthly data from these
three subregions. During the warm season months, the corre-
lations and coefficient of efficiency are higher and the MAE
is lower in all the cases. In terms of the surface layer, the
CMIP5 ensemble is more highly correlated with in situ ob-
servations than ECV data in all three subregions. However, in

the SGP and SE, the MAE based on comparing the CMIP5
ensemble to the ECV is lower than the MAE based on the
in situ observations. With emphasis on in situ soil moisture
in different layers, CMIP5 ensemble has higher correlation,
larger MAE and lower E in 0–100 cm soil layer than in 0–
10 cm soil layer in all the three subregions.

4 Limitations

This study compares model-simulated soil moisture from the
CMIP5 models with in situ and satellite-derived soil mois-
ture. The in situ stations were selected based on their record
length spatial coverage. However, there are relatively few sta-
tions with 10-year records. Therefore, some parts of CONUS
are not well represented in this analysis. Future studies would
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Table 3. Evaluation of CMIP5 ensemble over the Southeast, Southern Great Plains and Southern Shrubland using all monthly soil moisture
and warm-season-only soil moisture.

Correlation MAE E

All Warm All Warm All Warm

SE vs. ECV 0.44 0.50 0.030 0.024 0.11 0.17
vs. in situ (0–10 cm) 0.80 0.88 0.032 0.028 0.61 0.72
vs. in situ (0–100 cm) 0.89 0.91 0.067 0.052 0.21 0.43

SGP vs. ECV 0.38 0.44 0.026 0.024 0.05 0.15
vs. in situ (0–10 cm) 0.82 0.86 0.032 0.027 0.63 0.67
vs. in situ (0–100 cm) 0.90 0.92 0.071 0.056 0.19 0.45

SS vs. ECV 0.21 0.23 0.051 0.046 −1.12 −0.76
vs. in situ (0–10 cm) 0.81 0.87 0.028 0.023 0.66 0.73
vs. in situ (0–100 cm) 0.88 0.89 0.074 0.055 0.17 0.41

benefit from including more in situ data to evaluate model
performance. This would help to address issues with the spa-
tial gaps in coverage and the issues related to comparing
point measurements to model grid cells. Considering the in
situ soil moisture comes from different networks, there may
also be some inconsistencies in the quality and representa-
tiveness of the soil moisture data (Dirmeyer et al., 2016).
These inconsistencies can result from the use of different soil
moisture sensors, calibration procedures and quality control
processes. Dirmeyer et al. (2016) assessed the random errors
of 16 networks and found distinct differences between net-
works. Although we excluded from this study one of the net-
works with the largest random errors (e.g., COSMOS), more
work is still needed to standardize and homogenize in situ
soil moisture measurements.

Another potential limitation of this work is that we ap-
plied bilinear interpolation method to regrid all the CMIP5
model output to a uniform resolution of 0.25◦× 0.25◦ so that
it matched the resolution of the ECV data. This is a simple
way of rescaling the data. Given that we are only evaluat-
ing model performance at the regional and continental scales,
we believe that this method is reasonable because the spa-
tial variability of soil moisture at these scales is dominated
by precipitation patterns (Crow et al., 2012). However, ap-
plying more advanced interpolation or downscaling meth-
ods, such as the reduced optimal interpolation (ROI) method
(Yuan and Quiring, 2016), may provide a better estimate of
model-simulated soil moisture at this spatial scale.

5 Conclusions

We evaluated soil moisture simulations in CMIP5 experiment
(17 models for 0–10 cm and 14 models for 0–100 cm) over
CONUS using in situ observations and ECV satellite obser-
vations. The CONUS results show that the CMIP5 model
ensemble has similar correlations with in situ observations
when comparing the 0–100 cm soil layer to the 0–10 cm soil

layer. However, there is evidence of a substantial wet bias
in the deeper soil layer during months when the soil is dry.
This wet bias is also reflected in the multiyear mean monthly
soil moisture. There is substantial variability in performance
among the individual models, with the greater uncertainties
in surface soil layer.

The multimodel CMIP5 ensemble mean can generally
capture the spatial pattern of soil moisture. However, wet
biases in the western US and dry biases in the eastern US
are evident. Sheffield et al. (2013) found that CMIP5 mod-
els tend to overestimate precipitation in the western US, and
this may account for the wet biases that we observed. Dry
biases in the eastern US may be attributed to evapotranspira-
tion, which tends to be overestimated by CMIP5 models in
the eastern US (Sheffield et al., 2013). Performance of the
CMIP5 ensemble varies significantly from subregion to sub-
region. In most subregions (NS, NW, SE, SGP and SS), the
CMIP5 ensemble can accurately simulate warm season sur-
face soil moisture (e.g., high correlations and low MAE). In
the three southern subregions, we also evaluated soil mois-
ture simulations during the cold season and found that there
is generally a decrease in model performance (e.g., higher
MAE and lower E than during the warm season).

ECV soil moisture, as an independent data source, is in-
troduced in this study to help evaluate the performance of
CMIP5 soil moisture simulations. Relative to ECV soil mois-
ture, CMIP5 ensemble shows greater month-to-month vari-
ations over CONUS. Due to this greater variance, CMIP5
models do not skillfully reproduce the ECV soil moisture.
Similar to in situ soil moisture, ECV data also show that
the CMIP5 model ensemble tends to have wet biases in the
western US and dry biases in the eastern US. Additionally,
in the three southern subregions, the intra-annual variabil-
ity shown by ECV soil moisture and in situ observations is
relatively consistent. On the other hand, the CMIP5 ensem-
ble can only capture the general seasonal cycle, but fails to
adequately capture some of the monthly variations. At the
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same time, there are some inconsistencies between the in situ
and ECV soil moisture. For example, in the Southern Shrub-
land, the correlation between the CMIP5 models and ECV
soil moisture (r = 0.23) is lower than the correlation with the
in situ data (r = 0.87). Though comparing the two observa-
tional data is not the goal of this study, we can still point
out that future validation of satellite-derived soil moisture is
necessary.

The skill of the individual CMIP5 models also varies sig-
nificantly. In the top soil layer, the Taylor skill score varies
from 0.39 (CanESM2) to 0.89 (CCSM4). Generally, the skill
of the models in the deeper soil layer is similar to the sur-
face layer, but the intermodel variability in skill is greater.
HadGEM2-ES has the highest skill score because it matches
the variability of the in situ observations. Generally, CESM1
consistently performs well in the surface soil layer in all sub-
regions, and HadGEM2-ES performs well in the 0–100 cm
soil layers in all subregions. However, it is remains difficult
to find a single model that consistently outperforms all others
when it comes to accurately simulating soil moisture in all
subregions and seasons. Therefore, it is unclear whether the
findings of this study will apply to other subregions around
the world with different climate, soil and vegetation charac-
teristics.

Data availability. The in situ soil moisture dataset is avail-
able at TAMU North American Soil Moisture Database (http:
//soilmoisture.tamu.edu/). The satellite-observed soil moisture
is available at the European Space Agency soil moisture
climate change initiative (CCI) project website (http://www.
esa-soilmoisture-cci.org/). CMIP5-simulated soil moisture is pro-
vided by the Earth System Grid Federation (ESGF; https://pcmdi9.
llnl.gov/).
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