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Abstract. Accurate representation of the real spatio-
temporal variability of catchment rainfall inputs is currently
severely limited. Moreover, spatially interpolated catchment
precipitation is subject to large uncertainties, particularly in
developing countries and regions which are difficult to ac-
cess. Recently, satellite-based rainfall estimates (SREs) pro-
vide an unprecedented opportunity for a wide range of hy-
drological applications, from water resources modelling to
monitoring of extreme events such as droughts and floods.

This study attempts to exhaustively evaluate – for the first
time – the suitability of seven state-of-the-art SRE prod-
ucts (TMPA 3B42v7, CHIRPSv2, CMORPH, PERSIANN-
CDR, PERSIAN-CCS-Adj, MSWEPv1.1, and PGFv3) over
the complex topography and diverse climatic gradients of
Chile. Different temporal scales (daily, monthly, seasonal,
annual) are used in a point-to-pixel comparison between pre-
cipitation time series measured at 366 stations (from sea level
to 4600 m a.s.l. in the Andean Plateau) and the corresponding
grid cell of each SRE (rescaled to a 0.25◦ grid if necessary).
The modified Kling–Gupta efficiency was used to identify
possible sources of systematic errors in each SRE. In addi-
tion, five categorical indices (PC, POD, FAR, ETS, fBIAS)
were used to assess the ability of each SRE to correctly iden-
tify different precipitation intensities.

Results revealed that most SRE products performed bet-
ter for the humid South (36.4–43.7◦ S) and Central Chile

(32.18–36.4◦ S), in particular at low- and mid-elevation
zones (0–1000 m a.s.l.) compared to the arid northern re-
gions and the Far South. Seasonally, all products per-
formed best during the wet seasons (autumn and win-
ter; MAM–JJA) compared to summer (DJF) and spring
(SON). In addition, all SREs were able to correctly iden-
tify the occurrence of no-rain events, but they presented
a low skill in classifying precipitation intensities dur-
ing rainy days. Overall, PGFv3 exhibited the best per-
formance everywhere and for all timescales, which can
be clearly attributed to its bias-correction procedure using
217 stations from Chile. Good results were also obtained
by the research products CHIRPSv2, TMPA 3B42v7 and
MSWEPv1.1, while CMORPH, PERSIANN-CDR, and the
real-time PERSIANN-CCS-Adj were less skillful in repre-
senting observed rainfall. While PGFv3 (currently available
up to 2010) might be used in Chile for historical analy-
ses and calibration of hydrological models, the high spatial
resolution, low latency and long data records of CHIRPS
and TMPA 3B42v7 (in transition to IMERG) show promis-
ing potential to be used in meteorological studies and water
resource assessments. We finally conclude that despite im-
provements of most SRE products, a site-specific assessment
is still needed before any use in catchment-scale hydrological
studies.
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1 Introduction

Accurate representation of the real spatio-temporal variabil-
ity of catchment rainfall inputs is currently severely limited.
Traditionally, precipitation (P ) data are collected through
ground-based observations using rain gauges and/or weather
radars. Catchment-representative rainfall is usually obtained
by interpolation of point rainfall measured at rain gauges
(e.g. Rogelis and Werner, 2013; Verworn and Haberlandt,
2011; Zhang and Srinivasan, 2009; Kurtzman et al., 2009).
However, even in densely monitored regions, precipitation
data are highly uncertain (Tian and Peters-Lidard, 2010;
Woldemeskel et al., 2013). In developing countries and re-
gions which are difficult to access – such as high elevation ar-
eas – there is usually only a sparse network of meteorological
stations available, and therefore the obtained spatial rainfall
fields are subject to even larger uncertainties (Woldemeskel
et al., 2013).

To overcome some of the aforementioned limitations of
ground-based rainfall measurements, space-based estimates
of precipitation provide a promising alternative source. Sev-
eral near-global high-resolution satellite-based rainfall es-
timates (SREs) have recently become operational, includ-
ing the Precipitation Estimation from Remotely Sensed In-
formation using Artificial Neural Networks (PERSIANN;
Sorooshian et al., 2000; Hsu et al., 1997), the PERSIANN-
Cloud Classification System estimation (PERSIANN-CCS;
Hong et al., 2004), the National Oceanic and Atmospheric
Administration (NOAA) Climate Prediction Center mor-
phing technique product (CMORPH; Joyce et al., 2004;
Janowiak et al., 2005), and the Tropical Rainfall Measur-
ing Mission (TRMM) Multi-satellite Precipitation Analy-
sis products (TMPA; Huffman et al., 2007), among others.
The instruments on-board the satellites include passive mi-
crowave (PMW), visible (VIS) and infrared (IR) sensors, and
meteorological radar. Recent advances in sensor technology
and methods for merging various data sources (e.g. geosta-
tionary thermal infrared, passive microwave, radar, and infor-
mation from the Global Telecommunication System; GTS)
have led to a continuous improvement of temporal and spa-
tial resolution of these precipitation products (e.g. Kidd et al.,
2009).

Satellite estimates of precipitation have received different
names and acronyms in the literature: satellite precipitation
estimates (SPEs; Scofield and Kuligowski, 2007), satellite-
based rainfall estimates (SRFEs; Thiemig et al., 2012), satel-
lite quantitative precipitation estimates (SQPEs; Lee et al.,
2015), satellite rainfall estimates (SREs; Abera et al., 2016),
and satellite precipitation products (SPPs; Maggioni et al.,
2016; Serrat-Capdevila et al., 2013). Here, we will use SRE
to name satellite-based rainfall estimates throughout the text.

The emergence of the aforementioned near-global and
high-resolution SREs opens up new possibilities for ap-
plications in data-scarce or ungauged regions. However,
SRE products need evaluation and often calibration before

any use in hydrological applications. Recently, Maggioni
et al. (2016) published a review on SRE accuracy dur-
ing the TRMM-Era, evaluating TMPA 3B42 (research and
real-time products), CMORPH, GSMAP, PERSIANN, and
PERSIANN-CCS. They found that topography, seasonality,
and climate impacted on the SRE’s performance, especially
in probability of detection and bias. Tian and Peters-Lidard
(2010) studied uncertainties in SRE, by computing the vari-
ance from an ensemble of six different TRMM datasets. They
found that SREs are more reliable over areas with strong
convective precipitation and flat surfaces, such as the trop-
ical oceans and South America. Dinku et al. (2010) evalu-
ated CMORPH and two TMPA products (3B42 and 3B42RT)
for mountainous regions of Africa and South America. Both
products underestimated the occurrence and amount of rain-
fall which they attributed to the complex terrain and oro-
graphic rain process. Scheel et al. (2011) compared TMPA
3B42v6 estimates with rain gauges in the regions of Cuzco
(Peru) and La Paz (Bolivia). They detected large biases in the
estimation of daily precipitation amounts. The occurrence of
strong precipitation events was well represented but their in-
tensities were underestimated. In addition, TMPA estimates
for La Paz showed high false alarm ratios. Mantas et al.
(2015) validated the research 3B42v7 and the near real-time
3B42RT for the Peruvian Andes of similar complex topogra-
phy against in situ data. Results also showed a strong regional
variability due to different climatic and topographic features.
Thiemig et al. (2012) compared six SREs against rain gauge
data over four African river basins. They found that SREs
showed higher performance over the tropical wet and dry
zone compared to semiarid mountainous regions, low accu-
racy in detecting heavy rainfall events over semiarid areas,
general underestimation of heavy rainfall events, and overes-
timation of the number of rainy days in the tropics. Demaria
et al. (2011) used an object-based verification method to ex-
plore the existence of systematic errors for three SREs in
South America (La Plata River basin): TRMM, CMORPH,
and PERSIANN. They found that PERSIANN underesti-
mated the observed average rainfall rate and maximum rain-
fall, CMORPH overestimated the average rainfall rate while
the maximum rainfall was slightly underestimated, and the
average rainfall rate and volume provided by TRMM corre-
lated well with ground observations, whereas the maximum
rainfall was systematically overestimated. In general, there
does not seem to exist a single SRE product that performs
best always and everywhere. Therefore, the performance of
each SRE needs to be assessed for each individual case study.
Furthermore, there is little guidance on which performance
criteria to use in evaluating SRE products (e.g. Hossain and
Huffman, 2008).

Nevertheless, climate and hydrological studies in data-
sparse regions can benefit from the spatial coverage and grid
structure of SREs to drive hydrological simulations for water
resources management (e.g. Tobin and Bennett, 2014;
Meng et al., 2014; Xue et al., 2013; Li et al., 2012;
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Khan et al., 2011; Hong et al., 2009; Su et al., 2008;
Thiemig et al., 2013; Xue et al., 2013) and monitoring
of floods (e.g. Werren et al., 2016; Hong et al., 2007) and
droughts (e.g. Tao et al., 2016; AghaKouchak et al., 2015;
Zhang and Jia, 2013; Naumann et al., 2012). Reliable
information on the spatio-temporal variability of rainfall
is also one of the main factors to achieve food security, in
particular in data-scarce regions (Kang et al., 2009; Verdin
et al., 2005).

Notwithstanding all the recent improvements in SREs,
there are still some issues that need to be addressed before
reaching its full potential (Tobin and Bennett, 2014). Several
researchers have found that satellite products fail in capturing
certain types of precipitation events, have important biases,
and present false detection of precipitation (e.g. Gebregior-
gis and Hossain, 2013; Thiemig et al., 2012; Ebert et al.,
2007). When SRE products are used to drive hydrological
models, the aforementioned errors are propagated in a non-
linear way to simulated streamflows (see e.g. Bisselink et al.,
2016; Nikolopoulos et al., 2010; Fekete et al., 2004). In the
worst case, such simulations may lead to wrong conclusions
and poor management decisions with potentially devastat-
ing societal consequences. In addition, different hydrological
applications, such as drought monitoring, flood forecasting,
water resources management, or allocation of long-term wa-
ter rights, require precipitation at very different timescales,
ranging from hourly to seasonal (Tobin and Bennett, 2014).
Also, there is a clear need to better understand how hydro-
logical simulations forced by satellite-derived data depend
on the climatological regime and timescale used for simula-
tions (see e.g. Gebregiorgis and Hossain, 2013; Nikolopoulos
et al., 2010; Tobin and Bennett, 2014).

In the last decade, droughts of unusual severity have af-
fected the Chilean territory, both because of their intensity
and multi-annual duration (Boisier et al., 2016). This is con-
sistent with climate change projections for that region, which
indicate central–southern Chile as a global hotspot for in-
creased drought frequency, with likely water security issues
in this region (Prudhomme et al., 2014). On the other hand,
flood events have a relatively normal occurrence in Chile
(Müller et al., 2011) and some particularly intense events
have affected the country in recent years. Considering the
significant socio-economic costs of extreme water-related
hazards (Kundzewicz et al., 2008; Mirza, 2003) we chose the
mountainous Chilean territory as case study, due to the pres-
ence of extreme elevations (0–6893 m a.s.l.) and its heteroge-
neous hydroclimatic conditions (hyperarid in the north and
extremely wet in the south). Further, there are few climate
monitoring stations above 1500 m a.s.l. The present study at-
tempts to exhaustively compare – for the fist time – seven
state-of-the-art SRE products against ground-based measure-
ments in this data-scarce and complex mountainous region,
in order to provide guidelines about suitable SRE products
for future hydrological applications. Spatio-temporal charac-
teristics of different SRE products are compared against that

of existing rain gauge data, by using different continuous and
categorical performance measures. In particular, this study
will address the following research questions:

1. What is the overall performance of each SRE?

2. Which SRE performs best across the topographic and
climate gradient in Chile?

3. Which SRE performs best for different timescales
(daily, monthly, seasonal, annual)?

4. How does the accuracy of a given SRE change for dif-
ferent precipitation intensities?

5. When a SRE does not capture the observed precipita-
tion, is it due to a misrepresentation of the shape, mag-
nitude, variability or all the previous properties of the
precipitation time series?, and

6. Is there any SRE that performs best compared to all the
others, everywhere and for all timescales?

Results of this study aim at increasing our knowledge
about the suitability of different SRE estimates to charac-
terize the spatio-temporal distribution of precipitation across
the climatically and topographically diverse Chilean terri-
tory, as a cost-effective complement to ground-based mea-
surement networks in this data-scarce region. In addition,
findings of this study aim at providing feedback to the de-
velopers of different SRE products for potential use in future
releases.

The article is organized as follows: Sect. 2 presents the
study area and datasets, with Sect. 3 describing the methodol-
ogy used to compare satellite products against ground obser-
vations. Numerical and graphical results are shown in Sect. 4,
whereas Sect. 5 provides an in-depth discussion in the light
of the wider literature. We present concluding remarks in
Sect. 6.

2 Study area and datasets

2.1 Study area

The continental area of Chile has more than 4000 km of lat-
itudinal extension, from 17.50 to 66.42◦ S, bounded by the
Pacific Ocean to the west (∼ 76◦W) and by the Andes moun-
tain range in the east (∼ 66◦W). Four main morphological
units condition the existence of 11 different types of cli-
mate (from hot dessert to polar/tundra) and associated veg-
etation: Coastal Plains, Coastal Mountains, Intermediate De-
pression, and the Andes, with elevations ranging from sea
level to 6893 m a.s.l. at the Ojos del Salado volcano. Fig-
ure 1 shows the location of the study area, including a dig-
ital elevation model and main river basins (a), mean an-
nual precipitation (b), and temperature (c), and the 11 cli-
mate types identified based on Köppen classification. The
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Figure 1. Study area. From left to right: (a) digital elevation model (Jarvis et al., 2008), main Chilean basins, and location of 289 selected
rain gauge; (b) mean annual precipitation (Hijmans et al., 2005); (c) mean annual temperature (Hijmans et al., 2005); and (d) climate zones
based on Köppen classification.

main factors affecting the climate of the Chilean territory
are the latitude, topography, and the oceanic influence com-
ing from the long Pacific Ocean (INE, 2015). The north-
ern part of Chile is characterized as hyperarid/arid/semiarid,
with extremely low precipitation and high temperatures;
while abundant precipitation is observed in the south, reach-
ing amounts of up to 5000 mm yr−1 with lower tempera-

tures (Valdés-Pineda et al., 2014). The four traditional sea-
sons of the southern hemisphere are present in Chile: autumn
(MAM), winter (JJA), spring (SON), and summer (DJF),
with the wet season occurring predominantly during win-
ter in most of the central–southern territory, during summer
in the northern regions of Tarapacá and Antofagasta (Boli-
vian winter), and no clearly defined dry season in the south-
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Figure 2. Number of rain gauges in Chile used in the GPCC dataset
(Schamm et al., 2015).

ernmost part of Chile (INE, 2015). An exhaustive descrip-
tion and references about the type of precipitations present
in Chile and the global patterns that influence its interannual
variability can be found in Valdés-Pineda et al. (2014).

To evaluate the performance of SREs, five major macrocli-
matic zones in Chile were selected, as shown in Fig. 1: (i) Far
North (17.50–26.00◦ S), (ii) Near North (26.00–32.18◦ S),
(iii) Central Chile (32.18–36.40◦ S), (iv) South (36.40–
43.70◦ S), and (v) Austral/Far South (43.70–56.00◦ S),
slightly adapted from DGA (2016).

2.2 Datasets

2.2.1 Rain gauges

Time series of observed precipitation were downloaded from
an updated dataset of 781 rain gauges provided by the Cen-
ter of Climate and Resilience Research (CR2), with daily
data from 1 January 1940 to 31 December 2015 (http://www.
cr2.cl/recursos-y-publicaciones/bases-de-datos/). The origi-
nal raw data were provided by the Chilean Water and Meteo-
rological agencies (DGA and DMC, respectively). However,
in order to use only stations with a long record of observa-
tions but also to ensure a minimum number of stations rep-
resentative of the Chilean topography and climatic zones, we
selected only rain gauges with less than 2 % of missing data
during the period January 2003–December 2010, which re-
sulted in 366 stations within our study area (see Sect. 3.1).
Figure 1a shows the spatial distribution of the selected rain
gauges. Daily time series in all the 781 stations analysed
in this work can be found in the Supplement (Zambrano-
Bigiarini et al., 2016).

It is worth mentioning that several SREs use observed
precipitation data from the Global Precipitation Climatol-
ogy Centre (https://www.dwd.de/EN/ourservices/gpcc/gpcc.
html, Schneider et al., 2008) to adjust their satellite-only esti-
mates. Here we analysed the number of precipitation gauges

from Chile used in the GPCC dataset. Figure 2 shows that
this number has fluctuated over time, reaching a maximum
of 146 in the period 1969–1995, dropping to a value of
around 30 stations in the last two decades, which is clearly
not enough to capture the spatial variability of rainfall in the
mountainous Chilean territory. Moreover, the spatial distri-
bution of the gauges used to create the GPCC for Chile has
also observed a strong contraction (Fig. 3), leaving a large
area of the territory without any observation, which subse-
quently increases the estimation errors of the final product.

2.2.2 Satellite-based data

As the most suitable SRE product found in this work will
be used in the future for hydrological modelling in selected
basins, we focused only on SREs with long data records and
good quality data over the Chilean territory, without giving
any priority to low-latency (near) real-time products. In addi-
tion, comparability of (near) real-time products and station-
based calibrated research products is low (Habib et al., 2009;
Huffman et al., 2007). Therefore, seven of the most state-
of-the-art SREs with at least 10 years of daily estimates and
relatively high spatial resolution are compared against ob-
served precipitation (i.e. rain gauges). A brief description of
each SRE with some previous applications is given in the
next paragraphs, but the interested reader can find more in-
formation in the references provided for each product.

CMORPH

The NOAA Climate Prediction Center (CPC) MORPHing
technique (Joyce et al., 2004) provides quasi-global esti-
mates of precipitation at relatively high spatial resolution
(0.07◦× 0.07◦ and 0.25◦× 0.25◦) and frequent temporal res-
olution (half-hourly and 3-hourly), from 60◦ N to 60◦ S.
CMORPH estimates are based solely on PMW data (Joyce
et al., 2004; Janowiak et al., 2005) with IR imagery not used
to estimate precipitation but only to interpolate between two
PMW-derived rainfall intensity fields. CMORPH has been
reported to outperform other SRE products over the Aus-
tralian tropics (Ebert et al., 2007; Joyce et al., 2004), cen-
tral United States (Behrangi et al., 2011) and Europe (Kidd
et al., 2012). As many SRE products that do not rely on rain-
fall gauge data, CMORPH tends to overestimate the amount
of precipitation during wet periods (Behrangi et al., 2011).
Pereira Filho et al. (2010) compared CMORPH rainfall es-
timates over South America (Amazon Basin), at 8 km spa-
tial resolution, with available rainfall observations at daily,
monthly, and yearly timescales. Their results show that the
correlation between satellite-derived and gauge-measured
precipitation increases with the accumulation period, from
daily to monthly, especially during the rainy season. In this
work we used the 3 h observations at a spatial resolution
of 0.25◦ in NetCDF format, directly downloaded for the
Chilean study area from the http://rda.ucar.edu/ website.
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PERSIANN-CDR

The PERSIANN algorithm uses an artificial neural network
(ANN) model to estimate precipitation using IR. Its accu-
racy is improved by adaptive adjustment of the network pa-
rameters using rainfall estimates from a passive microwave
sensor. At the pixel level, the algorithm fits the mean and
standard deviation of the brightness temperature of a pixel
and the adjacent pixel’s temperature texture to the calcu-
lated precipitation rate (Hsu et al., 1997). A new product
named The PERSIANN-CDR (for Climate Data Record)
was developed by applying the PERSIANN algorithm to
Gridded Satellite Infrared Data (GridSat-B1) and then bias-
correcting estimations using 2.5◦ monthly GPCP precipita-
tion data (Ashouri et al., 2015). This product provides 30
years of near-global (60◦ S–60◦ N) daily precipitation data
at 0.25◦ spatial resolution (which is about 25 km at the equa-
tor). Mei et al. (2014) compared measured precipitation data
in mountainous regions of the Italian Alps with PERSIANN-
CDR and found that the product slightly overestimated P
in regions with low rainfall and underestimated P in re-
gions with high rainfall. All the daily data for the study
area were downloaded from http://www.climatedatalibrary.
cl/SOURCES/.UCIrvine/.CHRS/.PERSIANN-CDR.

PERSIANN-CCS-Adj

PERSIANN-CCS (Hong et al., 2004) is an infrared-based
satellite estimation process, employing image processing
and pattern recognition techniques to develop a patch-
based cloud classification system (CCS). Combined with
an ANN model, hourly pixel precipitation intensity is esti-
mated globally at 0.04◦× 0.04◦ and accumulated daily. The
PERSIANN-CCS-Adj was developed especially for Chile
applying a non-parametric Quantile Mapping and Gaussian
Weighting (QM-GW) interpolation process to reduce the sys-
tematic biases existing in the daily PERSIANN-CCS dataset
over the country. In summary, rainfall amounts obtained from
456 rain gauges in the period 2009–2014 were used to con-
struct non-parametric cumulative density functions (CDFs)
for precipitation amounts during the four different seasons.
These observed CDFs were compared with the CDFs of the
PERSIANN-CCS over the same time period and then used to
correct the biases in the PERSIANN-CCS estimates based on
the nonparametric QM-GW approach. Using this climatolog-
ical bias correction, the PERSIANN-CCS-Adj provides his-
torical and real-time precipitation estimates in closer agree-
ment with the seasonal variation of observed precipitation.
A full description of the methodology and validation results
can be found in Yang et al. (2016). It should be noted that
PERSIANN-CCS-Adj is the only (near) real-time product
used in this work, and it was considered just because it was
especially developed for Chile.

3B42v7

The Tropical Rainfall Measuring Mission (TRMM) Multi-
satellite Precipitation Analysis (TMPA) is intended to pro-
vide a “best” estimate of quasi-global precipitation from a
wide variety of modern satellite-borne precipitation-related
sensors. Rainfall estimates are provided at relatively high
spatial resolution (0.25◦× 0.25◦) and 3-hourly time steps, in
both real and post-real time, to meet a wide range of research
needs (Huffman et al., 2007, 2010). This SRE combines IR
data from geosynchronous earth orbit (GEO) satellites with
four passive microwave (PMW) sensors, namely TRMM Mi-
crowave Imager (TMI), Special Sensor Microwave/Imager
(SSM/I), Advanced Microwave Sounding Unit-B (AMSU-
B), and the Advanced Microwave Scanning Radiometer-
EOS (AMSR-E). The TMPA products include the ver-
sion 6 (v6) and version 7 (v7) real-time products 3B42RT
(3B42RTv6 and 3B42RTv7), the 3-hourly research products
3B42 (3B42v6 and 3B42v7), the daily accumulated rainfall
product 3B42_daily (v6 and v7), and the monthly products
3B43 (3B43v6 and 3B42v7). The 3B42 algorithm is executed
in four steps: (1) PMW precipitation estimates are calibrated
and combined; (2) IR precipitation estimates are generated
using the calibrated PMW data; (3) both IR and PMW data
are then combined; and (4) rescaled on a monthly basis us-
ing two sources of rain gauge data: (i) the Global Precip-
itation Climatological Centre (GPCC) monthly rain gauge
analysis, and (ii) the Climate Assessment and Monitoring
System (CAMS) monthly rain gauge analysis, developed by
CPC (Huffman et al., 2007, 2010). The newest version of
TMPA 3B42v7 was released in June 2012, and recent stud-
ies show that 3B42v7 estimates improve upon 3B42v6 (e.g.
Chen et al., 2013). Today, after more than 17 years of data
collection, the instruments on TRMM were turned off on
8 April 2015, but the TMPA 3B42 product will continue
to be produced through early 2018 (https://pmm.nasa.gov/
data-access/downloads/trmm). In this work we only used
the 3B42_daily product, which was accumulated to monthly,
seasonal, or annual values depending on the analysis.

CHIRPSv2

The Climate Hazards Group InfraRed Precipitation with Sta-
tion data (CHIRPS version 2) is a global daily, pentadal,
and monthly precipitation product explicitly designed for
monitoring agricultural drought and global environmental
change over land (Funk et al., 2015). CHIRPS combines re-
motely sensed precipitation of geo-synchronous and polar-
orbiting satellites, from five different satellite products, with
more than 2000 station records to calibrate global Cold
Cloud Duration (CCD) rainfall estimates (Funk et al., 2015).
The product features a spatial resolution of 0.05◦ from
50◦ S to 50◦ N (across all longitudes) with a > 30-year fi-
nal monthly precipitation record (1981–present). The sta-
tion data from the near-real-time World Meteorological Or-
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ganization’s Global Telecommunication System (GTS) are
continuously used to update roughly every 2 days (a sta-
ble product is released every 3 weeks) and validate the re-
mote sensors using additional information (physiographic
and remotely sensed Earth energy emissions that correspond
to the location and intensity of precipitation) via moving-
window geostatistical regression (Funk et al., 2015). In sum-
mary, the CHIRPS process involves three main components:
(i) the 0.05◦ Climate Hazards group Precipitation clima-
tology (CHPclim Funk et al., 2015), (ii) the satellite-only
Climate Hazards group Infrared Precipitation (CHIRP), and
(iii) the station merging procedure. Even though the con-
tinuous development of CHIRPS is mainly in support of
drought-related issues in Africa (Climate Hazards Group,
2016), there are now other global applications available
(e.g. http://ewx.chg.ucsb.edu:8080/EWX/index.html, http://
chg.geog.ucsb.edu/tools/geowrsi/index.html) and also papers
that have looked at climate dynamics in South America (Cec-
cherini et al., 2015; Deblauwe et al., 2016).

MSWEPv1.1

In June 2016 a new global precipitation dataset was re-
leased, the Multi-Source Weighted-Ensemble Precipitation
(MSWEP) dataset providing data for the period 1979–2015
with a 3-hourly temporal and 0.25◦ spatial resolution (Beck
et al., 2017). It was specifically developed for hydrologi-
cal modelling with the aim to overcome shortages related
to the performance of satellite products in representing pre-
cipitation in mountainous, tropical, and snowmelt-driven re-
gions. It is based on different types of data sources as rain
gauge measurements, satellite observations as well as es-
timates from atmospheric models. The long-term mean of
MSWEP is based on the CHPclim dataset. Where available,
data are replaced by more accurate regional datasets. A cor-
rection for gauge under-catch and orographic effects is in-
troduced by inferring catchment-average P from streamflow
(Q) observations at 13 762 stations across the globe. The
temporal variability of MSWEP is determined by weighted
averaging of P anomalies from seven datasets; two based
solely on interpolation of gauge observations (CPC Unified
and GPCC), three on satellite remote sensing (CMORPH,
GSMaP-MVK, and TMPA 3B42RT), and two on atmo-
spheric model reanalysis (ERA-Interim and JRA-55). For
each grid cell, the weight assigned to the gauge-based es-
timates is calculated from the gauge network density, while
the weights assigned to the satellite- and reanalysis-based es-
timates are computed from their comparative performance at
the surrounding gauges. The MSWEP dataset was validated
at the global scale using the conceptual HBV light rainfall–
runoff model with five different precipitation datasets in 9011
catchments (< 50 000 km2) across the globe. MSWEP ob-
tained the highest daily correlation coefficient (R) among the
five P datasets for 60.0 % of the stations and a median R of
0.67 versus 0.44–0.59 for the other datasets and a median cal-

ibrated Nash–Sutcliffe efficiency (NSE) of 0.52 versus 0.29–
0.39 for other P datasets. In this study we used the version
1.1 of MSWEP, released on 2 August 2016.

PGFv3

The PGFv3 product is an improvement over the Prince-
ton University global meteorological forcing (PGF) dataset
(Sheffield et al., 2006). In brief, the PGF dataset merges
data from the National Centers for Environmental Prediction-
National Center for Atmospheric Research (NCEP-NCAR)
reanalysis (Kalnay et al., 1996) with the Global Precipita-
tion Climatology Project (GPCP; Adler et al., 2003), Tropical
Rainfall Measuring Mission (TRMM) Multisatellite Precipi-
tation Analysis (TMPA; Huffman et al., 2007), observation-
based datasets of precipitation, and the Climatic Research
Unit (CRU) precipitation dataset (Harris et al., 2013). To en-
sure adequate representation of rain day anomalies, a cor-
rection is applied by resampling daily precipitation data
to match the statistics of observation-based precipitation
datasets (CRU, GPCP). Downscaling from 2.0 to 1.0◦ uses
a Bayesian probability function considering the fraction of
wetted area using a higher-resolution dataset (GPCP). The
daily precipitation values are also bias-corrected by matching
the NCEP-NCAR monthly totals with the monthly values of
the CRU dataset. Additional improvements are described in
Chaney et al. (2014), performing a spatial downscaling from
1.0 to 0.25◦ resolution using bilinear interpolation involving
128 stations over Chile from the Global Surface Summary of
the Day Version 7 dataset archived at the National Climate
Data Center (GSOD, ftp://ftp.ncdc.noaa.gov/pub/data/gsod).
The version 3 of PGF used here is finally obtained by merg-
ing data on 217 local rain gauges (obtained from the Chilean
Water Agency – DGA) into the PGF using a Kalman filter
approach (Chaney et al., 2014; Peng et al., 2016), for the
period 1979–2010. As such, the spatial coverage is greatly
improved, as well as the statistical precipitation character-
istics (frequency, amount and extreme values) at different
temporal scales. The PGF is integrated into the Princeton
Latin American Flood and Drought Monitor – LAFDM (http:
//stream.princeton.edu/) and can be directly downloaded.

Comments on selected SREs

All the aforementioned SREs ingest some type of observed
precipitation data in the algorithm used to compute the rain-
fall estimates, except CMORPH. Among the SREs that use
observed precipitation data, we identified two groups: those
products that use mostly GPCC observed data to produce the
satellite estimates (PERSIANN-CDR, 3B42v7, CHIRPSv2,
MSWEPv1.1) and those SREs that use a specific set of
Chilean rain gauges to bias-correct their satellite estimates
(PGFv3 and PERSIANN-CCS-Adj).

Despite that some of the selected SRE products are avail-
able at sub-daily resolution (e.g. CMORPH and TMPA
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Table 1. Summary of satellite-based products providing (sub)daily data at a quasi-global scale.

Dataset Full name Latitudinal Spatial Temporal Temporal References
coverage resolution coverage resolutions

CMORPH NOAA Climate Prediction Center (CPC)
MORPHing technique

60◦ N–60◦ S 0.07◦,
0.25◦

Dec 2002–
present

3-hourly,
daily

Joyce et al. (2004); CPC-
NCEP-NWS-NOAA-USDC
(2011)

PERSIANN-CDR PERSIANN Climate Data
Record, Version 1 Revision 1

60◦ N–60◦ S 0.25◦ Jan 1983–
present

daily Sorooshian et al. (2014);
Ashouri et al. (2015)

PERSIANN-CCS-Adj Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks

50◦ N–50◦ S 0.04◦ Jan 2003–
present

daily Yang et al. (2016); Hong et al.
(2004)

3B42v7 TRMM Multi-satellite Precipitation Analysis research
product 3B42 Version 7

50◦ N–50◦ S 0.25◦ Jan 1998–
present

3-hourly,
daily

Huffman et al. (2007, 2010)

CHIRPSv2 Climate Hazards group Infrared Precipitation
with Stations Version 2.0

50◦ N–50◦ S 0.05◦ Jan 1981–
present

daily,
pentadal,
monthly

Funk et al. (2015)

MSWEPv1.1 Multi-Source Weighted-Ensemble
Precipitation Version 1.1

90◦ N–90◦ S 0.25◦ Jan 1979–
Dec 2014

daily Beck et al. (2017)

PGFv3 Princeton University Global Meteorological
Forcing Version 3

17◦ S–57◦ S 0.25◦ Jan 1979–
Dec 2010

daily Peng et al. (2016); Sheffield
et al. (2006)

Table 2. Classification of rainfall events based on its daily inten-
sity i. Modified for daily values from World Meteorological Orga-
nization (2008).

Rainfall event Intensity (i),
[mm d−1]

No rain [0, 1)
Light rain [1, 5)
Moderate rain [5, 20)
Heavy rain [20, 40)
Violent rain ≥ 40

3B42v7), in this study we follow Abera et al. (2016) and
only use the daily products for two main reasons: (i) there
are no time series of observed precipitation available at sub-
daily timescales with enough data length, and (ii) pointing
at future hydrological simulations for allocation of water re-
sources and drought monitoring tasks, the daily timescale is
suitable for capturing the temporal variation of streamflows
at basin scale. Table 1 provides a summary of the satellite-
based datasets, including their full names, and spatial and
temporal resolutions for the versions used in this study.

3 Assessment of precipitation products

3.1 Methodology for data comparison

Following Thiemig et al. (2012), a point-to-pixel analysis
was applied to compare time series of data observed at se-
lected rain gauges (red circles in Fig. 1a) to the correspond-
ing SRE pixel. A comparison at sub-basin spatial scales was
not carried out due to the lack of rain gauges in the upper An-
des, which would involve large uncertainties in any interpola-
tion based on existing point measurements. All SRE products

with a spatial resolution higher than 0.25◦ (i.e. PERSIANN-
CCS-Adj and CHIRPSv2) were upscaled to a unified grid
of 0.25◦, in order to enable consistent point-to-pixel compar-
isons. The upscaling procedure applied in this work consisted
in transferring values from the high-resolution raster cells to
each one of the 0.25◦ grid cells, by using bilinear interpo-
lation as implemented in the resample function of the raster
R package (Hijmans, 2016). Considering that the regridding
was applied at a daily timescale, where precipitation is as-
sumed to be a smoothly varying variable within each 0.25◦

grid cell, we consider the bilinear interpolation an adequate
technique with no or low impact on our results.

Daily precipitation events were classified and analysed
adapting the criteria defined by the World Meteorological
Organization (2008), as shown in Table 2, because the same
amount of rainfall falling with two different durations will
lead to different hydrological processes in a given catchment.
Daily observations at the 366 rain gauges (see Sect. 2.2.1)
and corresponding satellite estimates were accumulated into
monthly, seasonal (DJF, MAM, JJA, SON), and annual val-
ues, to assess the accuracy of each precipitation product at
different timescales. Based on the temporal availability of
satellite data (see Table 1), the evaluation period for this
study extends from January 2003 to December 2010.

3.2 Performance indices

An exhaustive evaluation of the seven SREs described in
Sect. 2.2.2 was carried out, using both continuous and cat-
egorical indices of model performance at different tempo-
ral scales. Continuous indices are described in Appendix A,
and they include the modified Kling–Gupta efficiency (Kling
et al., 2012; Gupta et al., 2009) along with its three individual
components. The modified Kling–Gupta efficiency (KGE′,
dimensionless) is a relatively new index to compare observa-
tions with estimations, which is used here to decompose the
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total performance of the SREs into a linear correlation (r ,
Eq. A2), bias (β, Eq. A3) and a variability (γ , Eq. A4) term.
We selected the KGE′ because forecasting and hydrologi-
cal applications generally require that rainfall estimates are
able to reproduce the temporal dynamics (measured by r) as
well as preserving the volume and distribution of precipita-
tion (measured by β and γ , respectively). The optimum value
of KGE′, r , β, and γ is 1.0. The Pearson product-moment
correlation coefficient r is a measure of the linear correla-
tion between the observations and satellite values, ranging
from +1 (perfect positive correlation) to −1 (perfect nega-
tive correlation), with zero values indicating absence of lin-
ear correlation. The main drawback of r is its inability to de-
tect changes in location and scale between the two variables.
The β measures the average tendency of the satellite values
to be larger (β > 1, overestimation) or smaller (β < 1, under-
estimation) than their observed counterparts. The γ indicates
whether the dispersion of the satellite estimates is higher or
lower compared to the observations. Using CVs /CVo for the
computation of the variability ratio, instead of using only the
σs/σo, we ensure that the bias and variability ratios are not
cross-correlated (Kling et al., 2012).

Most of the studies assessing SREs against ground ob-
servations separate rainfall events into no-rain and rain to
evaluate the skill of each SRE in reproducing such events
(e.g. Guo et al., 2015; Blacutt et al., 2015; Ward et al., 2011;
Scheel et al., 2011). Here, we further subdivide daily rainfall
in five types of events, which are used to classify precipi-
tation based on its daily intensity, ranging from no rain (dry
day;< 1 mm d−1) to violent rain (> 40 mm d−1), as shown in
Table 2. Five categorical indices, described in Appendix B,
were used to assess the ability of each satellite product to
correctly identify the five aforementioned categories/classes
of daily rainfall events (see Table 2). The percent correct
(PC, Eq. B1) is a simple measure that indicates the percent
of events and no-events that are correctly identified, rang-
ing from zero (absence of (no-)events correctly identified) to
one (all (no-)events correctly identified). The PC is not useful
for low-frequency (extreme) events, because misleading high
values of the score are usually obtained due to the high fre-
quency of correct negative (CN) events. This shortcoming is
compensated for by the next three scores. The probability of
detection (POD, Eq. B2, also known as hit rate) and the false
alarm ratio (FAR, Eq. B3) measure the fraction of events that
are correctly and incorrectly identified by the satellite prod-
uct, respectively. Both indices, POD and FAR, range from 0
to 1, but 1 is the optimum value for POD while a FAR of 0
indicates that no events are incorrectly identified by the SRE.

The equitable threat score (ETS, Eq. B4), also known as
Gilbert’s skill score (GSS), measures the fraction of observed
and/or estimated events that are correctly predicted, adjusted
by the frequency of hits that would be expected to occur
simply by random chance (for example, it is easier to cor-
rectly match rain occurrence in a wet climate than in a dry
climate). ETS ranges from −1/3 to 1, with 1 being its op-

timal value and scores below 0 indicating that the chance
forecast of the event should be preferred over the actual un-
skilled SRE value. The frequency bias (fBias, Eq. B5) com-
pares the number of events identified by the satellite product
to the number of events that actually occurred at the corre-
sponding rain gauge. It is commonly referred to as bias when
there is no possible confusion with other meanings of the
term (not in this article). The optimal value of fBias is 1.0
(unbiased), i.e. the event was registered by the SRE the same
number of times than at the rain gauge, with fBias> 1 in-
dicating an overestimation of the occurrences by the SRE,
whereas fBias< 1 reveals that the event was identified by
the SRE fewer times than it was actually observed at the rain
gauge.

A well-performing satellite product should have a value
of FAR close to zero, and values of KGE′, r , β, γ , PC,
POD, ETS, and fBias close to 1. All the aforementioned in-
dices of SRE performance were computed based on Jolliffe
and Stephenson (2003), using the R environment 3.3.1 (R
Core Team, 2015) and the raster (Hijmans, 2016), hydroGOF
(Zambrano-Bigiarini, 2016a), and hydroTSM (Zambrano-
Bigiarini, 2016b) R packages.

3.3 Uncertainties in the verification results

Rainfall measurements using standard gauges and different
types of tipping-bucket and weighing gauges have a lim-
ited spatial support and often cannot accurately determine
precipitation in a certain location, because of the impact of
wind, flawed installation, wetting losses, evaporation, and
other random and systematic errors (e.g. Sevruk et al., 2009;
Ren and Li, 2007; Sevruk and Chvíla, 2005; Legates and De-
Liberty, 1993). Other uncertainties related to precipitation
in high-elevation areas might be attributed to missing snow
monitoring equipment (i.e. snow scale or pillow to determine
the snow–water equivalent), reducing accuracy of precipita-
tion measurements during the winter season. Finally, station
density might not be high enough to capture the spatial vari-
ability of areal rainfall (e.g. Emmanuel et al., 2015), and ad-
ditional uncertainties arise from the comparison of the satel-
lite snapshot data to the total accumulated over a certain pe-
riod in the rain gauge (Ebert, 2007). Therefore, there are large
uncertainties inherent in the ground data used for verification
(Scheel et al., 2011), and a method to appropriately take into
account errors in the ground observations to then quantify
uncertainties in the verification results is still a challenge for
the scientific community (Ebert, 2007). We agree with Scheel
et al. (2011) in that validated SRE products should not re-
place gauge-based observations but provide complementary
information.
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Figure 3. Spatial distribution of the maximum number of rain
gauges used in Chile in GPCC over the full period and the maxi-
mum number of rain gauges used in the last two decades (Schamm
et al., 2015).

4 Results

4.1 Spatial variability of SRE performance

We computed spatial maps showing the values of continu-
ous indices of SRE performance for each of the 366 selected
stations and for different timescales (daily, monthly, annual,
four seasons), resulting in 196 different figures of the Chilean
territory (7 SREs× 7 timescales× 4 indices of model per-
formance). We put special emphasis on showing SRE per-
formance at different elevation zones and latitudes. Figure 4
is one example of the aforementioned maps, showing the
KGE′ with CHIRPSv2 estimates compared against observed
precipitation at a monthly timescale. It showed a good per-
formance (KGE′> 0.75) in low and mid-elevation areas (0–
1000 m a.s.l.) of Central and Southern climate zones (32.18–
43.70◦ S) and acceptable performance in the Near North area
(26.0–32.18◦ S). However, it showed a poor performance
(KGE′< 0) for the high lands of the Andean Plateau (Al-
tiplano), specifically between 2000 and 3500 m a.s.l. To dis-

entangle the origin of differences between observed precipi-
tation and CHIRPSv2 estimates, Figs. S1 to S3 (in the Sup-
plement) show the spatial variation of the individual compo-
nents of monthly KGE′. First, Fig. S1 showed a good linear
correlation (r ≥ 0.75) in most of the Chilean territory, with
a few exceptions in the Far North area (17.5–26.0◦ S). Sec-
ondly, Fig. S2 revealed that in most of the territory the satel-
lite estimates present a low bias (0.75≤ β ≤ 1.25), with the
exception of stations located in the Far North, presenting a
large overestimation. In particular, over the Andean Plateau
satellite estimates were as high as 94 times the observed pre-
cipitation (note that average annual values for those stations
is, in general, lower than 1 mm). Finally, Fig. S3 showed
that CHRIPS slightly underestimated the variability of ob-
served monthly precipitation (0.75≤ γ ≤ 1) of almost all
the stations, with larger values only at the high-elevation
zones (2000–4600 m a.s.l.) of the Far North. Figures simi-
lar to Figs. 4 and S1 to S3 can be found on the Supplement
(Zambrano-Bigiarini et al., 2016) for the other six SREs and
timescales.

As a way of summarizing the findings for different macro-
climatic areas, Fig. 5 shows box plots with the modified
Kling–Gupta efficiency between different monthly SREs and
their corresponding observations. It clearly illustrates that the
best performance for all SREs but CMORPH was obtained
in the South (36.4–43.7◦ S), followed by the Central (32.18–
36.4◦ S) and Austral areas (43.7–56◦ S), with PGFv3 as the
best product followed closely by CHIRPSv2, MSWEPv1.1,
and 3B42v7, while CMORPH presented the lowest median
performance in those climatic areas. On the other hand,
all SREs except PERSIANN-CDR presented an acceptable
performance in the Near North (26.0–32.18◦ S) and a poor
performance in the Far North (17.5–26.0◦ S). Similarly to
the previous figure, but focusing on elevation zones instead
of macro-climatic areas, Fig. 6 shows that the best perfor-
mance for all SREs was obtained in low- and mid-elevation
zones (0–1000 m a.s.l.). On the other hand, all SREs except
PGFv3 performed poorly for the higher elevations, in partic-
ular between 2000 and 3500 m a.s.l. The best SRE product
was PGFv3, followed closely by CHIRPSv2, 3B42v7, and
MSWEPv1.1, while CMORPH presented the lowest median
performance in those elevation areas (Fig. 6). Figure 11 com-
pares monthly and annual time series of precipitation, as es-
timated by the seven SRE products used in this work against
the observed values at the corresponding rain gauge for se-
lected sites in the Far North, Near North, Centre, South, and
Far South climate macrozones.

4.2 Temporal variability of SRE performance

Figures 7–10 show box plots summarizing the modified
Kling–Gupta efficiency (KGE′) and its individual compo-
nents of performance (r , β, γ ) for each satellite product and
for different timescales.
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Figure 4. Modified Kling–Gupta efficiency (KGE′) between monthly satellite estimations (CHIRPSv2) and observations at the corresponding
grid cell, for six different elevation zones: [0, 200), [200, 500), [500, 1000), [1000, 2000), [2000, 3500), [3500, 4560) m a.s.l. Colours for
KGE′ range from intense red to dark green, representing very poor and optimum performance, respectively.

Figure 7 shows the Pearson product-moment correlation
coefficient (r) between different satellite estimations and the
observations at the corresponding grid cell, for seven differ-
ent temporal scales: daily, monthly, annual, summer (DJF),
autumn (MAM), winter (JJA), and spring (SON). It depicts
that correlations are positive, with most daily values rang-
ing from 0.2 to 0.6, and achieving higher median values at
monthly (0.60–0.95) than at annual (0.3–0.9) timescales. In
general, all the products presented the highest correlation
during autumn (MAM) and the lowest values during sum-
mer (DJF) and spring (SON). The PGFv3 product was an
outlier, which exhibited median correlation values larger than
0.9 for all timescales, followed by MSWEPv1.1, CHIRPSv2,
3B42v7, and PERSIANN-CDR.

Figure 8 depicts the bias ratio of the modified Kling–Gupta
efficiency (β) for different satellite estimations against obser-
vations at the corresponding grid cell, and for the same tem-
poral scales used before. PGFv3, CHIRPSv2, and 3B42v7
were almost unbiased for all timescales and seasons ex-
cept for the summer (DJF), for which almost all the prod-
ucts overestimated P compared to the observed precipitation.
MSWEPv1.1 and PERSIANN-CDR tended to overestimate
P compared to the observed precipitation for all timescales,
while CMORPH and PERSIANN-CCS-Adj showed a gen-
eral underestimation thereof.

Figure 9 shows the variability ratio of the modified Kling–
Gupta efficiency (γ ) between SREs and the observations.

Most of the products resulted in underestimating the vari-
ability of P for all timescales, with exception of CMORPH
and PERSIANN-CCS-Adj which overestimated the observed
variability at annual and winter (JJA) timescales. 3B42v7 and
PGFv3 are the products that best resembled the variability
of observed precipitation, while PERSIANN-CDR is the one
with the largest median underestimation at all timescales.

Figure 10 summarizes the three previous figures into one,
showing box plots of KGE′ for all the satellite products and
timescales. Most of the SREs, except PGFv3, presented a
limited overall performance at daily timescale (median val-
ues of KGE′ ≤ 0.3), which improved when aggregated into
monthly values (median values of KGE′ ≥ 0.5). PGFv3 and
CMORPH were the products with the best and worst perfor-
mance for almost all scales, while 3B42v7, CHIRPSv2, and
MSWEPv1.1 showed the second best performance. At the
seasonal scale all the products performed best during autumn
(MAM) and winter (JJA), and showed the worst performance
during spring (SON) and summer (DJF), with PERSIANN-
CDR and MSWEPv1.1 being the worst.

4.3 SRE performance for different precipitation
intensities

Figure 12 shows the median values of the five categorical
indices of performance computed between different SREs
and the observations at the corresponding grid cell, for the
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Figure 5. Modified Kling–Gupta efficiency (KGE′) between different monthly satellite estimations and observations at the corresponding
grid cell, for five different macroclimate zones: Far North, Near North, Centre, South, and Far South. The vertical blue line indicates the
optimum value for KGE′, while N indicates the number of stations in each macroclimate zone.
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Figure 6. Modified Kling–Gupta efficiency (KGE′) between different monthly satellite estimations and observations at the corresponding
grid cell, for six different elevation zones: [0, 200), [200, 500), [500, 1000), [1000, 2000), [2000, 3500), [3500, 4560) m a.s.l. The vertical
blue line indicates the optimum value for KGE′, while N indicates the number of stations in each elevation zone.

five classes of daily rainfall intensity defined in Table 2.
First, all SREs presented high values of percent of correct
(PC> 0.78) in all the precipitation intensities, which is par-
ticularly clear for intensities larger than 20 mm d−1, where

PC was larger than 0.97 for all SREs. As mentioned in
Sect. 3.2, high values of PC might be misleading due to the
high frequency of correct negative (CN) events. Therefore,
looking at the other indices of model performance, we ob-
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served that most of the products showed a low probability
of detection (POD), in general with values lower than 0.4,
for all the rainfall events except by no rain ([0, 1) mm d−1),
which was well captured by all SREs (POD>=0.79). PGFv3
was the product that best captured all classes of rainfall
events, while CMORPH resulted in the worst performance
for events larger than 5 mm d−1, with almost no skill in de-
tecting rainfall events larger than 20 mm d−1. The false alarm
rate (FAR) showed almost the opposite view of the POD re-
sults, with most of the SREs with good values of FAR for
no-rain events and poor performance for intensities larger
than 1 mm d−1. However, FAR was less skillful than POD
in differentiating the performance of SREs for intensities
lower than 20 mm d−1, while it provided a better separa-
tion of performance for high daily intensities (> 40 mm d−1).
The equitable threat score (ETS) showed that most of the
SREs were not able to capture the fraction of observed
and/or estimated rainfall events (in general, ETS< 0.3), with
PGFv3 showing the highest performance for all rainfall in-
tensities. Finally, the frequency bias (fBIAS) panel showed
that the amount of no-rain events identified by most of
SREs was in excellent agreement with the corresponding
observed amount (median fBIAS∼ 1). All SREs overesti-
mated the amount of light rain events ([1, 5) mm d−1) and
underestimated the number of violent events (> 40 mm d−1).
In between, PERSIANN-CDR, MSWEPv1.1, CHIRPSv2,
3B42v7, and PERSIANN-CCS-Adj overestimated moderate
rainfall events ([5, 20) mm d−1), while CMORPH underes-
timated its amount and PGFv3 provided an unbiased esti-
mation of the number of this type of events. The amount of
heavy rainfall events ([20, 40) mm d−1) was in general well
captured by all the SREs but CMORPH and PERSIANN-
CDR, which underestimated it. The Supplement (Zambrano-
Bigiarini et al., 2016) presents detailed box plots for each
categorical performance index used to identify the capabili-
ties of SREs to capture the five types of precipitation events
described in Table 2.

Based on the previous analysis, we agree with Hossain
and Huffman (2008) that the probability of rain detection
(PODrain) and no-rain detection (PODnorain) are important
measures to quantify the ability of a SRE to detect the magni-
tude of the rainfall rate. However, we propose to use PODrain
for assessing different rainfall intensities and not only to
know that it was raining when the reference observation is
larger than a user-defined threshold t0.

5 Discussion

This work aimed at providing, for the first time, in-
sights about the performance of seven state-of-the-art
SREs (3B42v7, CHIRPSv2, CMORPH, PERSIANN-CDR,
PERSIAN-CCS-Adj, MSWEPv1.1, and PGFv3) at different
temporal scales (daily, monthly, seasonal, annual) over the

Chilean territory, using 366 stations located from sea level to
4600 m a.s.l. in the Andean Plateau.

5.1 Overall performance of the evaluated SREs

As expected, the two products that used a Chilean dataset
for calibration showed a good performance at all timescales
and nationwide, with PGFv3 showing an outstanding per-
formance in comparison to all SREs, while PERSIANN-
CCS-Adj had a performance more similar to the other SREs
(Fig. 10).

Overall, PGFv3 was the best performing product in terms
of KGE′ and its individual components (see Figs. 7–10),
which was expected due to the use of 217 local rain gauges
in the bias correction procedure used to adjust its estimates.
PGFv3 was followed closely by CHIRPSv2, 3B42v7, and
MSWEPv1.1, all of them using the GPCC dataset to calibrate
their precipitation estimates, not any local dataset. Generally,
SREs performed better for wetter periods (i.e. MAM–JJA,
Fig. 10) and southern and central regions (Fig. 5). All SREs
except PGFv3 performed poorly for the higher elevations, in
particular between 2000 and 3500 m a.s.l. (Fig. 6) and also
for the Far North desert region (Fig. 5). These findings are in
line with the review on globally varying performance of SRE
products by Maggioni et al. (2016).

5.2 Which SRE performs best across the topographic
and climate gradient in Chile?

Mountainous regions pose important challenges across all
seasons to satellite estimates derived from both TIR and PM
observations (Tian and Peters-Lidard, 2010; Dinku et al.,
2010; Scheel et al., 2011; Mantas et al., 2015). Figure 6
illustrated that all SREs except PGFv3 performed poorly
for the higher elevations, in particular between 2000 and
3500 m a.s.l. However, for the 23 stations located in the high-
est elevations (3500–4600 m a.s.l.) results are better, espe-
cially for PERSIANN-CCS-Adj and PGFv3 which can be ex-
plained by the use of Chilean datasets in the bias-correction
procedure of these products. On the other hand, an extreme
variation was observed for the results along the latitudinal
gradient, covering eleven types of climate, from hot dessert
to polar/tundra (Fig. 1). Figure 5 showed that all SREs per-
form best in the humid South (36.4–43.7◦ S), followed by
Central Chile (32.18–36.4◦ S) and Far South (43.7–56.0◦ S),
compared to the arid northern regions, in particular in the
desert Far North where satellite estimates were as high as 94
times the observed precipitation (e.g. Fig. S2 for CHIRPSv2
and Fig. 11a). This can be attributed to the very low precipi-
tation values in that area (some rain gauges have annual val-
ues lower than 1 mm yr−1), where one single event not cor-
rectly identified can be responsible of 100 % of over or un-
derestimation. This overestimation has been observed as well
in the scope of other studies (Dinku et al., 2010; Maggioni
et al., 2016). Time series comparison between rain gauges
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Figure 7. Pearson product-moment correlation coefficient (r) between different satellite estimations and the observations at the corresponding
grid cell, for six different temporal scales. From left to right and up to bottom: daily, monthly, annual, summer (DJF), autumn (MAM), winter
(JJA), and spring (SON). The vertical blue line indicates the optimum value for r .
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Figure 8. Bias ratio of the modified Kling–Gupta efficiency (β) between different satellite estimations and the observations at the corre-
sponding grid cell, for six different temporal scales. From left to right and up to bottom: daily, monthly, annual, summer (DJF), autumn
(MAM), winter (JJA), and spring (SON). The vertical blue line indicates the optimum value for β.

and SRE data can be found in the Supplement (Zambrano-
Bigiarini et al., 2016) for each of the 366 selected stations
described in Sect. 2.2.1 (see also comparison of selected sta-
tions in Fig. 11).

It is worth mentioning that the number of stations in each
macroclimate zone (Fig. 5) and elevation range (Fig. 6)
was not the same, which hampered an unbiased compari-
son among different climate and elevation zones. A higher
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Figure 9. Variability ratio of the modified Kling–Gupta efficiency (γ ) between different satellite estimations and the observations at the
corresponding grid cell, for six different temporal scales. From left to right and up to bottom: daily, monthly, annual, summer (DJF), autumn
(MAM), winter (JJA), and spring (SON). The vertical blue line indicates the optimum value for γ .
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Figure 10. Modified Kling–Gupta efficiency (KGE′) between different satellite estimations and the observations at the corresponding grid
cell, for six different temporal scales. From left to right and up to bottom: daily, monthly, annual, summer (DJF), autumn (MAM), winter
(JJA), and spring (SON). The vertical blue line indicates the optimum value for KGE′.

number of stations used in our analysis was located below
1000 m a.s.l. (276 out of 366) and in Central and Near South
of Chile (223 out of 366). In particular, Fig. 4 showed that
stations with high number of days with information and lo-

cated above 2000 m a.s.l. were concentrated in the Far North,
making clear the need of additional monitoring stations in
elevations above 2000 m a.s.l. from the Near North to the
southern extreme of Chile.
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Figure 11. Monthly and annual precipitation time series as estimated by the seven SRE products compared to the observed values registered
at the corresponding rain gauge. (a), (b), (c), (d), and (e) show station examples for the Far North, Near North, Centre, South, and Far South
climate macrozones, respectively.
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5.3 Which SRE performs best for different timescales?

The PGFv3 exhibited the best KGE′ performance for
all timescales, followed by CHIRPSv2, 3B42v7, and
MSWEPv1.1, while the worst performing were CMORPH,
PERSIANN-CCS-Adj, and PERSIANN-CDR (Fig. 10). In
line with previous work by Scheel et al. (2011) and
Pereira Filho et al. (2010), better performance was obtained
for monthly timescales compared to the daily scale. Un-
expected, however, was the fact that the annual scale re-
sulted worse compared to the daily scale, in particular for
CMORPH and PERSIANN-CCS-Adj, which was due to
the amplification of small systematic biases at the daily
timescale when aggregated into the annual one, passing from
2922 days to only 8 annual values. Figure 10 illustrated
that most SREs showed a distinct behaviour during different
seasons, performing better during the more humid seasons
(MAM–JJA) than during the dry ones (SON–DJF). How-
ever, while PGFv3, CHIRPSv2, 3B42v7, and CMORPH pre-
sented minor differences in performance along the seasons,
MSWEPv1.1, PERSIANN-CDR, and PERSIANN-CCS-Adj
showed large seasonal differences and large spread of perfor-
mance during summer (DJF) and spring (SON).

5.4 How does the accuracy of a given SRE change for
different precipitation intensities?

Evaluating the SRE performance for different precipitation
intensities resulted in low values of most categorical indices.
This was partly due to the demanding classification criteria:
we used five types of precipitation intensities instead of the
typical two classes (rain/no-rain) (e.g. Dinku et al., 2010;
Scheel et al., 2011). All SREs were able to correctly iden-
tify the occurrence of no-rain events, but during rainy days
they presented a low skill in providing an accurate classifica-
tion of precipitation intensities (Fig. 12). On the other hand,
all SREs underestimated the number of violent rain events
(> 40 mm d−1) and overestimated the amount of light rain
events ([1, 5) mm d−1; Fig. 12). In between, PGFv3 provided
an unbiased estimation of the number of moderate rainfall
events, [5, 20) mm d−1, while CMORPH underestimated that
amount and PERSIANN-CDR, MSWEPv1.1, CHIRPSv2,
3B42v7 and PERSIANN-CCS-Adj overestimated it. The
number of heavy rainfall events ([20, 40) mm d−1) was well
captured by all the SREs but CMORPH and PERSIANN-
CDR, which largely underestimated its amount.

5.5 How well does the aggregated KGE and its
components evaluate SRE performance?

Modified Kling–Gupta efficiency (KGE′, Kling et al., 2012;
Gupta et al., 2009) proved to be a useful index to assess the
performance of SRE products, because it captures in a sin-
gle number a pseudo multi-objective evaluation of the linear

Table 3. Contingency table used to compute the categorical perfor-
mance indices for each rainfall event shown in Table 2.

Observed rainfall

Satellite Yes No Total
product

Yes Hit (H) False alarm (FA) H+FA
No Miss (M) Correct negative (CN) M+CN

Total H+M FA+CN Ne

correlation, bias, and variability of the satellite estimations
compared to its corresponding observations at rain gauges.

Figure 7 showed that linear correlation (r) between SRE
values and their corresponding observations were in general
acceptable, with higher values at monthly timescales (0.60–
0.95) than at annual (0.3–0.9) and daily (0.35–0.9) ones. In
general, all the SREs presented the highest correlation during
autumn (MAM) and the lowest values during summer (DJF)
and spring (SON). Figure 8 showed that PGFv3, CHIRPSv2,
and 3B42v7 were almost unbiased (β) for all timescales
and seasons except for the summer (DJF), where almost all
the products overestimated P . CMORPH and PERSIANN-
CCS-Adj showed a general underestimation of P , while
MSWEPv1.1 and PERSIANN-CDR tended to overestimate
it. The aforementioned underestimation of CMORPH was
in agreement with previous studies (e.g. Abera et al., 2016;
Ringard et al., 2015; Lo Conti et al., 2014; Dinku et al.,
2010) as well as the acceptable linear correlation (Abera
et al., 2016), in particular at monthly timescales. The fact that
CMORPH presented the highest underestimation of rainfall
for almost all timescales very likely is because CMORPH
does not use any observed precipitation data to compute its
estimates, in contrast to all the other analysed SREs. Figure 9
illustrated that most of the products underestimated the vari-
ability of P for all timescales, with exception of CMORPH
and PERSIANN-CCS-Adj which overestimated the observed
variability at annual and winter (JJA) timescales. PGFv3 and
3B42v7 were the products that best captured the variability
of observed precipitation, while PERSIANN-CDR presented
the largest median underestimation at all timescales. From
the analysis described above, it is clear that providing a bet-
ter representation of the variability of observed precipitation
should be a major concern in future releases of the analysed
SREs – in particular in regard to PGFv3, CHIRPSv2, and
3B42v7, which presented high linear correlation and were
almost unbiased for monthly and annual scales.

Based on the results presented in Sect. 4.1, we consider
that the combined use of the modified Kling–Gupta effi-
ciency (KGE′) and its three components (r , β, γ ) is suitable
for identifying whether a SRE is able to capture the tempo-
ral dynamics (r) as well as preserving the total amount and
distribution of precipitation (β and γ , respectively). For ex-
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Figure 12. Median values of categorical indices of performance for different SREs and the five classes of rainfall intensity defined in Table 2.
From left to right and top to bottom: percent of correct (PC), probability of detection (POD), false alarm ratio (FAR), equitable threat score
(ETS), and frequency bias (fBias).

ample, two SREs with the same KGE′ value might have dif-
ferent values of r and β; however, reducing a systematic bias
in the SRE is easier to correct (e.g. using a bias correction
method) than improving the linear correlation between the
observed and SRE value of precipitation.

5.6 Is there any SRE that performs best compared to
all the others, everywhere, and for all timescales?

PGv3F was the best product for all timescales, macro-
climatic areas, and elevation zones, which was expected
because this product used 217 rain gauges to bias-correct
the original PGF estimates using a Kalman filter approach.
Therefore, it is not entirely fair to compare PGFv3 to other
products that did not use local data for calibration. However,
PGFv3 was included as potentially useful for some hydro-
logical applications in the Chilean territory. Interesting is the
case of PERSIANN-CCS-Adj, which also used rain gauge
data, but which was unable to obtain results similar to those
of PGFv3. The latter might be due to the bias-correction of
the original PERSIANN-CCS estimates using only clima-
tology (Yang et al., 2016). However, PERSIANN-CCS-Adj
is still under development through improved QM-GW cal-
ibration procedures using monthly cumulative distribution
functions, as well as a real-time assimilation of precipitation
measurements to improve performance at daily and monthly
timescales in the near future.

6 Conclusions

Satellite-based rainfall estimates (SREs) provide an unprece-
dented opportunity to be applied in a wide range of meteo-
rological and hydrological applications. Despite that most of
the existing products are continuously improving their algo-
rithms and data sources to adapt to particular environments,
catchment-specific studies should still be carried out before
any hydrological application thereof.

In this article, the performance of seven state-of-the-art
SRE datasets (3B42v7, CHIRPSv2, CMORPH, PERSIANN-
CDR, PERSIAN-CCS-Adj, MSWEPv1.1, PGFv3) was com-
pared against observations at 366 rain gauges over the
Chilean territory, which is extremely challenging due to
its complex topography (elevations range from sea level to
6893 m a.s.l.) and the existence of 11 different types of cli-
mates (from hot dessert to polar/tundra) along the large lat-
itudinal extent of 4300 km. Seven different temporal scales
relevant for hydrological applications were addressed in the
evaluation: daily, monthly, annual, DJF (summer), MAM
(autumn), JJA (winter), SON (spring). The modified Kling–
Gupta efficiency (KGE′) was used as continuous index of
performance, along with its three individual components (lin-
ear correlation, bias, and variability), to identify possible
sources of systematic errors in each SRE. In addition, five
categorical indices (PC, POD, FAR, fBias, ETS) were used
to assess the ability of each SRE to correctly identify differ-
ent intensities of daily precipitation.
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Results revealed that the best performing SRE product was
PGFv3, calibrated with a Chilean dataset, followed closely
by CHIRPSv2, 3B42v7, and MSWEPv1.1, while CMORPH
presented the lowest median performance everywhere, which
was expected because it is the only product that does not use
any type of measured rainfall for calibration. All SREs ex-
cept PGFv3 performed poorly for the higher elevations, in
particular between 2000 and 3500 m a.s.l. and also for the ex-
treme northern desert region. Surprisingly, all products per-
formed worse for the annual scale compared to the monthly
scale and even daily scale.

The following paragraphs summarize the key findings:

– Most SRE products performed the best for the hu-
mid South (36.4–43.7◦ S) and Central Chile (32.18–
36.4◦ S), in particular at low- and mid-elevation zones
(0–1000 m a.s.l.), compared to the arid northern regions
and the Far South.

– Most SREs performed worst in the high-elevation ar-
eas (≥ 2000 m a.s.l.) of the hyper-arid Far North (17.5–
26.0◦ S).

– All SREs present positive values of linear correlation
with ground observations, with best median values at
monthly timescales (0.4≤ r ≤ 0.95) than at daily and
annual scales. Correlations are also higher during au-
tumn (MAM) and lower during summer (DJF) and
spring (SON).

– PGFv3, CHIRPSv2, and 3B42v7 are almost unbiased
at all timescales (except summer). MSWEPv1.1 and
PERSIANN-CDR tend to overestimate P compared to
observations, while CMORPH and PERSIANN-CCS-
Adj tend to underestimation at all timescales.

– All SREs underestimated the observed variability of P
at all timescales, except for CMORPH and PERSIANN-
CCS-Adj which overestimated P at the annual scale
and winter (JJA). 3B42v7 and PGFv3 are the products
that best captured the observed variability of P , while
PERSIANN-CDR presented the poorest performance.

– KGE′ and its three individual components are recom-
mended for further comparisons, because they do not
only provide an overall assessment of the SRE perfor-
mance, but also allowed us to understand whether mis-
matches are due to errors in the representation of shape,
magnitude, or variability of the observed precipitation.
If detected errors are mostly due to under- or over-
estimation of observed precipitation, it is very likely that
applying a bias-correction procedure will significantly
improve the performance of the product (e.g. PGFv3).
Providing a better representation of the variability of ob-
served precipitation should be a major concern in future
releases of the analysed SREs, in particular for PGFv3,
CHIRPSv2, and 3B42v7 which presented high linear

correlations with observed P and were almost unbiased
at monthly and annual timescales.

– All SREs performed best in terms of KGE′ during the
wet seasons autumn and winter (MAM–JJA) compared
to summer (DJF) and spring (SON).

– Overall, the best SRE product was PGFv3 followed by
CHIRPSv2, 3B42v7, and MSWEPv1.1, which is ex-
pected because PGFv3 used 217 Chilean rain gauges in
its bias-correction procedure used to obtain the final es-
timations.

– After evaluating five different categorical indices of per-
formance (PC, POD, fBias, FAR, and ETS), we recom-
mend the use of POD and fBias to assess the ability of
a SRE product to capture different rainfall intensities.

– All SREs were able to correctly identify the occurrence
of no-rain events (i.e. dry days). However, during rainy
days they presented a low skill in providing an accurate
classification of different precipitation intensities.

– All SREs overestimated the occurrence of light rain
events ([1, 5) mm d−1), while they underestimated the
amount of violent rain events (> 40 mm d−1). High pre-
cipitation events were well captured by all products.

– In general, CMORPH, PERSIANN-CDR, and
PERSIANN-CCS-Adj were considered less suit-
able to be used in hydrological applications in Chile
at this point in time, due to their large biases when
compared to observed precipitation records. Although
the PERSIANN-CCS-Adj has the benefit of a real-
time product, it has only been bias-corrected using
climatology, which explains its lower performance
compared to products incorporating gauge observations
in its calibration (3B42v7, CHIRPSv2, MSWEPv1.1,
PGFv3).

– Lack of rain gauges at higher elevation zones (over
2000 m a.s.l.) over most of the Chilean territory (south
of 26.0◦ S) prevented an exhaustive assessment of SRE
products in such areas. The same applied for mid-
elevation zones (200–1000 m a.s.l.) in the Far North
(17.0–26.0◦ S) and Far South (southern to 43.7◦ S).

7 Outlook

Despite continuous improvements of most SRE products, a
site-specific assessment is still recommended before any use
in hydrological studies. Different types of mismatches be-
tween SREs and ground observations might be reduced by
using local observations to calibrate the satellite estimates.
This was evidenced by PGFv3, which showed the best per-
formance compared to the other products due to the sta-
tistical merging of 217 rain gauges, highlighting the need
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for adequate observation networks to complement the SRE
products. This is especially valid for high-elevation areas,
where only limited precipitation records are available, and
where well-calibrated SRE products could provide the high-
est added-value.

To conclude, the PGFv3 is the best-performing product
for Chile at all timescales and locations tested, but it is cur-
rently only available up to 2010, making it a relevant dataset
for water balance estimations but not for real-time applica-
tions. Nevertheless, it is expected that PGFv3 will be used to
bias-correct the 3B42v7 as part of the Latin American Flood
and Drought Monitor. Since the PGFv3 dataset is performing
well for all the indices tested, it is expected that the calibrated
3B42v7 will also improve its performance. As this process is
still under development, it could not be tested in this study
and will become the subject of future research. For (quasi-
)real-time and hydrological applications, we suggest to con-
sider the use of CHIRPSv2, because it has a long data record
(1981–present), a low latency (1 day–3 weeks, depending on
the product), and high spatial resolution (0.05◦ instead of the
0.25◦ of most SREs). MSWEPv1.1 is also a promising prod-
uct, and new versions are expected to be released at least
once a year. The next version of MSWEPv1.1 is anticipated
to incorporate corrections for drizzle and provide estimates
for the entire globe, including ocean areas (H. Beck, per-
sonal communication, 2016). The 3B42v7 has a lower spa-
tial resolution and covers a shorter period (1998–present),
but showed a very similar performance to CHIRPSv2 across
all indices. The 3B42 dataset will be superseded by the
Global Precipitation Measurement (GPM) mission product
IMERG, launched by NASA and the Japanese Aerospace
Exploration Agency (JAXA) on 27 February 2014. To over-
come the short data length of the new IMERG dataset, it
is planned to provide a retrospectively processed IMERG
datasets from 1998 onward, which are expected to be re-
leased in early 2017 (Huffman, 2015). The real-time precip-
itation product PERSIANN-CCS-Adj is currently being en-
hanced through real-time merging of station data. The first
results indicate that this procedure will significantly improve
the performance of the product over Chile (Yang et al., 2016),
which will be evaluated in future research.

Given the high dependency of most SRE products on the
GPCC dataset for calibration, the authors would like to rec-
ommend to the Chilean authorities in charge of the collection
and analysis of meteorological data (e.g. DGA and DMC) to
make additional efforts to share their data with GPCC, in or-
der to improve the performance of SREs that ingest observed
precipitation data.

8 Data availability

Precipitation time series at the 781 stations used for this
study (not only the 366 selected stations) are available in the
Supplement (Zambrano-Bigiarini et al., 2016). The satellite-
based rainfall estimates used in this study are all publicly
available in the data sources described in Sect. 2.2.2 and Ta-
ble 2.
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Appendix A: Continuous indices of model performance

KGE′ = 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2 (A1)

r =

∑n
i=1(Oi −O)(Si − S)√∑n

i=1(Oi −O)
2
√∑n

i=1(Si − S)
2

(A2)

β =
µs

µo
(A3)

γ =
CVs

CVo
=
σs/µs

σo/µo
, (A4)

where N is the number of observations; Oi and Si are the
observed and the corresponding satellite precipitation values
at day i, respectively; O and S are the arithmetic mean of
the observations and satellite estimates, respectively; Omax
and Omin are the maximum and minimum observed value,
respectively.

Appendix B: Categorical indices of model performance

PC=
H+CN
Ne

(B1)

POD=
H

H+M
(B2)

FAR=
FA

H+FA
(B3)

ETS=
H−He

(H+F+M)−He
(B4)

fBias=
H+F
H+M

, (B5)

where Ne is the total number of verification points (number
of events), H indicates a hit, i.e. a satellite estimate that cor-
rectly identifies the type of rainfall event measured at the
rain gauge; M is a miss, i.e. an event recorded at the rain
gauge but not correctly identified by the satellite product; F
is a false alarm, i.e. a rainfall event detected by the satellite
product but not recorded at the corresponding rain gauge; CN
represents the correct negatives (or correct rejections), i.e. an
event not registered either by the rain gauge or the satellite;
and He indicate a hit that could occur by chance, computed
asHe = (H+M)(H+F)/Ne. Table 3 summarizes the afore-
mentioned concepts used to compute the different categorical
indices of performance.
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