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Abstract. This paper explored the potential of a global cli-
mate model for sub-seasonal forecasting of precipitation and
2 m air temperature. The categorical forecast skill of 10 pre-
cipitation and temperature indices was investigated using the
28-year sub-seasonal hindcasts from the Climate Forecast
System version 2 (CFSv2) over the contiguous United States
(CONUS). The forecast skill for mean precipitation and tem-
perature as well as for the frequency and duration of extremes
was highly dependent on the forecasting indices, regions,
seasons, and leads. Forecasts for 7- and 14-day temperature
indices showed skill even at weeks 3 and 4, and generally
were more skillful than precipitation indices. Overall, tem-
perature indices showed higher skill than precipitation in-
dices over the entire CONUS region at sub-seasonal scale.
While the forecast skill related to mean precipitations was
low in summer over the CONUS, the number of rainy days,
number of consecutive rainy days, and number of consecu-
tive dry days showed considerably high skill for the western
coastal region. The presence of active Madden–Julian Oscil-
lation (MJO) events improved CFSv2 weekly mean precipi-
tation forecast skill over most parts of the CONUS, but it did
not necessarily improve the weekly mean temperature fore-
casts. The 30-day forecasts of precipitation and temperature
indices calculated from the downscaled monthly CFSv2 fore-
casts were less skillful than those calculated directly from
CFSv2 daily forecasts, suggesting the usefulness of CFSv2
for sub-seasonal hydrological forecasting.

1 Introduction

Sub-seasonal (or intra-seasonal) timescale forecasts are typ-
ically between medium-range weather forecasts (1 or 2
weeks) and seasonal climate predictions (1 to 12 months).
The medium-range weather forecast is strongly influenced by
atmospheric initial conditions (Vitart et al., 2008), while the
seasonal climate forecast depends on slowly evolving com-
ponents of the climate system (e.g., sea surface temperature
and soil moisture) (Troccoli, 2010). However, since the sub-
seasonal timescale is usually too long to be favored by the
atmospheric initial conditions (Vitart, 2004) and too short to
be strongly influenced by the variability of the ocean, mak-
ing skillful sub-seasonal forecasts is particularly difficult and
thus far has less progress than the medium-range weather
forecasts and seasonal climate forecasts.

Since many extreme events (e.g., flash drought, heat wave,
and cold wave) and their corresponding management deci-
sions fall into sub-seasonal timescales, accurate sub-seasonal
forecast information will be central to the development of cli-
mate services and therefore has great socioeconomic value
(Vitart et al., 2012). In fact, sub-seasonal forecast infor-
mation can be useful for developing strategies for proac-
tive natural disaster mitigation (Brunet et al., 2010; Vitart et
al., 2012). Previous studies have evaluated the potential of
sub-seasonal to seasonal forecasts for heat wave forecasting
(e.g., Hudson et al., 2011a; White et al., 2014), hydrologi-
cal forecasting (e.g., Orth and Seneviratne, 2013; Yuan et al.,
2014), water resources management (e.g., Sankarasubrama-
nian et al., 2009), hydropower production management (e.g.,
Garcia-Morales and Dubus, 2007), and crop yield predic-
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tion (e.g., Hansen et al., 2006; Zinyengere et al., 2011). Due
to the improvement of numerical models, prediction tech-
niques, and computing resources, there is an increasing fo-
cus on sub-seasonal forecasts (e.g., Toth et al., 2007; Vitart
et al., 2008; Brunet et al., 2010; Hudson et al., 2011b, 2013;
Robertson et al., 2014).

Precipitation and 2 m temperature (hereafter temperature)
are considered as two of the most important climate vari-
ables that significantly influence irrigation scheduling, urban
water supply, cooling water related to thermal power gen-
eration, hydropower operations, etc. Many important sub-
seasonal events, including heat waves, cold waves, dry spells,
and wet spells, are directly derived from the frequency, dura-
tion, and intensity of rainfall or hot (cold) temperature. While
several studies have been conducted to forecast the duration
of high-temperature days (i.e., heat waves) (e.g., Hudson et
al., 2011a; Luo and Zhang, 2012; White et al., 2014), there
has been, thus far, no complete investigation of sub-seasonal
forecasting capabilities for the other temperature and pre-
cipitation indices that are directly associated with important
events and decision-making. In this study, we aim to evalu-
ate the skill of sub-seasonal forecasting for those precipita-
tion and temperature indices, including mean, frequency, du-
ration, and intensity of precipitation and temperature at sub-
seasonal timescale, such as the number of dry/wet days and
the number of cold/hot days.

Coupled atmosphere–ocean general circulation models
(GCMs) are used to make forecasts at multiple timescales,
from medium-range weather forecasting, seasonal climate
predictions, and long-term climate projections. The reason
that GCMs can be used as operational models at these
timescales is due to the predictability from different sources,
such as initial conditions from the atmosphere and inertial
dynamics from soil moisture and sea surface temperature.
While the GCMs have demonstrated advanced configura-
tions and realistic representations of the climate systems, the
use of GCMs’ predictions is still restricted by their coarse
resolution and inherent systematic biases. To overcome these
limitations, the GCMs’ predictions at seasonal timescales are
usually downscaled and bias-corrected before being used in
hydrological applications (e.g., Wood et al., 2002; Luo and
Wood, 2008; Yuan et al., 2013; Tian et al., 2014). The Cli-
mate Forecast System version 2 (CFSv2) is a recently devel-
oped GCM by the National Centers for Environmental Pre-
diction (NCEP) (Saha et al., 2014). The CFSv2 model has
run retrospectively to produce forecasts (hereafter reforecasts
or hindcasts) every 5 days from 1982 to 2009. Despite the
availability of those CFSv2 daily hindcasts, temporal down-
scaling of the seasonal predictions is still routinely done from
monthly to daily without using the daily forecast information
(e.g., Yuan et al., 2013), with the assumption that the accu-
racy of daily information is limited at the seasonal timescale.
At the sub-seasonal timescale, the usefulness of these daily
or sub-daily precipitation or temperature forecasts compared
to the monthly disaggregated forecasts has not been assessed.

The CFSv2 has fully coupled atmospheric, oceanic, and land
components of the climate systems and demonstrated bet-
ter performance for seasonal climate predictions when com-
pared to other seasonal forecast models (Yuan et al., 2011).
Since sub-seasonal precipitation or temperature forecasts are
influenced jointly by the conditions of atmosphere, land, and
ocean, CFSv2 has great potential to make skillful precipita-
tion or temperature forecasts at sub-seasonal timescales.

Besides GCMs, teleconnections between large-scale cli-
mate patterns and local weather events have also been used
to develop sub-seasonal precipitation or temperature fore-
casts. Recent examples include sub-seasonal winter tempera-
ture forecasts in North America using Madden–Julian Oscil-
lation (MJO) or El Niño–Southern Oscillation (ENSO) con-
ditions (Yao et al., 2011; Rodney et al., 2013; Johnson et al.,
2013). In addition, Jones et al. (2011) found that the deter-
ministic forecast skill of the CFSv1 for extreme precipitation
in the contiguous United States (CONUS) during winter is
higher when the MJO is active. With the updated version of
CFS, the CFSv2 hindcasts allow one to re-examine this issue
by assessing the influence of MJO or ENSO on the proba-
bilistic temperature and precipitation forecast skill over the
CONUS.

This study will conduct a comprehensive evaluation of
the precipitation and temperature hindcasts at sub-seasonal
timescales. Specifically, the aims of this study are to (1) as-
sess the CFSv2 predictions for precipitation and tempera-
ture indices at different locations and seasons within the
first 30 days, (2) compare weekly and fortnightly forecasting
skill of the CFSv2 at different lead times, and (3) evaluate
the effects of MJO and ENSO on the CFSv2 sub-seasonal
forecast skill. The assessment includes mean values of sub-
seasonal predictions as well as related temperature and pre-
cipitation indices at different forecast leads and scales. The
downscaled CFSv2 monthly forecasts are compared with the
native CFSv2 daily sub-seasonal forecasts. Furthermore, the
influence of MJO or ENSO conditions on the CFSv2 cat-
egorical temperature and precipitation forecast skill is also
assessed.

2 Data and methodology

CFSv2 had the state-of-the-art data assimilation and forecast
model components of the climate system and became opera-
tional at NCEP in March 2011 (Saha et al., 2014). There were
three different types of hindcasts (or reforecasts): 6-hourly
time series from 9-month runs, 45-day runs, and season runs
(Table 1). Figure 1 gives an example of the three hindcast
configurations. CFSv2 hindcast data had a T126 spatial res-
olution (roughly 100 km) and included several near-surface
variables at a 6-hourly temporal resolution. The 1 season
and 45-day reforecasts were initialized every day so that rel-
atively new initial conditions could be incorporated into a
large ensemble size for making a potentially more skillful
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Table 1. Configurations of the CFSv2 hindcast. UTC stands for Co-
ordinated Universal Time.

Configurations 9-month runs 1 season 45-day runs

Initiated day Every 5 days beginning Every day Every day
from 1 Jan of each year

Initiated UTC time 0, 6, 12, 18 0 0, 6, 12, 18
Covered period 1982–2010 1999–2010 1999–2010

forecast. Nevertheless, we chose to use the 9-month refore-
cast. This is because the 9-month reforecast covered a much
longer period (1982–2009) than 1 season and 45-day refore-
casts (1999–2010), which ensures a larger sample size for a
more robust evaluation, especially for the evaluation of skill
conditioned on MJO and/or ENSO.

The daily precipitation total was aggregated from the 6-
hourly precipitation data; the daily mean temperature was
obtained by averaging daily maximum and minimum tem-
perature, which were extracted from the 6-hourly maximum
and minimum temperature. The ensemble members for each
month were constructed in the same way as the monthly
hindcasts from CFSv2. For each year, the daily hindcast had
28 members in November and 24 members in other months
with initial conditions at 00:00, 06:00, 12:00, and 18:00 UTC
(Coordinated Universal Time) every 5 days. For example, the
24 ensemble members for January were initialized from the
four cycles for each of 12, 17, 22, and 27 December and 1
and 6 January.

The forecast validation dataset was obtained from the
North American Land Data Assimilation System version 2
(NLDAS-2; Xia et al., 2012). The forcing dataset of the
NLDAS-2 merged large observation-based and reanalysis
data and was widely used to drive land surface models over
the CONUS. It had 0.125◦ (approximately 12 km) spatial
resolution and hourly temporal resolution. The NLDAS-2
hourly precipitation (temperature) data were aggregated (av-
eraged) into daily data.

Besides using CFSv2 daily hindcasts at its native spa-
tial resolution (hereafter CFSv2 daily), the CFSv2 monthly
hindcasts were also downscaled using the Bayesian merg-
ing (BM) method for hydrological applications (Luo et al.,
2007). By comparing those two forecasts, it will help us
understand the usefulness of the CFSv2 daily precipita-
tion or temperature forecasts for hydrological applications
compared to the monthly disaggregated forecasts. The BM
method both spatially and temporally downscaled the CFSv2
monthly hindcasts from its native spatial resolution into daily
hindcasts at a 0.125◦ spatial resolution for hydrological ap-
plications. The BM method updated an observational clima-
tology based on the hindcast skill using Bayesian theory and
generated 20 daily ensemble members for each month us-
ing a historical-analog criterion and random selection. For a
more detailed description of the BM method, please see Luo
et al. (2007) and Luo and Wood (2008).

Ensemble forecasts of precipitation and temperature in-
dices at sub-seasonal timescale were calculated by using
daily forecasts directly from the CFSv2 and the BM down-
scaled CFSv2 monthly forecasts. Table 2 shows the fore-
cast lead time for different periods and methods. For daily
forecasts directly from CFSv2, all precipitation and temper-
ature indices were calculated at 7-, 14-, and 30-day forecast
timescales in the first month. For daily forecasts from the
BM downscaled CFSv2 monthly data, the precipitation and
temperature indices were only calculated at 30-day forecast
timescales in the first month, since these forecasts were tem-
porally disaggregated from monthly forecasts. It would be
useful to look at the performance of the CFSv2 daily fore-
cast in comparison with the daily data disaggregated from
the monthly forecast.

Table 3 shows the precipitation and temperature indices
calculated in this study. Following Zhang et al. (2011), a wet
(dry) day was defined as days with precipitation above (be-
low) 1 mm during the n-day period. The wet (dry) spell was
defined as the number of consecutive wet (dry) days. Taking
a 14-day forecast for WetSpell as an example (as is shown
in Table 2), the first forecast lead was the number of consec-
utive rainy days from day 1 to day 14 forecasts. As a way
of defining heat (cold) waves (e.g., Spinoni et al., 2015), the
threshold for a high-(low-)temperature day was defined when
the temperature was above (below) the 90th (10th) percentile
of the climatological distribution of temperature during the
n-day period for different months.

To validate the forecasts, the observed precipitation and
temperature indices were calculated using the NLDAS-2
daily precipitation and temperature data. The NLDAS-2
daily precipitation and temperature data were upscaled us-
ing bin averaging in order to match CFSv2 spatial resolution.
The percentiles of defining high (low) temperature were ob-
tained separately from distributions of forecasts and observa-
tions. All ensemble forecasts including raw and BM down-
scaled CFSv2 forecasts were verified against the NLDAS-2.
Take CFSv2 raw forecasts for January as an example; there
are 24 ensemble members for all 30-day, 14-day, and 7-day
forecasts. The 24-member ensemble forecasts were consid-
ered as being initialized on the first day of the month regard-
less of which day the individual member of the forecasts was
initialized (e.g., 1–30 January, 1–14 January, and 1–7 Jan-
uary). All ensemble forecasts were converted into categori-
cal forecasts in terciles with all observations converted into
dichotomous values of 1 or 0. The terciles were defined sep-
arately based on the individual distributions of the observa-
tions and the forecasts (x), with x < 1st/3rd percentile for the
lower tercile, 1/3rd≤ x≤ 2nd/3rd percentile for the middle
tercile, and x > 2/3rd percentile for the upper tercile.

The categorical forecasts were evaluated using the Heidke
skill score (HSS), a common performance metric used by the
Climate Prediction Center (CPC) (e.g., Johnson et al., 2013;
Wilks, 2011). The HSS assesses the proportion of correctly
forecasted categories. The categorical forecast was assigned
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Figure 1. Three configurations of the CFSv2 hindcast: 9-month run, 1 season run, and 45-day run. UTC stands for Coordinated Universal
Time.

Table 2. Forecast lead times for different periods and methods.

Period CFSv2 daily BM

Lead 1 Lead 2 Lead 3 Lead 4 Lead 1

30-day Day 1 to Day 30 – – – Day 1 to Day 30
14-day Day 1 to Day 14 Day 15 to Day 28 – –
7-day Day 1 to Day 7 Day 8 to Day 14 Day 15 to Day 21 Day 22 to Day 28 –

to three forecast categories (upper, middle, or lower tercile)
based on the highest of the three forecast probabilities. The
tercile category probabilities were obtained by counting the
ensemble members in each of the three categories and then
by dividing by the ensemble size. The HSS is expressed as

HSS=
(H −E)

(T −E)
× 100. (1)

The number of correctly forecasted categories is denoted as
H . The random forecast, E, is the expected number of cate-
gories forecast correctly just by chance. In this study, since
there are three forecast categories, E is defined as one-third
of the total number of forecasts, T . The HSS ranges from
−50 (no correct forecasts) to 100 (perfect forecasts), with
a value of 0 representing the same skill as randomly gen-
erated forecast or climatological forecast. The HSS above
0 indicates that the forecasts have skill. The HSS was cal-
culated for each method (CFSv2 daily and BM), variable,
index, grid point, month, and forecast time. Since the num-
ber of forecast–observation pairs was 28 for each point, the
HSS estimation had considerable uncertainty given this rel-
atively small sampling size. To quantify this uncertainty, a
bootstrapping technique (Wilks, 2011; Hamilton et al., 2012)
was applied to resample 28 samples (3000 times with re-
placement) from the 28-year reforecasts averaged over the
CONUS. Then a number of 3000 HSS was calculated for
constructing a distribution, with the confidence interval and
significance level of the HSS estimated from this distribu-
tion. With this treatment of the HSS estimation uncertainty,
we can determine that the HSS is significantly skillful when
it is greater than a given significance level.

Since seasonal precipitation and temperature could be
more predictable at larger scales (e.g., Luo and Wood, 2006;
Roundy et al., 2015), it is worthwhile to also look at the
sub-seasonal predictive skill over a larger spatial domain.
Therefore, each forecast was averaged over each of the nine

Figure 2. NCEI climate regions (described in Sect. 2) used as areal
averaging domains for raw and BM downscaled CFSv2 forecasts.
Regions are named as follows: Northwest (NW), West (W), South-
west (SW), West North Central (WNC), South (S), Upper Midwest
(UMW), Central (C), Southeast (SE), and Northeast (NE).

National Centers for Environmental Information (NCEI, for-
merly known as National Climatic Data Center) climate re-
gions as well as over the entire CONUS (Fig. 2). The HSS of
the average forecasts over each of those regions was evalu-
ated subsequently.

The skill assessment of Pmean and Tmean was conducted
not only for all forecasts, but also for forecasts during ac-
tive MJO or ENSO, or a combination of the two. MJO is
the dominant mode of the sub-seasonal variability in the
tropical atmosphere. The MJO index used in this study was
from the Australian Bureau of Meteorology (http://www.
bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt) for
the period of 1982 to 2009. This index was defined by
two leading principal components (PCs) from an empir-
ical orthogonal function analysis of the combined near-
equatorially averaged 850 hPa zonal wind, 200 hPa zonal
wind, and satellite-observed outgoing longwave radiation
data (Wheeler and Hendon, 2004). The pair of these two
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Table 3. Precipitation and temperature indices used in this study.

Index Description Period

Pmean mean precipitation 30-day, 14-day, and 7-day
RainWet mean precipitation over wet days 30-day, 14-day, and 7-day
RainDay number of rainy days 30-day, 14-day, and 7-day
WetSpell maximum wet spell length 30-day, 14-day, and 7-day
DrySpell maximum dry spell length 30-day, 14-day, and 7-day

Tmean mean temperature 30-day, 14-day, and 7-day
HighDay number of high-temperature days 30-day, 14-day, and 7-day
LowDay number of low-temperature days 30-day, 14-day, and 7-day
CosHighD maximum number of consecutive high-temperature days 30-day, 14-day, and 7-day
CosLowD maximum number of consecutive low-temperature days 30-day, 14-day, and 7-day

leading PC time series at a daily time step, called the Real-
time Multivariate MJO series 1 (RMM1) and 2 (RMM2),
defined eight MJO phases and an MJO amplitude. There
were a few different ways to define active MJO events.
The simplest criterion was to define MJO as RMM am-
plitude exceeded a certain threshold (e.g., Johnson et al.,
2014), which did not consider minimum duration and east-
ward propagation of MJO. This study adopted a more rig-
orous definition of MJO: MJO days and events were iden-
tified using a pentad-averaged version of the Wheeler and
Hendon RMM index subject to three major requirements
as indicated by L’Heureux and Higgins (2008). A simi-
lar definition was also widely adopted by other researchers
such as Jones (2009) and Jones and Carvalho (2011).
In this work, ENSO was defined using the same criteria
as CPC (http://www.cpc.ncep.noaa.gov/products/analysis_
monitoring/ensostuff/ensoyears.shtml). ENSO periods were
based on a threshold of ±0.5 ◦C for the Oceanic Niño Index
(3-month running means of sea surface temperature anoma-
lies in the Niño 3.4 region). Warm or cold ENSO periods
were identified when the threshold was met for a minimum
of five consecutive overlapping seasons.

3 Results

3.1 The 30-day forecast skill

Figure 3 shows the average HSS for 30-day forecasts of pre-
cipitation indices calculated from the CFSv2 daily at differ-
ent locations over December–January–February (DJF) and
June–July–August (JJA). In DJF, the average skill of Wet-
Spell over the CONUS was 34 (with a confidence interval
34± 22), which was much higher than the skill of the other
indices; it showed high skill over most areas of the CONUS,
including the Midwest and eastern parts. Pmean, RainDay,
and DrySpell were skillful in the southeast and the southwest
but also revealed skill in the other regions. RainWet showed
minor skill over the entire region. The skill in JJA showed
different spatial patterns with DJF. While Pmean and Rain-

Figure 3. HSS of 30-day (from top to bottom columns) Pmean, We-
tRain, RainDay, WetSpell, and DrySpell from the CFSv2 daily hind-
casts over DJF (left) and JJA (right). The number in the bottom left
is the overall average.

Wet showed modest forecast skill in JJA over the CONUS,
RainDay, WetSpell, and DrySpell all showed high skill in
the western coastal regions, with the WetSpell showing some
skill in the Midwest and northeast. The forecast skill for pre-
cipitation indices for MAM was between DJF and JJA, but
the skill for SON was slightly lower than JJA (Fig. 4).

Spatial patterns in HSS were very different among the in-
dices, particularly in July. We calculated the standard devia-
tion (SD) for observed precipitation indices in July to further
examine the interannual variability of those indices at each
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Figure 4. Same as in Fig. 3, but for MAM and SON.

grid point over the space. To compare relative temporal vari-
ability in space, the SD was normalized spatially to a range
of 0 to 1 using a feature scaling method:

SD′ =
SD−min(SD)

max(SD)−min(SD)
, (2)

where SD is the standard deviation of the time series for each
grid point, min(SD) and max(SD) are the minimum and max-
imum SD over all grid points, respectively, and SD′ is the
normalized SD. Figure 5 shows the normalized standard de-
viation of 30-day precipitation indices in January and July
over the 28-year period from 1982 to 2009 over the CONUS.
By comparing interannual variability (Fig. 5) with the fore-
cast skill over the space (Fig. 3), we found that regions show-
ing lower interannual variability usually have higher skill
than the regions with higher interannual variability. Partic-
ularly in JJA, for Pmean, the western CONUS showed rel-
atively lower interannual variability and higher skill than
the eastern CONUS; for RainDay, the western coastal areas
showed much lower variability and higher skill than the other
regions; for RainWet, all regions showed relatively equal
variability and skills; for WetSpell, the southeastern CONUS
showed higher interannual variability and lower skill than
the other regions of the CONUS; for DrySpell, California
and the eastern CONUS showed relatively lower interannual
variability and higher skill than the other areas.

Figure 6 shows the average HSS for 30-day forecasts of
temperature indices calculated from the CFSv2 daily at dif-
ferent locations over DJF and JJA. Overall, the temperature

Figure 5. Spatially normalized standard deviations of observed 30-
day precipitation indices in January and July over the 28-year period
from 1982 to 2009.

indices showed reasonably higher skill than the precipitation
indices in both DJF and JJA. For DJF, Tmean showed moder-
ately high skill in the Great Lakes area and the eastern US;
HighDay, LowDay, CosHighD, and CosLowD were skillful
over most areas of the CONUS and the skill was particu-
larly high for LowDay and CosLowD in the center or north
of the Midwest region. The forecast skill of temperature in-
dices in DJF showed different spatial patterns with JJA. Tmean
and LowDay showed high skill over the western inland area.
CosLowD was skillful over a major area of the CONUS, par-
ticularly in the northeast. HighDay and CosHighD showed
notable high skill around the south of the central area. The
forecast skill for temperature indices was between DJF and
JJA for MAM but slightly lower than JJA for SON (Fig. 7).
It is worth noting that given the sample size (N = 28) used
for calculating the HSS, the confidence interval of the HSS
for each index is relatively wide. Based on the bootstrapping
approach described earlier, the HSS was found to be signifi-
cantly skillful (significantly above 0 at the 0.05 level) when
it was greater than the number between 20 and 24, depending
on the indices.

Figure 8 shows the average HSS for 30-day forecasts of
precipitation and temperature indices calculated from the
CFSv2 daily or the BM downscaled CFSv2 over 12 months
for the CONUS and its consistent NCEI climate regions. The
precipitation and temperature indices calculated from CFSv2
daily showed higher skill than BM for all regions. On aver-
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Figure 6. HSS of 30-day (from top to bottom columns) Tmean,
HighDay, LowDay, CosHighD, and CosLowD from (from left to
right rows) the CFSv2 daily hindcasts during DJF (left) and JJA
(right). The number in the bottom left is the average.

age, the skill from the CFSv2 daily is approximately 20 %
higher than the skill from the BM, suggesting that the CFSv2
month-1 daily forecasts are potentially more useful than the
temporally downscaled monthly forecasts for hydrological
applications.

3.2 Weekly and fortnight forecast skill at different lead
times

Figure 9 (Fig. 10) shows the average HSS of 14- and 7-day
precipitation (temperature) indices forecasts from the CFSv2
daily over 12 months for the CONUS and its consistent NCEI
climate regions. In general, the skill scores for precipitation
indices were reasonably higher in the first 2 weeks than the
second 2 weeks at both 14- and 7-day timescales since the
first 2 weeks were within the range of weather forecast and
were strongly influenced by the atmospheric initial condi-
tions. While there were differences among regions, the skill
scores for indices measuring frequency or duration of pre-
cipitation (i.e., RainDay, WetSpell, and DrySpell) or tem-
perature extremes (i.e., HighDay, LowDay, CosHighD, and
CosLowD) were equally skillful as those measuring mean
precipitation or temperature during the first 2 weeks. Tem-
perature indices showed notably higher skill than any pre-
cipitation index, particularly in weeks 3 and 4. It was worth
noting that the skill was higher for the 14-day forecast at the

Figure 7. Same as in Fig. 6, but for MAM and SON.

first lead than for 7-day forecast in weeks 1 and 2 taken indi-
vidually. The improved forecast skill indicated that the tem-
poral noise in predictions can be reduced through averaging,
as noted by Roundy et al. (2015).

3.3 Effects of MJO and ENSO

Figure 11 shows skill differences between Pmean or Tmean
weeks 2–4 forecasts during active events (ENSO, MJO, or
MJO+ENSO) and the forecasts during the whole period for
the CONUS and its consistent NCEI climate regions. The
Pmean and Tmean forecasts were calculated from the CFSv2
daily hindcasts. In general, weeks 3 and 4 forecasts per-
formed better during anomalous ENSO or MJO states for
Pmean but not for Tmean.

For precipitation, the forecast skill was inconsistent for
the anomalous ENSO, MJO, or combined ENSO and MJO
phases relative to the whole period. There was a notable in-
crease in skill when the forecasts were conditioned on active
MJO for almost all regions, indicating the positive influence
of MJO on the CFSv2 sub-seasonal precipitation forecasts.
It is worthwhile noting that forecasts conditioned on com-
bined MJO and ENSO, and forecasts conditioned on MJO,
showed a similar level of positive skill with a few differ-
ences, which may due to the modulation effects of ENSO
on MJO. For temperature, while the MJO, ENSO, or com-
bined MJO and ENSO mostly showed positive effects on the
skill for week 2 forecast, those influences became negative
in most of the regions beyond week 2. We further examined
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Figure 8. HSS of 30-day precipitation and temperature indices calculated from the CFSv2 and BM for the CONUS and its consistent NCEI
climate regions. The red line is the average.

Figure 9. Mean HSS of 14- and 7-day (from top to bottom rows) Pmean, WetRain, RainDay, WetSpell, and DrySpell from the CFSv2 daily
hindcasts for the CONUS and its consistent NCEI climate regions.
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Figure 10. Mean HSS of 14- and 7-day (from top to bottom rows) Tmean, HighDay, LowDay, CosHighD, and CosLowD from the CFSv2
daily hindcasts for the CONUS and its consistent NCEI climate regions.

Figure 11. HSS differences between Pmean (left column) or Tmean (right column) weeks 2–4 forecasts during active ENSO, MJO, or
combined active ENSO and MJO (MJO+ENSO) phases and those during the whole period for the CONUS and its consistent NCEI climate
regions. Positive values indicate more skillful forecasts during active MJO, ENSO, or ENSO+MJO phases.
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Figure 12. Differences between HSS of weeks 2–4 Pmean forecasts
during active MJO phases and the whole period at different loca-
tions over the CONUS for DJF, MAM, JJA, and SON. The areas in
white indicate the differences are not significant (at the 0.05 level).

differences between Pmean or Tmean average skill over weeks
2–4 for forecasts during the active MJO phase and the whole
period at different locations and seasons (Figs. 12 and 13).
We used a bootstrap technique for significance tests for the
difference between the HSS during the active MJO phase
and the whole period. We resampled 28 samples (3000 times
with replacement) from the 28-year reforecast averaged over
the CONUS. All 28 samples were used to calculate the HSS
during the whole period. The subset of the 28 samples un-
der active MJO events was used to calculate the conditional
HSS. The difference between the HSS during the MJO and
the whole period was then calculated. Since the resampling
was conducted 3000 times, a number of 3000 HSS differ-
ences was obtained for constructing a distribution and used
to estimate the confidence interval and significance level of
the HSS. Similar to Peng et al. (2013), the significance level
estimated based on the average over the CONUS was applied
to test the local significance for each grid point over the re-
gion. The results are shown in Figs. 12 and 13.

In general, most skill was significantly different at differ-
ent locations; MJO had strongly positive effects on CFSv2
sub-seasonal Pmean forecast skill over the CONUS; the ef-
fects on Tmean forecast skill were relatively weak and incon-
sistent among different regions. For precipitation, the influ-
enced areas were greater during DJF and MAM than during
JJA and SON, with the NE and NW regions being consis-
tently influenced by MJO during four seasons. Aggregated
over the CONUS, we further conducted statistical tests to
compare whether precipitation forecast skills during active
MJO, ENSO, or combined MJO and ENSO phases were
greater than those during the whole period for DJF, MAM,
JJA, and SON. We tested whether differences in mean HSS
over the CONUS (averaged over 1024 grid points) were
statistically significant at a 5 % level. The Student’s t test
showed that the forecast skill during active MJO or com-
bined MJO and ENSO phases was significantly greater than

Figure 13. Same as in Fig. 12, but for Tmean.

those during the whole period (p<0.05) for DJF, MAM, JJA,
and SON; the forecast skill during active ENSO phases was
significantly greater than those during the whole period for
MAM. It is also worthwhile noting that the combined effects
of MJO and ENSO were stronger than their individual ef-
fects, suggesting a potential benefit of using combined infor-
mation of MJO and ENSO for sub-seasonal forecasts. Table 4
shows that there were much fewer ENSO events than MJO
events during January 1982 to December 2009. The number
of ENSO events could be limited enough to skew the skill
score conditioned on ENSO.

4 Discussion

The CFSv2 sub-seasonal forecast skill was highly dependent
on forecasting indices, regions, seasons, leads, and methods.
The sub-seasonal forecasts for indices characterizing mean
precipitation and temperature as well as frequency or dura-
tion of precipitation and temperature extremes showed skill
in the first 2 weeks but no skill or modest skill for the sec-
ond 2 weeks, since the first 2 weeks were within the range of
medium-range weather forecasts. This finding is important
given the sub-seasonal forecasting information is valuable
to many decision makers. In particular, sub-seasonal fore-
casts for frequency or duration of precipitation and temper-
ature extremes can be directly tailored to different applica-
tion needs. For example, having the information of RainDay,
WetSpell, and DrySpell weeks in advance will help farmers
make decisions for irrigation scheduling to save water costs
and improve crop yields. Short-term planning of urban wa-
ter supply could also benefit from sub-seasonal forecasting
information, since those indices describing frequency or du-
ration of precipitation and temperature extremes are known
to be directly related to the urban water demand forecast-
ing (e.g., Donkor et al., 2012). As some temperature indices
such as CosHighD and CosLowD were used to character-
ize heat/cold waves, forecasting information of these indices
would also be useful for developing strategies for proactive
disaster mitigation (e.g., frost damage to crops).

Hydrol. Earth Syst. Sci., 21, 1477–1490, 2017 www.hydrol-earth-syst-sci.net/21/1477/2017/



D. Tian et al.: Sub-seasonal precipitation and temperature forecast skill 1487

Table 4. Active ENSO, MJO, and ENSO+MJO during January
1982 to December 2009. The red areas indicate active ENSO pe-
riods. The green areas indicate the periods with active MJO hap-
pening. The yellow areas indicate combined active ENSO and MJO
events. The last three lines show the total number of ENSO, MJO,
and ENSO+MJO events for each month.

 

 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

No. ENSO 16 15 12 11 11 12 12 13 15 17 17 17

No. MJO 22 22 24 23 24 15 15 15 16 24 23 25

No. ENSO+MJO 12 12 10 7 8 4 6 6 9 13 13 14

The spatially and temporally downscaled CFSv2 monthly
data using the BM method were compared with the CFSv2
daily data for sub-seasonal forecasts at its raw resolution.
Since the 30-day precipitation and temperature indices calcu-
lated from CFSv2 daily hindcasts have higher skill than the
BM, the comparison of these two methods implies that daily
forecasts from the CFSv2 are potentially more useful than
those disaggregated from the monthly forecasts for applica-
tion studies such as sub-seasonal hydrological forecasting.

This study demonstrated that the CFSv2 sub-seasonal
forecast skill varies with space and time. These results iden-
tify seasons and regions where there is the potential for
skillful sub-seasonal predictions for certain precipitation and
temperature indices. For example, water managers in Cali-
fornia trying to predict WetSpell and DrySpell have confi-
dence to use the forecasts from CFSv2 during summer sea-

sons, while a decision maker in the southeast may benefit
little by using such information.

Sub-seasonal forecast skill can be further improved by un-
derstanding the sources of the skill. This study took a first
look at the effects of MJO and ENSO on the CFSv2 sub-
seasonal forecast skill. It was found that the presence of an
active MJO improves weeks 2–4 categorical forecast of pre-
cipitation over most areas of the CONUS. This finding cor-
responds to the study of Jones et al. (2011), where improved
deterministic CFSv1 forecast skill of extreme precipitation
was also found during active MJO. We also compared the re-
gions of improved skill based on MJO in this study (Fig. 9)
with the results from Jones et al. (2011). While there were
spatial differences, the regions of improved skill associated
with MJO commonly occurred for the western coast of the
CONUS. This result is consistent with current knowledge of
the observed influence of the MJO on precipitation events
along the CONUS western coast, which can be found at the
NOAA CPC website (http://www.cpc.ncep.noaa.gov) under
the MJO section. Forecast skill of precipitation and temper-
ature is inherently associated with the capacity of CFSv2 in
forecasting MJO. The CFSv2 has shown useful MJO predic-
tion skill out to 3 weeks (Wang et al., 2014). Improvements
of the representation of the MJO in CFSv2 will likely fur-
ther extend the forecast skill of precipitation and tempera-
ture. Furthermore, recent studies have developed statistical
forecasting models at sub-seasonal timescale using telecon-
nections of MJO and ENSO phases and local weather (e.g.,
Johnson et al., 2013). These statistical models could be po-
tentially combined with CFSv2 forecasts to further improve
the sub-seasonal forecast skill.

It is opportune to note some future directions of this
work. Forecast skill could be potentially improved by hav-
ing a larger ensemble size. A sensitivity study on ensem-
ble size could be performed to assess whether a larger en-
semble improves forecast skill. For future work, when 1
season or 45-day CFSv2 reforecasts (initialized everyday)
are available over a longer period, we would choose to use
those datasets instead of 9-month reforecasts (initialized ev-
ery 5 days) in order to incorporate a large ensemble size
for making a potentially more skillful forecast. Another ap-
proach to further improve the sub-seasonal forecast skill is
through multi-model ensembles. The multi-model ensemble
forecasts combine multiple seasonal forecast models and of-
ten have higher skill than individual models, since it has an
increased ensemble size and a wider spectrum of possible
forecasts that takes into account model uncertainty due to
differences in model configuration and physics (e.g., Hage-
dorn et al., 2005). Here we highlight two important endeav-
ors: the North American Multi-Model Ensemble (NMME-
2) system (Kirtman et al., 2013) is exploring sub-seasonal
forecast in their next phase; the World Meteorological Orga-
nization (WMO) sub-seasonal to seasonal (S2S) prediction
project (http://www.s2sprediction.net/) is archiving hindcast
and real-time forecasts from a range of model systems. All
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of those efforts can facilitate sub-seasonal multi-model en-
semble prediction and model inter-comparison studies. Fur-
thermore, CFSv2 sub-seasonal precipitation and temperature
forecasts can be used for subsequent application studies re-
lated to areas such as hydrology and agriculture. For exam-
ple, flash drought refers to a sudden onset of high tempera-
tures and decreases in soil moisture and is a disastrous event
at sub-seasonal timescale (e.g., Mo and Lettenmaier, 2015;
Wang et al., 2016). Sub-seasonal forecasting of flash drought
will help decision makers develop mitigation strategies. The
CFSv2 sub-seasonal precipitation and temperature forecasts
can be used to drive land surface hydrological models to fore-
cast soil moisture and evapotranspiration and consequently
improve flash drought forecasts.

5 Conclusions

In this study, we have assessed the CFSv2 categorical sub-
seasonal forecasts of precipitation and temperature indices
over the CONUS. The categorical sub-seasonal forecast skill
is highly dependent on forecasting indices, regions, seasons,
and methods. Indices characterizing mean precipitation and
temperature as well as measuring frequency or duration of
precipitation and temperature extremes for 7-, 14-, and 30-
day forecasts were skillful depending on seasons and regions.
The forecasts for 7- and 14-day temperature indices even
showed skill at weeks 3 and 4, and are generally more skillful
than precipitation indices. The forecasts for 30-day temper-
ature and precipitation indices calculated from the statisti-
cally downscaled forecasts mostly showed lower skill com-
pared to those calculated directly from the CFSv2 daily fore-
casts, indicating the potential usefulness of the CFSv2 daily
forecasts for hydrological applications relative to the tempo-
rally disaggregated CFSv2 monthly forecasts. The presence
of an active MJO improves weeks 2–4 categorical forecast
of precipitation over most areas of the CONUS in the CFSv2
system. The sub-seasonal forecast skill of precipitation and
temperature could be further improved through combining
with teleconnection-based statistical sub-seasonal forecast-
ing models or a multi-model ensemble.

Data availability. The CFSv2 reforecast data (Saha et al., 2014)
were downloaded from the NOAA National Operational Model
Archive and Distribution System (NOMADS, https://nomads.ncdc.
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