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SUPPLEMENTARY MATERIAL

Models

LPJmL-DGVM (Lund Potsdam Jena managed Land model)

The process-based dynamic global vegetation and hydrology model LPJmL-DGVM calculates carbon and the corresponding

water fluxes with a daily time step and a spatial resolution of 0.5 x 0.5 (lat/lon) (Sitch et al., 2003; Gerten et al., 2004b;5

Bondeau et al., 2007; Rost et al., 2008; Schaphoff et al., 2013). Potential natural vegetation and the main processes controlling

its dynamics are calculated from inputs of climate data (temperature, precipitation and cloud cover), atmospheric CO2, and

soil texture. The main processes included in LPJmL-DGVM are the water balance, carbon balance, vegetation, establishment,

phenology, mortality and fire disturbance. The daily water balance of the soil is calculated by a simple bucket model, consisting

of 5 soil layers of 20 cm, 30 cm, 50 cm, 1 m and 1 m depth, resulting in a cumulative depth of 3m. Water from precipitation that10

is not intercepted by vegetation enters the first soil layer depending on the amount of rainfall and the water saturation of the

soil layer. The water that enters the first soil layer either evaporates, transpires or percolates to deeper soil layers. Evaporation

from the canopy depends on the intercept water and the leaf area index of the vegetation. Evaporation from soil only occurs on

bare soil and depends on the energy available for vaporization (potential evapotranspiration, PET). Plant transpiration is closely

coupled to stomatal activity and photosynthesis and is calculated as a function of soil water supply and atmospheric demand15

(Sitch et al., 2003). All excess water above field capacity runs off as surface or subsurface runoff. The water is simulated

to percolate from the first layer through the deeper soil layers based on a storage routine technique (Schaphoff et al., 2013)

and is added to the runoff as baseflow component (Gerten et al., 2004b). The runoff is routed through a gridded river network

(Vörösmarty et al., 2000), with a constant flow velocity of 1 ms–1 (Rost et al., 2008). Human processes like irrigation extraction

and the operation of large reservoirs is explicitly accounted for (Rost et al., 2008; Biemans et al., 2011). The carbon balance20

includes a detailed simulation of photosynthesis (based on Farquhar et al. (1980) and Collatz et al. (1992)), autotrophic and

heterotrophic respiration, allocation of carbon to the plant compartments, establishment, mortality and phenology (Sitch et al.,

2003). These processes are in LPJmL-DGVM calculated for nine plant functional types (PFTs) representing natural vegetation

for each grid cell. Each PFT represent an assortment of species classified as being functionally similar. In this study for the

Amazon basin, LPJmL-DGVM primarily simulates three of these plant functional types, representing tropical evergreen and25

deciduous forests and C4 grasses. LPJmL-DGVM also includes crop growth and harvest of so-called crop functional types on

managed land as well as managed grassland (Bondeau et al., 2007). LPJmL-DGVM has been proven to reproduce observed

patterns of biomass production, the global water balance, river discharge, tropical vegetation dynamics and fire (Cramer et al.,

2001; Sitch et al., 2003; Wagner et al., 2003; Gerten et al., 2004a, 2008; Rost et al., 2008; Biemans et al., 2009; Poulter

et al., 2009; Fader et al., 2010; Thonicke et al., 2010). It has been shown that the observed patterns in water fluxes (including30

soil moisture, evapotranspiration and runoff) are comparable to stand-alone global hydrological models (Wagner et al., 2003;

Gerten et al., 2004a; Gordon et al., 2004; Gerten et al., 2008; Biemans et al., 2009; Haddeland et al., 2011). Several studies

on Amazonia have been conducted showing the effect of climate change on NPP (Poulter et al., 2009), on carbon stocks
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(Gumpenberger et al., 2010), on the risk for forest dieback (Rammig et al., 2010) and also on patterns of inundation duration

and inundated area (Langerwisch et al., 2013).5

INLAND-DGVM (INtegrated model of LAND surface processes)

INLAND-DGVM is premised to be single, physically consistent model that solves the energy, water, carbon, and momentum

balance of the soil-vegetation-atmosphere system and can be directly incorporated within Atmospheric Climate models. Based

on the LSX package of Thompson and Pollard (1995), it represents canopy and soil physics processes by explicitly diagnosing

the temperature of the vegetation in two canopy layers (e.g. trees versus shrubs and grasses) and of its soil layers, as well10

as air temperature and specific humidity within canopy air spaces, driven by the radiation balance of the vegetation and the

ground, and the diffusive and turbulent fluxes of sensible heat and water vapor. In order to resolve the diurnal cycle, the model

solves the canopy physics at its shortest time step (depending on the user choice, usually 30 – 60 min). The total amount of

evapotranspiration is treated as the sum of three water vapor fluxes: evaporation from the soil, evaporation of water intercepted

by the vegetation and canopy transpiration.15

The model state description includes 6 soil layers with varying thicknesses (to simulate the diurnal and seasonal variations

of heat and moisture in the total soil depth) that are parameterized with biome-specific root biomass distributions of Jackson

et al. (1996). This permits a different root length density for each layer in the profile.

The dynamics of soil volumetric water content are simulated for each layer. Soil moisture is based on Richards’ flow equa-

tion, where the soil moisture change in time and space is a function of soil hydraulic conductivity, soil water retention curve,20

plant water uptake, and upper and lower boundary conditions. The water budget is controlled by the rate of infiltration (Green

and Ampt, 1911), evaporation of water from the soil surface, the transpiration stream originating from plants, and redistribution

of water in the profile. The modeling of water flow in unsaturated soils requires the description of water uptake by plant roots.

Water uptake by roots is represented by a sink term in the macroscopic Richards equation and only considers stress due to dry

conditions through a simple heuristic approach that represents the influence of soil water stress on gross photosynthesis rates25

(Foley et al., 1996). The drainage from the bottom soil layer is modeled assuming gravity drainage and neglects interactions

with groundwater aquifers. Foley et al. (1996); Kucharik et al. (2000) give additional descriptions of the IBIS model land

surface physics, which is essentially transferred unaltered to INLAND-DGVM.

ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEms)

ORCHIDEE (Krinner et al., 2005) is the land component of the IPSL (Institut Pierre Simon Laplace) coupled climate model. It30

simulates the energy and water fluxes between the soil, the vegetation, and the atmosphere through the SECHIBA (Schémati-

sation des Echanges Hydriques à l’Interface entre la Biosphère et l’Atmosphère, Ducoudré et al., 1993; de Rosnay and Polcher,

1998) module, while the CO2 fluxes and ecosystem carbon cycling are described by the STOMATE (Saclay Toulouse Orsay

Model for the Analysis of Terrestrial Ecosystems, Viovy, 1996) module. When coupled with SECHIBA, STOMATE links the

fast hydrological and biophysical processes with the carbon dynamics. STOMATE also contains a dynamic vegetation model,

but this module was not activated for this study. In each grid cell, up to 12 plant functional types (PFTs) can be represented
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simultaneously, in addition to bare soil. LAI dynamics is simulated by STOMATE which models the allocation of assimilates,

autotrophic respiration components, foliar development, mortality and litter and soil organic matter decomposition. A factor5

representing drought stress (McMurtrie et al., 1990) linearly computes the rate of ribulose bisphosphate (RuBP) regeneration

and the carboxylation rate.

The drought stress and the leaf age of the vegetation directly influence the photosynthetic capacity (Farquhar et al., 1980;

Collatz et al., 1992; Verbeeck et al., 2011; de Weirdt et al., 2012), and the stomatal conductance (Ball et al., 1987), which

controls the transpiration and is a function of two profiles: a fixed root density profile for each PFT, and the soil moisture10

profile (de Rosnay and Polcher, 1998). Canopy interception is proportional to LAI and the corresponding evaporation proceeds

at potential rate, like the soil evaporation. In the latter case, however, soil moisture can become limiting if the upward diffusion

to the top soil layer cannot supply enough water to sustain the required potential rate.

Soil moisture redistribution is described by a multi-layer scheme to solve the Richards equation for vertical unsaturated flow

under the effect of root uptake (de Rosnay et al., 2002; Campoy et al., 2013). The hydraulic conductivity and diffusivity depend15

on soil moisture following the Van Genuchten (1980) model; the required parameters are taken from (Carsel and Parrish, 1988),

and depend on the dominant soil texture in each grid-cell, based on the 1° × 1° texture map by Zobler (1986). The 2-m soil

column is divided into 11 layers, with thickness increasing geometrically with depth,while the saturated hydraulic conductivity

exponentially decreases with depth, to account for increased compaction and reduced bioturbation (Beven and Kirkby, 1979).

The precipitation rate and the soil hydraulic conductivity govern the partitioning between surface runoff and soil infiltration,

which involves a time splitting procedure inspired from Green and Ampt (1911) to describe the propagation of the wetting

front. The second contribution to total runoff is gravitational drainage at the bottom of the soil.

The routing module (Polcher, 2003; Ngo-Duc et al., 2005; Guimberteau et al., 2012) calculates the daily discharge in each5

grid-cell and to the ocean. Streamflow routing relies on a series of linear reservoirs along the drainage network, derived from

a 0.5° resolution data set (Vörösmarty et al., 2000). The routing scheme also includes a floodplain/swamp parameterization

(d’Orgeval et al., 2008), recently improved by Guimberteau et al. (2012) for the Amazon basin, by introducing a new flood-

plain/swamp map. The simulation of the hydrology by the model ORCHIDEE has been widely tested over the Amazon basin

and its catchments (Guimberteau et al., 2012; Getirana et al., 2014; Guimberteau et al., 2014).10
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Location Station River Latitude Longitude Area (km2)
Name Abbreviation Name Abbreviation

MAIN Óbidos OBI Amazonas AMAZ -1.95 -55.30 4,680,000

SOUTH

Fazenda Vista Alegre FVA Madeira MAD -4.68 -60.03 1,293,600
Guajará-Mirim GMIR Mamoré MAM -10.99 -65.55 532,800
Itaituba ITA Tapajós TAP -4.24 -56.00 461,100
Altamira ALT Xingu XIN -3.38 -52.14 469,100

WEST
Tamshiyacu TAM Upper Solimões UPSO -4.00 -73.16 726,400
Lábrea LAB Purus PUR -7.25 -64.80 230,000
Gavião GAV Juruá JUR -4.84 -66.85 170,400

NORTH Caracaraí CARA Branco BRA +1.83 -61.08 130,600

Table S1. List of the gauging stations for the studied catchments. Sources: SO HYBAM (Observation Service of the Geodynamical, hy-
drological and biogeochemical control of erosion/alteration and material transport in the Amazon, Orinoco and Congo basins, Cochonneau
et al., 2006).
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Basin Model
Relative bias (%) Correlation coefficient NRMSE (%)

Q ET Q ET Q ET

MAIN AMAZ

INLAND-DGVM -22.4 -1.8 - 0.60 - 14.1

LPJmL-DGVM -21.9 +1.9 0.77 0.55 36.6 25.0

ORCHIDEE -5.9 -4.6 0.91 0.58 14.1 17.2

SOUTH

MAD

INLAND-DGVM -28.3 +0.2 - 0.89 - 13.6

LPJmL-DGVM -2.2 -9.5 0.89 0.83 33.5 28.9

ORCHIDEE -5.5 -1.7 0.99 0.88 20.2 15.2

MAM

INLAND-DGVM -60.9 +0.92 - 0.99 - 15.0

LPJmL-DGVM +14.0 -14.8 0.73 0.91 47.4 30.6

ORCHIDEE -22.2 -3.0 0.91 0.98 43.4 18.0

TAP

INLAND-DGVM +10.5 -3.0 - 0.02 - 13.4

LPJmL-DGVM +25.1 -6.8 0.90 0.45 53.9 34.0

ORCHIDEE +16.6 -3.3 0.96 0.11 47.5 11.5

XIN

INLAND-DGVM +47 -1.9 - 0.17 - 14.9

LPJmL-DGVM +59.1 -5.9 0.83 -0.01 66.6 34.5

ORCHIDEE +34.1 -4.4 0.94 0.31 46.1 12.6

WEST

UPSO

INLAND-DGVM -57.4 +2.2 - 0.32 - 22.9

LPJmL-DGVM -45.2 -0.9 0.93 0.87 86.0 18.5

ORCHIDEE -17.2 -10.0 0.96 0.31 23.9 25.5

PUR

INLAND-DGVM +9.3 +2.6 - 0.83 - 9.8

LPJmL-DGVM +18.6 +1.7 0.86 0.27 39.3 24.0

ORCHIDEE +15.8 -0.9 0.96 0.79 31.6 10.1

JUR

INLAND-DGVM +9.3 -0.05 - 0.86 - 9.3

LPJmL-DGVM +10.2 +7.3 0.89 0.02 29.7 17.0

ORCHIDEE +39.4 -4.1 0.96 0.82 40.1 10.4

NORTH BRA

INLAND-DGVM +47.1 +17.1 - 0.74 - 21.0

LPJmL-DGVM +53.3 +12.5 0.99 0.06 51.3 33.1

ORCHIDEE +69.3 +10.9 0.96 0.61 58.8 15.0

Table S2. Bias (%), correlation and NRMSE (Normalized Root Mean Square Error) (%) against the observations, of discharge and ET, for
each catchment, for HIST period. Observed discharge comes from SO HYBAM and ET is estimated by the product of Jung et al. (2010).
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Figure S1. Deforested area (%) in each 25 x 25 km2 for the LCC scenarios LODEF (a and d), HIDEF (b and e) and EXDEF (c and f).
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Figure S2. Decrease of forest fraction for the three LCC scenarios (for the two time periods) compared with the NODEF scenario in 2009

over the Amazon basin. Grey colour indicates no change of forest fraction.
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5

Figure S3. Seasonal change in ET (mmmonth–1) due to deforestation combined with climate change (EXDEF) simulated by the three

LSMs over the Amazon basin and its catchments, averaged over the two future periods. For a given LSM and period, the shaded area defines

the envelope enclosing the range with plausible climate futures.

12



(a) Madeira (b) Tapajós225

Figure S4. For each GCM-forcing, monthly mean seasonalities of the water budget components (including the ET components) (mmd–1)
from the three LSMs (rows) and for each NODEF and LCC scenarios (columns) over (a) the Madeira and (b) the Tapajós catchments.230
The variables of the water budget are: precipitation (P), runoff (R) and evapotranspiration (ET). The variables of the ET components are:
transpiration (Tr), soil evaporation (Esoil) and evaporation of canopy interception (Ecanop).
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