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Abstract. Long-term, high-resolution data about hydrologic
fluxes and states are needed for many hydrological applica-
tions. Because continuous large-scale observations of such
variables are not feasible, hydrologic or land surface models
are applied to derive them. This study aims to analyze and
provide a consistent high-resolution dataset of land surface
variables over Germany, accounting for uncertainties caused
by equifinal model parameters. The mesoscale Hydrological
Model (mHM) is employed to derive an ensemble (100 mem-
bers) of evapotranspiration, groundwater recharge, soil mois-
ture, and runoff generated at high spatial and temporal reso-
lutions (4 km and daily, respectively) for the period 1951–
2010. The model is cross-evaluated against the observed
daily streamflow in 222 basins, which are not used for model
calibration. The mean (standard deviation) of the ensemble
median Nash–Sutcliffe efficiency estimated for these basins
is 0.68 (0.09) for daily streamflow simulations. The modeled
evapotranspiration and soil moisture reasonably represent the
observations from eddy covariance stations. Our analysis in-
dicates the lowest parametric uncertainty for evapotranspira-
tion, and the largest is observed for groundwater recharge.
The uncertainty of the hydrologic variables varies over the
course of a year, with the exception of evapotranspiration,
which remains almost constant. This study emphasizes the
role of accounting for the parametric uncertainty in model-
derived hydrological datasets.

1 Introduction

Consistent, long-term data of meteorological and hydrolog-
ical variables at a high spatial resolution are needed for
many applications, including (i) impact assessment stud-
ies, such as for drought, flood, or climate change analysis
(Sheffield and Wood, 2007; Huang et al., 2010; Samaniego
et al., 2013; Kumar et al., 2016; Zink et al., 2016), and
(ii) studies that need spatially and temporally continuous,
observation-based datasets, e.g., for downscaling or disag-
gregating climate model outputs (Wood et al., 2004; Thober
et al., 2014) or for establishing Ensemble Streamflow Pre-
diction (Day, 1985) and reverse Ensemble Streamflow Pre-
diction approaches (Wood and Lettenmaier, 2008).

Continuous observations of hydrologic fluxes and states
are economically and logistically not feasible on regional to
national scales (Vereecken et al., 2008). In situ soil mois-
ture observations, for example, are scarcely available. These
point-scale observations are representative for a small con-
trol volume of a few cubic centimeters. Evapotranspiration
measurements at eddy covariance stations have footprints of
tens to hundreds of meters but they are available at less than
1000 stations worldwide (FLUXNET, 2007).

Alternatives include remote sensing or reanalysis products
such as NCEP-CFSR (Saha et al., 2010) or ERA-INTERIM
(Dee et al., 2011). Hydrologic products derived from re-
mote sensing are broadly available, but they do not consider
the conservation of mass, i.e., the closure of the water bal-
ance. Moreover, these products are not spatially and tem-
porally continuous due to reliance on cloud-free conditions
(Mu et al., 2007; Liu et al., 2012). Reanalysis products, in
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contrast, provide continuous data but they have coarse spa-
tial resolutions of at most 1/4◦ (Dee et al., 2016), which is
not suitable for regional-scale applications.

Hydrologic models driven by ground-based meteorologi-
cal observations are the prime alternative to derive spatially
and temporally consistent water fluxes and states at large spa-
tial domains. For example, Maurer et al. (2002); Zhu and
Lettenmaier (2007); Livneh et al. (2013); and Zhang et al.
(2014) provided model-based datasets on a national scale.
These data are based on the Variable Infiltration Capacity
(VIC) model (Liang et al., 1994) and have, at most, a spatial
resolution of 1/16◦ and cover the contiguous United States,
Mexico, China, and parts of Canada. Livneh et al. (2015);
Newman et al. (2015a); and Newman et al. (2015b) provide
data on the same domain with a focus on meteorological
data. A set of four models was used in the NLDAS project
to assess the water balance components over the contiguous
United States (Mitchell, 2004; Xia et al., 2012a, b). Studies
by Nijssen et al. (2001); Fan and van den Dool (2004); Berg
et al. (2005); and Sheffield et al. (2006) focus on the global
domain. The spatial resolution of these global datasets is at
most 1/2◦, and many of these studies focus on meteorologi-
cal forcings rather than hydrologic variables.

The resolution of the abovementioned model-derived
datasets are coarse according to Wood et al. (2011), who
stated a need for higher-resolution data and models for
purpose of, e.g., flood and drought forecasting. Moreover,
Bierkens et al. (2015) stated that water resources or river
basin managers will favor highly resolved data at resolutions
of 1–5 km.

The application of observational-derived model products,
however, also has some limitations. First, due to a limited
amount of observed variables modeling approaches, such as
the estimation of potential evapotranspiration (Ep), have to
be adopted to the available data. As a result, temperature-
basedEp methods may be preferred to more physically based
approaches (e.g., radiation based). Second, the interpolation
of point observations induces uncertainties depending on the
applied interpolation method. Further, small-scale, convec-
tive precipitation events may not be caught by gauging net-
works and lead to an underestimation in precipitation.

Furthermore, hydrological models are subject to different
sources of uncertainty, i.e., input, model structural, and para-
metric uncertainty (Beven, 1993). All of the aforementioned
uncertainties propagate to the model results and can super-
pose each other (Zappa et al., 2011). The overall uncertainty
of hydrological models is therefore summarized as predic-
tive uncertainty. Uncertainties are often not considered when
deriving hydrological or hydro-meteorological datasets (e.g.,
Huang et al., 2010; Livneh et al., 2013; Zhang et al., 2014).
As a result, predictive uncertainties are often not addressed
but may have substantial implications on subsequent studies,
as shown by Samaniego et al. (2013). Herein, we will focus
on the predictive uncertainties caused by equifinal parameter
sets.

The specification of model parameters, which are valid
beyond catchment boundaries poses another challenge in
the application of hydrologic models over large domains.
Large-scale hydrologic model studies apply either parame-
ters originating from a single catchment (Henriksen et al.,
2003), filter behavioral parameters from predefined sets (Per-
rin et al., 2008; Hartmann et al., 2015), extrapolate or region-
alize parameters or hydrological variables from observed to
unknown locations (Zhu and Lettenmaier, 2007; Troy et al.,
2008; Xia et al., 2012b; Zhang et al., 2014), or use an uncali-
brated model (Mitchell, 2004; Hostetler and Alder, 2016). A
methodology considering the calibration in individual basins
for creating a set of regionalized parameters, which are later
on filtered for behavioral solutions in all considered basins,
could be an alternative approach. Such an approach combines
all of the aforementioned strategies.

The aim of this study is to derive a model based, consistent
set of national-scale hydrological data for Germany within
the period 1951–2010. We address the need for highly re-
solved data by conducting observation-driven hydrological
simulations at a spatial resolution of 4 km× 4 km (1/25◦).
Daily fields of evapotranspiration, soil moisture, groundwa-
ter recharge, and grid-cell-generated runoff as well as pre-
cipitation, temperatures, and potential evapotranspiration are
made freely available. To our knowledge, such a consistent
and long-term dataset for Germany has not been freely avail-
able until now. The dataset accounts for predictive uncertain-
ties by considering a set of equifinal parameters. An param-
eter estimation approach for deriving a set of 100 parame-
ters on the national scale is developed. We further aim to as-
sess and evaluate the spatiotemporal distribution of the sim-
ulated hydrological states and fluxes as well as their uncer-
tainties using multiple validation variables at different scales.
Finally, the parametric uncertainties are analyzed regarding
their explanatory variables for the simulated fluxes and their
propagation between different model compartments.

2 Study domain and datasets

The study is conducted on the territory of Germany, which
covers an area of approximately 357 000 km2 (Fig. 1). The
region, located in central Europe, is mainly characterized
by a humid climate but nonetheless has north-to-south and
east-to-west climatic gradients. The topography varies from
low-altitude, flat areas in the north (North German Plain)
over mid-altitude mountains in central Germany (Central Up-
lands) to the high-altitude Alpine foothills and the Alps in
the south. Whereas the northwestern part of Germany is still
under maritime influence, the eastern part has a more conti-
nental climate that is characterized by colder winters and less
precipitation.

The assessment of water fluxes and states is restricted to
the national borders of Germany because meteorological data
and land-surface characteristics are available in this domain.
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Figure 1. Study area showing the seven basins used for estimation
of the ensemble parameter sets for Germany. The different colors
are making the basins better distinguishable. The points E1–E7 de-
note eddy covariance stations, which are used for the evaluation of
evapotranspiration and soil moisture.

Thus, only basins entirely covered by German territory are
used to derive parameters for the hydrological model. These
seven major basins are depicted in Fig. 1. These basins rep-
resent the topographic and hydro-climatic gradient within
Germany (see Table 1). They range in size from 6000 to
48 000 km2 and are characterized by mean elevations ranging
from 60 m a.s.l. (Ems basin) to 560 m a.s.l. (Danube basin).
All basins have a comparable degree of urbanization ranging
between 6 and 10 %. A remarkably low amount of forest is
observed in the Ems basin, where agriculture and pasture are
the dominant land use.

Due to different climatic regimes the average streamflow
of the seven basins ranges from 161 to 469 mm a−1. The
low-lying Ems reaches a remarkably high discharge due
to maritime influence, whereas the Saale River is charac-
terized by the lowest streamflow. The runoff coefficient of
the Saale differs significantly from the other basins, which
originates from the high degree of anthropogenic influ-
ence within this basin; 3 of the 10 largest dams in Ger-
many are located there (Bleiloch – 215 million m3, the Ho-
henwarte – 182 million m3, and the Rappbode reservoir –
109 million m3). Furthermore, open-pit mining has a large in-
fluence on the water budget of this basin.

2.1 Land surface properties

The land-surface characteristics required by the hydro-
logic model include a 50 m digital elevation model (DEM)
acquired from the Federal Agency for Cartography and
Geodesy (Federal Agency for Cartography and Geodesy ,
BKG), a digitized soil map at a scale of 1 : 1 000 000 (Fed-
eral Institute for Geosciences and Natural Resources , BGR),
and a hydrogeological map at a scale of 1 : 200 000 (Fed-
eral Institute for Geosciences and Natural Resources , BGR).
The soil map contains information on soil textural properties,
such as the sand and clay contents of different soil horizons.
The soils are classified into 72 soil types and have an aver-
age depth of 1.8 m. The hydrogeological map comprises 23
classes and gives information about saturated hydraulic con-
ductivities and karstic areas. Based on the DEM, additional
information, such as the slope, aspect, flow direction, and
flow accumulation, are inferred. Land cover information is
derived from CORINE land cover scenes of the years 1990,
2000, and 2006 (European Environmental Agency , EEA).
The period prior to 1990 is assumed to be static and is repre-
sented by the scene of 1990. All datasets are remapped to a
common spatial resolution of 100 m× 100 m using a nearest
neighbor approach.

The location and shape of the major basins (Fig. 1) are de-
rived via an automated delineation, which is based on gaug-
ing station and terrain information (flow accumulation and
flow direction). Streamflow data are provided by the Euro-
pean Water Archive (EWA) and the Global Runoff Data Cen-
tre (GRDC). The results of the delineation are approved via
comparison with the CCM River and Catchment Database
(European Commission – Joint Research center , JRC; Vogt
et al., 2007). In addition to the seven major basins (as de-
scribed above), the model is set up in 222 additional, smaller
basins to cross-validate the model performance.

2.2 Meteorological forcings

The hydrologic model is forced with daily fields of precip-
itation and minimum, maximum, and average temperature.
They are derived from local observations operated by the na-
tional weather service (Deutscher Wetterdienst, DWD). The
station network comprises, on average, 3800 rain gauges and
570 climate stations per year (period: 1951–2010), which
have an average minimum distance of 6 and 14 km between
neighboring stations, respectively.

These local observations are interpolated on a regular grid
of 4 km× 4 km using external drift Kriging. The terrain el-
evation (DEM) is used as the external drift, and the Krig-
ing weights are based on a theoretical variogram. The vari-
ogram is estimated for all of Germany by fitting to an em-
pirical variogram (see Appendix A1). To avoid discontinu-
ities in the interpolated meteorological forcings and consec-
utively in the hydrologic simulation, an estimation of multi-
ple variograms for different climatic zones or distinct mor-
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Table 1. Basin properties and water balance characteristics of the seven major German river basins. The geographical location of the basins
is depicted in Fig. 1. Abbreviations: avg – average, SD – standard deviation, min – minimum, max – maximum, P – precipitation, Q –
streamflow, Ea – evapotranspiration (P −Q), Ep – potential evapotranspiration.

Major Basin Elevation Land cover Water balance Dryness Runoff
basins area [km2] [m] [%] [mm a−1] index [–] coeff. [–]

avg SD min max forest sealed mixed P Q Ea Ep/P Q/P

Mulde 6200 386 201 75 1212 26 10 64 798 344 454 0.88 0.43
Ems 8400 60 36 10 383 13 8 79 802 312 490 0.89 0.39
Neckar 12 700 445 153 124 1015 35 10 55 914 356 558 0.85 0.39
Main 23 700 356 113 93 1044 39 6 55 793 247 546 0.97 0.31
Saale 24 800 287 162 56 1139 23 8 69 645 161 484 1.13 0.25
Weser 37 700 223 165 8 1116 34 7 59 781 276 505 0.91 0.35
Danube 47 500 558 170 302 2329 32 6 62 948 469 479 0.80 0.49

phological regions has been rejected. The spatial resolution
of 4 km× 4 km is seen as appropriate, considering the afore-
mentioned station network density of precipitation observa-
tions. The quality of the interpolation is assessed by the Jack-
knife method (leave-one-out strategy), which leads to a mean
relative bias of 0.64 % for all precipitation stations (see Ap-
pendix A2). Subsequently, daily fields of potential evapotran-
spiration are estimated with the Hargreaves–Samani method
(Hargreaves and Samani, 1985), using interpolated tempera-
tures (average, minimum, and maximum).

The interpolation of the precipitation is evaluated with
gridded precipitation data (REGNIE) provided by the Ger-
man Meteorological Service (Deutscher Wetterdienst, DWD;
Rauthe et al., 2013). The REGNIE data are based on the same
observations and have a spatial resolution of 1 km. They are
derived by applying a multiple linear regression approach,
which accounts for daily atmospheric conditions and terrain
properties, such as elevation, slope, and aspect (Rauthe et al.,
2013). After remapping the REGNIE data to the aforemen-
tioned 4 km× 4 km grid by bilinear interpolation, a satisfac-
tory correspondence between the interpolation and the REG-
NIE precipitation data is found (see Samaniego et al., 2013).
The spatially averaged bias of the daily fields is 0 with a stan-
dard deviation of 0.11 mm d−1 within the period 1951–2010.

3 Methodology

3.1 The mesoscale Hydrological Model mHM

mHM (www.ufz.de/mhm) is a distributed hydrologic model
that accounts for the following main processes: snow ac-
cumulation and melting, evapotranspiration, canopy inter-
ception, soil water infiltration and storage, percolation, and
runoff generation. These processes are conceptualized as wa-
ter fluxes between internal model states similar to existing
models, such as HBV (Bergrström, 1976) or VIC (Liang
et al., 1994). Snow accumulation and melting processes are
based on the improved degree-day method, which accounts

for increased snow melting during intense rainfall events
(Hundecha and Bárdossy, 2004). A three-layer discretization
is used to account for the processes that represent the root-
zone soil moisture dynamics. The two upper layers end in
0.05 and 0.25 m, and the lowest layer is spatially variable
in depth depending on the soil map. On average, the low-
est layer is 1.8 m deep in Germany. The evapotranspiration
from soil layers is estimated as a fraction of the potential
evapotranspiration depending on the soil moisture stress and
the fraction of vegetation roots present in each layer. The
runoff generation in mHM is formalized as the sum of the
direct runoff, slow and fast interflow, and baseflow compo-
nents. The runoff generated at every grid cell is routed to the
outlet using the Muskingum–Cunge algorithm. For a detailed
model description, interested readers may refer to Samaniego
et al. (2010) and Kumar et al. (2013b). To date the model
has been successfully applied to various river basins across
Europe (including Germany), the USA (Kumar et al., 2010;
Samaniego et al., 2013; Kumar et al., 2013a; Thober et al.,
2015; Rakovec et al., 2016; Zink et al., 2016), and world-
wide (Samaniego et al., 2016).

A feature that is unique to mHM is its technique for
estimating effective model parameters: Multiscale Parame-
ter Regionalization; Samaniego et al., 2010; Kumar et al.,
2013b). Its basic concept is to estimate parameters (e.g., soil
porosity) based on physiographic properties (e.g., sand and
clay content) and transfer functions (e.g., pedotransfer func-
tions). These transfer functions depend on transfer or global
parameters (e.g., factors of the pedotransfer functions) that
are time invariant and location independent. For the domain
of Germany, 68 global parameters were purpose to an auto-
mated calibration (described in Sect. 3.2). An overview of
the global parameters and the resulting effective model pa-
rameters can be found in the Supplement.

This regionalization of model parameters is conducted
at the high-resolution land surface property input, e.g.,
100 m× 100 m. In a second step these parameters are
subsequently upscaled to the user-specified resolution of
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the hydrologic simulations, e.g., 4 km× 4 km, by applying
parameter-specific upscaling rules (Samaniego et al., 2010).
This procedure yields in effective parameter values (e.g., soil
porosity), which are used for the simulation of hydrological
processes (e.g., soil water retention). Thus, the effective pa-
rameters account for the sub-grid variabilities of land surface
properties, such as terrain or soil information.

3.2 Derivation of representative parameter sets

One of the goals of this study is to derive consistent
model parameters to perform nationwide simulations of wa-
ter fluxes and states. A two-step parameter selection proce-
dure was used for this purpose. In the first step, we estimate
100 sets of global parameters via calibration in each of the
seven inner German river basins (Fig. 1) independently.

In the next step, we transfer these calibrated parameter
sets to the remaining basins. The parameter sets exceeding
a Nash–Sutcliffe model efficiency of 0.65 (NSE≥ 0.65) in
all seven basins during the evaluation period (1965–1999)
are retained. This parameter selection procedure ensures that
the resulting ensemble parameter sets do not exhibit spatial
discontinuities at basin boundaries.

The calibration is performed using the dynamically di-
mensioned search (DDS) algorithm (Tolson and Shoemaker,
2007). The objective function for calibration consists of an
equally weighted power-law function for the NSE (Nash and
Sutcliffe, 1970) of the streamflow and the logarithm of the
streamflow to consider high and low flows within the objec-
tive function. A compromise programming technique (Duck-
stein, 1984) using a power law with an exponent p = 6 is
used to estimate the multi-objective function (8). This tech-
nique ensures equal improvement of the different measures
φi during a multi-objective calibration. The overall objective
function 8 is given as

8=

(
2∑
i=1

w
p
i φ

p
i

) 1
p

with
∑

wi = 1 (1)

with

φ1 = NSE(Q) = 1−
∑T
t=1(Q̂t −Qt )

2∑T
t=1(Qt −Q)2

, (2)

φ2 = NSE(lnQ)= 1−
∑T
t=1(lnQ̂t − lnQt )

2∑T
t=1(lnQt − lnQ)2

, (3)

where wi is the weight (w1 = w2 = 0.5) for a particular
measure φi , Q̂t and Qt denote the modeled and observed
streamflow at a time step t , respectively.Q is the mean of the
observed streamflow over all time steps T .

A period of 5 years from 2000 to 2004 is chosen for model
calibration. This time period reflects various hydrologic con-
ditions ranging from a high-impact flood event in central Eu-
rope in August 2002 to a significant drought event in 2003.
The remaining 35 years of available data (1965–1999) are

used for model evaluation. All simulations are conducted
with a 5-year spin-up period to abrogate the influence of ini-
tial conditions.

In total, 100 independent calibration runs are performed
for each of the seven basins (Fig. 1). Using 2000 model it-
erations per calibration run led to a large number of model
evaluations per basin (200 000). Finally, 100 of the 700 pa-
rameters sets are retained to derive nationwide ensemble sim-
ulations of water fluxes and states at a daily resolution.

3.3 Validation data

In addition to streamflow in the seven major German river
basins, the model performance is evaluated against stream-
flow in 222 additional basins and complementary datasets
including evapotranspiration, soil moisture, and groundwa-
ter recharge. The cross-validation of ensemble parameter sets
in basins that have not been used for parameter inference
should prove the ability of the model to satisfactorily esti-
mate streamflow in various regions of Germany with differ-
ing hydrologic characteristics.

The basins for cross-validation are distributed all over
Germany and range in size from 100 to 8500 km2. A de-
tailed characterization of these basins is given in Table S3
in the Supplement. A subset of these basins contains sub-
basins of seven major basins. The simulation time period is
adopted for the available streamflow observations but is at
least 10 years. The mean simulation time period of all 222
basins is 42 years. The streamflow estimation in these basins
is evaluated using the ensemble median NSE, and its uncer-
tainty is characterized by the range between the 5th and 95th
percentiles of NSEs of the ensemble simulation.

Local evapotranspiration observations are available at
seven eddy covariance towers located in Germany (Fig. 1,
www.europe-fluxdata.eu). Carbon and water fluxes, as well
as all components of the energy balance, latent heat (or evap-
otranspiration Ea), sensible heat H , ground heat flux G, and
net radiation Rn, are measured at the towers. The energy
balance is, however, often not closed at the towers (Foken,
2008; Leuning et al., 2012) so that the observed fluxes usu-
ally underestimate the real values, which needs to be cor-
rected before comparison with a model conserving the water
balance. We apply a correction to the observed fluxes similar
to Kessomkiat et al. (2013). The corrected evapotranspiration
values at the eddy sites are compared with the correspond-
ing model estimates based on the root mean squared error
(RMSE), the Pearson correlation coefficient (ρ), and the bias.

Additionally, soil moisture observations, undertaken at
eddy covariance stations, are used to evaluate modeled soil
moisture. Soil moisture is measured using Time-Domain
Reflectometer (TDR) or Frequency-Domain Reflectometer
(FDR) sensors, which have a control volume of a few cu-
bic centimeters. This is much smaller than the model res-
olution of 100 m× 100 m. A direct comparison between ob-
served and simulated soil moisture may therefore be mislead-
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ing due to differences in spatial representativeness and sam-
pling depth. Here we aim to analyze the temporal dynamics
of soil moisture by normalizing the respective soil moisture
time series (Koster et al., 2009). The anomalies are calculated
as

z(t)=
SM(t)−µ

σ
, (4)

where µ is the mean and σ is the standard deviation of the
entire soil moisture (SM) time series at a daily resolution. It
is not possible to use deseasonalized values (normalization
with monthly values) because the time periods of the avail-
able observations are too short (≈ 6 years). The modeled soil
moisture is defined herein as the fraction of porosity, i.e., the
soil water content divided by porosity.

The mHM simulation for comparing the observations at
the location of the eddy covariance stations is conducted with
deactivated lateral processes on a single grid cell. The model
resolution (100 m× 100 m) is adapted to the size of the foot-
print of the energy flux measurements, which is typically sev-
eral tens to hundreds of meters. Rather than downscaling the
model results, the hydrologic processes are modeled at the
resolution of the observations. The transferability of mHM
across scales is presented in Samaniego et al. (2010) and Ku-
mar et al. (2013b).

The model is evaluated with spatially distributed data,
i.e., evapotranspiration and groundwater recharge, addition-
ally to the evaluation of the model at the point or local
scale. A remote-sensing-based dataset is used for evaluating
the monthly modeled evapotranspiration between 2001 and
2010. For this purpose we used the gridded evapotranspira-
tion (Ea) dataset based on the Moderate Resolution Imaging
Spectroradiometer (MODIS), which was acquired from the
Numerical Terradynamic Simulation Group at the University
of Montana (Mu et al., 2007, 2011). The spatial resolution
is approximately 5 km× 5 km (0.05◦), which is close to the
model resolution of 4 km× 4 km. The evapotranspiration es-
timates are based on the Penman–Monteith energy balance
equation using global daily temperature, actual vapor deficit,
incoming solar radiation as well as remotely sensed leaf area
index, fraction of photosynthetic active radiation, albedo, and
land cover characteristics. The meteorological variables are
based on the reanalysis product from the Global Modeling
and Assimilation Office, whereas vegetation products are de-
rived from MODIS. Interested readers may refer to Mu et al.
(2007, 2011) for a detailed description of the MODIS Ea
product.

As a second spatial dataset, we utilize a long-term esti-
mate of annual recharge over Germany (1961–1990). Due
to the lack of observations, the estimated recharge from the
Hydrologic Atlas of Germany (Federal Ministry for the Envi-
ronment Nature Conservation Building and Nuclear Safety,
2003) is taken here as a reference. This recharge estimate is
obtained using a multiple regression model accounting for
long-term-estimated generated runoff, depth of the ground-

water table, and regionalized baseflow indices (Neumann and
Wycisk, 2003). The regionalized baseflow indices are esti-
mated with a linear regression based on the ratio between di-
rect runoff and total runoff as well as terrain properties, such
as slope and land cover among others. Due to the various as-
sumptions and mathematical fittings behind this recharge es-
timate, it is taken as an indication for model evaluation rather
than an evidence. The gridded recharge estimate is available
at a 1 km× 1 km spatial resolution, which is remapped to
a 4 km× 4 km resolution using bilinear interpolation to be
comparable to the model estimates.

3.4 Uncertainty of ensemble model simulations

The uncertainty of the modeled evapotranspiration, ground-
water recharge, grid-cell-generated runoff, and soil moisture
is assessed by two different criteria. First, the spatially dis-
tributed uncertainties are presented as maps showing the co-
efficient of variation cv, which is defined as

cv =
σ

µ
, (5)

in which µ is the mean and σ the standard deviation of the
ensemble simulations. A large cv describes a large variation
in the modeled flux or state normalized with µ. µ and σ are
derived from the 100 ensemble realizations of the hydrologic
model mHM on every grid cell. The variances within the
ensemble simulation are caused by predictive uncertainties.
These uncertainties stem from the parametric uncertainty it-
self and from the transfer of parameters to locations that have
not been used for model calibration. In the following, the
variations of the ensemble simulations are denoted as uncer-
tainty.

Second, to assess the temporal variation of the uncertainty
throughout a year, the range and normalized range of the re-
spective flux or state are considered. The range is defined as
the difference between the 5th (p5) and 95th (p95) percentiles
of the ensemble simulation, whereas the normalized range is
defined as

r =
p95−p5

p50
, (6)

where p50(x) denotes the median value of the ensemble sim-
ulation (50th percentile). The 5th and 95th percentiles are
chosen to exclude potential outliers from the analysis.

4 Results and discussion

The model simulations are evaluated against multiple vari-
ables available at different spatial and temporal resolutions.
These include daily and monthly time series of streamflow
measured at the basin outlets, soil moisture, and evapotran-
spiration at seven eddy covariance sites, monthly fields of
satellite retrieved evapotranspiration, and a long-term, annual
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Figure 2. Model performance expressed as Nash Sutcliffe Efficiency (NSE) at daily (upper row) and monthly (lower row) resolutions for

the calibration period 2000-2004 (left-hand side) and validation period 1965-1999 (right-hand side). The white box plots show the results of

the on-site calibration, whereas the gray box plots are simulations using the 100 ensemble parameter sets for Germany. Please note that the
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Figure 2. Model performance expressed as Nash–Sutcliffe efficiency (NSE) at daily (a, b) and monthly (c, d) resolutions for the calibration
period 2000–2004 (a, c) and validation period 1965–1999 (b, d). The white box plots show the results of the on-site calibration, whereas the
gray box plots are simulations using the 100 ensemble parameter sets for Germany. Please note that the y axis starts at NSE= 0.5.

recharge map. mHM simulations are carried out at an hourly
timescale at two spatial resolutions, i.e., 100 m× 100 m at
the eddy covariance stations and 4 km× 4 km at the basin
level and for the nationwide ensemble simulations. Finally,
an analysis of the model runs for the nationwide water fluxes
and states, including grid-cell-generated runoff (QG), evapo-
transpiration (Ea), groundwater recharge (R), and soil mois-
ture (SM), is presented. The focus here is to provide a com-
prehensive overview of regional-scale water fluxes and states
over Germany and analyze the uncertainty in modeled vari-
ables due to an ensemble of model parameters. The uncer-
tainties are investigated with respect to their temporal and
spatial distributions and their triggering sources. Finally, the
interaction of uncertainties through the different model states
and fluxes is analyzed.

4.1 Streamflow evaluation in major German river
basins

In this section we present the evaluation of mHM simu-
lated streamflow with observations in terms of NSEs at daily
and monthly timescale for a validation (1965–1999) and a
calibration (2000–2004) period. Additionally, we show the
hydrographs resulting from the ensemble parameter sets in
comparison with observed streamflow.

The daily streamflow dynamics in the major German
basins is satisfactorily captured by the model revealing a
mean NSE of 0.89 and 0.84 using the on-site calibrated pa-
rameters in the calibration and validation periods, respec-
tively (white boxes in Fig. 2a and b). The model perfor-
mance is lower during the validation period in comparison
to the calibration period. Such a deterioration of model per-

formance, which is common to other hydrological model ap-
plications, is caused by differences in hydro-meteorological
regimes between the calibration and validation periods (Merz
and Blöschl, 2004; Merz et al., 2011) and constraining (over-
fitting) of the parameters to compensate for errors in the
model structure (Clark and Vrugt, 2006). Using the on-site
calibrated parameter sets, the model exhibited improved per-
formance for monthly streamflow simulations with an aver-
age median NSE of 0.97 and 0.92 during the calibration and
validation period, respectively (white boxes in Fig.2c and d).

The ensemble parameter sets, which are depicted as the
gray boxes in Fig. 2, also reveal appropriate model perfor-
mance. The median NSE corresponding to the ensemble pa-
rameter sets is 0.80 for daily streamflow in the validation pe-
riod averaged across the seven basins. The median NSE of
the ensemble parameters drops by approximately 6 % com-
pared to that of the on-site estimated parameters. This loss is
reasonable considering that the ensemble parameter sets are
a compromise solution, which should perform well across
all seven basins (see Sect. 3.2). The performance loss can
be attributed to changes in the specific basin climatic and
land-surface conditions including terrain, soil, and vegetation
properties.

Changes in the predictive uncertainty corresponding to
on-site and ensemble parameter sets are assessed using the
range of model performance. The spread of NSEs for the
monthly streamflow is considerably narrower compared to
the daily flows (Fig. 2). The high temporal variability of the
daily streamflow is smoothed when averaged over a longer
(monthly) timescale leading to an overall better correspon-
dence between observed and simulated flows.

www.hydrol-earth-syst-sci.net/21/1769/2017/ Hydrol. Earth Syst. Sci., 21, 1769–1790, 2017



1776 M. Zink et al.: Water fluxes and states dataset accounting for parametric uncertainty

50

100

150 Mulde

100

200

300 Ems

100
200
300
400 Neckar

100

200

300

400 Saale

200

400

600

800 Main

1990 1992 1994 1996 1998

500

1000 Weser

1990 1992 1994 1996 1998

500

1000

1500 Danube

D
is

ch
ar

ge
Q

[m
3

s−
1 ]

Observed
Model median
Model range [p5,p95]

Figure 3. Observed and modeled monthly streamflow for the seven basins, which were used for parameter inference. The figure shows 1
decade (1990–1999) of the evaluation period. The solid dark gray line depicts the median model results and the light gray band depicts the
range between the 5th and 95th percentile of the 100 ensemble simulations.

The ranges of NSEs corresponding to the 100 on-site
and ensemble parameter sets are comparable across the in-
vestigated basins with exception of the Main and Danube
basins. In these two basins the ensemble parameter sets pro-
vided a relatively larger range of NSEs. The relatively higher
spread in the NSE in those basins is likely to stem from the
fact that different basins are sensitive to different parame-
ters. For example, the Ems basin, located in the maritime-
influenced north, is not as sensitive to snow parameters as
the alpine-influenced Danube basin. Consequently, parame-
ters that originate from the Ems basin potentially deteriorate
ensemble predictions in the Danube basin. A simultaneous
calibration of multiple, distinct basins would be beneficial
for deriving hydrological fluxes and states at national or con-
tinental scales.

Examples of the modeled streamflow time series are given
in Fig. 3. In general, the model is able to adequately capture
the discharge dynamics across the investigated basins. A rel-
atively lower model skill in capturing the discharge dynamics
in the Saale basin can be attributed to heavy human interac-
tions. The highly regulated streamflow in the headwaters of
the Saale (see Sect. 2) is difficult to capture and thus leads to
lower performance because mHM includes no reservoir op-
eration. The main discharge mechanisms of Saale are consid-
ered to be adequately captured because the median NSEs are
exceeding 0.85 and 0.7 at the monthly and daily resolutions
for the ensemble parameter sets, respectively (Fig. 2).

Interestingly, this basin shows equal or higher perfor-
mance for the ensemble parameter sets compared to the on-
site parameter sets in the evaluation period. A similar behav-

ior can be observed for the Weser basin. We conclude that
streamflow simulations in some basins improve by gaining
knowledge from remote locations.

The Mulde basin has a tendency to underestimate peak
flows (Fig. 3). This could be attributed to the precipitation
product. The headwaters of the Mulde basin are located in the
Ore mountains at the border between Germany and the Czech
Republic (Fig. 1). In addition to a sparse network of rain
gauges in these mountainous area, a lack of information on
meteorological variables from the neighboring country (i.e.,
the Czech Republic) leads to an underestimation of precipi-
tation in the interpolation process, especially for orographic-
driven events. The model performance for the Mulde is com-
parably superior to those found by other studies, such as
Fleischbein et al. (2006) or Huang et al. (2010).

The results presented in this section show that the method
for determining ensemble parameter sets (Sect. 3.2) leads
to satisfactory estimations of streamflow in the basins used
for parameter inference. Overall, the model performance
shown herein compares well to those of other studies, such
as Lohmann et al. (1998); Strasser and Mauser (2001); Men-
zel et al. (2006); Fleischbein et al. (2006); and Huang et al.
(2010). A further investigation of the applicability of the en-
semble parameter sets on additional, smaller basins is shown
in the following section.

4.2 Streamflow evaluation at non-calibrated basins

Following Klemeš (1986), the model performance is eval-
uated across 222 basins diverging in size and geographi-
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Figure 4. Budyko plot and performance maps for 100 ensemble parameter sets at 222 basins spread over Germany. The upper row depicts
evaluations based on daily values (a, b, c), whereas the lower row depicts monthly streamflow evaluations (d, e, f). In the first column
the basins are presented as Budyko plots (a, d), which are color-coded based on the ensemble median NSE for daily (a) and monthly (d)
streamflow values. The gray band envelops different estimations of the Budyko curve (Schreiber, 1904; Ol’dekop, 1911; Budyko, 1974). A
separation to energy- (Ep/P < 1) and water-limited basins (Ep/P > 1) can be made based on the x axis. The center column depicts the
location of the 222 basins shown in the Bydyko plots using the same color code (b, e). The right column shows the range of the 5th and 95th
ensemble percentiles for the NSE on daily (c) and monthly (f) basis. (a), (b), (d), and (e) share the left color bar, and (c) and (f) share the right
color bar. The simulation period is adopted according to the available streamflow observations but is at least 10 years (average= 42 years).

cal location. The streamflow data of these proxy locations
have not been used during the model calibration. This cross-
validation test focuses on evaluating the model performance
against streamflow simulations along a diverse range of cli-
matic and land-surface conditions. The evaluations shown in
Fig. 4 indicate a satisfactory agreement between simulations
and observations. The daily streamflow simulations (Fig. 4a,
b) reveal a median NSE value of at least 0.5 across the in-
vestigated basins based on the ensemble parameter sets. The
overall average NSE value is 0.68. As expected, the model
exhibits better skill in capturing monthly streamflow dynam-
ics, with an ensemble median NSE averaged across all basins
of approximately 0.81 (Fig. 4d, e). Furthermore, the ensem-
ble median NSE exceeded a value of 0.75 in more than 20 %
of the basins for the daily flows and 80 % for the monthly
flows. The spatial variability of the median NSE across the
investigated basins is low with a standard deviation of ap-
proximately 0.09 for both daily and monthly flows.

To illustrate different climatic regimes of the 222 basins,
we make use of the dryness index Ep/P (Budyko, 1974).
Various studies describe the relationship between the dryness
and evaporative index Ea/P (Schreiber, 1904; Ol’dekop,
1911; Budyko, 1974; Gerrits et al., 2009) and span an un-
certainty band around Budyko’s curve. The model perfor-
mance of the 222 basins is plotted in panels (a) and (d)

of Fig. 4 using these indexes. It separates the basins into
energy- (Ep/P < 1) and water-limited conditions (Ep/P >

1). The simulated evapotranspiration Ea is used to derive
the Budyko plot to identify potential errors in the water bal-
ance closure (Fig. 4a, d). All basins under investigation lie
perfectly within the uncertainty ranges of the reported the-
oretical curves. Please note that energy-limited basins are
closer to the lower uncertainty line of the reported curves,
whereas water-limited basins tend to the upper curve. In con-
sequence basins with energy limitation tend to underrepre-
sent the original Budyko curve and develop to overrepresen-
tation for water-limited locations. In conclusion, the water
balances of those basins are well closed, with a mean clo-
sure error of 1 % for the median simulation. The performance
is comparable for basins in different climatic regimes. Such
behavior is not obvious as studies such as Newman et al.
(2015b) and Xia et al. (2012a) found a significant depen-
dency on the climatic regime. However, a tendency to per-
form better in large basins is observed. A similar conclusion
was drawn by McMillan et al. (2016).

We further analyzed the relationship between model per-
formance and physiographic attributes (e.g., terrain or land
cover characteristics). These analyses did not show any sig-
nificant relationship (see Fig. B1). The absence of pairwise
relationships between model performance and climatic or
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Figure 5. Observed (Ea,obs) versus ensemble median modeled evapotranspiration (Ea,mod) on daily basis at the seven eddy covariance
stations (Fig. 1, Table 2).

land-surface characteristics confirms the validity of the de-
rived ensemble parameters for the national scale. In con-
trast, Newman et al. (2015b) and McMillan et al. (2016) ob-
served significant dependencies between model performance
and basin characteristics, such as aridity or basin area.

The uncertainty for the individual basins caused by the
ensemble parameter sets is expressed as the range between
the 5th and 95th percentiles of the NSE (Fig. 4c, f). Sub-
stantial performance differences occur in 70 % (45 %) of the
basins exceeding a range of 0.1 NSE for the daily (monthly)
flow simulations. A geographical dependency of the uncer-
tainty cannot be found as no spatial clustering is observed.
Whereas daily flows show almost no relation between me-
dian NSEs and the uncertainty range, i.e., worse performing
basins reveal high uncertainties, the monthly NSEs show less
uncertainty if the corresponding model performance is high.

The evaluation of the ensemble parameter sets presented in
this section supports the hypothesis that the ensemble param-
eter sets are valid on the national scale. Studies such as Perrin
et al. (2008); Xia et al. (2012a); Cai et al. (2014); McMillan
et al. (2016); and Hostetler and Alder (2016) validate their
models based on streamflow over a large sample of basins
and observed similar or lower NSEs. In the following section,
evapotranspiration, soil moisture, and groundwater recharge
estimates are evaluated.

4.3 Evapotranspiration and soil moisture evaluation at
eddy covariance stations

The ensemble model simulations are further evaluated with
the evapotranspiration (Ea) and SM observed at seven eddy
covariance stations (Fig. 1) to assess the model’s ability to
represent other fluxes and states next to streamflow. The en-

semble median of the daily sum of evapotranspiration is plot-
ted against the corresponding observations in Fig. 5, and the
resulting error metrics are summarized in Table 2.

The scatter plots shown in Fig. 5 indicate no systematic
over- or underestimation of the observed evapotranspiration.
The highest deviation in terms of RMSE is observed dur-
ing summer, when the highest fluxes occur, and the low-
est during winter, in which the contribution of Ea is lowest
among all seasons. The average bias estimated across all sta-
tions during spring is 0.34 mm d−1, whereas it is 0.08, 0.04,
and 0.04 mm d−1 for winter, summer, and autumn, respec-
tively. The slight overestimation of the modeled Ea during
spring is likely caused by the lack of a dynamic vegetation
growth module in mHM. Thus, the onset of the vegetation
period may not be captured adequately by the model. With
respect to the vegetation class, the stations E1 and E6 cov-
ered by crops have the largest errors, with Ea RMSEs of
19.4 and 15.4 mm month−1 for monthly evapotranspiration,
respectively (Table 2). These errors arise because of the high
impact of human interactions on croplands, e.g., due to seed-
ing, harvesting, or irrigation, compared to other vegetation
classes. Additionally, the land cover class cropland is not ex-
plicitly represented within the model; rather, it is generalized
within a mixed land cover class, representing all land cover
types different from sealed and forest. Varying goodness of
fit for different land covers and seasons for evapotranspira-
tion at eddy flux towers were found for the four land surface
models used in NLDAS (Xia et al., 2015) and thus are not
uniquely observed for mHM.

In general, errors of local evapotranspiration estimates can
be attributed to limitations of the Hargreaves–Samani ap-
proach for estimating the potential evapotranspiration. This
approach may be inappropriate for local weather conditions.
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Figure 6. Exemplary time series of observed and modeled monthly evapotranspiration and daily soil moisture anomalies at four eddy
covariance stations (Fig. 1, Table 2). The four stations are chosen because they represent the two major mHM land cover classes (forest and
mixed) and have 3 consecutive years of data without significant data gaps. Further the four station are spread over the three regions where
eddy covariance observations are available. The solid dark gray line depicts the median model results and the light gray band depicts the
range between the 5th and 95th percentile of the 100 ensemble simulations.

Because this method approximates the net radiation based on
the minimum and maximum daily temperatures, local phe-
nomena such as short-term cloudiness, e.g., due to convective
precipitation cells, are not accounted for. This effect is espe-
cially high in summer, which causes the lowest correlations
between observations and simulations during this period. Un-
fortunately, only temperature-based methods are supported
by the available input data. Please notice that the observa-
tional error caused by the energy balance closure gap is, on
average, 33 % for the herein considered stations before ap-
plying the abovementioned mathematical corrections.

In terms of temporal dynamics, the model is able to cap-
ture the observed evapotranspiration quite well across the dif-
ferent eddy covariance sites, as exemplarily shown in the up-
per panel of Fig. 6. The model is able to adequately represent
the observed monthly dynamics with an average correlation
of approximately 0.93 (Table 2). The correlation between
the observed and the simulated daily evapotranspiration is
at least 0.77, with the exception of the cropland site E1.

The lower panel of Fig. 6 shows the performance of mHM
in representing the daily soil moisture anomalies, which are
generally in good correspondence with observations. The
temporal dynamics of observed soil moisture anomalies dur-
ing the wetting and drying phases are well captured by the
model. The resulting correlation shown in Table 2 at dif-
ferent eddy stations ranges between 0.53 and 0.93. These
correlations were similar to those of other studies, such as
Cai et al. (2014). The lowest values are observed at cropland

sites, which is due to the abovementioned human interaction
and land cover class representativeness. The amplitude of the
observed soil moisture anomalies is adequately captured by
the model. Still, some peaks are not reproduced satisfacto-
rily, which could be due to the non-representativeness of the
100 m× 100 m model grid cell for TDR/FDR soil moisture
measurements. Thus, the simulated soil moisture is smoother
compared to the observation because it represents the effec-
tive soil moisture of the entire grid cell.

4.4 Evaluation with spatially distributed data

In this section, we present results of the model skill in repre-
senting gridded fluxes over the entire German domain. The
first comparison is conducted for the assessment of repro-
ducing the monthly fields of modeled Ea against the re-
motely sensed MODIS product. The results are summarized
in Fig. 7 in terms of three key metrics: relative bias, corre-
lation, and RMSE. The analysis is conducted using the en-
semble mean of Ea from the 100 model simulations. The
modeled Ea is able to adequately capture the spatiotemporal
features of the MODIS derived product with the majority of
grid cells (74 %) having a relative absolute bias of less than
10 %. Notable differences among these two evapotranspira-
tion datasets are appearing in lowland areas along the Danube
River basin in southern Germany, where the modeled Ea ex-
hibited a dry bias compared to MODIS. An opposite trend of
positive bias in modeled Ea is observed for grid cells lying
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Table 2. Evaluation of evapotranspiration Ea and soil moisture SM at seven eddy covariance stations. The evaluation is based on daily and
monthly values for the available observation period. The location of the eddy stations is depicted in Fig. 1. Abbreviations: RMSE – root
mean squared error, ρ – Pearson correlation coefficient, Ea – evapotranspiration, SM – soil moisture.

ID Station name Period Land cover
Monthly Ea Daily Ea Daily SM

[mm mon−1] [–] [mm d−1] [–] [–]
RMSE Bias ρ RMSE Bias ρ ρ

E1 Gebesee 2003–2008 cropland 19.14 0.61 0.85 1.01 0.02 0.67 0.62
E2 Hainich 2000–2007 DBF1 11.72 6.99 0.95 0.62 0.23 0.87 0.68
E3 Mehrstedt 2003–2006 grassland 12.44 5.78 0.94 0.74 0.18 0.79 0.80
E4 Wetzstein 2004–2008 ENF2 9.86 1.58 0.96 0.73 0.05 0.84 0.80
E5 Grillenburg 2004–2008 grassland 13.93 −4.19 0.94 0.89 −0.14 0.8 0.93
E6 Klingenberg 2004–2008 cropland 15.39 9.38 0.93 0.86 0.31 0.77 0.53
E7 Tharandt 1997–2008 ENF2 13.39 7.71 0.96 0.72 0.26 0.83 0.82

1 Deciduous broadleaf forest. 2 Evergreen needleleaf forest.

Figure 7. Comparison of monthly estimates of evapotranspiration from mHM and MODIS in the period 2001–2010. The ensemble is repre-
sented by the ensemble mean of 100 evapotranspiration estimates. The comparison is based on three metrics: (a) relative bias, (b) Pearson
correlation coefficient, and (c) root mean squared error (RMSE). The respective units are given in brackets.

along the coastal region in northern Germany. The tempo-
ral correspondence between both evapotranspiration datasets
is also remarkably high with an average Pearson correlation
coefficient of 0.96 (standard deviation 0.02). Notably, both
evaporation datasets exhibit pronounced seasonal variability
leading to a high temporal correspondence between them.

The second assessment evaluates the modeled ground-
water recharge with long-term annual values from the Hy-
drologic Atlas of Germany (HAD) (Federal Ministry for
the Environment Nature Conservation Building and Nuclear
Safety, 2003). mHM’s long-term recharge estimate implicitly
represents the baseflow component of the total runoff based
on the assumption that the underground basin is closed and
that there are no external losses (e.g., irrigation or pumping).
Consequently, this analysis serves as a proxy for assessing
the model skill for partitioning the total runoff into interflow
and baseflow. The comparison of the spatial pattern of the

recharge shows good accordance between the two maps with
a correlation coefficient of approximately 0.8 (Fig. 8). The
spatial pattern of the recharge follows the known climatol-
ogy of Germany with high recharge rates being observed in
areas with high precipitation amounts (e.g., Alps – region 11
in Fig. 10).

There are some significant differences between the
modeled and HAD groundwater recharge, particularly at
cells characterized by urbanization (i.e., Munich, Hamburg,
Berlin, and the metropolises of Ruhrgebiet in the northwest).
The model tends to underestimate the HAD recharges, with
differences as high as approximately 200 mm a−1. Notably,
the herein used version of mHM treats sealed areas as al-
most impermeable, which is unrealistic. This issue has been
resolved in recent mHM versions (5.0 and higher). In gen-
eral, the HAD estimate of recharge is, on average, 31 mm a−1

higher compared to the ensemble mean simulation. This mis-
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Figure 8. Comparison of mean annual groundwater recharge (R) modeled with (a) mHM and from (b) the Hydrologic Atlas of Germany
(Federal Ministry for the Environment Nature Conservation Building and Nuclear Safety, 2003; Neumann and Wycisk, 2003). Panel (c) shows
the difference (a–b) between the two datasets. The units are [mm a−1] for all panels.

match arises from the differences in potential evapotranspi-
ration (Ep), which were used for both estimates. The Ep es-
timates used for the HAD (Federal Ministry for the Envi-
ronment Nature Conservation Building and Nuclear Safety,
2003) are lower than those used for mHM simulations and re-
sult in higher water amounts remaining in the underground.
Besides these mismatches, the spatial pattern of the mod-
eled groundwater recharge compares well with the HAD es-
timates (Fig. 8).

4.5 Spatial patterns of ensemble means and
uncertainties

The estimated evapotranspiration (Ea) and grid-cell-
generated runoff (QG), as well as their uncertainty, which
is expressed as the coefficient of variation of the ensemble
simulations, are presented in Fig. 9. In addition to these sim-
ulation results, Fig. 9 shows the mean annual precipitation,
dryness index, and land surface properties, i.e., porosity and
dominating land cover type. Thus, Fig. 9 is used to analyze
the spatial patterns of uncertainty and their main causes.

The high precipitation amounts above 1000 mm a−1 in
panel (a) correspond to mountainous areas in Germany. The
driest region is located in the northeastern part of Germany.
This is, on the one hand, due to its distance to the sea (con-
tinental climate) and, on the other hand, due to the Cen-
tral Uplands in the western and central part of Germany.
These mountains, especially the Harz mountains (central
Germany), capture most of the precipitation events brought
from the west. The low amounts of precipitation in the east
lead to lower amounts of evapotranspiration (Fig. 9b) and
grid-cell-generated runoff (Fig. 9c) in this region compared
to the rest of Germany. Thus, the northeastern part of Ger-
many is characterized by high dryness indexes of 1.2 and
above. The uppermost dryness indexes up to 1.4 are located
in the lee of the Harz mountains. The average dryness index

in Germany is 0.98. Another region characterized by high
dryness indexes is the Upper Rhine Valley, which is known
to have a locally warmer climate compared to its neighboring
regions. Mountainous regions are characterized by stronger
energy limitation due to high precipitation amounts, which
results in dryness indexes lower than 0.65.

The spatial distribution of the uncertainty, i.e., the coeffi-
cients of variation (see Sect. 3.4), of the grid-cell-generated
runoff (Fig. 9g) is mainly governed by the dryness index
(Fig. 9d). The Spearman rank correlation between both vari-
ables is 0.92. The uncertainty patterns of evapotranspira-
tion (Fig. 9f) have a closer relation to soil textural proper-
ties, i.e., porosity (Figure 9e), with a Spearman rank coef-
ficient of 0.58 as compared to the dryness index (rank cor-
relation= 0.28). Locations of high uncertainty in Ea, e.g.,
northern Germany, correspond to regions of high porosi-
ties. Within this region, soils are dominated by sand and are
highly conductive, which results in low water holding capac-
ities. The modeled evapotranspiration is highly dependent
on the soil parameterization because soil water is the main
source of evaporative water. In contrast, the uncertainty pat-
terns of grid-cell-generated runoff, e.g., (QG) in the north-
eastern part of Germany and the Upper Rhine Valley, corre-
spond to high values in the dryness index in those regions.

In conclusion, the spatial distribution of the uncertainty in
evapotranspiration is influenced by the parameterization of
the soil, whereas the runoff uncertainty pattern is dominated
by the dryness index. The patterns appearing in the evapo-
transpiration and grid-cell-generated runoff at the location of
big cities (orange areas in panel (h) of Fig. 9) are caused
by the abovementioned old representation of sealed areas for
mHM versions prior to 5.0.

www.hydrol-earth-syst-sci.net/21/1769/2017/ Hydrol. Earth Syst. Sci., 21, 1769–1790, 2017



1782 M. Zink et al.: Water fluxes and states dataset accounting for parametric uncertainty

Figure 9. Water balance variables, their coefficients of variation, and land-surface characteristics for Germany. (a) Mean annual precipita-
tion P , (b) ensemble mean annual evapotranspiration Ea, (c) grid-cell-generated runoff QG, (d) dryness index Ep/P , (e) sum of porosities
(saturated soil water content) of all model layers, (f) coefficient of variation of the ensemble of annual evapotranspiration and (g) gener-
ated runoff, (h) dominating land cover class on a 4 km× 4 km grid. The mean values and coefficients of variation are based on the period
1951–2010.

4.6 Spatiotemporal distribution of uncertainties

This section focuses on the spatiotemporal differences of un-
certainties caused by the 100 ensemble parameter sets. Fig-
ure 10 shows the climatological dynamics and the normal-
ized ranges (see Sect. 3.4) of the respective variables, i.e.,
evapotranspiration (Ea), SM, groundwater recharge (R), and
grid-cell-generated runoff (QG). The rows refer to differ-
ent environmental zones in Germany (Federal Environmental
Agency, 2005), which are depicted in the upper right cor-
ner of Fig. 10. For comprehensibility only a selection of
five environmental zones is depicted therein, representing the
region of high dryness indexes in the north (zone 2), cen-
tral Germany including Central Uplands (zones 4 and 9), the
foothills of the Alps (zone 10), and the Alps (zone 11).

The magnitude of the evapotranspiration uncertainty, i.e.,
the uncertainty range, is lowest among the four variables.
Evapotranspiration is estimated by scaling the potential evap-
otranspiration with the water availability in several reser-
voirs, i.e., the interception storage, the surface ponds in
sealed areas, and the soil moisture. Notably, most of the ar-
eas in Germany are characterized by humid and continen-
tal climate where the Ea is constrained by available energy.

The evapotranspiration is thus mainly driven by the poten-
tial evapotranspiration. A relatively large uncertainty in soil
moisture does not directly propagate to evapotranspiration
uncertainty. The highest uncertainties are observed for the
groundwater recharge. This model’s internal variable is nei-
ther closely related to the model input as Ea nor indirectly
constrained by calibration as the generated runoff. In conse-
quence, its uncertainty is highest among the four variables.

The evapotranspiration uncertainty shows almost no dy-
namics during the course of the year. In contrast, the uncer-
tainty in recharge and runoff changes significantly during the
course of the year. Whereas the dynamics of the groundwa-
ter recharge and its uncertainty are positively correlated, the
correlation for soil moisture and its uncertainty is negative.
Thus, the recharge uncertainty is the lowest for low recharge
values, which occur in summer when the subsurface reser-
voirs are comparably dry. The low amplitude of the soil mois-
ture uncertainty is reasoned in the high persistence of soil
moisture. Regions of high porosity and low dryness indexes
in northern Germany have more distinct dynamics compared
to southern locations. The uncertainty of the generated runoff
is a composite of the dynamics of soil moisture and recharge
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Figure 10. Spatiotemporal patterns of uncertainty for five different environmental zones in Germany. The locations of the different zones are
depicted on the map on the upper right. The presented hydrologic variables are evapotranspiration (Ea), soil moisture (SM), recharge (R),
and grid-cell-generated runoff (QG). The uncertainty ranges and the ensemble median refer to the left ordinate (black and gray), whereas the
normalized uncertainty range refers to the right ordinate (blue). The reference period for the climatological values is 1951–2010.

and thus shows the distribution of water among the model’s
internal reservoirs.

5 Summary and conclusion

In this study, we present the derivation and evaluation of a
high-resolution (4 km× 4 km) dataset of hydrologic and me-
teorological fluxes and states for Germany covering the pe-
riod 1951–2010, which is freely available. The dataset incor-
porates 100 spatially consistent ensemble simulations, which
are analyzed regarding their uncertainty caused by the pa-
rameter estimation. The parameter sets of the ensemble sim-
ulations are determined by a two-step parameter selection
method. The model is calibrated in seven basins, and the pa-
rameter sets are filtered based on the cross-validation results
in all of the basins. Thus, the uncertainty is composed of
the uncertainty in parameter estimation and the uncertainty

stemming from transferring these parameters to remote loca-
tions. The ensemble simulations are evaluated with stream-
flow, evapotranspiration and soil moisture observations, and
recharge data.

A comparable study by Newman et al. (2015a) focuses on
the provision of a 100 member ensemble dataset, which is
focusing on meteorological variables for major parts of North
America. Similar to the study presented herein they evaluate
the data in a large sample of basins, i.e., 671. We, however,
conclude that 100 realizations is an appropriate sample size
for an uncertainty assessment study.

The evaluation regarding streamflow at 222 additional
basins revealed a median NSE of 0.68. Thus, the 100 en-
semble parameter sets are considered to be representative
for Germany. The evaluation with evapotranspiration from
eddy covariance stations showed deficiencies in mHM. Es-
pecially in spring, deviations of the modeled and observed
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Ea indicate room for improving the representation of veg-
etation dynamics within mHM. The sites covered by crop-
land showed the largest deviations from evapotranspiration
observations because croplands are highly human-influenced
(seeding, harvest, or eventually irrigation), which makes it
difficult to model their dynamics at the local scale. Addition-
ally, cropland is generalized in a mixed land cover class in
mHM. Soil moisture estimations at the same locations have
been in good agreement with the observed dynamics.

The second part of the study focuses on the uncertainty
of the simulated hydrological fluxes and states due to uncer-
tainties in parameter estimation. It is shown that uncertainty
varies in time, location, and magnitude between hydrologi-
cal variables. Among all of the variables, the uncertainty was
the lowest for evapotranspiration and the highest for ground-
water recharge. The spatial distribution of runoff uncertainty
is closely related to the spatial distribution of the dryness
index. In contrast, the uncertainty patterns of evapotranspi-
ration estimates are mostly connected to soil properties. In
general, the highest uncertainties occur in the northeastern
part of Germany, which is characterized by low precipita-
tion amounts and high soil porosities. The temporal varia-
tion of uncertainties is almost constant for evapotranspira-
tion, medium for grid-cell-generated runoff and soil mois-
ture, and high for groundwater recharge and depends on ge-
ographical location.

Based on these results we suggest incorporating additional
data, e.g., in situ soil moisture or satellite observations, into
the calibration procedure to better constrain the model’s in-
ternal states. The results of this study emphasize the impor-
tance of the considering parametric uncertainty for historical
analysis, nowcasting, and forecasting in hydrology.

Data availability. The dataset consists of daily values of precipi-
tation and minimum, maximum, and average temperature, poten-
tial evapotranspiration, evapotranspiration, soil moisture, ground-
water recharge, and generated runoff, whereas the latter four are
provided as ensemble of 100 simulations. The data format is the
Net Common Data Format (NetCDF version 3) and is based on
the CF conventions (www.cfconventions.org). Additionally, the en-
semble means and standard deviations are provided for download.
The dataset is freely accessible under Creative Commons license at
http://www.ufz.de/index.php?en=41160.

Hydrol. Earth Syst. Sci., 21, 1769–1790, 2017 www.hydrol-earth-syst-sci.net/21/1769/2017/
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Appendix A: Interpolation of meteorological data

A1 Variogram estimation

The variogram for the German domain is estimated based on
two different approaches. In the first approach regionalized
variograms for rectangular sub-domains (blocks) were esti-
mated (Fig. A1). The interpolation of meteorological vari-
ables based on these regionalized variograms, however, lead
to discontinuous fields of these meteorological variables.
This result contradicted the aim of deriving seamless fields of
hydro-meteorological fluxes and states for entire Germany.
As a result, continuous meteorological interpolations have
been the prerequisite for the next approach. In the second
approach, a compromise variogram for entire Germany is
estimated by considering all available data from all meteo-
rological stations, e.g., approximately 5700 stations for pre-
cipitation, for the estimation of an empirical variogram. An
exponential, theoretical variogram is fitted to this empirical
variogram. The fitted variogram curves of both methods are
presented exemplarily for precipitation in Fig. A1. The em-
pirical variogram is well represented by the theoretical vari-
ogram with a RMSE of 0.02. The consecutive estimation of
meteorological fields is based on the second approach using
a compromise variogram for Germany.

A2 Interpolation error

The interpolation error was assessed by a leave-one-out strat-
egy, i.e., the Jackknife method. This cross-validation informs
about the ability of the external drift Kriging to estimate
meteorological variables at locations where observations are
available. The algorithm is as follows:
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Figure A1. Panel (a) shows the empirical variogram (blue circles) and a fitted exponential variogram (red curve) for the entire domain of
Germany as well as fittings for sub-domain (block) variograms (gray lines). The 52 sub-domains (blocks) are depicted in (b).

1. exclude one station from the set of observations;

2. estimate the meteorological time series at this location
using external drift Kriging;

3. compare the interpolated time series with the observa-
tion and assess the interpolation error at each station;

4. interpolate the Jackknife-error estimates over the do-
main of Germany, using ordinary Kriging to obtain error
maps for visualization purposes.

The error at each station is characterized by the bias,
relative bias, RMSE, and Pearson correlation coefficient
(Fig. A2). Exemplarily we present the errors of the precipi-
tation interpolation because this variable has the highest spa-
tial and temporal variability among the interpolated variables
(precipitation; minimum, maximum, and average tempera-
ture). The average and the standard deviation for the different
errors assessments over all stations are 0.01 and 0.15 mm d−1

for the bias, 0.64 and 5.60 % for the relative bias, 0.93 and
0.03 for the Pearson correlation coefficient, and 1.75 and
0.48 mm d−1 for the RMSE. Reviewing these values the cho-
sen interpolation approach is seen as appropriate.
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Figure A2. Evaluation of the interpolation at precipitation stations based on a leave-one-out cross-validation strategy, i.e., the Jackknife
method. The performance criteria from the individual stations are interpolated to a 4 km× 4 km grid using ordinary Kriging. The panels
denote different performance metrics: (a) bias, (b) relative bias, (c) Pearson correlation coefficient, and (d) root mean squared error (RMSE).

Appendix B: Relation of model performance and land
surface and hydro-climatic characteristics
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Figure B1. Relation between land surface and hydro-climatic con-
ditions and model performance for the 222 river basins. The loca-
tion of the basins is depicted in Fig. 4. The mean and standard devi-
ation (SD) of a characteristic for the single basins are based on the
morphological input data at the 100 m× 100 m resolution.

The analysis for identifying relations between land surface
and hydro-climatic characteristics and model performance is
presented in Fig. B1. This analysis does not reveal any hydro-
meteorological or morphological conditions, which explain
different model performance in distinct basins. In conclu-
sion, the retrieved parameter sets are representative for vari-
ous climatic and physiographic conditions.
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