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Abstract. Assessing the factors that have an impact on po-
tential evapotranspiration (PET) sensitivity to changes in dif-
ferent climate variables is critical to understanding the pos-
sible implications of climatic changes on the catchment wa-
ter balance. Using a global sensitivity analysis, this study as-
sessed the implications of baseline climate conditions on the
sensitivity of PET to a large range of plausible changes in
temperature (T ), relative humidity (RH), solar radiation (Rs)
and wind speed (uz). The analysis was conducted at 30 Aus-
tralian locations representing different climatic zones, using
the Penman–Monteith and Priestley–Taylor PET models. Re-
sults from both models suggest that the baseline climate can
have a substantial impact on overall PET sensitivity. In par-
ticular, approximately 2-fold greater changes in PET were
observed in cool-climate energy-limited locations compared
to other locations in Australia, indicating the potential for
elevated water loss as a result of increasing actual evapo-
transpiration (AET) in these locations. The two PET models
consistently indicated temperature to be the most important
variable for PET, but showed large differences in the rela-
tive importance of the remaining climate variables. In partic-
ular for the Penman–Monteith model, wind and relative hu-
midity were the second-most important variables for dry and
humid catchments, respectively, whereas for the Priestley–
Taylor model solar radiation was the second-most important
variable, with the greatest influence in warmer catchments.
This information can be useful to inform the selection of suit-
able PET models to estimate future PET for different climate
conditions, providing evidence on both the structural plausi-
bility and input uncertainty for the alternative models.

1 Introduction

Assessing changes to evapotranspiration (ET) is critical in
understanding the impacts of anthropogenic climate change
on the catchment water balance. ET represents the domi-
nant loss of water from catchments worldwide, with about
62 % of global land-surface precipitation accounted for by
ET (Dingman, 2015), and ET exceeding runoff in over 77 %
of the global land surface (Harrigan and Berghuijis, 2016).
ET is affected by climate change through a cascade of pro-
cesses that begins with the increasing concentration of green-
house gases, followed by their attendant impacts on large-
scale circulation and changes to the global distribution of en-
ergy and moisture. These large-scale processes lead to local-
scale changes in the atmosphere, which in turn influence the
catchment water balance through a set of terrestrial hydro-
logical processes by which precipitation is converted into ac-
tual ET (AET), runoff and groundwater recharge (Oudin et
al., 2005). Other factors that can potentially affect ET un-
der a changing climate include changing land cover patterns
(e.g., Liu et al., 2008), and the CO2 fertilization effects that
can limit the rate of plant transpiration under elevated lev-
els of CO2 (e.g., Prudhomme et al., 2014; Milly and Dunne,
2016).

Climate impact studies that investigate the influence of cli-
mate forcings on the catchment water balance are usually
based on projections of future climate represented by climate
variables such as temperature and solar radiation from gen-
eral circulation models (GCMs), which are converted into
potential ET (PET) using one or several PET models. The
PET projections are combined with GCM projections of pre-
cipitation (P ), which together can be used to directly es-
timate the water deficit (Taylor et al., 2013; Chang et al.,
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2016). Alternatively, rainfall–runoff models can be used to
translate the changes in P and PET into changes in runoff
(e.g., Akhtar et al., 2008; Chiew et al., 2009; Koedyk and
Kingston, 2016), as well as associated information such as
the impact on catchment streamflow (Wilby et al., 2006), wa-
ter supply security (Paton et al., 2013, 2014) and flood risk
(Bell et al., 2016). Therefore, to quantify the specific impact
of changes in ET on the water balance, a good understanding
of the sensitivity of PET to potential changes in its key in-
fluencing climatic variables is required (Goyal, 2004; Tabari
and Hosseinzadeh Talaee, 2014). This is particularly relevant
given the recent focus on “scenario-neutral” (or “bottom-
up”) approaches to climate impact assessment (Brown et al.,
2012; Prudhomme et al., 2010; Culley et al., 2016), which re-
quire the sensitivity of a given system to potential changes in
climate forcings to be estimated (Prudhomme et al., 2013a, b;
Steinschneider and Brown, 2013; Kay et al., 2014; Guo et al.,
2016a).

Furthermore, the sensitivity of PET can provide critical ev-
idence in relation to identifying models that are most appro-
priate for PET estimation under climate change conditions,
which is particularly relevant to the ongoing debate on the
potential trade-off between model complexity and reliabil-
ity. Complex models such as the Penman–Monteith model
are often recommended for their ability to better represent
the physical processes that affect PET (McVicar et al., 2012;
Donohue et al., 2010; Barella-Ortiz et al., 2013). For exam-
ple, the Penman–Monteith model can account for the effects
of wind, and thus can help explain at least part of the ob-
served decreases in pan-evaporation with increases in tem-
perature in many locations globally – the “evaporation para-
dox” – due to the observed decreases in wind speed (Roder-
ick et al., 2007; McVicar et al., 2008; Lu et al., 2016). How-
ever, simpler empirical models may also be preferable under
some conditions, as they require a smaller number of input
climate variables, which might be able to be projected with
greater confidence with GCMs, and thus leading to greater
confidence in the corresponding PET estimates (Kay and
Davies, 2008; Ekström et al., 2007; Ravazzani et al., 2014).
For example, there is reasonable confidence in projections
of temperature and relative humidity in Australia for a given
emission scenario, but less confidence in projections of wind
due to sub-grid effects of orography and other land-surface
features (Flato et al., 2013; CSIRO and Bureau of Meteorol-
ogy, 2015). In these situations, models such as the Priestley–
Taylor model that do not depend on wind may produce more
reliable estimates of PET compared to the more complex
Penman–Monteith model. Thus, the choice of climate vari-
ables to include in climate impact assessments must be in-
formed both by the relative importance of each variable on
projections of PET (e.g., Tabari and Hosseinzadeh Talaee,
2014), and the likely confidence in the projections of each
variable (e.g., Flato et al., 2013; Johnson and Sharma, 2009).

Sensitivity analysis methods have been employed in a
number of recent studies to assess the overall sensitivity of

PET estimated by the Penman–Monteith model to potential
changes in climate, as well as to better understand the relative
importance of different climate variables on overall PET sen-
sitivity. For example, Goyal (2004) found that PET was most
sensitive to perturbations in temperature, followed by solar
radiation, wind speed and vapor pressure, at a single study
site in an arid region in India. Tabari and Hosseinzadeh Ta-
laee (2014) also looked at the sensitivity of PET to perturba-
tions of historical climate data from eight meteorological sta-
tions representing four climate types in Iran, and concluded
that the importance of wind speed and air temperature was
lower while that of sunshine hours was higher for a humid
location compared to an arid location. Gong et al. (2006)
found that the differences in PET sensitivity across the up-
per, middle and lower regions of the Changjiang (Yangtze)
basin in China were largely due to contrasting baseline wind
speed patterns. However, most of these PET sensitivity anal-
ysis studies focused on a limited number of study sites and/or
climatic zones; therefore, the specific causes for varying PET
sensitivity at different locations, such as the roles of climatic
and hydrological conditions, remain unclear. Consequently,
it is difficult to extrapolate our existing knowledge of PET
sensitivity and the relative importance of each climate vari-
able to new locations, which is essential for assessing the
water balance at regional scales.

To address the shortcomings of existing studies outlined
above, this study aims to gain an understanding of (i) the
sensitivity of PET estimates to changes in the key climatic
variables that influence PET, and how these sensitivity esti-
mates are affected by varying baseline hydrologic and cli-
matic conditions at different locations; and (ii) the relative
importance of these climatic variables for PET, and how this
changes with the baseline hydrologic and climatic conditions
at different locations. These aims were achieved by analyz-
ing the responses of PET to perturbations in four of its driv-
ing climatic variables, namely temperature (T ), relative hu-
midity (RH), solar radiation (Rs) and wind speed (uz), at
30 study sites across Australia representing a range of cli-
mate zones. Both the Penman–Monteith and Priestley–Taylor
models were used, as they represent different conceptual-
izations of the PET-related processes, with both models be-
ing widely used for climate impact assessments (Felix et al.,
2013; Arnell, 1999; Gosling et al., 2011; Kay et al., 2009;
Prudhomme and Williamson, 2013; Donohue et al., 2009). It
is worth noting that the potential changes in one climate vari-
able can be amplified or offset by changes in another variable
(for examples see the discussions of “evaporation paradox”
in Lu et al., 2016; Roderick and Farquhar, 2002), which can
affect the relative importance of each variable. To account
for this effect, a global sensitivity analysis method was used,
with similar methods being applied to account for the impact
of joint variations in the input variables on the output from
a variety of environmental models, ranging from conceptual
rainfall–runoff models (e.g., Tang et al., 2007a, c) to com-
plex models that consider a number of surface–groundwater
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Figure 1. Locations of 30 Australian weather stations selected for analysis (see Table 1 for the full names of these weather stations), with
reference to their corresponding climate classes derived following the modified Köppen classification (reproduced with data from Stern et
al., 2000).

processes (e.g., Guillevic et al., 2002; van Griensven et al.,
2006; Nossent et al., 2011). The results of the global sensi-
tivity analysis in this study were presented in terms of both
the range of potential changes in PET and relative sensitiv-
ity indices of each climate variable for PET, which were then
used to elucidate the specific roles of varying baseline hydro-
climatic conditions on influencing these sensitivity measures.

The subsequent sections of this paper are structured as
follows. Section 2 introduces the data obtained from the
30 study sites required for the global sensitivity analysis.
Section 3 describes the approach to the global sensitivity
analysis of PET. Section 4 presents and discusses two sets of
results that address the two study aims, respectively, (i) the
range of estimated changes in PET in response to potential
changes in temperature, solar radiation, humidity and wind,
and how this changes with location, and (ii) the relative im-
portance of the four climate variables for estimating PET, and
how this changes with location. The study is summarized and
concluded in Sect. 5.

2 Data

To represent contrasting hydro-climatic conditions for as-
sessing PET sensitivity, we selected case study locations
within different Köppen classes in Australia. The original
Koöppen climate classification (Köppen et al., 1930; Köp-
pen, 1931) provides a useful categorization of hydro-climatic
conditions at specific locations, which is based on the long-
term average levels and seasonal patterns of climatic and hy-
drologic variables, including temperature, relative humidity
and rainfall. A “modified Köppen classification” system has
been adapted for Australia (as in Stern et al., 2000) and is
now widely used in climatic and hydrologic studies to iden-
tify and categorize case study locations (e.g., Johnson and
Sharma, 2009; Rustomji et al., 2009; Li et al., 2014; Guo et
al., 2017).

As mentioned in the Introduction, both the Penman–
Monteith and the Priestley–Taylor models were used to es-
timate PET for the global sensitivity analyses. The estima-
tion of PET with these models relies on temperature, rela-
tive humidity, solar radiation and (for the Penman–Monteith
model only) wind speed. In addition, the rainfall data were
also obtained to assess the aridity of the different locations.
We limited the selection of study sites to those with 10 or
more years of continuous climate data with no more than 5 %
missing records over the study period. This led to a final se-
lection of 30 weather stations (Fig. 1), with a consistent data
period from 1 January 1995 to 31 December 2004. The data
obtained at each site are detailed as below:

– Daily maximum and minimum temperature (T in ◦C),
maximum and minimum relative humidity (RH in %)
and wind speed (uz in m s−1): data for each of these
variables were obtained directly from each weather sta-
tion.

– Daily solar radiation (Rs in MJ m−2 day−1): daily so-
lar radiation was calculated from daily sunshine hour
data (n in h) obtained from each weather station, us-
ing the Ångström–Prescott equation as in McMahon et
al. (2013).

– Daily rainfall (mm day−1): daily rainfall data were ob-
tained from a rain gauge at each weather station.

Table 1 shows the average values of the four PET-related
climate variables, as well as the rainfall within the study pe-
riod, at each of the 30 sites. As can be seen, there are large
differences in the average values of each variable, highlight-
ing large differences in the climatic conditions across the
30 sites. In addition, a quantity particularly relevant to ET
processes is the long-term-averaged ratio of PET to precipita-
tion (PET / P ), which describes whether a location is water-
limited (PET / P > 1) or energy-limited (PET / P < 1) (Ger-
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Table 1. Names, locations and average climate conditions of the 30 weather stations over the study period (1995–2004).

No. Study site Köppen Lat Long Elev T b RH2 Rb
s ub

z Annual Annual Annual
name classa (◦ S) (◦ E) (m) (◦C) (%) (MJ m−2 (m s−1) P b (mm) PETb PET / P b

day−1) (mm)

1 Broome airport 13 −17.95 122.2 7.4 26.37 65.15 21.55 3.684 865 2003 2.317
2 Perth 8 −31.93 116.0 15.4 18.54 61.72 18.95 4.519 721 1751 2.429
3 Albany 4 −34.94 117.8 68 15.08 73.59 15.20 4.382 752 1126 1.498
4 Giles 24 −25.03 128.3 598 22.70 38.40 20.29 4.380 394 2344 5.947
5 Darwin 35 −12.42 130.9 30.4 27.42 69.27 20.33 3.393 1976 1864 0.944
6 Gove 35 −12.27 136.8 51.6 26.29 75.93 19.45 3.500 1607 1660 1.033
7 Tennant Creek 13 −19.64 134.2 375.7 25.73 37.21 21.64 4.759 539 2634 4.886
8 Alice Springs 15 −23.80 133.9 546 21.18 44.53 20.79 2.352 331 1822 5.503
9 Woomera 24 −31.16 136.8 166.6 19.41 46.57 19.40 5.057 151 2153 14.24
10 Ceduna 11 −32.13 133.7 15.3 16.92 62.04 18.20 5.450 266 1723 6.478
11 Adelaide airport 12 −34.95 138.5 2 16.37 63.04 16.91 4.213 454 1410 3.107
12 Adelaide (kent town) 12 −34.92 138.6 48 16.95 61.20 16.88 3.161 569 1372 2.409
13 Loxton 12 −34.44 140.6 30.1 16.50 59.41 17.59 3.250 255 1490 5.847
14 Mount Gambier 4 −37.75 140.8 63 13.45 72.77 14.91 4.460 731 1116 1.526
15 Weipa 41 −12.68 141.9 18 26.87 72.21 19.31 3.271 2154 1782 0.827
16 Cairns 36 −16.87 145.7 3 24.80 73.00 18.98 4.352 1985 1678 0.845
17 Townsville 35 −19.25 146.8 4.3 24.53 69.45 20.27 4.304 1099 1802 1.641
18 Cobar 15 −31.48 145.8 260 19.08 50.64 19.05 2.458 398 1565 3.936
19 Williamtown 9 −32.79 151.8 9 17.84 70.57 16.07 3.927 1145 1309 1.143
20 Sydney 9 −33.94 151.2 6 18.19 67.69 15.97 5.311 1017 1393 1.369
21 Canberra 6 −35.30 149.2 578.4 13.36 65.82 16.86 3.302 590 1226 2.078
22 Wagga Wagga 9 −35.16 147.5 212 15.77 61.78 17.48 3.288 552 1436 2.602
23 Mildura 12 −34.24 142.1 50 17.11 55.62 18.24 3.604 246 1645 6.681
24 East sale 6 −38.12 147.1 4.6 13.77 72.32 14.92 4.062 529 1093 2.067
25 Scottsdale 3 −41.17 147.5 197.5 13.19 70.55 14.23 2.921 931 912 0.980
26 Bicheno 3 −41.87 148.3 11 14.69 66.68 13.69 3.319 690 966 1.401
27 Lake Leake 3 −42.01 147.8 575 9.96 75.40 13.44 3.358 732 774 1.056
28 Hobart 3 −42.83 147.5 4 12.77 65.67 14.04 4.367 483 1097 2.273
29 Strathgordon village 3 −42.77 146.0 322 10.70 77.95 11.65 2.473 2626 699 0.266
30 Flinders Island 3 −40.09 148.0 9 13.54 73.59 14.34 6.399 654 1064 1.626

Note: a The Köppen classes are presented with their corresponding identifiers from Stern et al. (2000), as (3) temperate – no dry season (mild summer); (4) temperate – distinctly dry (and
warm) summer; (6) temperate – no dry season (warm summer); (8) temperate – moderately dry winter (hot summer); (9) temperate – no dry season (hot summer); (11) grassland – warm
(summer drought); (12) grassland – warm (persistently dry); (13) grassland – hot (winter drought); (15) grassland – hot (persistently dry); (24) desert – hot (persistently dry); (35) tropical –
savanna; (36) tropical – rainforest (monsoonal); (41) equatorial – savanna. b T is temperature, RH is relative humidity, Rs is incoming solar radiation, uz is wind speed, P is rainfall, PET is
potential evapotranspiration calculated using the Penman–Monteith model.

rits et al., 2009; McVicar et al., 2010). This ratio was esti-
mated for each site and is also shown in Table 1 (with the
point color in Fig. 1 indicating whether the location is water-
limited or energy-limited). The range of PET / P values in-
dicates substantial variations in the water availability condi-
tions at different study sites. Note that these ratios were based
on the estimates of PET from the Penman–Monteith model.
Although the use of Priestley–Taylor model resulted in dif-
ferent PET estimates at each site, the categorization of water-
and energy-limited catchments was generally consistent with
those from Penman–Monteith, with different categories only
shown at 4 out of the 30 study sites (sites 6, 19, 20 and 27).

3 Method

3.1 Overview

A schematic of the approach followed in study is shown in
Fig. 2. As a required model input for the global sensitivity
analysis, a large number of representative samples were first
obtained for the four climate variables that influence PET (T ,
RH, Rs and uz) at each study site, by perturbing the corre-
sponding historical climate data (Sect. 3.2). The outputs of
the global sensitivity analysis (i.e., the responses of PET)
were estimated with the Penman–Monteith and Priestley–
Taylor models (Sect. 3.3). To understand the PET sensitivity
and the relative importance of the four climate variables in in-
fluencing PET and how these change with location, a global
sensitivity analysis was conducted with the responses of PET
to the climate perturbations (Sect. 3.4). This proceeded in
two parts:
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Figure 2. Schematic of the method used in this study.

1. To assess the sensitivity of PET to the climate variables,
the range of percentage changes in PET in response to
all the climate perturbations was estimated relative to
the baseline PET at each location. To observe the im-
pact of varying baseline hydro-climatic conditions, the
ranges obtained from each PET model were also plotted
against the baseline levels of each climate variable for
all study sites.

2. To assess the relative importance of each climate vari-
able, the range of percentage responses in PET to all
climate perturbations in (1) was first compared to the
conditional range of percentage responses in PET with
holding each variable constant. This comparison en-
ables an assessment of the relative impact of each vari-
able on the potential responses of PET. An alternative
presentation of the individual and interaction effects

of the climate variables was achieved using the Sobol’
method (Sobol’ et al., 2007). Here, the total variance of
PET was estimated based on different samples drawn
from the perturbed ranges of each climate variable, and
then partitioned into the individual contribution from
each climate variable and their interactions (see Ap-
pendix A1 for details). The Sobol’ first-order sensitiv-
ity indices were estimated and plotted against the base-
line levels of each climate variable for all study sites
to explore the role of varying baseline hydro-climatic
conditions on the relative importance of each climatic
variable for PET.
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3.2 Representing plausible changes in the climatic
variables

As part of the global sensitivity analysis, a large number of
representative combinations of the changes in the four cli-
mate variables (T , RH, Rs and uz) were obtained. The up-
per and lower bounds for perturbing each climate variable
were determined based on the uncertainty bounds of projec-
tions for 2100 for Australia (Stocker et al., 2013). The se-
lected bounds are given in Table 2, which are all slightly
wider than those presented in Stocker et al. (2013) to en-
compass a comprehensive range of plausible future climate
change scenarios. Within these bounds, samples were drawn
for different combinations of changes in each climatic vari-
able. Latin hypercube sampling (LHS) was used for this pur-
pose due to its effectiveness in covering multi-dimensional
input spaces (Osidele and Beck, 2001; Sieber and Uhlen-
brook, 2005; Tang et al., 2007b).

According to Nossent et al. (2011) and Zhang et al. (2015),
the sample size was selected to ensure the convergence of
the first- and total-order Sobol’ sensitivity indices, which oc-
curs when the width of the 95 % confidence intervals from
1000-fold bootstrap re-sampling of the each index is below
10 % of the corresponding mean obtained from bootstrap-
ping. Specifically, we generated different sizes of LHS sam-
ples of climate perturbations with the historical climate data
from one study site, from which the PET responses were es-
timated using the Penman–Monteith model. The 1000-fold
bootstrap estimates for the Sobol’ first- and total-order sensi-
tivity indices for each climate variable were then derived (as
in Eqs. A2 and A5 in Appendix A1, respectively) for each
sample size. It was observed that both the Sobol’ indices be-
gan to converge when the sample size exceeded 5000, and
this was therefore used as the LHS sample size for all the
sensitivity experiments in this study. Based on this sample
size, a total of 30 000 Sobol’ samples were compiled as re-
quired to estimate the first- and total-order indices (as de-
tailed in Appendix A1), which correspond to 30 000 climate
perturbations to be used to test PET sensitivity.

To generate time series of perturbed climate data, the
30 000 joint perturbations to the four climate variables ob-
tained by LHS were treated as change factors, and applied to
the time series of daily values of the corresponding historical
data. Rather than using a single daily mean value of temper-
ature and relative humidity, the two PET models used in this
study require both the daily minimum and maximum values;
therefore, each pair of temperature variables and relative hu-
midity variables was considered jointly and thus perturbed by
the same amount for each day. In addition, to ensure physi-
cal plausibility of the perturbations, the daily maximum and
minimum values of relative humidity were capped at a max-
imum of 100 %.

Table 2. Plausible perturbation bounds for each climate variable
relative to their current levels.

Climate Perturbation
variable range

T 0 to +8 ◦C
RH −10 to +10 %
Rs −10 to +10 %
uz −20 to +20 %

Note: T is daily temperature, RH is
daily relative humidity, Rs is daily
incoming solar radiation, uz is daily
wind speed.

3.3 Estimating PET responses to climate perturbation

To represent the responses in PET as a result of the cli-
mate perturbations, we used both the Penman–Monteith
and Priestley–Taylor models, which provide contrasting pro-
cess representations to estimate PET. The Penman–Monteith
model is often referred to as a combinational model, as it
combines the energy balance and mass transfer components
of ET, and takes into account vegetation-dependent processes
such as aerodynamic and surface resistances (Eqs. A6 in Ap-
pendix A1). The model requires input of six climate vari-
ables, namely, Tmax, Tmin, RHmax, RHmin, Rs and uz. The
Priestley–Taylor model consists of a simpler structure, con-
sidering only the energy balance, without consideration of
mass transfer or any impact from vegetation (Eq. A23 in Ap-
pendix A3). Therefore, the Priestley–Taylor model is also re-
ferred to as a radiation-based model. The model only requires
five climate variables, including Tmax, Tmin, RHmax, RHmin
and Rs.

To minimize the potential confounding effects of differ-
ences in vegetated surface, the evaporative surface was as-
sumed to be the reference crop for all study sites; there-
fore, it was possible to use the FAO-56 version of the
Penman–Monteith model (Allen et al., 1998). The detailed
formulations of the two PET models, as well as the rel-
evant constants and assumptions, are included in McMa-
hon et al. (2013). Both models were implemented using
the R package Evapotranspiration (http://cran.r-project.org/
web/packages/Evapotranspiration/index.html) (Guo et al.,
2016b). From each model, two sets of estimated PET were
obtained: (i) a single set of baseline (historical) PET data
at each study site with the historical climate data and
(ii) 30 000 sets of perturbed PET data at each study site cor-
responding to the 30 000 sets of perturbed climate data ob-
tained using LHS, as detailed in Sect. 3.2.

3.4 Analyses of PET sensitivity

To assess the overall sensitivity of PET to plausible cli-
mate change, we first estimated the annual average percent-
age changes in PET (relative to the baseline PET) using all
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climate perturbations at the 30 study sites, with estimates
from both the Penmen–Monteith and Priestley–Taylor mod-
els. A closer investigation of how PET sensitivity varies with
baseline climate was conducted by plotting the ranges of all
monthly PET responses against the average levels of each cli-
mate variable, for all study sites and all months. The reason
for the choice of monthly timescale is that for some study
sites, the climate can vary substantially by season; therefore,
an annual analysis might obscure important sub-annual ef-
fects. To assess the relative importance of each climate vari-
able for PET estimation from each model, we first compared
the ranges of the two sets of PET changes, namely,

1. the range of all potential changes in PET obtained from
the entire 30 000 sets of climate perturbations from
LHS; and

2. the conditional ranges of potential changes in PET as-
suming no change in one of the climate variables. This
was obtained with using a subset of all climate pertur-
bations used in (1), for which the changes in the specific
conditioning climate variable were close to zero (within
±0.1 ◦C for T , and within ±0.1 % for the other three
variables).

In this way any difference between (1) and (2) was purely
contributed by the impact of changing the specific condi-
tioning climate variable. To quantify and compare the rel-
ative importance of each climate variable, we then utilized
the Sobol’ method, which was implemented within the R
package sensitivity (https://cran.r-project.org/web/packages/
sensitivity/index.html). We estimated the Sobol’ first-order
sensitivity indices (as in Eq. A2, Appendix A1) to assess
the role of each individual climate variable for each PET
model, at the 30 study sites. The sum of all interaction ef-
fects was also calculated for each location as the difference
between the sum of all first-order indices and one (Eq. A6,
Appendix A1). The Sobol’ first-order indices were then plot-
ted against the baseline levels of each climate variable at the
30 study sites, to assess how the relative importance changes
with the baseline climatic conditions.

4 Results and discussion

4.1 Ranges of potential changes in PET in response to
potential climate change for different climate zones

We start by assessing the potential changes in PET in re-
sponse to the full set of climate perturbations at the 30 study
sites at the annual timescale, using both the Penman–
Monteith and Priestley–Taylor models. The results are pre-
sented in Table 3 in terms of the minimum, maximum and
average changes of PET relative to the 1995–2004 base-
line, in response to the 30 000 sets of climate perturbation at
each study site. The two models suggest similar average PET
changes at most locations, with the average changes obtained

from the Penman–Monteith model across all the locations
(+13.38 %) being slightly higher than that for the Priestley–
Taylor model (+10.91 %). Greater differences between the
two models were observed when considering the ranges of
changes. In particular, the minimum and maximum values
(averaged across all the 30 sites) were−13.66 and+47.09 %
for the Penman–Monteith model, respectively, compared to
−7.39 and +34.47 % for the Priestley–Taylor model. This
corresponds to a range for the Penman–Monteith model be-
ing approximately 45 % wider than that of the Priestley–
Taylor model.

For each PET model, the magnitudes of average poten-
tial changes in PET display substantial variation across the
locations, with both models suggesting the lowest average
changes at arid locations and the highest average changes at
humid locations, as was also observed in Table 3. Specif-
ically, the Penman–Monteith model identified the highest
average PET change at Flinders Island (+17.15 %), with
the lowest average change at Alice Springs (+9.80 %). The
Priestley–Taylor model identified the highest average change
at Hobart (+17.77 %), with the lowest at Tennant Creek
(+7.09 %).

To further investigate how potential change in PET varies
with different climatic conditions, we now focus on the as-
sociations between the PET responses and the baseline lev-
els of the four climate variables for each month of the year
and across the 30 study sites. Starting with the Penman–
Monteith model (Fig. 3), it is clear that the PET response dis-
plays a clear association with the baseline levels of climate
variables, with higher magnitude of responses for locations
that are cooler (low T ), more humid (high RH), and receiv-
ing less solar radiation (low Rs). The highest associations
can be found with T (Fig. 3a), with the monthly changes in
PET ranging from −30.2 to +98.3 % for the lowest baseline
T value of 5.0 ◦C, compared to a range of −13.3 to +46.6 %
for the highest baseline T of 30.3 ◦C. Similarly, the range of
Penman–Monteith PET responses also shows clear decreases
with baseline Rs (Fig. 3c), and increases with baseline RH
(Fig. 3b). The baseline uz (Fig. 3d) levels show no obvious
impact on the PET responses.

The potential responses in PET obtained from Priestley–
Taylor was also investigated (Fig. 4), and results are consis-
tent with the results from the Penman–Monteith model, al-
though the overall ranges of responses were smaller for each
variable as anticipated from the results in Table 3. Interest-
ingly, regardless of the choice of PET model, the range of
PET responses at the monthly scale is larger than the range
for the annual scale suggesting greater uncertainty at higher
temporal resolutions.

In addition to assessing the impact of baseline climatic
conditions, we are also interested in the role of baseline hy-
drological conditions (represented by the PET / P ratio at
each study site) on the potential responses in PET. Since
the hydrological conditions can vary substantially over the
course of a year for each study site, for this analysis we
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Figure 3. Ranges of monthly PET responses obtained from the Penman–Monteith model, plotted against the monthly baseline levels of
(a) temperature, (b) relative humidity, (c) solar radiation and (d) wind speed at 30 study sites. Each vertical line represents the range of all
potential changes in PET in response to the full set of climate perturbations for a single month at a single location, with the mean represented
by the point on the line. The classification of energy- and water-limited months is based on the corresponding monthly PET / P ratios.

Figure 4. Range of monthly PET responses obtained from the Priestley–Taylor model, plotted against the monthly baseline levels of (a) tem-
perature, (b) relative humidity, (c) solar radiation and (d) wind speed at 30 study sites. Each vertical line represents the range of all potential
changes in PET in response to the full set of climate perturbations for a single month at a single location, with the mean represented by the
point on the line. The classification of energy- and water-limited months is based on the corresponding monthly PET / P ratios.

focused on the PET / P ratios estimated on a monthly ba-
sis, and thus differ from the long-term PET / P ratios pre-
sented in Table 1. These results are also shown in Figs. 3
and 4, with red-colored bars denoting water-limited condi-
tions, and blue-colored bars denoting energy-limited condi-
tions. These figures show that the magnitude of potential re-
sponses in PET is generally larger under energy-limited con-

ditions, regardless of the choice of PET model. In contrast,
for water-limited conditions, the potential responses in PET
only vary within approximately half of the entire range ob-
tained from each PET model. However, when exploring the
association with temperature (Figs. 3a and 4a) in more detail,
the magnitude of responses in PET is in fact the lowest for
energy-limited conditions during warm months (i.e., when
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Table 3. Maximum, minimum and average of all possible changes in annual average PET in response to the full set of climate perturbations
from the Penman–Monteith and Priestley–Taylor models at the 30 study sites (as % changes to baseline PET relative to the 1995–2004 base-
line). The maximum and minimum changes from each model across all locations are in bold.

No. Study site name Penman–Monteith Priestley–Taylor

Min. Max. Avg. Min. Max. Avg.

1 Broome airport −12.33 39.10 11.16 −9.61 33.75 9.59
2 Perth −13.20 46.67 13.52 −7.98 34.17 10.62
3 Albany −15.04 54.67 15.21 −7.28 35.49 11.63
4 Giles −12.30 37.57 10.68 −7.73 25.83 7.27
5 Darwin −12.73 39.10 10.92 −9.82 33.84 9.50
6 Gove −13.10 41.34 11.53 −9.74 33.67 9.61
7 Tennant Creek −12.28 36.45 10.21 −8.35 26.31 7.09
8 Alice Springs −10.88 34.00 9.80 −8.00 27.41 7.92
9 Woomera −12.84 43.48 12.73 −7.48 30.35 9.18
10 Ceduna −13.97 49.61 14.39 −7.62 33.82 10.67
11 Adelaide airport −14.47 49.80 14.17 −7.22 34.55 11.09
12 Adelaide (kent town) −13.10 45.43 13.17 −7.15 33.70 10.78
13 Loxton −12.55 44.05 12.96 −7.18 33.34 10.67
14 Mount Gambier −15.33 57.97 16.00 −6.58 35.54 12.02
15 Weipa −12.42 39.06 10.95 −9.66 32.98 9.36
16 Cairns −14.80 44.74 12.08 −9.42 33.84 9.73
17 Townsville −13.77 43.21 12.10 −9.43 34.26 9.90
18 Cobar −10.62 37.49 11.36 −7.64 31.19 9.49
19 Williamtown −13.64 47.99 13.68 −7.66 34.11 10.76
20 Sydney −16.24 53.71 14.46 −7.61 35.24 10.98
21 Canberra −12.41 46.17 13.85 −6.95 33.24 10.92
22 Wagga Wagga −13.00 46.34 13.43 −7.09 33.27 10.74
23 Mildura −12.61 44.50 13.05 −7.24 32.75 10.38
24 East sale −14.43 53.82 15.34 −6.51 36.32 12.19
25 Scottsdale −13.64 51.53 15.02 −5.42 40.00 13.47
26 Bicheno −14.81 52.11 14.87 −4.91 46.38 15.68
27 Lake Leake −16.06 60.36 16.45 −5.11 36.03 12.84
28 Hobart −15.97 56.29 15.78 −4.57 50.36 17.77
29 Strathgordon village −13.08 52.11 15.29 −4.66 33.83 12.35
30 Flinders Island −18.05 64.07 17.15 −6.19 38.66 13.02

Average −13.66 47.09 13.38 −7.39 34.47 10.91

T > 25 ◦C, corresponding to the monsoonal summer months
in the northern parts of Australia), and the highest for the
energy-limited conditions during cool months (i.e., when
T < 15 ◦C, corresponding to the wet winter months in south-
ern Australia). This highlights the fact that it is the atmo-
spheric temperature, rather than the level of aridity, which
appears to affect the potential responses in PET. This finding
leads to a different interpretation to previous studies, which
indicated that the dominant drivers of spatially varying PET
include aridity (Tabari and Hosseinzadeh Talaee, 2014) and
wind speed (Gong et al., 2006).

The above results also have potential implications on
likely AET changes in a future climate. In particular, the
above analysis shows that cool and humid regions and sea-
sons appear to show the greatest potential responses in PET,
and given that water is not expected to be limited for these
cases, the ratio between AET and PET is also likely to be

the greatest for these cases. Therefore, one might expect a
greater change to AET occurring at the locations and during
times of the year where PET is most sensitive to changes in
climate.

As a potential limitation to the above analysis, some reli-
ability issues of the Penman–Monteith model have been dis-
cussed in a recent study by Milly and Dunne (2016), which
suggested that the Penman–Monteith model may overesti-
mate the potential changes in PET in these energy-limited
regions relative to a GCM-based AET benchmark. They con-
cluded that the potential changes in ET would be better de-
scribed by GCMs than “off-line” PET models (such as the
two models used in this study), as GCMs can explicitly con-
sider more complex atmospheric processes, such as the in-
teraction between CO2 and stomatal conductance. Neverthe-
less, it should be noted that the current reliability of GCMs in
simulating ET is also questionable, due to the uncertainty in
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Figure 5. Range of monthly PET responses from the Penman–Monteith model, plotted against the monthly baseline levels of (a) temperature,
(b) relative humidity, (c) solar radiation and (d) wind speed at 30 study sites. Each dashed (solid) line represents the range of all potential
changes in PET in response to the full set of climate perturbations (conditioned on no change in each climate variable) for a single month at
a single location. The corresponding means are represented by the points on the lines. The classification of energy- and water-limited months
is based on the corresponding monthly PET / P ratios.

representing soil moisture and radiative energy at the evap-
orative surface (e.g., Seneviratne et al., 2013; Boé and Ter-
ray, 2008; Barella-Ortiz et al., 2013). In addition, due to the
coarse scale of GCM output, downscaling is generally re-
quired to post-process output for use at local and regional
scales, which often adds further bias and uncertainties to
the GCM simulation and largely limits their applicability
(e.g., Chen et al., 2012; Diaz-Nieto and Wilby, 2005). There-
fore, although GCM results may be more suitable for large-
scale assessments, catchment-scale climate impact assess-
ments are likely to be informed by “off-line” PET models for
the foreseeable future. Consequently, the estimated potential
changes in PET shown in this study will remain relevant for
climate impact assessments conducted using these models.

4.2 Relative importance of climate variables affecting
PET for different climate zones

We now explore the relative importance of each climate vari-
able on overall PET sensitivity, by first visualizing the con-
ditional responses of PET when holding each variable con-
stant at its historical level while perturbing the remaining
variables, and then comparing this to the unconditional es-
timates of all potential responses in PET (as shown in Figs. 3
and 4). Figure 5 shows the ranges of the monthly uncondi-
tional responses in PET (dashed lines) and the ranges of the
monthly responses conditioned on zero change in each of T ,
RH, Rs and uz (solid lines) for the Penman–Monteith model,
plotted against the monthly baseline levels of the four climate
variables at the 30 study sites.

The figure suggests that perturbations in T have the great-
est impact on the potential changes in PET compared to other
climate variables (Fig. 5a), contributing to at least 45 % of the
entire range of PET responses compared to the unconditional
results. Humidity also plays a significant role, although only
for higher humidity levels (contributing up to 57 % of the en-
tire range of PET responses) with relatively minor influence
for the less humid catchments (Fig. 5b). In contrast, the role
of solar radiation (Fig. 5c) and wind (Fig. 5d) is generally
minor, with the range of unconditional responses being only
slightly wider than the range of conditional responses.

A similar analysis was conducted for the Priestley–Taylor
model (Fig. 6), and shows somewhat different results com-
pared to those obtained for the Penman–Monteith model.
Consistent with Fig. 5a, temperature has the greatest im-
pact, but in this case contributes up to 85 % of the over-
all variability in PET responses (Fig. 6a). As a result, the
range of PET changes contributed by the remaining vari-
ables (i.e., conditional responses with no change in temper-
ature) is much smaller. Unlike in Fig. 5b, the role of rela-
tive humidity does not appear to increase significantly with
increasing baseline humidity (Fig. 6b) and in general con-
tributes less than 33 % of the overall variability. The lower
impact of RH on Priestley–Taylor PET compared to the im-
pact on Penman–Monteith PET can be related to the struc-
ture of Priestley–Taylor model, which does not consider the
aerodynamic processes; therefore, the impact of RH on PET
through these processes is not accounted for (see Eqs. A13,
A21 and A22 in Appendix A2). The role of solar radiation
appears to be somewhat larger for high baseline solar radia-
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Figure 6. Range of monthly PET responses from the Priestley–Taylor model, plotted against the monthly baseline levels of (a) temperature,
(b) relative humidity, (c) solar radiation and (d) wind speed at 30 study sites. Each dashed (solid) line represents the range of all potential
change in PET in response to the full set of climate perturbations (conditioned on no change in each climate variable) for a single month at a
single location. The corresponding means are represented by the points on the lines. The classification of energy- and water-limited months
is based on the corresponding monthly PET / P ratios.

Figure 7. Sobol’ first-order sensitivity indices of the Penman–Monteith model for changes in the four climate variables (colored) and their
interaction effects (gray), plotted against the ranking of the average level of each climate variable at 30 study sites.

tion values (Fig. 6c) and wind is shown to have no impact as
expected, since wind is not an input into the Priestley–Taylor
model (Fig. 6d). However, it is worth noting that although
the Priestley–Taylor model does not consider wind as an in-
put variable, the range of unconditional responses of PET is
slightly wider than the range of responses conditioned on no
change in wind. This is because the conditional responses
were estimated with only a subset of all climate perturba-
tions (Sect. 3.4), which may not consist of the entire range of
perturbation in each of the other three climate variables.

A more formal quantitative measure of the relative impor-
tance of each climate variable for PET is provided by the
Sobol’ indices. Figure 7 shows the Sobol’ first-order indices
of the Penman–Monteith PET to changes in the four climate
variables at the annual scale, as well as their interactions.
The first-order indices are plotted against the baseline levels
of each climatic variable to observe the impact of baseline
climate conditions. For presentation purposes, the baseline
levels are represented by the rank of the baseline annual av-
erage value of each variable, rather than the absolute level of
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Figure 8. Sobol’ first-order sensitivity indices of the Priestley–Taylor model for changes in the four climate variables (colored) and their
interaction effects (gray), plotted against the ranking of the average level of each climate variable at 30 study sites.

each climate variable across the 30 study sites. The Sobol’
indices in the figure show that T is generally the most impor-
tant variable for PET, with index values ranging from 0.46
to 0.62. Since the Sobol’ indices suggest the partitioning of
the total variance of PET, these results are consistent with
Fig. 5a, which suggests that perturbations in T contribute to
at least 45 % of the variation in the estimated changes in PET.
The role of wind and humidity in affecting the sensitivity val-
ues is also evident, with wind being the second-most impor-
tant variable (with Sobol’ indices up to 0.42) for sites with
low baseline humidity, and humidity being the second-most
important variable (with Sobol’ indices up to 0.47) for sites
that have high humidity (Fig. 7b). Solar radiation is gener-
ally the variable with the lowest Sobol’ indices, where the
largest contributions (up to 18 %) can be observed for warm
catchments (Fig. 7a).

The Sobol’ sensitivity indices are also presented for the
Priestley–Taylor model (Fig. 8), and show substantial differ-
ences compared to those for the Penman–Monteith model.
Temperature exhibits the largest sensitivity score in most
cases, and ranges from 0.44 to 0.83. The relative role of tem-
perature varies most clearly as a function of both the baseline
temperature (Fig. 8a) and the baseline solar radiation values
(Fig. 8c), with temperature being particularly important for
low temperature and low solar radiation sites. As tempera-
ture and radiation increase, the relative role of solar radiation
becomes more important, reaching Sobol’ index values of up
to 0.49. In contrast, the role of relative humidity is generally
minor (with Sobol’ indices within the range 0.03–0.1) and
does not appear to vary as a function of baseline conditions.
Finally, the role of wind is absent, given that this variable is
not included as part of the Priestley–Taylor equation.

The differences between the Penman–Monteith and
Priestley–Taylor models highlight the different physical as-

sumptions underpinning the models, with aerodynamic pro-
cesses being important for the Penman–Monteith model as
indicated by the relative importance of RH and uz for this
model, whereas Rs has a critical role in the Priestley–Taylor
model, which is closely linked to the emphasis of radiative
energy as the energy source for ET in the model.

Finally, comparing Figs. 7 and 8, it is apparent that the in-
teractions among the four climate variables on PET (shown
as gray bars) are greater in the Penman–Monteith model
compared to the Priestley–Taylor model. Specifically, these
interactions contribute fractions of 0.03–0.04, and 0–0.02 of
the total variance in PET for the Penman–Monteith and
Priestley–Taylor models, respectively. The relative magni-
tude of the interaction effects in the two models can be again
related to their structural differences; the higher interaction
effects in Penman–Monteith can be a result of the larger num-
ber of variables in this model compared with those in the
Priestley–Taylor model.

It is difficult to assess the consistency of these sensitivity
results with existing literature, given the different method-
ologies and data sets used in other studies. Although most
PET sensitivity studies used only the Penman–Monteith PET
model, there is still substantial discrepancy in results de-
pending on the specific implementations of sensitivity anal-
ysis. For example, Gong et al. (2006) perturbed each of tem-
perature, wind speed, relative humidity and solar radiation
within ±20 % for the Changjiang basin in China, and ob-
served that relative humidity was generally the most impor-
tant variable driving PET, followed by solar radiation, tem-
perature and wind speed. This contrasted with our results
from the Penman–Monteith model, which showed tempera-
ture as the most important variable and solar radiation as the
least important variable for almost all the stations analyzed,
and may be attributable to the different baseline climates as

Hydrol. Earth Syst. Sci., 21, 2107–2126, 2017 www.hydrol-earth-syst-sci.net/21/2107/2017/



D. Guo et al.: Sensitivity of potential evapotranspiration to changes in climate variables 2119

well as the perturbation ranges used for the sensitivity analy-
sis between the two studies.

The results of our study were more consistent with
Goyal (2004), who concluded that PET is most sensitive to
potential changes in temperature for an arid region in In-
dia, by applying a ±20 % perturbation on each of temper-
ature, solar radiation, wind speed and vapor pressure. In con-
trast, Tabari and Hosseinzadeh Talaee (2014) also used a
±20 % perturbation range, but on only three climate vari-
ables, namely temperature, wind speed and sunshine hours,
for several climate regions in Iran. Their study concluded that
the catchment aridity was a major determinant of the sensi-
tivity to temperature, wind speed and humidity, whereas our
analysis highlights the importance of baseline temperature
and humidity, rather than the aridity (or water- or energy-
limited status of the catchment) as a key driver.

PET sensitivity can further diversify by the choice of PET
models, as illustrated in McKenney and Rosenberg (1993), in
which the percentage changes in PET due to a +6 ◦C change
can differ up to around 40 %, when estimated with eight al-
ternative PET models. This lack of consistency in the relative
importance of the climate variables for PET is not surprising
given the findings of our study, as the results are strongly
dependent on the design of the sensitivity analysis experi-
ment, including the choice of study sites and study periods,
the input climate variables considered, and the ways to per-
turb them (i.e., the choice of global or local perturbation and
the ranges of perturbation in different input variables).

Nevertheless, the sensitivity results from this study sug-
gest some distinct spatial patterns of the relative importance
of different climate variables in Australia. Since the Penman–
Monteith model is the most comprehensive physically based
PET model, the above regionalization of the PET sensitiv-
ity from this model can be used as a benchmark to identify
the key climate variables for estimating PET under potential
climate change. This information can be particularly useful
to suggest the potential suitability of specific PET models
for regional applications. For example, since the Penman–
Monteith PET showed higher sensitivity to wind at dry loca-
tions (Fig. 7b), it is expected that wind-dependent PET mod-
els (such as Penman and Penman–Monteith) would be more
appropriate for predicting PET at these locations. In contrast,
using simpler models that do not consider wind as an input
(such as Priestley–Taylor) can be problematic for these loca-
tions. Although this study only examined two PET models,
the results suggest that simpler empirical models are likely to
ignore some potential dynamics and interactions within the
climate variables, which makes them less preferred for PET
estimation under changing climates.

Another particular issue in the selection of one or several
PET models under a changing climate arises from consider-
ing the current reliability of available climate projections, as
the models can show high levels of sensitivity to variables
for which we currently do not have high-quality climate pro-
jections. For example, for a given emissions scenario, there is

reasonable confidence in projections of temperature and rela-
tive humidity in Australia, but less confidence in projections
of solar radiation and wind (Flato et al., 2013; CSIRO and
Bureau of Meteorology, 2015). However, the radiation-based
Priestley–Taylor model can show high sensitivity to solar ra-
diation, particularly for warm locations with high baseline
solar radiation (Fig. 8a and c), due to a particular empha-
sis on radiative energy and thus the empirical relationships
between PET and solar radiation. Similarly, the Penman–
Monteith model can exhibit higher sensitivity to wind for lo-
cations with low relative humidity (Fig. 7b). Therefore, the
use of GCM projections at these locations may lead to sig-
nificant uncertainty in PET estimates due to the uncertainty
in the driving variables.

5 Summary and conclusions

In this study, we used a global sensitivity analysis to investi-
gate the sensitivity of PET and the relative importance four
climatic variables which influence PET (T , RH, Rs and uz)
under plausible future changes in these variables. The sensi-
tivity analysis was conducted at 30 Australian case study lo-
cations within different climate zones to understand the im-
pact of varying baseline hydro-climatic conditions. For the
sensitivity analysis, the historical climate data at each study
site were first perturbed to represent a large number of plau-
sible climate change conditions, and then the responses in
PET were estimated with both the Penman–Monteith and
Priestley–Taylor models, from which the sensitivity of PET
was analyzed. The key results are as follows:

– In general PET is most sensitive to potential changes
in climate in regions with lower temperature, less so-
lar radiation and greater humidity, where 2-fold greater
magnitude of changes in PET are expected compared to
other locations in Australia.

– Within the plausible perturbations in T , RH, Rs and uz,
PET is generally most sensitive to T . The relative im-
portance of the other climate variables varies substan-
tially with the PET models. Rs has a dominant role in
the radiation-based Priestley–Taylor model, highlight-
ing the importance of radiative energy in the model. In
contrast, the importance of RH and uz are comparable
for the Penman–Monteith model, whereas Rs has only
little impact, reflecting the contribution of aerodynamic
energy.

– The relative importance of climate variables in influ-
encing PET depends very clearly on baseline climatic
conditions. From Penman–Monteith, locations that are
warmer, drier and receiving more solar radiation gen-
erally show greater sensitivity to uz and lower sensitiv-
ity to RH. For Priestley–Taylor, the importance of T in-
creases while that of Rs decreases for cooler locations
and locations receiving less solar radiation.
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The global sensitivity analysis used in this study is a powerful
tool for providing a comprehensive and consistent measure
of PET sensitivity to different climatic variables, considering
a wide range of possible changes in climate, across differ-
ent models with different data requirements. However, we
have identified space for improvements in further implemen-
tations. For example, the bounds of perturbation for each cli-
mate variable can have a substantial impact on PET sensitiv-
ity, and thus their selection requires careful justification (for
example see Whateley et al., 2014; Shin et al., 2013). There-
fore, alternative lines of evidence on possible changes in cli-
mate should be considered in setting these bounds: for ex-
ample, the results of ensemble climate models (e.g., Collins
et al., 2013), the impact of low-frequency climatic modes
(e.g., Chen et al., 2013; Vincent et al., 2015), as well as find-
ings from within paleoclimatology records (e.g., Ault et al.,
2014; Ho et al., 2015).

The analysis in this study also lends itself to scenario-
neutral analyses (Brown et al., 2012; Prudhomme et al.,
2010), although the full implications on specific impacts of
hydrological systems (flood risk, water supply, etc.) would
require the sensitivity analysis to be propagated to runoff via
explicitly modeling the interaction between ET and rainfall–
runoff processes (e.g., Garcia and Tague, 2015; Roy et
al., 2017). Furthermore, potential changes to precipitation,
which were not analyzed here but that can have a signifi-
cant impact on future runoff, would need to be considered.
Within this context, the incorporation of alternative lines of
evidence can therefore not only be used to define the bounds
of the perturbations, but also can be superimposed onto the
exposure space (e.g., as in Prudhomme et al., 2013a; Culley
et al., 2016) to provide insight into the likelihood of possi-
ble changes. The outcomes of our study can feed into such a
scenario-neutral analysis by providing guidance on the vari-
ables that are likely to be most important for a particular lo-
cation, as well as providing insights on the potential implica-
tions of using alternative PET models on the overall sensitiv-
ity results.

Data availability. The temperature, relative humidity, wind speed,
sunshine hours and rainfall data for the five case study locations
were obtained from the Climate Data Online project website, http:
//www.bom.gov.au/climate/data/ (Bureau of Meteorology, 2016).
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Appendix A: Sobol’ sensitivity analysis and PET models

A1 Sobol’ sensitivity analysis (Sobol’ et al., 2007)

Sobol’ is considered a variance-based method, which re-
quires estimation of the total variance in a model output due
to changes in its inputs is estimated with a Monte Carlo ap-
proach. To estimate the variances, a large number of samples
is firstly drawn by varying all input variables simultaneously,
and then a Sobol’ sequence is constructed by re-sampling
from within these Monte Carlo samples (Saltelli et al., 2010).
According to Sobol’ et al. (2007), to estimate the Sobol’ first-
order and total-order indices with a Monte Carlo sample size
of n consisting of p input variables, a Sobol’ sequence with a
total of n · (p+ 2) samples should be obtained, i.e., requiring
n · (p+ 2) model evaluations.

Sobol’ analysis partitions the total variance in model
output to the contribution of each individual input vari-
able (i.e., first-order effects), as well as their interactions
(i.e., higher-order effects), as follows (equation adapted from
Zhang et al., 2015):

VY =

n∑
i=1

Vi︸ ︷︷ ︸
Individual effects

+

∑
i<j

Vij +
∑
i<j<k

Vijk︸ ︷︷ ︸
interactions

. . .+V1,2...,n. (A1)

The outputs from Sobol’ analysis include (equations adapted
from Nossent et al., 2011)

1. first-order sensitivity index, which quantifies the indi-
vidual contribution of each input variable to the total
variance of the model’s output:

Si =
Vi

VY
; (A2)

2. second- and higher-order sensitivity index, which quan-
tifies the contribution of interactions among two or more
input variables to the total variance of the model’s out-
put:

For second− order : Sij =
Vij

VY
,

For higher− order : Sij ...n =
Vij ...n

VY
;

3. total sensitivity index, which quantifies the total con-
tribution of each input variable, including its individual
effect as well as all its interactions with other input vari-
ables, to the total variance of the model’s output:

STi = Si +
∑
j 6=i

Sij = 1−
V∼i

VY
. (A3)

From Eqs. (A1) to (A4), the sum of individual effects of all
input variables and all their interactions equals one (adapted

from Zhang et al., 2015):

1=
n∑
i=1

Si︸ ︷︷ ︸
Individual+

∑
i<j

Sij effects

+

∑
i<j<k

Sijk︸ ︷︷ ︸
interactions

. . .+ S1,2...,n. (A4)

A2 Penman–Monteith PET model (FAO-56) (as in
McMahon et al., 2013)

The Penman–Monteith PET model (FAO-56) is given as

ET=
0.4081(Rn−G)+ γ

900
Ta+273u2

(
v∗a − va

)
1+ γ (1+ 0.34u2)

. (A5)

The process for estimating each of the variables in this equa-
tion are described in the following sections.

A2.1 Estimating 1 in Eq. (A7)

1 is the slope of vapor pressure curve in kPa ◦C−1, which is
estimated by

1=
4098

[
0.6108exp

(
17.27·Ta
Ta+237.3

)]
(Ta+ 237.3)2

. (A6)

In Eq. (A8), Ta is the average daily temperature in ◦C, calcu-
lated as

Ta =
Tmax+ Tmin

2
. (A7)

A2.2 Estimating Rn in Eq. (A7)

Rn is the net incoming solar radiation at the evaporative sur-
face in MJ m−2 day−1, which is estimated by

Rn = Rns−Rnl. (A8)

In Eq. (A10), Rns is the net shortwave solar radiation, esti-
mated by

Rns = (1−α)Rs. (A9)

In Eq. (A11), α is the albedo at evaporative surface which
is fixed at 0.23 in this equation, and Rs is the measured or
estimated incoming solar radiation in MJ m−2 day−1. Rnl is
the net outgoing longwave radiation, estimated as

Rnl =σ
(

0.34− 0.14v0.5
a

) (Tmax+ 237.2)4+ (Tmin+ 237.2)4

2(
1.35

Rs

Rs0

− 0.35
)
. (A10)

In Eq. (A12): σ is Stefan–Boltzmann con-
stant= 4.903× 10−9 MJ m−2 day−1 ◦K−4, va is the mean
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daily actual vapor pressure in kilopascals, Rs0 is the clear-
sky radiation in MJ m−2 day−1. va and Rs0 estimated by
Eqs. (A13) and (A14), respectively:

va =
v∗a (Tmax)

RHmax
100 + v

∗
a (Tmin)

RHmin
100

2
, (A11)

Rs0 =

(
0.75+ 2× 10−5Elev

)
Ra. (A12)

In Eq (A14), Elev is the ground elevation above sea level at
the measurement location, and Ra is the extraterrestrial solar
radiation in MJ m−2 day−1, estimated as

Ra =
1440
π

Gscd
2
r (ωs sin(lat)sin(δ)

+cos(lat)sin(lat)sin(ωs)) . (A13)

In Eq. (A15), Gsc is the solar con-
stant= 0.0820 MJ m−2 min−1, lat is the latitude in radiance,
dr is the inverse relative distance between Earth and Sun,
δ is the solar declination in radians and ωs is the sunset hour
angle in radians. The dr, δ and ωs are estimated as follows:

d2
r =1+ 0.033cos

(
2π
365

DoY
)

with DoY as the day

of the year, (A14)

δ = 0.409sin
(

2π
365

DoY− 1.39
)
, (A15)

ωs = arcos[− tan(lat) tan(δ)]. (A16)

A2.3 Estimating other variables in Eq. (A7)

– G is negligible for daily time step.

– γ is the psychrometric constant in kPa ◦C−1, estimated
as

γ =0.00163
P

λ
where P is the pressure

at elevation z meters. (A17)

u2 is the daily average wind speed measured at 2 m
in m s−1, which can be estimated from the measured
wind speed at z meters as

u2 =uz

ln
(

2
z0

)
ln
(
z
z0

) where z0 is the roughness

height in meters. (A18)

(v∗a − va) is the vapor pressure deficit in kilopascals, in
which va is the mean daily actual vapor pressure in kilo-
pascals, estimated as Eq. (A13); v∗a is the daily satura-
tion vapor pressure in kilopascals, estimated as

v∗a =
v∗a (Tmax)+ v

∗
a (Tmin)

2
. (A19)

In Eq. (A21), v∗a (Tmax) and v∗a (Tmin) are the vapor pressures
at temperatures Tmax and Tmin in ◦C are estimated with

v∗T = 0.6108exp
[

17.27T
T + 237.3

]
. (A20)

A3 Priestley–Taylor PET model (as in McMahon et al.,
2013)

The Priestley–Taylor PET model is given as

ET= αPT ·

[
1

1+ γ

Rn

λ
−
G

λ

]
(A21)

where

– αPT is the albedo specifically used for the Priestley–
Taylor model, since an evaporative surface of reference
crop was assumed, this has a value of 1.12 which was
for a similar surface of short grass (see Table S8 of the
Supplement of McMahon et al., 2013);

– 1 is the slope of vapor pressure curve in kPa ◦C−1, es-
timated as Eq. (A8);

– γ is the psychrometric constant in kPa ◦C−1, estimated
as Eq. (A18);

– λ is the latent heat of vaporization, which is
2.45 MJ kg−1 at 20 ◦C;

– Rn is the net incoming solar radiation at the evapora-
tive surface in MJ m−2 day−1, which is estimated in the
same way as Eq. (A10);

– G is negligible for daily time step.
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