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Abstract. Accurate rainfall data are the key input parame-

ter for modelling river discharge and soil loss. Remote areas

of Ethiopia often lack adequate precipitation data and where

these data are available, there might be substantial temporal

or spatial gaps. To counter this challenge, the Climate Fore-

cast System Reanalysis (CFSR) of the National Centers for

Environmental Prediction (NCEP) readily provides weather

data for any geographic location on earth between 1979 and

2014. This study assesses the applicability of CFSR weather

data to three watersheds in the Blue Nile Basin in Ethiopia.

To this end, the Soil and Water Assessment Tool (SWAT) was

set up to simulate discharge and soil loss, using CFSR and

conventional weather data, in three small-scale watersheds

ranging from 112 to 477 ha. Calibrated simulation results

were compared to observed river discharge and observed soil

loss over a period of 32 years. The conventional weather data

resulted in very good discharge outputs for all three water-

sheds, while the CFSR weather data resulted in unsatisfac-

tory discharge outputs for all of the three gauging stations.

Soil loss simulation with conventional weather inputs yielded

satisfactory outputs for two of three watersheds, while the

CFSR weather input resulted in three unsatisfactory results.

Overall, the simulations with the conventional data resulted

in far better results for discharge and soil loss than simula-

tions with CFSR data. The simulations with CFSR data were

unable to adequately represent the specific regional climate

for the three watersheds, performing even worse in climatic

areas with two rainy seasons. Hence, CFSR data should not

be used lightly in remote areas with no conventional weather

data where no prior analysis is possible.

1 Introduction

Accurately represented, spatially distributed hydro-

meteorological and hydro-climatic data are the most

important input parameters for hydrological modelling with

the Soil and Water Assessment Tool, called SWAT hereafter

(Arnold et al., 1998, 2012; Douglas-Mankin et al., 2010).

Although a great deal of effort is being invested into rainfall

and climatic data collection, many areas of Ethiopia have no

adequate precipitation data, and where such data are avail-

able, the monitoring network contains substantial temporal

and spatial gaps. This makes it necessary to use other sources

of modelled rainfall data for SWAT modelling. The Climate

Forecast System Reanalysis (CFSR, 2016) readily provides,

for any coordinated on the globe, a climate data set adapted

to SWAT. This data set is the result of the close cooperation

between two US organizations, the National Centers for

Environmental Prediction (NCEP) and the National Center

for Atmospheric Research (NCAR), which have completed

a global climate data reanalysis over 36 years from 1979

through to 2014. The CFSR data are based on a spectral

model which includes the parametrization of all major

physical processes as described in detail in Kalnay et al.

(1996), Kistler et al. (2001), and Saha et al. (2010).
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However, the applicability of the CFSR data for small-

scale catchments in the Ethiopian Highlands has not been

adequately investigated yet. Aforementioned studies did fo-

cus on large basins with numerous CFSR stations, which

tend to balance errors in rainfall patterns. So far, few stud-

ies have been conducted in the Ethiopian context on the im-

pact of rainfall data on streamflow simulations. Fuka et al.

(2014) used CFSR data in a 1200 km2 watershed in Ethiopia

with SWAT suggesting CFSR data perform as well or even

better than conventional precipitation. Worqlul et al. (2014)

correlated conventionally recorded rainfall with CFSR data

over the Lake Tana basin (15 000 km2). They suggested that

seasonal patterns could adequately be captured although the

CFSR data did uniformly overestimate and underestimate

measured rainfall. A recent study from Dile and Srinivasan

(2014) evaluated the use of CFSR data for hydrological pre-

diction using SWAT in the Lake Tana basin, Ethiopia. The

study achieved satisfactory results in its simulations for both

CFSR and conventional data. While the outcome was bet-

ter with conventional weather data, the study concludes that

CFSR could be a valuable option in data-scarce regions.

Other studies using CFSR data not in the Ethiopian con-

text (De Almeida Bressiani et al., 2015; Alemayehu et al.,

2015) and with large to very large catchments (13 750 to

73 000 km2) concluded that CFSR data yielded good to very

good results and the SWAT model responded reasonably to

the data set. One CFSR application in China (Yang et al.,

2014) with meso-scale watersheds (366 to 1098 km2) con-

cluded that CFSR data were significantly different and that

the CFSR data spatial distribution might be the cause for the

weak performance.

The impact of spatial variability of precipitation on model

run-off showed that standard uniform rainfall assumptions

can lead to large uncertainties in run-off estimation (Faurès

et al., 2000). Several studies evaluating the CFSR data set

have suggested that climatic models tended to overestimate

interannual variability but underestimate spatial and seasonal

variability (Diro et al., 2009). In another study, Cavazos and

Hewitson (2005) performed statistical downscaling of daily

CFSR data with Artificial Neural Networks, and their predic-

tions showed low performance in near-equatorial and tropical

locations, which led them to conclude that the CFSR data are

most deficient in locations where convective processes domi-

nate. Another study found the CFSR data set performed well

on a continental scale but that it failed to adequately repro-

duce some regional features (Poccard et al., 2000). A study

in China performed streamflow simulations by SWAT using

different precipitation sources in a large arid basin using rain

gauge data combined with Tropical Rainfall Measuring Mis-

sion (TRMM) data (Yu et al., 2011). The study established

that streamflow modelling performed better using a combina-

tion of TRMM and rain gauge data, as opposed to data from

rain gauges only. Different interpolation schemes with the

use of univariate and covariate methods showed that Krig-

ing and inverse distance weighting performed similarly well

when used with the SWAT model (Wagner et al., 2012).

In this paper, WLRC (Water and Land Resource Centre)

and SCRP (Soil Conservation Research Programme) rainfall

data (hereafter called WLRC data) are compared to CFSR

data over a maximum period of 34 years from 1981 to 2014

(Maybar, 33 years for Andit Tid and 32 years for Anjeni).

The main objective of this paper is to compare the two data

sets for annual, interannual, and seasonal cycles and sub-

sequently to compare the effects on discharge and soil loss

modelling when using these data sets in three locations in the

Ethiopian Highlands (see Fig. 1). Calibrated CFSR modelled

discharge and soil loss is then compared to calibrated WLRC

modelled discharge and soil loss, and the applicability of the

CFSR data in small-scale catchments for hydrological pre-

dictions is statistically evaluated and compared.

2 Methods and materials

The effects of spatial and temporal variability in the CFSR

rainfall data set for the study area were examined in sev-

eral steps. First the CFSR data were statistically compared

to measured WLRC rainfall data for accurate representation

of annual, interannual, and seasonal cycles. This is important

because temporal occurrence of rainfall has a great impact

not only on discharge, but moreover on sediment yield gen-

eration. Many crop types are sown at the beginning of the

rainy season(s), which implies extensive ploughing before-

hand, which leaves fields unprotected for the first few rainfall

events. Hence, it is clear that temporal occurrences of annual,

interannual and seasonal cycles play a crucial role for the val-

idation of a data set like the CFSR climatic data. Second, the

impact of spatial and temporal variability of rainfall on hy-

drology and soil loss was assessed by modelling discharge

and soil loss with the SWAT model. The SWAT model was

calibrated for discharge once using WLRC climatic data and

once using the CFSR climatic data set. Afterwards soil loss

was calibrated for each catchment. In a last step, discharge

and soil loss on a monthly basis were statistically and visu-

ally compared using performance ratings established by Mo-

riasi et al. (2007). Each model was calibrated with one to five

iterations using 500 simulations each.

2.1 Study area

The study areas of the three micro-scale catchments are lo-

cated in the eastern and central part of the Blue Nile Basin.

The Anjeni (AJ) and the Andit Tid (AT) are sub-basins of the

Blue Nile Basin, which drains towards the west into the main

Nile at Khartoum. The Maybar (MA) catchment drains into

the Awash River to the east of the Ethiopian Highlands. The

catchment sizes range from 112 to 477 ha and their altitudi-

nal ranges extend from 2406 to 3538 m a.s.l. (see Table 1 for

details). The catchments have a subhumid to humid climate
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Figure 1. Map overview of Blue Nile (Abbay) Basin with the WLRC research stations, agro-ecological zones according to Hurni (1998),

and emplacements of CFSR stations.

with an annual temperature ranging from 12 to 16◦ C and

a mean annual rainfall ranging from 1211 to 1690 mm. An-

jeni has a unimodal rainfall pattern with a main rainy season

from June to September, while Andit Tid and Maybar have a

bimodal rainfall regime with a small rainy season from April

to May (belg) and a main rainy season from June to Septem-

ber (kremt) followed by a long dry season from October to

March. Land use is dominated by smallholder rain-fed farm-

ing systems with grain-oriented production, ox-plough farm-

ing, and uncontrolled grazing practises.

2.2 Hydrometeorological data

The hydrometeorological data consist of two sets. The con-

ventional or measured data contain daily rainfall and max-

imum and minimum temperature from one climatic station

for each watershed (Lambrecht Rain Gauge Hellman type

with chart recorder, and thermometers). These climatic sta-

tions were installed in the early 1980s and span the pe-

riod until 2014 with some larger gaps (see Table 1 for de-

tails) mainly from 2000 to 2010. The CFSR data (from the

Texas A&M University Spatial Sciences website, global-

weather.tamu.edu) were obtained for the entire Blue Nile

Basin (bounding box: latitude 8.60–12.27◦ N and longitude

33.94–40.40◦ E) before choosing the four closest stations for

each watershed. It includes daily rainfall, maximum and min-

imum temperature as well as wind speed, relative humidity,

and solar radiation for 12 locations, 4 for each watershed (see

Fig. 1 for details).

2.3 Hydrologic model

SWAT (SWAT2012 rev. 620) was used to assess the impact

of different rainfall patterns on run-off and soil loss dynam-

ics through the ArcSWAT interface (Version 2012.10_1.14).

Here, we present the SWAT model only briefly, as it has been

widely used in the past, with an extensive review of its per-

formance and parametrization in the United States, China,

Switzerland, Kenya, Ethiopia, and other countries (Gessesse

et al., 2014; Mbonimpa, 2012; Betrie et al., 2011; Tibebe and

Bewket, 2011; Lin et al., 2010; Stehr et al., 2008; Schuol and

Abbaspour, 2007). SWAT is a physically-based river basin

or watershed modelling tool. The SWAT model requires

specific information about weather, soil properties, topogra-

phy, vegetation, and land management practices occurring in

the watershed (Arnold et al., 2012). ArcSWAT divides the

catchment into hydrological response units (HRUs) based on

unique combinations of soil type, land use, and slope classes

that allow for a high level of spatial detail simulation. Run-off

is predicted separately for each HRU and routed at sub-basin

level to obtain the total run-off for the watershed (Neitsch, S.

L. et al., 2011). The surface run-off is estimated in the model

using one of two options: (1) the Green and Ampt method

(Green and Ampt, 1911) or (2) the Natural Resources Con-
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Table 1. Description of study sites, data sources, and time series and gaps. The subdivision of data relates to calibration and validation

periods.

Andit Tid Anjeni Maybar

Year of constructiona 1982 1983 1981

Location 9.815◦ N 10.678◦ N 10.996◦ N

37.711◦ E 37.530◦ E 39.657◦ E

Size WLRC 477.3 hab 113.4 hac 112.8 hab

Size SWAT delineation 466.78 ha 105.23 ha 101.98 ha

Altitudinal range 3040–3538 m a.s.l. 2406–2506 m a.s.l. 2530–2857 m a.s.l.

Data resolution

DEM 2 m

Land use mapd field scale

Soil mape 5× 5 m

Climatic data Daily precipitation

Daily min. and max. temperature

Hydrology data Daily discharge

Soil loss data Daily soil loss

Sources SCRP/WLRC/CDE/own

Data availability

Andit Tid Anjeni Maybar

Precipitation data 1982–2004 1984–2004 1981–2001

2006 2010–2014 2004–2006

2010–2014 2010–2014

Temperature 1982–1993 1984–1993 1981–1993

1997–2002 1998–2004 1995–1998

2010–2013 2010–2013 2010–2013

Discharge 1982–1993 1984–1993 1981–1993

1995–1997 1995–2000 1997–2006

2011–2014 2010–2014

Sediment 1982–1993 1984–1993 1981–1991

1995–1997 1995–1998 1995–2006

2011–2014 2011–2014 2011–2014

Subdivision of data

Calibration 1984–1993 1986–1998 1983–2006

Validation 1994–1997 2010–2014 2008–2014

a Year of construction is the year the station was built and monitoring started. b Source: Bosshardt (1999). c Source:

Bosshardt (1997). d Every field in the watershed was attributed a land use type on the map. e Source: Belay (2014).

servation Service Curve Number (SCS-CN) method (USDA-

SCS, 1972). The flow routing is estimated using the variable

storage coefficient method (Williams, 1969) or the Musk-

ingum method (Chow, 1959). Soil loss for each HRU is

calculated through the Modified Universal Soil Loss Equa-

tion. Sediment routing in channels is estimated using stream

power (Williams, 1980), and deposition in channels is cal-

culated through fall velocity (Arnold et al., 2012; Gassman

et al., 2007).

2.4 Spatial data

The spatial data used in ArcSWAT for the present study in-

cluded the digital elevation model (DEM), land use data,

and soil data (see Table 1 for details). The DEM for the

three WLRC watersheds was developed by the Centre for

Development and Environment (CDE) of the University of

Bern, Switzerland, for the former SCRP (SCRP and CDE,

2000a, b, c) and has a resolution of 2 m. The spatial distri-

bution of soils for Anjeni was adapted from a soil survey

carried out by the SCRP (Kejela, 1995) and a PhD disserta-

tion by Gete Zeleke (Zeleke, 2000). The physical and chem-

ical parametrization of the soil was adapted from the soil

database in Zeleke’s thesis and from Kejela’s report. The soil

characteristics for Maybar were adapted from the SCRP’s

Soil Conservation Research Report 7 (Weigel, 1986) and for

Andit Tid from the SCRP’s Research Report 3 (Bono and

Seiler, 1984). Land use data were adapted from yearly sur-
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Table 2. SWAT parameters used for discharge and soil loss calibration with initial ranges and fitted final parameter ranges.

Variable Parameter name Definition Initial range Fitted parameter ranges

Andit Tid Anjeni Maybar

Discharge a__CN2.mgt∗ Curve number −25 to 15 16.7 to 18.7 −7 to −4 15 to 25

v__GWQMN.gw∗∗ Threshold depth of water in shallow 0 to 5000 4761 to 4990 0 to 1611 2500 to 5000

aquifer required for return flow to occur

a__ESCO.hru Soil evaporation compensation factor 0 to 1 −0.0038 to 0.046 0.0023 to 0.067 0 to 0.35

v__GW_REVAP.gw Groundwater “revap” coefficient 0.02 to 2 0.18 to 0.19 0.17 to 0.21 0.15 to 0.2

a__CH_K2.rte Effective hydraulic conductivity in channel −0.01 to 500 6 to 13 −11 to 58 −0.01 to 15

a__CH_N2.rte Manning’s n value for the main channel −0.01 to 0.3 0.0012 to 0.067 −0.15 to 0.062 0.025 to 0.065

a__SURLAG.bsn Surface run-off lag time 0.05 to 24 −0.084 to 3.98 0 to 6.63 0.05 to 12

a__RCHRG_DP.gw Deep aquifer percolation fraction 0 to 1 0.36 to 0.66 −0.51 to 0.23 0 to 1

v__EPCO.hru Plant uptake compensation factor 0 to 1 0.78 to 1.55 0.22 to 0.745 0 to 1

v__SOL_AWC(1).sol Available water capacity of the soil layer 0 to 1 0.13 to 0.22 0.19 to 0.47 0 to 1

Sediment a__SLSUBBSN.hru Average slope length −10 to 45 8.85 to 42.34 −6.24 to −4.60 −5 to 5

a__HRU_SLP.hru Average slope steepness −0.1 to 0.4 −0.16 to −0.04 −0.12 to −0.09 −0.5 to 0.72

a__USLE_K(1).sol USLE equation soil erodibility (K) factor –0.11 to 0.24 0.079 to 0.14 0.44 to 0.49 0.04 to 0.31

a__USLE_C.plant.dat Min value of USLE C factor 0.04 to 0.24 0.0009 to 0.004 0.48 to 0.5 0.34 to 0.626

applicable to the land cover/plant

a__USLE_P.mgt USLE equation support practice 0.42 to 0.79 −0.41 to 0.19 0.16 to 0.26 0.09 to 0.92

v__SPCON.bsn Linear parameter for the maximum amount 0.0001 to 0.01 0.005 to 0.007 0.0067 to 0.010 −0.01 to 0.01

of sediment that can be reentrained

v__SPEXP.bsn Exponent parameter for calculating 1 to 1.5 1.27 to 1.5 1.32 to 1.37 1.23 to 1.35

sediment reentrained

v__CH_COV1.rte Channel cover factor −0.05 to 0.6 0.2 to 0.39 0.057 to 0.099 −0.05 to 0.02

v__PRF_BSN.bsn Peak rate adjustment factor for sediment 0 to 2 0.9 to 1.1 1.2 to 1.6 0.89 to 1.2

routing in the main channel

∗ a__ means a given value is added to the existing parameter value. ∗∗ v__ means the existing parameter value is to be replaced by a given value.

veys carried out by SCRP and WLRC through land use map-

ping and interviews and by own surveys in 2008 and 2012. To

adapt to annually changing land use patterns, a generic map

was adapted from the WLRC land use maps of 2008, 2012,

2014 (Anjeni), and 2010, 2012, 2014 (Andit Tid, Maybar).

2.5 SWAT model setup

The watersheds were delineated using the ArcSWAT delin-

eation tool and its stream network compatibility was checked

against the stream network from satellite images (one satel-

lite image for each watershed). SWAT compiled 1038 HRUs

for Anjeni, 1139 HRUs for Maybar, and 728 HRUs for Andit

Tid respectively. Using a threshold with this kind of com-

bination of small catchments in combination with highly

detailed land use maps would have decreased the avail-

able level of information and increased uncertainty for mod-

elling. Therefore HRUs were defined using a zero percentage

threshold area, which means that all land use, soil, and slope

classes were used in the process.

The CFSR time series were complete from 1979 to 2014.

The WLRC data had substantial gaps in the time series,

mostly in the early 1990s and after 2000 (see Table 1 for de-

tails). The SWAT weather generator was used to fill the gaps

in the WLRC data set for rainfall and temperature. Otherwise

daily precipitation and minimum and maximum temperature

data were used to run the model. Potential evapotranspiration

was estimated using the Hargreaves method (Hargreaves and

Samani, 1985). Daily river flow and sediment concentration

data were measured at the outlet of the three WLRC water-

sheds. The flow observations are available throughout the en-

tire year, while calculated sediment concentrations from grab

samples are only available during rainstorm events and are

extrapolated over the whole time period. Personnel at the re-

search station are instructed to take grab samples only dur-

ing rainfall events, when the river is turning brown. Grab

samples are taken by hand with 1 L bottles which are then

filtered through ashless filter papers (retention capacity 12–

25 µm). The filtered sediment samples are later transported to

their respective research centres which oven-dry and weight

them. Sampling frequency is every 10 min at rising water lev-

els and every 30 min after peak water level. The planting and

harvesting times were averaged over the entire period and

planted at similar dates for the entire simulation. To simulate

crop growth, we used the heat unit function in ArcSWAT.

Teff (Eragrostis tef), a widely cultivated and highly nutri-

tional crop native to Ethiopia, was planted in the beginning

of July and harvested in the beginning of December with sev-

eral tillage operations preceding planting. Tillage operations

were adapted to the usage of the traditional Ethiopian plough

called Maresha according to Temesgen et al. (2008), with a

tillage depth of 20 cm and a mixing efficiency of 0.3.

Run-off was estimated using the SCS-CN method and flow

routing was estimated using the variable storage coefficient

method. The model was run for 32 years from 1983 to 2014

with daily data inputs but monthly outputs. Calibration and
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Table 3. General performance ratings recommended by Moriasi et al. (2007).

Performance RSR NSE PBIAS

Rating Streamflow Sediment

Very good 0.00≤RSR≤ 0.50 0.75 < NSE≤ 1.00 PBIAS <±10 PBIAS≤±15

Good 0.50 < RSR≤ 0.60 0.65 < NSE≤ 0.75 ±10≤PBIAS <±15 ±15≤PBIAS <±30

Satisfactory 0.60 < RSR≤ 0.70 0.50 < NSE≤ 0.65 ±15≤PBIAS <±25 ±30≤PBIAS <±55

Unsatisfactory RSR > 0.70 NSE≤ 0.50 PBIAS≥±25 PBIAS≥±55

validation periods were chosen equally balanced regarding

high-flow and low-flow years in all three catchments. The

model was first calibrated and validated for discharge and

then calibrated and validated for soil loss (see Table 1 for

details).

2.6 Calibration setup, validation, and sensitivity

analysis

The SUFI-2 algorithm in SWAT-Cup (Abbaspour et al., 2004,

2007) was used for the calibration and validation procedure

and for sensitivity, and uncertainty analysis. SWAT-Cup cal-

culates the 95 % prediction uncertainty band (95 PPU) in a

iterative process. For the goodness of fit, two indices called

p factor and r factor are used. The p factor is the fraction

of measured data inside the 95 PPU band, and varies from 0

to 1 where 1 indicates perfect model simulation. The r fac-

tor is the ratio of the average width of the 95 PPU band and

the standard deviation of the measured variable. There are

different approaches regarding the balance of the p factor

and r factor. The p factor should preferably be above 0.7 for

discharge and the r factor value should be below 1.5 (Ab-

baspour, 2015), but when measured data are of lower quality,

other values apply. Once an acceptable p factor and r factor

are reached, statistical parameters for time series analysis are

compared.

For this study we used the Nash–Sutcliffe efficiency

(NSE), the Root Mean Square Error-observations standard

deviation ratio (RSR), and the percent bias (PBIAS). These

are well-known statistical parameters, which are often used

for comparison of time series, especially in hydrological

modelling (Starks and Moriasi, 2009; Gebremicael et al.,

2013; Dile and Srinivasan, 2014; Abbaspour, 2015; De

Almeida Bressiani et al., 2015), and therefore help others to

compare our modelling results to previous studies. This study

refers to the model evaluation techniques described by Mori-

asi et al. (2007), who established guidelines for the proposed

statistical parameters (see Table 3 for details). The NSE is

a normalized statistic that indicates how well a plot of ob-

served versus simulated data fits the 1 : 1 line and determines

the relative magnitude of the residual variance compared to

the measured data variance (Nash and Sutcliffe, 1970). NSE

ranges from −∞ (negative infinity) to 1, with a perfect con-

cordance of modelled to observed data at 1, a balanced ac-

curacy at 0 and a better accuracy of observations below zero.

The RSR is a standardized root mean square error (RMSE,

standard deviation of the model prediction error), which is

calculated from the ratio of the RMSE and the standard devi-

ation of measured data. RSR incorporates the benefits of er-

ror index statistics and includes a scaling factor. RSR varies

from the optimal value of 0, which indicates zero RMSE or

residual variation, to a large positive value, which indicates

a large residual value and therefore worse model simulation

performance (Moriasi et al., 2007).

The PBIAS measures the average tendency of the simu-

lated values to be larger or smaller than their observed coun-

terparts. The optimal value of PBIAS is zero. PBIAS is the

deviation of data being evaluated, expressed as a percent-

age. A positive PBIAS value indicates the model is under-

predicting measured values, whereas negative values indicate

over-predicting.

For this article, the recommendations for reported values

were strictly applied for discharge calibration and lowered

for soil loss calibration.

The model performance was also evaluated using the hy-

drograph visual technique, which allows a visual model eval-

uation overview to be made. As suggested by Legates and

McCabe (1999) this should typically be one of the first steps

in model evaluation. Adequate visual agreement between ob-

served and simulated data was compared on discharge and

soil loss plots on a monthly basis.

3 Results and discussion

3.1 General comparison of CFSR and WLRC rainfall

data

The raw CFSR and WLRC rainfall input data showed signifi-

cantly different patterns and rainfall amounts. For Andit Tid,

situated on the eastern escarpment of the Blue Nile Basin, the

belg and kremt rainfall seasons were temporally adequately

represented; i.e. the timely occurrences of the rainy seasons

were correctly represented through the CFSR data. However,

total CFSR rainfall amounts were far from measured values:

while the belg rainfall season in the CFSR data showed some

overestimation, the total rainfall and length of the kremt rainy

season were strongly underestimated. WLRC data distinctly
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show a main rainy season from July to September and a light

rainy season from March to May, while the CFSR data only

show mildly increased rainfall in March, April, July, and Au-

gust but no distinct rainy season (see Fig. 2 for comparison).

The CFSR data for Anjeni highly overestimated rainfall in

the region. While WLRC data showed a clear trend towards

only one main rainy season from May/June to September

with average monthly rainfall ranging from 100 mm (May)

to 380 mm (July), the CFSR data showed a pronounced main

rainy season with monthly averages ranging from 400 to

1000 mm from June to September and a distinct small rainy

season from March to May with monthly averages 3 times

as high as the WLRC rainfall data. The total annual CFSR

rainfall was 3 times the WLRC annual rainfall.

WLRC Maybar data showed a clear seasonality, with two

rainy seasons, one in March and April, and one from July

to August. The belg rainy season showed only mild increase

of average rainfall to around 75 mm month−1 and the kremt

rainy season showed a distinct increase of rainfall to an av-

erage of 270 mm month−1. From the CFSR rainfall data,

no clear distinction could be made between the belg and

the kremt rainy season – both showed a rainfall increase to

around 150 mm month−1 and the total annual rainfall was

strongly underestimated.

In general, all CFSR rainfall patterns showed a similar

composition; data variability was more uniformly distributed

and the distinct seasonality of the WLRC data were not well

represented. CFSR data underestimated the bimodal rainfall

climates and strongly overestimated the unimodal rainfall cli-

mate. The WLRC data have a highly variable rainfall range

in the bimodal rainfall locations, which is not reflected by the

CFSR data. In general, the CFSR rainfall data do not repre-

sent the high variability of rainfall measured by WLRC data.

3.1.1 Seasonal comparison of rainfall data

The seasonal components of the CFSR rainfall were as-

sessed for the three stations by breaking the monthly data

into seasons (dry season from October to March, small rainy

season (belg) from April to May, and large rainy season

(kremt) from June to September) and by comparing these

only. The comparison of measured rainfall to modelled rain-

fall for the dry season from October to March was unsatis-

factory (NSE < 0.50) with negative NSEs for three stations

(AT: −1.92, AJ: −12.19, MA: −0.77). The PBIAS indicated

model underestimation for Anjeni and Maybar (AJ: 134.2,

MA: 30.7) and an overestimation of the rainfall for An-

dit Tid (AT: –55.2). The RSR showed large positive values

(AT: 1.68, AJ: 3.55, MA: 1.3), indicating a low model sim-

ulation performance and again an unsatisfactory rating (see

table).

For the belg rainy season from April to May, the model

performed badly. Surprisingly, the model performed worst

in Anjeni, where no small rainy season occurs. The CFSR

model performance for Anjeni was unsatisfactory, with an

Precipitation distribution (1979-2014)

Figure 2. Monthly CFSR and WLRC rainfall distribution of all sta-

tion as box plots with monthly rainfall distribution. CFSR data from

1979 to 2014 and WLRC data from 1981/1982/1984 to 2014 are

shown. See Table 1 for details.

NSE of −5.42, a PBIAS of 106.1, and an RSR of 2.48. The

CFSR model overestimated the monthly rainfall in all but

5 out of 22 years. Andit Tid and Maybar were slightly more

adequate but still unsatisfactory. NSE was −0.79 and −0.24

respectively, indicating unsatisfactory performance. PBIAS

was −39.4 and 24.3, respectively. RSR was 1.31 and 0.85,

which again indicates an unsatisfactory result.

The kremt rainy season from June to September is the sea-

son with the heaviest rainfall throughout the year. On average

some 77 % of the yearly rain falls within this time period.

This is also the time period where the heaviest soil erosion

occurs induced by rainfall. For Anjeni, Andit Tid, and May-

bar, the CFSR model performed unsatisfactorily (see Table 4)

with NSEs below 0.50 (AT:−9.79, AJ:−50.09, MA:−3.28),

RSRs above 0.70 (AT: 3.23, AJ: 7.0, MA: 2.03), and

PBIAS values ranging from −69.2 (AT) and −47.1 (MA)

to +128 (AJ).

The kremt rainy season was underestimated by the CFSR

model for the bimodal rainfall pattern in Andit Tid and May-

bar, while the unimodal rainfall pattern was heavily overesti-

mated by the CFSR model.
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Table 4. Seasonal comparison of rainfall time series of daily rainfall

amounts. Satisfactory performance ratings are highlighted in bold.

Details for duration and gaps can be found in Table 1.

Andit Tid Anjeni Maybar

(1982–2014) (1984–2014) (1981–2014)

Dry season

Oct–Nov–Dec–Jan–Feb–Mar

RSR 1.68 3.55 1.3

NSE −1.92 −12.9 −0.77

PBIAS 55.2 134.2 30.7

Belg

Apr–May

RSR 1.31 2.48 0.85

NSE −0.79 −5.42 −0.24

PBIAS −39.4 106.1 24.3

Kremt

Jun–Jul–Aug–Sep

RSR 3.23 7.0 2.03

NSE −9.79 −50.09 −3.28

PBIAS −69.2 128 −47.1

3.2 Discharge modelling with WLRC and CFSR data

The performance ratings for each of the three catchments in-

cluding SWAT-Cup p factor and r factor are summarized in

Table 5. The table is divided into discharge comparison and

soil loss comparison. Final parameter ranges are presented in

Table 2.

3.2.1 Andit Tid

Calibration of Andit Tid with WLRC rainfall data yielded

very good results. With a p factor of 0.71 and an r factor

of 0.53 (see Sect. 2.6 for performance rating) the statistical

parameters RSR, NSE, and PBIAS yielded very good results

(0.46, 0.79, 3.1 respectively). The CFSR rainfall data, which

underestimated the WLRC rainfall pattern, yielded unsatis-

factory results with RSR, NSE, and PBIAS of 0.80, 0.36,

and 31.4. The hydrograph shows that the underestimation of

rainfall amounts for Andit Tid did result in a constant under-

estimation of peak flows and of base flows throughout the

whole time period.

Validation of discharge for Andit Tid with WRLC data

showed very good results with RSR: 0.46, NSE: 0.79, and

PBIAS 9.6 and marginally unsatisfactory results for the

CFSR data set (RSR: 0.74, NSE: 0.45, PBIAS: 37.9).

3.2.2 Anjeni

Anjeni showed very good results for calibration with WLRC

rainfall data. RSR, NSE, and PBIAS were well inside the op-

timal performance ratings (0.39, 0.85, and 3.7 respectively);

see Table 3 and Fig. 3 for comparison.

Satisfactory calibration could not be reached with CFSR

data and neither baseflow, nor peaks could be adequately rep-

resented. With a p factor of 0.49 and an r factor of 1.91

the statistical parameters were unsatisfactory (RSR: 2.70,

NSE: −6.27, and PBIAS: −226.0). The hydrograph (Fig. 3)

shows that the strong overestimation of CFSR rainfall data

during belg led to a modelled discharge with extreme peaks

during kremt, which do not correspond to the discharge

regime of measured WLRC data.

Validation of discharge for Anjeni with WRLC data

showed very good results with RSR: 0.41, NSE: 0.83, and

PBIAS−6.7 and unsatisfactory results for the CFSR data set

with RSR: 1.24, NSE: −0.53, and very good PBIAS: 8.1.

3.2.3 Maybar

Calibration of Maybar with WLRC rainfall data proved to be

less straightforward than Anjeni and Andit Tid. The rugged

topography of Maybar combined with a inadequate cross

section proved challenging to model. Nonetheless, satisfac-

tory results were achieved for discharge with RSR, NSE, and

PBIAS of 0.63, 0.60, and −23.4 respectively.

The CFSR rainfall data yielded an unsatisfactory discharge

simulation result with RSR, NSE, and PBIAS. As the CFSR-

modelled rainfall shows two similar rainy seasons where

WLRC rainfall data have distinct belg and kremt rainy sea-

sons, SWAT modelled discharge showed similar trends. Fig-

ure 3 shows regular discharge peaks from February to March,

in accordance to rainfall pattern deviation as seen in Fig. 2,

when no increase of discharge was measured at the research

station. The SWAT model reflected input rainfall pattern ade-

quately, which led to discharge peaks during belg, when there

are none in the measured data. At the same time it leads to

reduced discharge peaks during kremt, when the measured

WLRC data are clearly pronounced.

Validation of discharge for Maybar with WRLC data

showed good results with RSR: 0.56, NSE: 0.74, and

PBIAS 17.3 and unsatisfactory results for the CFSR data set

with RSR: 0.98, NSE: 0.04, and very good PBIAS: −1.9.

3.3 Soil loss modelling with WLRC and CFSR data

Soil loss modelling was calibrated using the same set of nine

parameters for each catchment (see Table 2 for description).

Calibration of soil loss was conducted using the parameter

ranges for discharge calibration, and adapting the sediment

parameters while leaving discharge parameters untouched.

Performance ratings for each of the three catchments includ-

ing SWAT-Cup p factor and r factor are summarized in Ta-

ble 5 and visually represented in Fig. 4. Performance rating

levels were considerably lowered for soil loss modelling. The

threshold for the p factor was set at 0.40 with an r factor be-
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Figure 3. Modelled SWAT discharge compared to measured discharge (blue) for WLRC (violet) and CFSR (pink) input data and 95 %

prediction uncertainty (light blue). Each sub-figure contains the calibration and the validation period. Results are given in m3 s−1.

low 1.80 and standard performance ratings for RSR, NSE,

and PBIAS.

3.3.1 Andit Tid

The good results from WLRC discharge modelling facili-

tated soil loss calibration and resulted in satisfactory perfor-
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Figure 4. Modelled SWAT soil loss compared to measured soil loss (blue) for WLRC (red) and CFSR (green) input data and 95 % prediction

uncertainty (light blue). Each sub-figure contains the calibration and the validation period. Results are given in tons per month (t month−1).

mance ratings for RSR and NSE (0.69, 0.65), and an unsat-

isfactory PBIAS, which was slightly below the threshold at

−56.3. The graphic representation showed good visual re-

sults (see Fig. 4) in general, but also showed constant overes-

timation of the modelled data except for the 3 years of 1988,

1989, and 1994.

Validation of sediment yield for Andit Tid with WRLC

data showed a marginally satisfactory result with RSR: 0.68,

NSE: 0.51, and unsatisfactory PBIAS: −64.3, indicating
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Table 5. Calibration and validation results of monthly CFSR- and WLRC-modelled discharge and soil loss. Values that meet at least the

satisfactory criteria are highlighted in bold.

Andit Tid Anjeni Maybar

CFSR WLRC CFSR WLRC CFSR WLRC

Discharge – calibration

p factor 0.49 0.71 0.49 0.92 0.41 0.61

r factor 0.20 0.53 1.91 0.46 0.54 0.96

RSR 0.83 0.46 2.70 0.37 1.16 0.53

NSE 0.31 0.79 −6.27 0.86 −0.35 0.72

PBIAS 46.1 3.1 −226.0 2.0 29.6 1.5

Discharge – validation

p factor 0.30 0.66 0.69 0.69 0.38 0.61

r factor 0.29 0.54 1.41 0.57 0.52 1.11

RSR 0.74 0.46 1.24 0.41 0.98 0.56

NSE 0.45 0.79 −0.53 0.83 0.04 0.74

PBIAS 37.9 9.6 8.1 –6.7 –1.9 –17.3

Soil loss – calibration

p factor 0.33 0.45 0.32 0.40 0.44 0.28

r factor 0.19 0.59 1.30 0.65 4.47 0.28

RSR 1.02 0.67 1.01 0.67 2.55 0.84

NSE −0.03 0.64 −0.02 0.55 −5.51 0.29

PBIAS 54.4 –14.1 –33.9 –19.9 180.5 39.2

Soil loss – validation

p factor 0.30 0.39 0.38 0.38 0.23 0.15

r factor 0.51 1.60 1.61 1.10 2.67 0.06

RSR 1.39 0.68 1.08 0.62 2.24 0.98

NSE −0.94 0.51 −0.17 0.62 −4.04 −0.03

PBIAS 11.9 −64.3 –30.5 –31.3 −94.7 92.8

a general overestimation and unsatisfactory results for the

CFSR data set with RSR: 1.39, NSE:−0.94, and satisfactory

PBIAS: −11.9, indicating underestimation.

3.3.2 Anjeni

Soil loss modelling with WLRC rainfall data and calibrated

discharge yielded satisfactory results. With a p factor of 0.40

and an r factor of 0.65, and statistical parameters RSR: 0.67,

NSE: 0.55, and PBIAS: −19.9, the model was just satis-

factory. The graphic showed adequate results with a con-

stant overestimation of the model except for 2 years in

the early nineties. Modelling with CFSR data resulted in

strongly unsatisfactory results (RSR: 1.01, NSE: −0.02, and

PBIAS: −33.9), which can easily be explained with the

strong model overestimation of rainfall and subsequently,

discharge. Parameters could not be adapted further to achieve

better results as they were already set to the edge of the pos-

sible ranges.

Validation of sediment yield for Anjeni with WRLC data

showed satisfactory results with RSR: 0.67, NSE: 0.64, and

PBIAS: −14.1, indicating a general overestimation and un-

satisfactory results for the CFSR data set with RSR: 1.02,

NSE: −0.03, and satisfactory PBIAS: −1.9, indicating un-

derestimation.

3.3.3 Maybar

Soil loss calibration with WLRC rainfall data and cali-

brated discharge resulted in unsatisfactory statistical results

(RSR: 1.24, NSE:−0.54, PBIAS:−34.1). p factor and r fac-

tor were 0.42 and 0.60, respectively.

Calibration in Maybar with CFSR rainfall data

yielded unsatisfactory results (RSR: 1.02, NSE: −0.03,

PBIAS: 54.4). As described in the discharge calibration

section (Sect. 3.2.3), CFSR rainfall data in Maybar tended

towards overestimation of belg and underestimation of

kremt, which resulted in overestimation of monthly dis-
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charge during belg and underestimation during kremt. This

trend was redrawn with sediment calibration, resulting in

small but distinct peaks during belg and smaller peaks

than measured during kremt. There was no satisfactory

calibration possible with CFSR rainfall data.

Validation of sediment yield for Maybar with WRLC data

showed satisfactory results for both data sets with a very

strong overestimation from the CFSR data set and an equally

strong overestimation from the WLRC data set.

4 Conclusions

In this paper we studied the applicability of CFSR weather

data to three small-scale watersheds in the Ethiopian High-

lands with the goal of assessing the usability for future mod-

elling in data-scarce regions. First, we compared CFSR and

WLRC rainfall data at three stations in the Ethiopian High-

lands and therefore rainfall data were compared on a monthly

basis with box plots. Second, we modelled discharge with the

SWAT model, once with WLRC data and once with CFSR

rainfall data. Third, we modelled soil loss for the three sta-

tions with the SWAT model and compared calibrated results

to measured data. The WLRC rainfall data set resulted in

three calibrated and validated discharge models, while the

CFSR data resulted in none. For the soil loss modelling

the WLRC rainfall data resulted in two out of three cali-

brated and validated models while none could be adequately

calibrated or validated for the CFSR data set. The SWAT

modelling showed that CFSR rainfall pattern and rainfall

yearly total amount variations were so significant that SWAT

model calibration could not adequately represent measured

discharge and sediment yield.

Our results clearly show that adequate discharge and soil

loss modelling was not possible in the present case with the

CFSR data. This suggests that SWAT simulations in small-

scale watersheds in the Ethiopian Highlands do not perform

well with CFSR data in every case, and that sometimes there

is no substitute for high-quality conventional weather data.

Such weather data – with high spatial and temporal climatic

data resolution – were available for the three small-scale

catchments used in the study but are not in many other cases.

In these other cases, one should carefully check CFSR data

against similar climatic stations with conventionally mea-

sured data. In addition, discharge and soil loss modelling

showed that usage of CFSR weather data not only resulted

in substantial deviation in both total discharge and total soil

loss, but also in the seasonal rainfall pattern. The seasonal

weather pattern is one of the major drivers of soil loss and

is especially pronounced in the Blue Nile Basin, with one

long rainy season occurring as fields are ploughed and sown.

Thus, contrary to previous studies for the Ethiopian High-

lands, this study suggests that CFSR data may not be appli-

cable in any case for small-scale modelling in data-scarce

regions; the authors even suggest that outcomes of SWAT

modelling with CFSR data for small-scale catchments may

yield erroneous results which cannot be verified and may

lead to wrong conclusions. Nonetheless, the advantage of

CFSR data is their completeness over time, which would al-

low for comprehensive watershed modelling in regions with

no conventional weather data or with longer gaps in conven-

tionally recorded rainfall records.
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