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Abstract. In this study, the feasibility of using inverse va-
dose zone modeling for estimating field-scale actual evap-
otranspiration (ETa) was explored at a long-term agricul-
tural monitoring site in eastern Nebraska. Data from both
point-scale soil water content (SWC) sensors and the area-
average technique of cosmic-ray neutron probes were eval-
uated against independent ETa estimates from a co-located
eddy covariance tower. While this methodology has been
successfully used for estimates of groundwater recharge, it
was essential to assess the performance of other components
of the water balance such as ETa. In light of recent evalua-
tions of land surface models (LSMs), independent estimates
of hydrologic state variables and fluxes are critically needed
benchmarks. The results here indicate reasonable estimates
of daily and annual ETa from the point sensors, but with
highly varied soil hydraulic function parameterizations due
to local soil texture variability. The results of multiple soil
hydraulic parameterizations leading to equally good ETa es-
timates is consistent with the hydrological principle of equi-
finality. While this study focused on one particular site, the
framework can be easily applied to other SWC monitor-
ing networks across the globe. The value-added products of
groundwater recharge and ETa flux from the SWC monitor-
ing networks will provide additional and more robust bench-
marks for the validation of LSM that continues to improve
their forecast skill. In addition, the value-added products of
groundwater recharge and ETa often have more direct im-

pacts on societal decision-making than SWC alone. Water
flux impacts human decision-making from policies on the
long-term management of groundwater resources (recharge),
to yield forecasts (ETa), and to optimal irrigation scheduling
(ETa). Illustrating the societal benefits of SWC monitoring
is critical to insure the continued operation and expansion of
these public datasets.

1 Introduction

Evapotranspiration (ET) is an important component in terres-
trial water and surface energy balance. In the United States,
ET comprises about 75 % of annual precipitation, while in
arid and semiarid regions, ET comprises more than 90 % of
annual precipitation (Zhang et al., 2001; Glenn et al., 2007;
Wang et al., 2009a). As such, an accurate estimation of ET is
critical in order to predict changes in hydrological cycles and
improve water resource management (Suyker and Verma,
2008; Anayah and Kaluarachchi, 2014). Given the impor-
tance of ET, an array of measurement techniques at different
temporal and spatial scales have been developed (see Maid-
ment, 1992; Zhang et al., 2014), including lysimeter, Bowen
ratio, eddy covariance (EC), and satellite-based surface en-
ergy balance approaches. However, simple, low-cost, and ac-
curate field-scale measurements of actual ET (ETa) still re-
main a challenge due to the uncertainties of available estima-
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tion techniques (Wolf et al., 2008; Li et al., 2009; Senay et al.,
2011; Stoy, 2012). For instance, field techniques, such as EC
and Bowen ratio, can provide relatively accurate estimation
of local ETa, but are often cost prohibitive for widespread
use beyond research applications (Baldocchi et al., 2001; Ir-
mak, 2010). By comparison, satellite-based remote sensing
techniques are far less costly for widespread spatial coverage
(Allen et al., 2007), but are limited by their accuracy, tem-
poral sampling frequency (e.g., Landsat 8 has a 16-day over-
pass), and technical issues that further limit temporal sam-
pling periods (e.g., cloud coverage during overpass) (Chemin
and Alexandridis, 2001; Xie et al., 2008; Li et al., 2009;
Kjaersgaard et al., 2012).

As a complement to the above-mentioned techniques, re-
cent studies have used process-based vadose zone models
(VZMs) for estimating field-scale ETa with reasonable suc-
cess, particularly in arid and semiarid areas (Twarakavi et
al., 2008; Izadifar and Elshorbagy, 2010; Galleguillos et al.,
2011; Wang et al., 2016). Although VZMs are time and cost
effective for estimating field-scale ETa, they generally re-
quire complex model parameterizations and inputs, some of
which are not readily available (e.g., soil hydraulic param-
eters and plant physiological parameters; see Wang et al.,
2016). In order to address the issue of missing soil hydraulic
parameters, a common approach is to use pedotransfer func-
tions to convert readily available soil information (texture,
bulk density, etc.) to soil hydraulic parameters (Wösten et al.,
2001); however, significant uncertainties are usually associ-
ated with this method for estimating local-scale water fluxes
(Wang et al., 2015). In fact, Nearing et al. (2016) identified
soil hydraulic property estimation as the largest source of in-
formation lost when evaluating different land surface mod-
eling schemes versus a soil moisture benchmark. Poor and
uncertain parameterization of soil hydraulic properties is a
clear weakness of land surface model (LSM) predictive skill
in sensible and latent heat fluxes (Best et al., 2015). This
problem will continue to compound with the continuing spa-
tial refinement of hyper-resolution LSM grid cells to less than
1 km (Wood et al., 2011).

In order to address the challenge of field-scale estimation
of soil hydraulic properties, here we utilize inverse modeling
for estimating soil hydraulic parameters based on field mea-
surements of soil water content (SWC) (see Hopmans and
Šimunek, 1999; Ritter et al., 2003). While VZM-based in-
verse approaches have already been examined for estimating
groundwater recharge (e.g., Jiménez-Martínez et al., 2009;
Andreasen et al., 2013; Min et al., 2015; Ries et al., 2015;
Turkeltaub et al., 2015; Wang et al., 2016), their application
for ETa estimation has not been adequately tested. Moreover,
we note that simultaneous estimation of SWC states and sur-
face energy fluxes within LSMs is complicated by bound-
ary conditions, model parameterization, and model structure
(Nearing et al., 2016). With the incorporation of regional soil
datasets in LSMs like Polaris (Chaney et al., 2016), effective
strategies for estimating ground truth soil hydraulic proper-

ties from existing SWC monitoring networks (e.g., SCAN,
CRN, COSMOS, State/National Mesonets; see Xia et al.,
2015) will become critical for continuing to improve the pre-
dictive skill of LSMs.

The aim of this study is to examine the feasibility of us-
ing inverse VZMs for estimating field-scale ETa based on
long-term local meteorological and SWC observations for an
AmeriFlux (Baldocchi et al., 2001) EC site in eastern Ne-
braska, USA. We note that while this study focused on one
particular study site in eastern Nebraska, the methodology
can be easily adapted to a variety of SWC monitoring net-
works across the globe (Xia et al., 2015), thus providing an
extensive set of benchmark data for use in LSMs. The re-
mainder of the paper is organized as follows. In the methods
section, we will describe the widely used VZM, Hydrus-1D
(Šimunek et al., 2013), used to obtain soil hydraulic parame-
ters. We will assess the feasibility of using both profiles of in
situ SWC probes as well as the area-average SWC technique
from cosmic-ray neutron probes (CRNPs). In the results sec-
tion, we will compare simulated ETa resulted from calibrated
VZM with independent ETa estimates provided by EC ob-
servations. Finally, a sensitivity analysis of key soil and plant
parameters will be presented.

2 Materials and methodology

2.1 Study site

The study site is located in eastern Nebraska, USA, at
the University of Nebraska Agricultural and Development
Center near Mead. The field site (US-Ne3, 41.1797◦ N,
96.4397◦W; Fig. 1a) is part of the AmeriFlux Network
(Baldocchi et al., 2001) and has been operating continually
since 2001. The regional climate is of a continental semi-
arid type with a mean annual precipitation of 784 mm yr−1

(according to the AmeriFlux US-Ne3 website). According
to the Web Soil Survey data (Soil Survey Staff, 2016, http:
//websoilsurvey.nrcs.usda.gov/), the soils at the site are com-
prised mostly of silt loam and silty clay loam (Fig. 1b and
Table 1). Soybean and maize are rotationally grown at the
site under rain-fed conditions, with the growing season be-
ginning in early May and ending in October (Kalfas et al.,
2011). Since 2001, crop management practices (i.e., plant-
ing density, cultivars, irrigation, and herbicide and pesticide
applications) have been applied in accordance with standard
best management practices prescribed for production-scale
maize systems (Suyker and Verma, 2008). More detailed in-
formation about site conditions can be found in Suyker et
al. (2004) and Verma et al. (2005).

An EC tower was constructed at the center of the field
(Figs. 1 and 2a) and continuously measures water, energy,
and CO2 fluxes (e.g., Baldocchi et al., 1988). At this field,
sensors are mounted at 3.0 m above the ground when the
canopy is shorter than 1.0 m. At canopy heights greater than
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Table 1. Variability of soil texture in the study field based on Web Soil Survey data (http://websoilsurvey.sc.egov.usda.gov/App/HomePage.
htm).

Map unit Map unit name Clay Silt Sand Hectares in Percent of
symbol (%) (%) (%) field field

3948 Fillmore silt loam, terrace, occasionally ponded 41.7 51.0 7.3 3.24 4.9 %
7105 Yutan silty clay loam, terrace, 2 to 6 % slopes, eroded 25.8 59.4 14.8 6.88 10.3 %
7280 Tomek silt loam, 0 to 2 % slopes 32.3 61.6 6.1 47.23 70.8 %
7340 Filbert silt loam, 0 to 1 % slopes 41.4 51.7 6.9 9.34 14.0 %

Total area of field 66.69 100.0 %

Figure 1. Study site (Mead rain-fed/US-Ne3) location in Ne-
braska (a) and locations of the eddy covariance tower (EC), cosmic-
ray neutron probe (CRNP), ThetaProbes (TPs), and variability of
soil texture based on Web Soil Survey data at the study site,
2014 (b). See Table 1 for soil descriptions.

1.0 m, the sensors are then moved to a height of 6.2 m until
harvest in order to have sufficient upwind fetch (in all di-
rections) representative of the cropping system being stud-
ied (Suyker et al., 2004). In this study, hourly latent heat
flux measurements were integrated to daily values and then
used for calculating daily EC ETa integrated over the field
scale. Detailed information on the EC measurements and
calculation procedures for ETa are given in Suyker and
Verma (2009). Hourly air temperature, relative humidity, hor-
izontal wind speed, net radiation, and precipitation were also
measured at the site. Destructive measurements of leaf area
index (LAI) were made every 10 to 14 days during the grow-
ing season at the study site (Suyker et al., 2005). We note
that the LAI data were linearly interpolated to provide daily

Figure 2. Eddy covariance tower (a) and cosmic-ray neutron
probe (b) located at the Mead rain-fed (US-Ne3) site.

estimates. ThetaProbes (TPs) (Delta-T Devices, Cambridge,
UK) were installed at four locations in the study field with
measurement depths of 10, 25, 50, and 100 cm at each lo-
cation to monitor hourly SWC in the root zone (Suyker and
Verma, 2008). Here, we denote these four locations as TP 1
(41.1775◦ N, 96.4442◦W), TP 2 (41.1775◦ N, 96.4428◦W),
TP 3 (41.1775◦ N, 96.4402◦W), and TP 4 (41.1821◦ N,
96.4419◦W) (Fig. 1b). Daily precipitation (P ) and reference
evapotranspiration (ETr), computed for the tall (alfalfa) ref-
erence crop using the ASCE standardized Penman–Monteith
equation (ASCE-EWRI, 2005), are shown in Fig. 3 for the
study period (2007–2012) at the study site.

In addition, a CRNP (model CRS 2000/B, HydroInnova
LLC, Albuquerque, NM, USA; 41.1798◦ N, 96.4412◦W)
was installed near the EC tower (Figs. 1b and 2b) on 20
April 2011. The CRNP measures hourly moderated neutron
counts (Zreda et al., 2008, 2012), which are converted into
SWC following standard correction procedures and calibra-
tion methods (see Zreda et al., 2012). In addition, the changes
in aboveground biomass were removed from the CRNP esti-
mates of SWC following Franz et al. (2015). The CRNP mea-
surement depth (Franz et al., 2012) at the site varies between
15 and 40 cm, depending on SWC. Note that, for simplicity
in this analysis, we assume the CRNP has an effective depth
of 20 cm (mean depth of 10 cm) for all observational peri-
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Figure 3. Daily precipitation (P ) and reference evapotranspiration
(ETr) during the calibration (2008–2010) and validation (2011–
2012) periods at the Mead rain-fed (US-Ne3) site.

ods. The areal footprint of the CRNP is ∼ 250± 50 m radius
circle (see Desilets and Zreda, 2013 and Köhli et al., 2015
for details). Here, we assume for simplicity that the EC and
CRNP footprints are both representative of the areal-average
field conditions.

2.2 Model setup

2.2.1 Vadose zone model

The Hydrus-1D model (Šimunek et al., 2013), which is
based on the Richards equation, was used to calculate ETa.
The setup of the Hydrus-1D model is explained in detail
by Jiménez-Martínez et al. (2009), Min et al. (2015), and
Wang et al. (2016), and only a brief description of the model
setup is provided here. Given the measurement depths of
the ThetaProbes, the simulated soil profile length was cho-
sen to be 175 cm with 176 nodes at 1 cm intervals. An at-
mospheric boundary condition with surface runoff was se-
lected as the upper boundary. This allowed the occurrence of
surface runoff when precipitation rates were higher than soil
infiltration capacity or if the soil became saturated. Accord-
ing to a nearby USGS monitoring well (Saunders County,
NE, USGS 411005096281502, ∼ 2.7 km away), the depth to
water tables was greater than 12 m during the study period.
Therefore, free drainage was used as the lower boundary con-
dition.

Based on the ASCE Penman–Monteith equation, ETr val-
ues can be computed for either grass or alfalfa and then, using
crop-specific coefficients, daily potential evapotranspiration
(ETp) can be calculated. Here, daily ETr values were cal-
culated for the tall (0.5 m) ASCE reference (ASCE-EWRI,
2005), and daily potential evapotranspiration (ETp) was cal-
culated according to FAO 56 (Allen et al., 1998):

ETp (t)=Kc (t)×ETr (t) , (1)

where Kc is a crop-specific coefficient at time t . The es-
timates of growth stage lengths and Kc values for maize
and soybean suggested by Allen et al. (1998) and Min et
al. (2015) were adopted in this study. In order to partition
daily ETp into potential transpiration (Tp) and potential evap-
oration (Ep) as model inputs, Beer’s law (Šimunek et al.,

2013) was used as follows:

Ep (t)= ETp (t)× e
−k×LAI(t) (2)

Tp (t)= ETp(t)−Ep(t), (3)

where k[−] is an extinction coefficient with a value set to 0.5
(Wang et al., 2009b) and LAI [L2 L−2] is leaf area index de-
scribed in the previous section. The root water uptake, S(h),
was simulated according to the model of Feddes et al. (1978):

S(h)= α(h)× Sp, (4)

where α(h)[−] is the root water uptake water stress response
function and varies between 0 and 1 depending on soil matric
potentials, and Sp is the potential water uptake rate and as-
sumed to be equal to Tp. The summation of actual soil evap-
oration and actual transpiration is ETa.

Since the study site has annual cultivation rotations be-
tween soybean and maize, the root growth model from the
Hybrid-Maize model (Yang et al., 2004) was used to model
the root growth during the growing season: if D <MRD, D =

AGDD
GDDSilking

MRD

or D =MRD
, (5)

where D (cm) is plant root depth for each growing season
day, MRD is the maximum root depth (assumed equal to
150 cm for maize and 120 cm for soybean in this study fol-
lowing Yang et al., 2004), AGDD is the accumulated growing
degree days, and GDDSilking is the accumulated GDD at the
silking point (e.g., accumulated plant GDD approximately
60–70 days after crop emergence). GDD for each growing
season day was calculated as

GDD=
Tmax− Tmin

2
− Tbase, (6)

where Tmax and Tmin are the maximum and minimum daily
temperature (◦C), respectively, and Tbase is the base tem-
perature set to be 10 ◦C following McMaster and Wil-
helm (1997) and Yang et al. (1997). Finally, the Hoffman
and van Genuchten (1983) model was used to calculate root
distribution. Further details about the model can be found in
Šimunek et al. (2013).

2.2.2 Inverse modeling to estimate soil hydraulic
parameters

Inverse modeling was used to estimate soil hydraulic param-
eters for the van Genuchten–Mualem model (Mualem, 1976;
van Genuchten, 1980):

θ (h)=

 θr+
θs− θr(

1+ |αh|n
)m ,h < 0

θs,h≥ 0
(7)

K(Se)=Ks× S
l
e×[1− (1− S

1/m
e )m]2, (8)

where θ [L3 L−3] is volumetric SWC; θr [L3 L−3] and θs
[L3 L−3] are residual and saturated water content, respec-
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tively; h [L] is pressure head; K [L T−1] and Ks [L T−1]
are unsaturated and saturated hydraulic conductivity, respec-
tively; and Se(=(θ − θr)/(θs− θr)) [−] is saturation degree.
With respect to the fitting factors, α [1 L−1] is inversely re-
lated to air entry pressure, n[−] measures the pore size dis-
tribution of a soil with m= 1−1/n, and l [−] is a parameter
accounting for pore space tortuosity and connectivity.

Daily SWC data from the four TP locations and CRNP lo-
cation were used for the inverse modeling. Based on the mea-
surement depths of the TPs, the simulated soil columns were
divided into four layers for TP locations (i.e., 0–15, 15–35,
35–75, and 75–175 cm), which led to a total of 24 hydraulic
parameters (θr;θs;α, n, Ks, and l) to be optimized based on
observed SWC values. In order to efficiently optimize the
parameters, we used the method outlined in Turkeltaub et
al. (2015). Since Hydrus-1D is limited to optimizing a max-
imum of 15 parameters at once and that the SWC of the
lower layers changes more slowly and over a smaller range
than the upper layers, the van Genuchten parameters of the
upper two layers were first optimized, while the parameters
of the lower two layers were fixed. Then, the optimized van
Genuchten parameters of the upper two layers were kept con-
stant, while the parameters of the lower two layers were opti-
mized. The process was continued until there were no further
improvements in the optimized hydraulic parameters or un-
til the changes in the lowest sum of squares were less than
0.1 %. Given the sensitivity of the optimization results to
the initial guesses of soil hydraulic parameters in the Hy-
drus model, soil hydraulic parameters from six soil textures
were used as initial inputs for the optimizations at each lo-
cation (Carsel and Parish, 1988), including sandy clay loam,
silty clay loam, loam, silt loam, silt, and clay loam. Based
on the length of available SWC data from the TP measure-
ments, the periods of 2007, 2008–2010, and 2011–2012 were
used as the spin-up, calibration, and validation periods, re-
spectively. Moreover, to minimize the impacts of freezing
conditions on the quality of SWC measurements, data from
January to March of each calendar year were removed (based
on available soil temperature data) from the optimizations.

In addition to the TP profile observations, we used the
CRNP area-average SWC in the inverse procedure to develop
an independent set of soil parameters. The CRNP was as-
sumed to provide SWC data with an average effective mea-
surement depth of 20 cm at this study site. The observation
point was therefore set at 10 cm. As a first guess and in the
absence of other information, soil properties were assumed to
be homogeneous throughout the simulated soil column with
a length of 175 cm. Because the CRNP was installed in 2011
at the study site, the periods of 2011, 2012–2013, and 2014
were used as spin-up, calibration, and validation periods, re-
spectively, for the optimization procedure.

The lower and upper bounds of each van Genuchten
parameter are provided in Table 2. With respect to the
goodness-of-fit assessment, root mean square error (RMSE)
between simulated and observed SWC was chosen as the

objective function to minimize in order to estimate the soil
hydraulic parameters. The built-in optimization procedure
in Hydrus-1D was used to perform parameter estimation. A
sensitivity analysis of the six soil model parameters was per-
formed. In addition, three additional performance criteria, in-
cluding coefficient of determination (R2), mean average er-
ror (MAE), and the Nash–Sutcliffe Efficiency (NSE) were
used to further evaluate and validate the selected model be-
havior:

RMSE=

√
1
n

∑n

i=1
(Pi −Oi)

2 (9)

R2
= (

n(
∑n
i=1PiOi )− (

∑n
i=1Pi )(

∑n
i=1Oi )√

[n
∑n
i=1P

2
i
− (
∑n
i=1Pi )

2][n
∑n
i=1O

2
i
− (
∑n
i=1Oi )

2]
)2 (10)

MAE=
1
n

∑n

i=1
|Pi −Oi | (11)

NSE= 1−
∑n
i=1(Pi −Oi)

2∑n
i=1(Oi − Ōi)

2
, (12)

where n is the total number of SWC data points; Oi and Pi
are, respectively, the observed and simulated daily SWC on
day i; and Ōi is the observed mean value. Based on the best
scores (i.e., lowest RMSE values), the best optimized set of
soil hydraulic parameters at each location was selected. Us-
ing the selected parameters, the Hydrus model was then run
in a forward mode in order to estimate ETa between 2007 and
2012. Finally, we note that the years 2004–2006 were used as
a model spin-up period for the forward model and evaluation
of ETa because of the longer climate record length.

3 Results and discussions

3.1 Vadose zone inverse modeling results

The time series of the average SWC from the four TP lo-
cations along with 1 standard deviation at each depth are
plotted in Fig. 4. Based on the large spatial standard devi-
ation values (Fig. 4), despite the relatively small spatial scale
(∼ 65 ha) and uniform cropping at the study site, SWC varies
considerably across the site, particularly during the growing
season. The comparison between SWC data from the CRNP
and spatial average of SWC data at the four TP locations in
the study field (i.e., average of 10 and 25 cm depths at TP lo-
cations) is presented in Fig. 5. The daily RMSE between the
spatial average of the TPs and CRNP data is 0.037 cm3 cm−3,
which is consistent with other studies that reported similar
values in semiarid shrublands (Franz et al., 2012), German
forests (Bogena et al., 2013; Baatz et al., 2014), montane
forests in Utah (Lv et al., 2014), sites across Australia (Haw-
don et al., 2014), and a mixed land use agricultural site in
Austria (Franz et al., 2016). We note that we would expect
lower RMSE (∼< 0.02 cm3 cm−3) with additional point sen-
sors located at shallower depths and in more locations dis-
tributed across the study site. Nevertheless, the consistent be-
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Table 2. Bounds of the van Genuchten parameters used for inverse modeling.

Soil parameter θr (−) θs (−) α (1 cm−1) n (−) Ks (cm day−1) l (−)

Range 0.03–0.30 0.3–0.6 0.001–0.200 1.01–6.00 1–200 −1–1

Figure 4. Temporal evolution of daily SWC (θ ) at different soil
depths. The black lines represent daily mean SWC (θ ) calculated
from TPs in four different locations at the study site and the blue
areas indicate 1 standard deviation.

havior between the spatial mean SWC of TPs and the CRNP
allows us to explore spatial variability of soil hydraulic prop-
erties within the footprint using inverse modeling. This will
be described in the next sections. The study period (2007–
2012; Fig. 6) contained significant interannual variability in
precipitation. During the spin-up period in 2007, the annual
precipitation (942 mm) was higher than the mean annual pre-
cipitation (784 mm); 2008 was a wet year (997 mm); 2009–
2011 were near-average years (715 mm); and 2012 was a
record dry year (427 mm) with widespread drought across
the region. Therefore, both wet and dry years were consid-
ered in the inverse modeling simulation period.

As an illustration, Fig. 7 shows the daily observed and sim-
ulated SWC during the calibration (2008–2010) and valida-
tion (2011–2012) periods at the TP 1 location (the simulation
results of the other three sites can be found in the Supplement
Figs. S1, S2, and S3). The results of objective function crite-
rion (RMSE) and the other three performance criteria (e.g.,
R2, MAE, and NSE) between simulated and observed SWC
values at TP locations are presented in Table 3.

Figure 5. Time series of daily CRNP and spatial average TP SWC
(θ ) data.

Figure 6. Annual precipitation (P ) and annual actual evapotranspi-
ration (ETa) at the Mead rain-fed (US-Ne3) site.

In this research, we define RMSE values less than
0.03 cm3 cm−3 between observed and simulated SWC values
as well matched and RMSE between 0.03 and 0.06 cm3 cm−3

as fairly well matched. We note the target error range of
satellite SWC products (e.g., SMOS and SMAP) is less than
0.04 cm3 cm−3 (Entekhabi et al., 2010). Similar to previous
studies (e.g., Jiménez-Martínez et al., 2009; Andreasen et al.,
2013; Min et al., 2015; Wang et al., 2016), the results of all
the performance criteria at TP locations show the capability
of inverse modeling in estimation of soil hydraulic parame-
ters. The results of the calibration period (2008–2010) indi-
cate that the simulated and observed SWC values are in good
agreement (i.e., well matched as defined above) throughout
the entire period at most locations and depths (Fig. 7 and Ta-
ble 3). In addition, the simulated and observed SWC data are
fairly well matched at most locations and depths during the
validation period (2011–2012), with notable differences dur-
ing the second half of 2012 during the extreme drought con-
ditions (Fig. 7 and Table 3). Reasons for this disagreement
in the observed and simulated SWC data will be discussed in
the following sections.

The results of inverse modeling using the CRNP data also
indicate the feasibility of using these data to estimate effec-
tive soil hydraulic parameters (Fig. 8 and Table 4). Based
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Table 3. Goodness-of-fit measures for simulated and observed SWC data at different depths during the calibration period (2008–2010) and
validation period (2011–2012) at TP locations. Note that we assume a good fit as an RMSE between 0 and 0.03 cm3 cm−3 and fair as between
0.03 and 0.06 cm3 cm−3.

Location Depth Calibration period (2008–2010) Validation period (2011–2012)

R2 MAE RMSE NSE R2 MAE RMSE NSE
(cm) (cm3 cm3) (cm3 cm3) (cm3 cm−3) (cm3 cm−3)

TP 1 10 0.542 0.024 0.036 0.533 0.532 0.016 0.033 0.503
25 0.742 0.014 0.022 0.739 0.716 0.029 0.040 0.486
50 0.409 0.013 0.023 0.407 0.603 0.041 0.074 0.157

100 0.352 0.015 0.022 0.343 0.419 0.027 0.038 0.358

TP 2 10 0.330 0.044 0.066 0.305 0.287 0.047 0.061 0.052
25 0.623 0.010 0.020 0.604 0.718 0.038 0.055 0.135
50 0.551 0.015 0.026 0.074 0.683 0.040 0.055 0.202

100 0.424 0.019 0.027 −2.055 0.344 0.048 0.073 −0.473

TP 3 10 0.269 0.034 0.051 0.256 0.534 0.086 0.102 −4.265
25 0.512 0.011 0.017 0.509 0.852 0.010 0.015 0.793
50 0.549 0.015 0.023 −0.214 0.658 0.022 0.033 0.652

100 0.238 0.018 0.029 −3.156 0.669 0.018 0.025 0.178

TP 4 10 0.412 0.029 0.044 0.406 0.580 0.051 0.071 −0.116
25 0.434 0.016 0.025 0.350 0.594 0.029 0.042 0.490
50 0.151 0.009 0.015 −13.400 0.443 0.041 0.073 0.036

100 0.001 0.013 0.021 −12.058 0.292 0.026 0.039 0.238

on the performance criteria (Table 4), the simulated data are
fairly well matched with the observed SWC data during both
the calibration and validation periods. Additional informa-
tion from deeper soil probes or more complex modeling ap-
proaches, such as data assimilation techniques (Rosolem et
al., 2012; Renzullo et al., 2014), may be needed to fully uti-
lize the CRNP data for the entire growing season. However,
this was beyond the scope of the current study and merits fur-
ther investigation given the global network of CRNP (Zreda
et al., 2012) dating back to ∼ 2011.

Table 5 summarizes the optimized van Genuchten param-
eters for the four different depths of the four TP locations
and the single layer for the CRNP location. The optimized
parameters were then used to estimate ETa for the entire
study period as an independent comparison to the EC ETa
data. The results of the ETa evaluation will be discussed in
the next section. According to the simulation results (Ta-
ble 5), in most of the soil layers, the TP 4 location results
in lower n and Ks values and higher θr values than the
other three locations (TPs 1–3), suggesting either underlying
soil texture variability in the field or texture-dependent sen-
sor sensitivity/calibration. As a validation for the simulation
results, the publicly available Web Soil Survey data (http:
//websoilsurvey.nrcs.usda.gov/) was used to explore whether
the optimized van Genuchten parameters from the inverse
modeling (Fig. 1b and Table 2) agreed qualitatively with the
survey data. Based on the Web Soil Survey data, the soil at
the TP 4 location contains higher clay percentage than the
other locations. Meanwhile, the optimized parameters reflect

the spatial pattern of soil texture in the field as shown by the
Web Soil Survey data (e.g., lower n andKs values and higher
θr values at the TP 4 location with finer soil texture). Physi-
cally, finer-textured soils generally have lowerKs and higher
θr values (Carsel and Parrish, 1988). Moreover, the shape fac-
tor n is indicative of pore size distributions of soils. In gen-
eral, finer soils with smaller pore sizes tend to have lower n
values (Carsel and Parrish, 1988). The observed SWC at the
TP 4 location is consistently higher than the average SWC
of the other three locations (Fig. S4), which can be partly at-
tributed to the higher θr values at the TP 4 location (Wang
and Franz, 2015). Overall, the obtained van Genuchten pa-
rameters from the inverse modeling are in qualitatively good
agreement with the available spatial distribution of soil tex-
ture in the study field, indicating the capability of using in-
verse VZM to infer soil hydraulic properties. Further work on
validating the Web Soil Survey data soil hydraulic property
estimates is of general interest to the LSM community.

3.2 Comparison of modeled ETa with observed ETa

Because a longer set of climatic data was available at the
study site (as compared to SWC data), we used 2004–2006
as a spin-up period. Using the best-fit soil hydraulic param-
eters for the four TP locations and the single CRNP loca-
tion, the Hydrus-1D model was then run in a forward mode
to calculate ETa over the entire study period (2007–2012).
The simulated daily ETa was then compared with the inde-
pendent EC ETa measurements using RMSE (Eq. 9) as the
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Table 4. Goodness-of-fit measures for simulated and observed SWC data during the calibration period (2012–2013) and validation period
(2014) at the CRNP location.

Location Depth Calibration period (2012–2013) Validation period (2014)

R2 MAE RMSE NSE R2 MAE RMSE NSE
(cm) (cm3 cm−3) (cm3 cm−3) (cm3 cm−3) (cm3 cm−3)

CRNP 10 0.497 0.018 0.027 0.456 0.192 0.020 0.032 −0.310

Figure 7. Daily observed and simulated SWC (θ ) during the cali-
bration (2008–2010) and validation (2011–2012) periods at the TP
1 location. See supplemental figures for other comparisons.

evaluation criterion. In order to upscale TP ETa estimation to
the field/EC scale, we used the soil textural boundaries and
areas defined by the Web Soil Survey data map to compute a
weighted average ETa. In this research, we consider RMSE
values less than 1 mm day−1 between observed and simu-
lated ETa values as well matched and RMSE values between
1 and 1.2 as fairly well matched (Fig. 9 and Table 6). The
performance criterion results indicate that the simulated daily
ETa is in a better agreement with EC ETa measurements at
the TP 1–3 locations than at the TP 4 and CRNP locations
(Table 6). However, based on the performance criteria from
inverse modeling results and on the Web Soil Survey data,
we conclude that spatial heterogeneity of soil texture in the

Figure 8. Daily observed and simulated SWC (θ ) during the cali-
bration (2012–2013) and validation (2014) periods at the location
of the cosmic-ray neutron probe.

study field results in significant spatial variation in ETa rates
across the field (e.g., less ETa occurs at the TP 4 location
than in the other parts of the field). Here, smaller ETa rates
at the TP 4 location are likely due to finer soil texture at this
location, which makes it more difficult for the plant/roots to
overcome potentials to extract water from the soil, thus lead-
ing to a lower ETa rate and greater plant stress. In addition,
higher surface runoff can be expected at the TP 4 location
due to finer-textured soils (as we observed during our field
campaigns). According to the simulation results, the average
surface runoff at the TP 4 location was about 44.8 mm yr−1

from 2007 to 2012, while the average surface runoff at the
other three locations (TPs 1–3) was around 10.6 mm yr−1,
which partially accounts for the lower ETa rates. We note that
future work using historic yield maps may also be used to
further elucidate the soil hydraulic property differences given
the direct correlation between transpiration and yield.

Given that CRNPs have a limited observational depth and
that only a single soil layer was optimized in the inverse
model for the CRNP, one could expect the simulated daily
ETa from the CRNP to have larger uncertainty. Here, we
found an RMSE of 1.14 mm day−1 using the CRNP ver-
sus 0.91 mm day−1 for the upscaled TP locations. However,
when the optimized soil parameters obtained from the CRNP
data were used to estimate ETa, the model did simulate daily
ETa fairly well during both non-growing and growing sea-
sons in comparison to the EC ETa measurements.

On the annual scale, ETa measured by the EC tower ac-
counted for 87 % of annual P recorded at the site during the
study period (Fig. 6). Overall, the simulated annual ETa at all
the TP and CRNP locations is comparable to the annual ETa
measured by the EC tower, except during 2012 (Table 7), in
which a severe drought occurred in the region. One explana-
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Table 5. Optimized van Genuchten parameters in different locations at the study site. Note that 95 % confidence intervals are in parentheses.

Location Depth θr θs α n Ks l

(cm) (−) (−) (1 cm−1) (−) (cm day−1) (−)

TP 1 0–15 0.134 0.423 0.027 1.475 8.119 0.546
(0.130–0.137) (0.417–0.429) (0.026–0.027) (1.456–1.494) (7.965–8.273) (0.525–0.567)

15–35 0.136 0.408 0.007 1.345 11.540 0.480
(0.132–0.141) (0.404–0.412) (0.007–0.007) (1.322–1.367) (11.137–11.939) (0.466–0.494)

35–75 0.191 0.448 0.024 1.097 8.057 0.285
(0.188–0.194) (0.443–0.453) (0.024–0.025) (1.088–1.105) (7.879–8.235) (0.278–0.292)

75–175 0.071 0.430 0.025 1.069 9.807 0.364
(0.068–0.073) (0.424–0.436) (0.024–0.025) (1.061–1.077) (9.540–10.073) (0.354–0.375)

TP 2 0–15 0.211 0.446 0.027 1.567 8.120 1.000
(0.195–0.227) (0.431–0.461) (0.018–0.035) (1.431–1.703) (4.660–11.580) (0.411–1.589)

15–35 0.197 0.434 0.006 1.191 8.655 0.022
(0.105–0.289) (0.425–0.442) (0.003–0.008) (1.076–1.306) (0.953–16.357) (−0.194–0.238)

35–75 0.110 0.424 0.015 1.239 4.605 0.723
(0–0.258) (0.406–0.441) (0.007–0.023) (1.040–1.438) (0–9.214) (−1.210–2.655)

75–175 0.109 0.408 0.020 1.302 6.780 0.000
(0–0.275) (0.357-0.459) (0–0.044) (0.965–1.639) (0–20.523) (−0.045–0.045)

TP 3 0–15 0.281 0.464 0.035 1.487 7.096 0.400
(0.276–0.287) (0.463–0.465) (0.033–0.036) (1.446–1.528) (6.742–7.450) (0.385–0.416)

15–35 0.072 0.402 0.012 1.085 29.960 0.353
(0.069–0.075) (0.398–0.407) (0.011–0.012) (1.076–1.095) (28.470–31.457) (0.340–0.367)

35–75 0.081 0.498 0.037 1.128 24.440 0.527
(0.076–0.087) (0.481–0.515) (0.034–0.039) (1.108–1.149) (22.013–26.872) (0.472–0.583)

75–175 0.085 0.500 0.039 1.147 17.540 0.496
(0.077–0.092) (0.482–0.518) (0.036–0.042) (1.124–1.170) (15.995–19.088) (0.454–0.539)

TP 4 0–15 0.082 0.481 0.034 1.172 7.773 0.953
(0.069–0.096) (0.474–0.489) (0.030–0.038) (1.158–1.186) (6.913–8.632) (0.772–1.133)

15–35 0.200 0.426 0.013 1.217 14.060 0.044
(0.175–0.225) (0.420–0.433) (0.010–0.017) (1.173–1.262) (9.248–18.873) (0.027–0.061)

35–75 0.250 0.477 0.009 1.079 1.045 0.353
(0.240–0.260) (0.472–0.481) (0.007–0.011) (1.066–1.092) (0.952–1.138) (0.168–0.538)

75–175 0.200 0.487 0.012 1.070 1.454 0.985
(0.185–0.214) (0.481–0.494) (0.009–0.014) (1.057–1.083) (1.146–1.762) (0.706–1.264)

CRNP 0–15 0.100 0.392 0.019 1.054 6.931 0.547
(0.098–0.103) (0.386–0.398) (0.018–0.019) (1.145–1.164) (6.786–7.076) (0.545–0.549)

Table 6. Goodness-of-fit measures for simulated and observed daily
ETa during the simulation period (2007–2012) at the study site.

Location R2 MAE RMSE NSE
(mm day−1) (mm day−1)

ETp 0.510 1.359 1.992 0.340
TP 1 0.644 0.696 1.062 0.618
TP 2 0.754 0.610 0.907 0.746
TP 3 0.751 0.601 0.904 0.728
TP 4 0.365 0.878 1.387 0.168
TPs’ weighted 0.742 0.599 0.911 0.714
average
CRNP 0.573 0.742 1.143 0.562

tion is that the plants extract more water from deeper layers
under extreme drought conditions than what we defined as
a maximum rooting depth (150 cm for maize and 120 cm for
soybean) for the model, thus limiting the VZM ability to esti-
mate ETa accurately during the drought year (2012). In fact,
based on the EC ETa measurements at the study site, there
was just an 8.18 % reduction in annual ETa in 2012 com-
pared to the average of the other years (2007–2011), while
there were 29.58 and 35.75 % reductions in annual simu-
lated ETa values, respectively, in upscaled TP and CRNP.
This shows that although 2012 was a very dry year, the plants
probably found most of the needed water by extracting wa-
ter from deeper soil reservoirs. As previously mentioned, we
defined a maximum rooting depth for the model that could
greatly impact the results. To further illustrate this point, a
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Figure 9. Simulated daily ETa versus observed daily ETa in differ-
ent locations at the study site (2007–2012).

sensitivity analysis was performed on the maximum root-
ing depth and presented in the following section. However,
we note that given the fact that EC ETa estimation can have
up to 20 % uncertainty (Massman and Lee, 2002, and Holli-
neger and Richardson, 2005), and accounting for the natural
spatial variability of ETa due to soil texture and root depth
growth uncertainties, the various ETa estimation techniques
performed fairly well. In fact, it is difficult to identify which
ETa estimation method is the most accurate method. These
results are consistent with the concept of equifinality in hy-
drologic modeling given the complexity of natural systems
(Beven and Freer, 2001). Moreover, the findings here are
consistent with Nearing et al. (2016) who showed that infor-
mation lost in model parameters greatly affects the soil mois-
ture comparisons against a benchmark. However, soil param-
eterization was less important in the loss of information for
the comparisons of ET/latent energy against a benchmark.
Fully resolving these issues remains a key challenge to the
land surface modeling community and the model’s ability to
make accurate predictions (Best et al., 2015). The following
section provides a detailed sensitivity analysis of the soil hy-
draulic parameters and root depth growth functions in order
to begin to understand the sources of error in estimating ETa
from SWC monitoring networks.

3.3 Sensitivity analysis of soil hydraulic parameters
and rooting depth

In this research, we compared simulated ETa with the mea-
sured EC ETa. As expected, some discrepancies between
simulated and measured ETa values existed. In order to be-
gin to understand the key sources of error, we performed a set
of sensitivity analysis experiments on the estimated soil hy-
draulic parameters. Building on Wang et al. (2009b), a sen-
sitivity analysis for a single homogeneous soil layer (6 pa-
rameters) and a four-layer soil profile (24 parameters) was
performed over the study period (2007–2012). Here, we per-
formed a preliminary sensitivity analysis by changing a sin-
gle soil hydraulic parameter one at a time while keeping the
other parameters constant (i.e., at the average value). Fig-
ure 10 illustrates the sensitivity results on simulated ETa,
indicating that the soil hydraulic parameters have a range
of sensitivities with tortuosity (l) being the least. We found
that n and α were the most sensitive, particularly in the shal-
lowest soil layer. This sensitivity to the shallowest soil layer
provides an opportunity to use the CRNP observations, par-
ticularly in the early growing season (i.e., when evaporation
dominates latent energy flux), to help constrain estimates of
n and α. As the crop continues to develop (and transpira-
tion contributes a relatively larger component of latent en-
ergy), additional information about deeper soil layers should
be used to estimate soil hydraulic parameters or perform data
assimilation. Moreover, the CRNP may be useful in helping
constrain and parameterize soil hydraulic functions in sim-
pler evaporation models widely used in remote sensing (see
Allen et al., 2007) and crop modeling (see Allen et al., 1998).

Following the sensitivity analysis, we repeated the opti-
mization experiment using only α, n, andKs, and used model
default estimates for the other parameters in each layer. We
found that the RMSE values were significantly higher (1.511
vs. 0.911 mm day−1) than when considering all 24 param-
eters. We suspect, given the high correlation between soil
hydraulic parameters (Carsel and Parrish, 1988), that fixing
certain parameters leads to a degradation in overall perfor-
mance. We suggest that further sensitivity analyses, in par-
ticular changing multiple parameters simultaneously or us-
ing multiple objective functions, be used to fully understand
model behavior (see Bastidas et al., 1999 and Rosolem et al.,
2012).

A sensitivity analysis of ETa by varying rooting depth is
summarized in Fig. 11. As would be expected with increas-
ing rooting depth, higher ETa occurred. In addition, Fig. 11
illustrates a decreasing RMSE against EC observations for
increases up to 200 %. Again, it is unclear if the EC obser-
vations are biased high or if in fact rooting depths are much
greater than typically considered in these models. The high
observed EC values in the drought year of 2012 indicate that
roots likely take up water from below the 1 m observations.
Certainly the results shown here further indicate the impor-
tance of root water uptake parameters in VZMs and LSMs,
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Table 7. Summary of simulated yearly and average actual evapotranspiration (ETa) (mm) and observed yearly and average actual evapotran-
spiration (ETa) (mm) from the eddy covariance tower from 2007 to 2012.

Location Year

2007 2008 2009 2010 2011 2012 Average

ETp 1048.5 987.9 989.4 1011.5 1025.7 1326.7 1064.9
EC 656.8 608.4 589.7 646.1 622.2 570.1 612.5
TP 1 646.1 629.0 559.8 642.1 573.9 415.5 579.5
TP 2 614.3 598.4 576.7 620.5 576.9 429.5 574.7
TP 3 529.0 556.1 556.4 590.4 549.8 405.2 545.4
TP 4 652.2 576.1 529.9 677.3 458.2 381.2 525.3
Upscaled TPs 613.9 564.1 556.3 600.3 547.7 405.9 548.0
CRNP 745.3 707.1 603.0 721.8 642.2 439.3 643.1

Figure 10. Sensitivity analysis of the effect of soil hydraulic param-
eters on average annual ETa values (2007–2012) for a single homo-
geneous soil layer (6 parameters) and for a four-layer soil profile
(24 parameters).

even in homogeneous annual cropping systems. While it is
beyond the scope of this paper, we refer the reader to the
growing literature on the importance of root water uptake
parameters on hydrologic fluxes (see Schymanski et al. 2008
and Guswa, 2012).

3.4 Applications and limitations of the vadose zone
modeling framework

Given their simplicity and the widespread availability of
ground data, ETr and Kc values are often used in a wide va-
riety of applications to estimate ETp and thus approximate
ETa. It is well known that SWC is a limiting factor affecting
the assumption that ETp ∼ETa. On the other hand, we know
that SWC observations are local in nature and not necessar-
ily representative of ETa footprint estimates. The key ques-
tions include what the value of SWC observations is, how
many profiles should be installed in a footprint, and which

Figure 11. Sensitivity analysis of the effect of root depth on ETa
estimation for a single homogeneous soil layer profile. Note that
root depth is shown in terms of percent depth, as it is dynamic over
the growing period.

depths should be used to constrain estimates of fluxes. The
well-instrumented and long-term study presented here allows
us to start to answer these key questions. First, we find that
ETp has an average annual value of 1064.9 mm as compared
to EC at 612.5 mm (Table 7). By including individual SWC
profiles (TP 1–4) and the CRNP in the VZM framework, we
are able to constrain our estimate of ETa to between 525.3
and 643.1 mm and reduce ETa RMSE from 1.992 to around
1 mm day−1 (Table 6). In addition, a range of soil hydraulic
parameters for each depth and spatially averaged top layer
can be estimated to help better constrain recharge fluxes si-
multaneously. Given the principle of equifinality in hydro-
logic systems, the VZM framework may lead to equally rea-
sonable estimates of parameters, which is a limitation of the
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method and LSMs in general. Based on our sensitivity analy-
sis (Fig. 10), the key parameters of α and nmay greatly affect
ETa.

Although sparsely distributed, widespread state, national,
and global meteorological observations paired with SWC
profiles (Xia et al., 2015) and the VZM framework provide an
opportunity to better constrain ETa and local soil hydraulic
functions. Moreover, where multiple SWC profile informa-
tion is available, a range of ETa and soil hydraulic parameters
can be estimated and thus considered in LSM data assim-
ilation frameworks. The combination of basic metrological
observations with a CRNP in the VZM framework further al-
lows for estimates of upscaled soil hydraulic parameters with
similar estimates of ETa as found with individual SWC pro-
files. Moving forward, combining CRNP with deeper SWC
observations from point sensors seems to be a reasonable
strategy in order to average the inherent SWC variability in
the near surface yet provide SWC constraints at depth, par-
ticularly as annual crops develop over the growing season.

4 Conclusions

In this study, the feasibility of using inverse vadose zone
modeling for field-scale ETa estimation was explored at an
agricultural site in eastern Nebraska. Both point SWC sen-
sors (TPs) and area-average techniques (CRNPs) were ex-
plored. This methodology has been successfully used for es-
timates of groundwater recharge but it was critical to assess
the performance of other components of the water balance
such as ETa. The results indicate reasonable estimates of
daily and annual ETa but with varied soil hydraulic function
parameterizations. The varied soil hydraulic parameters were
expected given the heterogeneity of soil texture at the site and
consistent with the principle of equifinality in hydrologic sys-
tems. We note that while this study focused on one particular
site, the framework can be easily applied to other networks
of SWC monitoring across the globe (Xia et al., 2015). The
value-added products of groundwater recharge and ETa flux
from the SWC monitoring networks will provide additional
and more robust benchmarks for the validation of LSM that
continues to improve their forecast skill.

Data availability. The climatic and EC data used in this research
can be found at http://ameriflux.lbl.gov/. The TP SWC and LAI
data in the study site are provided by Andrew Suyker and CRNP
SWC are provided by Trenton E. Franz, and both sets of data can
be requested directly from the authors. The US soil taxonomy in-
formation is provided by Soil Survey Staff and is available online
at http://websoilsurvey.nrcs.usda.gov/. The remaining datasets are
provided in the Supplement associated with this paper.
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Twarakavi, N. K. C., Šimůnek, J., and Seo, S.: Evaluating interac-
tions between groundwater and vadose zone using the HYDRUS-
based flow package for MODFLOW, Vadose Zone J., 7, 757–
768, 2008.

van Genuchten, M. T.: A closed-form equation for predicting the
hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am.
J., 44, 892–898, 1980.

Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T.,
Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G.,
Amos, B., Yang, H., and Ginting, D.: Annual carbon dioxide
exchange in irrigated and rainfed maize-based agroecosystems,
Agr. Forest Meteorol., 131, 77–96, 2005.

Wang, T. and Franz, T. E.: Field observations of regional con-
trols of soil hydraulic properties on soil moisture spatial
variability in different climate zones, Vadose Zone J., 14,
doi:10.2136/vzj2015.02.0032, 2015.

Wang, T., Istanbulluoglu, E., Lenters, J., and Scott, D.: On the role
of groundwater and soil texture in the regional water balance:
An investigation of the Nebraska sand hills, USA, Water Resour.
Res., 45, W10413, doi:10.1029/2009WR007733, 2009a.

Wang, T., Zlotnik, V. A., Šimunek, J., and Schaap, M. G.: Us-
ing pedotransfer functions in vadose zone models for estimating
groundwater recharge in semiarid regions, Water Resour. Res.,
45, W04412, doi:10.1029/2008WR006903, 2009b.

Wang, T., Franz, T. E., and Zlotnik, V. A.: Controls of soil hydraulic
characteristics on modeling groundwater recharge under differ-
ent climatic conditions, J. Hydrol., 521, 470–481, 2015.

Wang, T., Franz, T. E., Yue, W., Szilagyi, J., Zlotnik, V. A., You,
J., Chen, X., Shulski, M. D., and Young, A.: Feasibility analy-
sis of using inverse modeling for estimating natural groundwater
recharge from a large-scale soil moisture monitoring network, J.
Hydrol., 533, 250–265, 2016.

Wolf, A., Saliendra, N., Akshalov, K., Johnson, D. A., and Laca, E.:
Effects of different eddy covariance correction schemes on en-
ergy balance closure and comparisons with the modified bowen
ratio system, Agr. Forest Meteorol., 148, 942–952, 2008.

Wood, E. F., Roundy, J. K., Troy, T. J., Van Beek, L. P. H., Bierkens,
M. F., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., and
Gochis, D.: Hyperresolution global land surface modeling: Meet-
ing a grand challenge for monitoring earth’s terrestrial water,
Water Resour. Res., 47, W05301, doi:10.1029/2010WR010090,
2011.

Wösten, J., Pachepsky, Y. A., and Rawls, W.: Pedotransfer func-
tions: Bridging the gap between available basic soil data and
missing soil hydraulic characteristics, J. Hydrol., 251, 123–150,
2001.

Xia, Y., Ek, M. B., Wu, Y., Ford, T., and Quiring, S. M.: Compar-
ison of NLDAS-2 simulated and NASMD observed daily soil
moisture. Part I: Comparison and analysis, J. Hydrometeorol.,
16, 1962–1980, 2015.

Xie, Y., Sha, Z., and Yu, M.: Remote sensing imagery in vegetation
mapping: A review, J. Plant Ecol., 1, 9–23, 2008.

Hydrol. Earth Syst. Sci., 21, 1263–1277, 2017 www.hydrol-earth-syst-sci.net/21/1263/2017/

http://dx.doi.org/10.5194/hess-19-1439-2015
http://dx.doi.org/10.1029/2011jd016355
http://dx.doi.org/10.5194/hess-12-913-2008
http://websoilsurvey.nrcs.usda.gov/
http://adsabs.harvard.edu/abs/2012AGUFM.B22A..06S
http://adsabs.harvard.edu/abs/2012AGUFM.B22A..06S
http://dx.doi.org/10.2136/vzj2015.02.0032
http://dx.doi.org/10.1029/2009WR007733
http://dx.doi.org/10.1029/2008WR006903
http://dx.doi.org/10.1029/2010WR010090


F. Foolad et al.: Feasibility analysis of using inverse modeling 1277

Yang, H., Dobermann, A., Cassman, K. G., and Walters, D. T.:
Hybrid-maize. A Simulation Model for Corn Growth and Yield,
Nebraska Cooperative Extension CD, 9, 2004.

Yang, W., Yang, L., and Merchant, J.: An assessment of
AVHRR/NDVI-ecoclimatological relations in Nebraska, USA,
Int. J. Remote Sens., 18, 2161–2180, 1997.

Zhang, L., Dawes, W., and Walker, G.: Response of mean annual
evapotranspiration to vegetation changes at catchment scale, Wa-
ter Resour. Res., 37, 701–708, 2001.

Zhang, Z., Tian, F., Hu, H., and Yang, P.: A comparison of meth-
ods for determining field evapotranspiration: photosynthesis sys-
tem, sap flow, and eddy covariance, Hydrol. Earth Syst. Sci., 18,
1053–1072, doi:10.5194/hess-18-1053-2014, 2014.

Zreda, M., Desilets, D., Ferré, T., and Scott, R. L.: Measuring
soil moisture content non-invasively at intermediate spatial scale
using cosmic-ray neutrons, Geophys. Res. Lett., 35, L21402,
doi:10.1029/2008GL035655, 2008.

Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D.,
Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil
Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–
4099, doi:10.5194/hess-16-4079-2012, 2012.

www.hydrol-earth-syst-sci.net/21/1263/2017/ Hydrol. Earth Syst. Sci., 21, 1263–1277, 2017

http://dx.doi.org/10.5194/hess-18-1053-2014
http://dx.doi.org/10.1029/2008GL035655
http://dx.doi.org/10.5194/hess-16-4079-2012

	Abstract
	Introduction
	Materials and methodology
	Study site
	Model setup
	Vadose zone model
	Inverse modeling to estimate soil hydraulic parameters


	Results and discussions
	Vadose zone inverse modeling results
	Comparison of modeled ETa with observed ETa
	Sensitivity analysis of soil hydraulic parameters and rooting depth
	Applications and limitations of the vadose zone modeling framework

	Conclusions
	Data availability
	Competing interests
	Acknowledgements
	References

