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Abstract. A recurrent problem in hydrology is the ab-

sence of streamflow data to calibrate rainfall–runoff models.

A commonly used approach in such circumstances condi-

tions model parameters on regionalized response signatures.

While several different signatures are often available to be

included in this process, an outstanding challenge is the se-

lection of signatures that provide useful and complementary

information. Different signatures do not necessarily provide

independent information and this has led to signatures be-

ing omitted or included on a subjective basis. This paper

presents a method that accounts for the inter-signature error

correlation structure so that regional information is neither

neglected nor double-counted when multiple signatures are

included. Using 84 catchments from the MOPEX database,

observed signatures are regressed against physical and cli-

matic catchment attributes. The derived relationships are then

utilized to assess the joint probability distribution of the sig-

nature regionalization errors that is subsequently used in a

Bayesian procedure to condition a rainfall–runoff model. The

results show that the consideration of the inter-signature er-

ror structure may improve predictions when the error correla-

tions are strong. However, other uncertainties such as model

structure and observational error may outweigh the impor-

tance of these correlations. Further, these other uncertainties

cause some signatures to appear repeatedly to be misinfor-

mative.

1 Introduction

In many areas of the world the absence of past observational

streamflow time series to calibrate rainfall–runoff models

limits the ability to apply such models reliably to predict

streamflow and inform effective water resources manage-

ment. Whilst a large and increasing number of regions across

the world are insufficiently gauged (Mishra and Coulibaly,

2009), there are also many highly monitored catchments

(Gupta et al., 2014). Transferring the knowledge gained in

data-rich areas to ungauged catchments – a process known

as regionalization – offers a possible way of overcoming the

absence of streamflow observations in data-scarce regions.

Several techniques for transferring information are reported

in the literature (for an overview of different methods used in

continuous streamflow regionalization, see He et al. (2011),

Peel and Blöschl (2011), and Razavi and Coulibaly (2013);

and for a recent comparative assessment of some of the most

commonly used methods, see Parajka et al., 2013).

A commonly applied approach is to use response signa-

tures (e.g., the runoff ratio and the base flow index), which

can provide insight into the hydrological functional behav-

ior of a catchment (Wagener et al., 2007). Response signa-

tures are calculated from available system output or input–

output time series for numerous gauged catchments with

known catchment attributes, i.e., physiographic and/or me-

teorological attributes (drainage area, latitude and longitude,

average annual temperature, average monthly precipitation,

etc.). Subsequently, statistical models relating each response

signature to a set of catchment attributes can be identified.
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Given the attributes of an ungauged catchment, the signa-

tures for the ungauged location can then be estimated using

the derived statistical models. Numerous regional models of

this type can be found in the literature (e.g., Boorman et al.,

1995). These regionalized signatures can be used to constrain

the prior range of streamflow simulations generated using a

preselected rainfall–runoff model structure and hence restrict

the model parameter space (Yadav et al., 2007; Zhang et al.,

2008; Bulygina et al., 2009; Castiglioni et al., 2010). Advan-

tages of this approach include (1) the flexibility in the selec-

tion of the response signatures allowing it to be based on the

specific parts of the hydrograph that are of greatest impor-

tance for a given application and, if known, on the dominant

hydrological processes of the catchment, and (2) access to

readily available regional models for different signatures in

the literature (such as base flow index from the Hydrology

of Soil Types system (Boorman et al., 1995) and curve num-

ber from the United States Department of Agriculture’s Soil

Conservation Service soil and land use classification; USDA,

1986) hence eliminating the need to build new regional re-

gression models; in addition, (3) the relationships between

response signatures and catchment and climatic characteris-

tics are not specific to any rainfall–runoff model nor to a par-

ticular calibration method used in the gauged catchments and

are therefore not obscured by model structural error and can

be used to condition any model.

Different ways of incorporating the regionalized infor-

mation into a catchment model have been suggested in the

literature. This includes set-theoretic approaches (e.g., Ya-

dav et al., 2007; Winsemius et al., 2009) and more for-

mal Bayesian data assimilation frameworks (e.g., Bulygina

et al., 2009, 2011; Castiglioni et al., 2010; Singh et al.,

2011). Where probability distributions characterizing region-

alization quality have been estimated, a Bayesian condition-

ing procedure is one of the possibilities (Bulygina et al.,

2009, 2011). This provides a framework for combining prior

knowledge with the regionalized data and/or other sources

of information (e.g., small-scale physics-based knowledge

and hydrological measurements as in Bulygina et al., 2012),

which has the potential to formally encompass the nature of

the errors arising from the regionalization.

Conditioning a rainfall–runoff model on multiple indepen-

dent signatures would reflect a spectrum of processes and, in

principle, lead to an accurate prediction of flow time series

(Parajka et al., 2013). However, regionalized signatures have

correlated errors, for example, if the signatures have been es-

timated using a common data set of catchment attributes or

using the same hydroclimatic data; in general, the correla-

tions are expected to be stronger for pairs of signatures that

represent similar functional behaviors of the catchment. This

raises the questions of not only how many and which signa-

tures should be used but also how to avoid double counting of

the information in signatures with correlated error distribu-

tions. Previous applications have tended to use a small num-

ber of signatures (e.g., Bulygina et al., 2009, 2011) and/or

have tended to select signatures that are considered to be

independent (e.g., Yadav et al., 2007). When multiple sig-

natures are used, the correlations between the errors in the

different sources of information are commonly disregarded

(e.g., Bulygina et al., 2012). To make better use of informa-

tion in available sets of signatures, a formal way of combin-

ing them, so that information is neither double-counted nor

neglected, is required. Using formal methods to include auto-

correlated data errors in model calibration is well researched

(e.g., Sorooshian and Dracup, 1980); an application of com-

parable methods in the regionalization context will allow

making more formal and rigorous assessments of the value

of correlated information sources.

Formally, in a Bayesian context, it is necessary to distin-

guish between correlated signatures and correlated signature

errors. It is the correlation between the errors that should

be accounted for in the likelihood function to avoid double

counting of information. It is possible to have two highly

correlated signatures that are derived from independent in-

formation sources and therefore have uncorrelated errors. In

that case, it would be valid to include both signatures in the

likelihood function without accounting for correlation. This

principle is well established when considering Bayesian cal-

ibration to a time series of flow observations, where flow val-

ues are typically strongly autocorrelated – but it is the obser-

vation error autocorrelation that is relevant to the likelihood

function derivation (e.g., Sorooshian and Dracup, 1980). The

same principle applies to adopting signatures as the observa-

tions. In the case study below, the signatures are derived from

a common data set using a common approach, so in practice

the signature correlations are comparable to the signature er-

ror correlations; nevertheless, for the sake of formality, we

use the term “signature error correlations” (or “covariance”).

In this paper, we introduce and test a method that con-

siders multiple regionalized signatures, explicitly accounting

for the signature error correlations. By formally accounting

for the error covariance, we hypothesize that accuracy of

flow predictions will generally improve and a greater num-

ber of signatures can usefully be included without introduc-

ing avoidable bias related to the duplication of information.

This should allow the modeler to use all signatures available

without having to select, on a more or less subjective basis,

the most relevant (independent) signatures. The objective is

thus to explore how to get fuller value out of a set of regional-

ized information than has been achieved in past applications.

The method is applied to a set of 84 United States catch-

ments with a broad range of hydrometeorological character-

istics, obtained from the Model Parameter Estimation Exper-

iment (MOPEX) data set (Duan et al., 2006; Schaake et al.,

2006). The impact of signature error covariance is assessed

using pairs of signatures to condition a rainfall–runoff model.

Along with the real data, synthetic streamflow data are used

to isolate the effect of model structural error. Further, the

model is conditioned on a variable number of regionalized

signatures to evaluate whether an increasing number of sig-
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natures is justifiable when formally accounting for the error

covariance.

2 Method

2.1 Bayesian method for signature assimilation

Using a simple least-squares regression, observed signatures

of catchments’ functional responses are related to physical

and climatic attributes of the catchments. Assuming that the

same catchment attributes are available for an ungauged lo-

cation, it is possible to obtain an estimate of the set of sig-

natures for the location. Further, the parametric distribution

of regression errors can be directly translated to a response

signature(s) likelihood function. The likelihood function can

then be used to update the prior available knowledge about

model parameters via Bayes’ law, which is expressed as

p(2|s∗,I,M)=
L(s(2)|s∗,I,M)×p(2|I,M)

p(s∗|I,M)
(1)

where, for one catchment, s∗ represents the regionalized

response signature(s); p(2|I,M) is the prior distribution

of parameters 2 for a model structure M and inputs I;

L(s(2)|s∗,I,M) is the likelihood function of the modeled

response signature(s) s(2) given s∗, I and M; p(s∗|I,M) is

the marginal density of s∗; and p(2|s∗,I,M) is the posterior

distribution of 2 given s∗, I and M . For the purpose of this

paper,M is selected in advance and considered to be fixed (as

it is the common practice in regionalization studies; Wagener

and Montanari, 2011), as is I for any one catchment, and so

both these terms are dropped from (Eq. 1) for convenience,

resulting in

p(2|s∗)=
L(s(2)|s∗)×p(2)

p(s∗)
. (2)

Parameter sets are then sampled from the parameter poste-

rior to allow an ensemble of rainfall–runoff simulations and a

posterior distribution of flow at each time step to be estimated

and evaluated against observed flow. This can be repeated

using different sets of signatures and different assumptions

about their error correlations.

2.2 Prior distribution and likelihood function

2.2.1 Prior distribution

To apply Bayes’ law (Eq. 2), it is necessary to specify the

likelihood function (L(s(2)|s∗) in Eq. 2) and the prior dis-

tribution (p(2) in Eq. 2). The prior is defined so that it re-

flects our initial lack of knowledge. We follow Almeida et al.

(2013) and sample sets of signature values from uniform dis-

tributions representing the feasible ranges of signatures. This

approach allows the signatures to be sampled uniformly us-

ing a simple amendment to the commonly applied approach

of sampling from uniform parameter priors, which avoids

highly skewed signature priors that have undue influence on

the posterior likelihood. More specifically, N parameter sets

(N is equal to 10 000 in our study) are sampled from a uni-

form distribution using Latin hypercube sampling, so that

probability of each parameter set is 1/N (10−4 in our study).

Subsequently, to provide parameter samples that correspond

to a uniform in signatures’ prior distribution, the parameter

probabilities are reweighted (see Almeida et al., 2013), and

used in the further posterior distribution approximation. This

allows accounting for correlation among the parameters im-

posed by the uniform in signatures’ prior distribution.

2.2.2 Likelihood function approximation

The likelihood functions are defined using joint distributions

of respective signature errors obtained from the regionaliza-

tion model. Errors introduced by the regionalization proce-

dure may come from at least five sources. First, errors are

introduced by the fact that the regression model is estimated

using a specific sample of catchments rather than the entire

population; second, differences may exist between the ob-

served and the true value of the response signature due, for

example, to factors such as the discharge record length and

time period of record used in the computation (Kennard et al.,

2010); third, errors are present due to errors in the catchment

properties data; fourth, errors exist due to the incomplete set

of catchment properties used as explanatory variables in the

regression equations; and, fifth, they exist due to the assumed

linear regression structure. It is assumed that the total error

model for the regionalized signature(s) s∗ can be estimated

using the following procedure:

1. Considering all available gauged catchments, stepwise

regression is applied to each signature independently to

determine which predictors to include. The predictors

are then fixed for the remaining steps.

2. Considering all available gauged catchments, one catch-

ment is left out and the remaining are used in the fitting

of the regression models for each signature.

3. The regression models obtained in step 2 are used to

estimate the signature values for the omitted catchment.

4. The error for each signature is calculated for the omitted

catchment by comparing the regionalized and observed

signature values.

5. The process is repeated for all catchments.

6. A parametric joint probability distribution is fitted to all

the computed errors. Furthermore, the errors are tested

for independence that allows (approximately) factoriz-

ing a joint distribution into a product of marginal distri-

butions.
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The resultant error distribution defines the likelihood func-

tion L in Eq. (2). The main assumption here is that the poten-

tially complex nature of errors in the set of signature values

can be usefully represented by the fitted error distributions.

2.2.3 Synthetic case and likelihood functions

To avoid masking the potential value of the regionalized sig-

natures with model structure and observational errors, a “per-

fect model” is first employed. This involves using the pres-

elected rainfall–runoff model and the observed forcing data

to generate the “observed” catchment signatures. The Nash–

Sutcliffe criteria (NSE) (Nash and Sutcliffe, 1970) optimal

parameter set is taken to generate a “perfect model” stream-

flow time series for each catchment. To produce regionalized

signature analogues in this case, two types of imposed errors

are introduced to these “observed” signatures. The first error

type is characterized by a range of standard deviations (1, 5,

10 and 20 % of the signature value range observed over all

catchments used in this study) and a range of inter-signature

error correlations (Pearson correlation coefficients equal to 0,

0.25, 0.50, 0.75, and 0.90). This allows the sensitivity of the

results to the regionalization quality and the regionalization

errors’ correlations to be evaluated. The second error type is

set to be equal to the observation-based likelihood function

(Sect. 2.2.2). These error structures are the likelihoods used

in Eq. (2) for the synthetic case when flows are generated by

a “perfect model”.

2.3 Case study and rainfall–runoff model

2.3.1 Study catchments

A set of 84 medium-sized United States catchments (242

to 8657 km2) from the MOPEX database (Schaake et al.,

2006; Duan et al., 2006), for which a variety of regional re-

sponse signature models have been determined in Almeida

et al. (2012) (namely runoff ratio, base flow index, stream-

flow elasticity, slope of slow duration curve, and high pulse

count), are used to test the method proposed in this paper. It

has proven difficult to derive regionalization equations of ac-

ceptable prediction quality for all catchments in the MOPEX

data set (Almeida, 2014). This is due to the lack of descrip-

tive power in the set of available catchment attributes, e.g.,

the attributes do not provide satisfactory information about

catchment geology. To isolate the effect of variable geology

on the regression equations, the selected 84 catchments are

grouped based on the underlying geology, namely, middle

Paleozoic sedimentary rocks. Use of more catchments from

the MOPEX database would require different regionalization

equations due to changing process controls and would be un-

necessary given that the focus of the study is on signature

error correlations in regionalization models. For more details

on the motivation for choosing these specific 84 catchments,

see Almeida et al. (2012) and Almeida (2014).

Table 1. Summary of general catchment properties and response

signatures of the 84 MOPEX catchments.

Catchment property Units Range

Average annual streamflow (mm yr−1) 208–896

Average annual precipitation (mm yr−1) 758–1495

Average annual maximum temperature (◦C) 12–23

Average annual minimum temperature (◦C) 0–10

Average annual potential evaporation (mm yr−1) 679–1112

Aridity index∗ (−) 0.5–1.2

Average elevation (m) 176–1056

Runoff ratio (−) 0.16–0.76

Base flow index (−) 0.36–0.90

Streamflow elasticity (−) 0.02–4.34

Slope of flow duration curve (−) 0.01–0.08

High pulse count (yr−1) 2.10–120.80

∗ Long-term ratio of potential evaporation over precipitation.

The 84 catchments are hydrologically varied with a selec-

tion of properties summarized in Table 1. Daily time series

for the period from 1 October 1949 to 30 September 1959

are employed. As highlighted in Almeida et al. (2012), these

10 years of data, representing only a subset of all the data

available, are assumed to be of sufficient length to capture

climatic variability but short enough to avoid effects of long-

term climatic trends (Sawicz et al., 2011).

2.3.2 Response signatures

Five response signatures are considered: runoff ratio (RR),

base flow index (BFI), streamflow elasticity (SE), slope of

flow duration curve (SFDC), and high pulse count (HPC)

(Table 1). This specific subset of signatures is selected to

cover a wide range of different qualities of regionalized in-

formation and also to ensure that some signature errors are

largely uncorrelated, whilst others are strongly correlated

(see also Sect. 3.1).

RR reflects the amount of precipitation that becomes

streamflow over a certain area and time. It is determined

as the ratio of catchment’s outlet streamflow and catchment

average precipitation over the 10 years used in this study.

BFI gives the proportion of streamflow that is considered to

be base flow. A simple one-parameter single-pass digital fil-

ter method is used to derive BFI (Arnold and Allen, 1999).

SE provides a measure of the sensitivity of streamflow to

changes in precipitation (Sankarasubramanian et al., 2001).

It is calculated as a median of the inter-annual variation in

total annual streamflow to the inter-annual variation in to-

tal annual precipitation ratios normalized by the long-term

runoff ratio (Sawicz et al., 2011; Sankarasubramanian et al.,

2001). SFDC gives an indication of the streamflow variabil-

ity and is calculated as the slope of the flow duration curve

between the 33 and 66 % flow exceedance values in a semi-

log scale (Sawicz et al., 2011). HPC reflects aspects of the

high flow regime and catchment flashiness and is calculated

as the average number of events per year that exceed 3 times
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the median daily flow (Clausen and Biggs, 2000; Yadav et al.,

2007).

2.3.3 Rainfall–runoff model choice

The probability distributed moisture (PDM) model (Moore,

2007), together with two parallel linear routing stores and a

simple snow model (Hock, 2003), is selected with two ma-

jor motivations (a detailed description of the model is given

in Appendix A). First, this type of model has been shown to

have a suitable complexity for modeling daily rainfall–runoff

over a large sample of the MOPEX catchments (Wagener

and McIntyre, 2012). Second, the model has been success-

fully applied in other regionalization studies across a wide

range of climate and physiographic conditions, for example,

Calver et al. (1999), Lamb and Kay (2004), McIntyre et al.

(2005), Young (2006), and De Vleeschouwer and Pauwels

(2013). Even though other model structures may be better

suited for some specific catchments, it is prohibitively dif-

ficult to vary model structure between catchments and no

single model structure will ever be best for all catchments

(Lidén and Harlin, 2000; Clark et al., 2008; van Werkhoven

et al., 2008). Consequently, the selected model structure is

believed to be a sufficient choice for the purposes of this pa-

per. Most importantly, the general framework is independent

of the rainfall–runoff model choice.

2.4 Posterior distribution and performance assessment

Employing Bayes’ law (Eq. 2), the rainfall–runoff model is

conditioned on different combinations of signatures: (1) as-

suming independence between the signature regionalization

errors (setting the correlation values to zero in the joint prob-

ability function); and (2) accounting for the inter-signature

error correlations (using the estimated covariance in the joint

probability function).

Two metrics are used to assess the effectiveness of the pa-

rameter conditioning procedure: (1) the Bayes factor (Jef-

freys, 1961) to assess convergence of the parameter poste-

riors to known parameter values; (2) the probabilistic Nash–

Sutcliffe efficiency (Bulygina et al., 2009) to assess conver-

gence of the flow ensembles to the observed flows.

The Bayes factor (BF) is defined as the ratio between two

marginal distributions of the data y (e.g., observed stream-

flow time series) for two competing hypotheses (H1 and

H2) (Kass and Raftery, 1995) (more detail is given in Ap-

pendix B):

BF=
p(y|H1)

p(y|H2)
. (3)

Thus, to test the impact of representing the error correlations,

the hypothesis H1 corresponds to the inter-signature errors

being treated as correlated, while the hypothesis H2 corre-

sponds to the inter-signature errors assumed to be indepen-

dent. If the resulting Bayes factor is greater than 1, there is

more support for hypothesisH1, and the inter-signature error

correlation is worth considering.

When using synthetic streamflow data (“perfect model”

approach), with the streamflow time series generated by a

preselected parameter set, p(y|H) in Eq. (3) can be seen

as either the posterior probability of the known observed

streamflow time series under hypothesis H or the probabil-

ity of the known parameter set that generated that particular

flow time series under hypothesisH . As in a “perfect model”

approach there is no observational error, p(y|H) is the prob-

ability estimated for the known value of the parameter set

that generated the observed streamflow under each of the hy-

pothesesH1 andH2. Since there is no known parameter value

corresponding to the real data, the application of the Bayes

factor is less useful in this situation. In this case, defining y

as an NSE-optimal parameter set allows an indication of the

relative degree of convergence around the chosen point.

The probabilistic Nash–Sutcliffe efficiency NSEprob (Bu-

lygina et al., 2009) is a probabilistic analogue of the tradi-

tional Nash–Sutcliffe efficiency coefficient (Nash and Sut-

cliffe, 1970), and allows both prediction accuracy and preci-

sion to be summarized by a single statistic (Eq. 4),

NSEprob

=

{
1−

∑T
t=1(E [̂qt ] − qt )

2∑T
t=1(qt −E[q])

2

}
−

∑T
t=1Var[̂qt ]∑T

t=1(qt −E[q])
2
, (4)

where qt denotes a set of streamflow observations for time

t = 1, . . .,T , E[q] is the average value for the qt time se-

ries, q̂t is the simulated time series of streamflow for time

t = 1, . . .,T , Var[̂qt ] is the prediction variance at time t ,

E [̂qt ] is the mathematical expectation of the predictions at

time t , and T is the total number of time steps in the se-

quence. The first part of Eq. (4) corresponds to the tradi-

tional Nash–Sutcliffe efficiency coefficient (Nash and Sut-

cliffe, 1970) in which expected streamflow values are con-

sidered as predictors. The latter part of the equation repre-

sents the variance, whereby higher predictor variance corre-

sponds to less precise predictions (Bulygina et al., 2009). An

NSEprob of 1 indicates a perfect fit, i.e., the results are both

accurate and precise. The incremental improvement in the

NSEprob can be used to measure the value of adding signa-

tures into the conditioning or otherwise changing the likeli-

hood function.

For model validation, we use a jack-knife approach (or

leave-one-out strategy), commonly employed in regionaliza-

tion studies (e.g., Merz and Blöschl, 2004; Shu and Ouarda,

2012). One catchment at a time is removed as a test “un-

gauged” catchment and the remaining gauged catchments are

used to support the regionalization process, including steps

2–6 listed in Sect. 2.2.2 The procedure is repeated for each

of the available catchments.
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Figure 1. Distribution of individual signature residuals (res) are ap-

proximated as histograms and normal distributions. The scatterplots

and correlation coefficients (ρ) show correlation between the signa-

ture residuals.

3 Results and discussion

3.1 Regionalized signature errors and likelihood

functions

The regionalization error probability distributions (that de-

fine the likelihoods) are generated following steps 2–6 in

Sect. 2.2.2 and are shown in Fig. 1. The marginal error

distributions, shown on the Fig. 1 diagonal, are approxi-

mated using histograms, and parameters of normal distribu-

tions are fitted using the method of moments. The univari-

ate Kolmogorov–Smirnov test shows that the marginal dis-

tribution normality cannot be rejected at the 95 % confidence

level for each of the five signatures. The off-diagonal shows

the regionalization errors for different signature pairs (lower

off-diagonal), the corresponding correlation coefficient val-

ues and their statistical significance (upper off-diagonal). The

joint error distributions are approximated using multivari-

ate normal distributions that are fitted using estimates of

the marginal normal distribution parameters and the inter-

signature error correlations. These marginal and joint dis-

tributions define the likelihood functions in Eq. (2). Note

that Fig. 1 represents the regionalization errors based on

all 84 catchments. Meanwhile, the jack-knife procedure (see

Sect. 2.4) utilized in the performance assessment employs

only 83 catchments at a time.

3.2 The impact of inter-signature error correlations

(pairs of signatures)

This section considers the role of inter-signature error cor-

relation on model parameter estimation when pairs of signa-

tures are used. First, different imposed error variances and

correlations together with synthetic streamflow data are em-

ployed to test the impact of inter-signature error correlation

without the impact of model structural error. Then, the results

obtained using the observation-based error structure, for both

synthetic and observed data streamflow, are analyzed.

3.2.1 Synthetic streamflow data (imposed likelihoods)

Synthetic streamflow data are generated as described in

Sect. 2.2.3 and the imposed likelihood functions are defined

as described in Sect. 2.2.3. The imposed likelihoods are con-

sidered to have standard deviations equal to 1, 5, 10, and

20 % of the signature value range observed over all catch-

ments. A comparison of the imposed error structures under

the different levels of variance and the observed error struc-

ture is given in Table 2. Furthermore, different inter-signature

error correlations are also tested, namely 0 (linear indepen-

dence), 0.25, 0.50, 0.75, and 0.90.

Ten possible pairs of the five response signatures are used

in parameter conditioning, and the median Bayes factor, cal-

culated over the 84 MOPEX catchments, is calculated for

each pair. The Bayes factor (Eq. 3) compares the two fol-

lowing hypotheses: H1, the inter-signature error correlation

is to be taken into account, and H2, the errors between the

different sources of information can be assumed indepen-

dent. The Bayes factor is found to be relatively insensitive

to the selection of response signature pairs (Kruskal–Wallis

test). Table 3 summarizes the 95 % pooled confidence inter-

vals for the median Bayes factor across all catchments and

across all 10 signature pairs, for each choice of the likeli-

hood (i.e., 20 likelihoods). This provides reference values in-

dicative of the error interdependency importance in model

regionalization depending on the signature pair correlations

and marginal distribution variances. As it would be expected,

the median Bayes factor is equal to 1 when signatures errors

are not correlated (i.e., ρ = 0). However, as correlations be-

tween signatures errors increase the median Bayes factor in-

creases noticeably. This suggests that considering error cor-

relations allocates higher likelihoods to parameter sets that

capture a considered signature pair. Furthermore, the results

shown in Table 3 also imply that the median Bayes factor is

relatively insensitive to the precision with which the signa-

tures are regionalized.

3.2.2 Synthetic and observed streamflow data

(observation-based likelihoods)

Figure 2 shows the distribution of the Bayes factor values

obtained across the 84 catchments for each of the 10 possi-
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Table 2. Tested variance values for the data-based and imposed error structures.

1 % observed 5 % observed 10 % observed 20 % observed

Observed error signature signature signature signature

structure ranges ranges ranges ranges

RR residuals 0.0542 0.0052 0.0272 0.0552 0.1092

BFI residuals 0.0442 0.0062 0.0302 0.0602 0.1212

SE residuals 0.6352 0.0232 0.1162 0.2322 0.4642

SFDC residuals 0.0062 0.00052 0.0022 0.0052 0.0102

HPC residuals 10.6872 0.9772 4.8832 9.7672 19.5332

Table 3. Reference table showing the 95 % confidence interval for

the median Bayes factor. The correlation coefficient ρ and the stan-

dard deviation of the marginal distributions σ are shown.

σ

1 % 5 % 10 % 20 %

0 1 1 1 1

0.25 1.01–1.03 1.03–1.04 1.02–1.04 1.04–1.05

ρ 0.50 1.09–1.15 1.16–1.19 1.14–1.17 1.14–1.18

0.75 1.41–1.51 1.50–1.57 1.45–1.53 1.40–1.49

0.90 1.94–2.11 2.11–2.32 2.12–2.26 2.20–2.34

ble different pairs of signatures, when the observation-based

error structure is used for each catchment. Figure 2a shows

the results for the observed streamflow data with regionalized

signatures calculated from the derived regressions; Fig. 2b

shows the results for the synthetic streamflow data with re-

gionalized signatures calculated by adding noise to the exact

signature values. The Tukey boxplots in red correspond to

pairs of signatures whose errors are statistically significantly

correlated (see Fig. 1). The upper whisker represents the up-

per quartile plus 1.5 times the interquartile range and the

lower whisker represents the lower quartile minus 1.5 times

the interquartile range. The matrix below Fig. 2b shows the

pairs of signatures used.

The signature pair [SFDC, HPC] shows the strongest cor-

relation between errors (ρ = 0.65, Fig. 1). A likelihood func-

tion with a standard deviation equal to 10 % of the observed

signature ranges and ρ = 0.75 in Table 3 is comparable to

the observation-based likelihood of the pair [SFDC, HPC]

(Table 2), with Table 3 indicating [1.45,1.53] as a 95 % con-

fidence interval for the median Bayes factor. However, a me-

dian Bayes factor of 2.17 is obtained for the observed stream-

flow data (Fig. 2a). Similar differences are found for the other

pairs of signatures, although the comparison with the refer-

ence table (Table 3) becomes challenging, as the individual

signatures have not been regionalized necessarily with simi-

lar quality. On the other hand, Fig. 2b shows that the Bayes

factors for the synthetic study (when there is no model struc-

tural error) are consistent with the values provided in the

look-up Table 3. The difference between the median Bayes
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Figure 2. The Bayes factor for the 10 pairs of signatures over the 84

catchments when the observation-based error structure is used with

(a) observed streamflow data, (b) synthetic streamflow data. The

upper whisker represents the upper quartile plus 1.5 times the in-

terquartile range and the lower whisker represents the lower quartile

minus 1.5 times the interquartile range. The dashed line represents

BF= 1.

factor for the two cases is likely to be caused by the model

structure error, or may be related to the location of the NSE-

optimal in the parameter space.

Nevertheless, it is clear from Fig. 2 that those pairs of

signatures whose errors are significantly correlated (i.e.,

[SFDC, HPC], [BFI, HPC], [BFI, SFDC] and [BFI, SE])

have wider interquartile ranges. Furthermore, the pair of sig-

natures with the strongest correlation between errors [SFDC,

HPC] presents the greatest interquartile range. Therefore the

inclusion of significant correlations in the likelihood func-

tion matters, but whether or not it is beneficial to condition-

ing the parameters seems to depend on the interplay between

model structure error, parameter space and likelihood func-

tion. Only strong correlations (as in the [SFDC, HPC] case)

can be expected to result in a median Bayes factor clearly

above 1.
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3.3 The impact of inter-signature error correlations

(multiple signatures)

Multiple signatures are used for parameter constraining and

flow prediction. The information value of multiple signatures

and its dependence on inter-signature error correlations is ex-

plored in this section.

3.3.1 Synthetic streamflow data (observation-based

likelihood)

Figure 3 shows Bayes factors derived for the synthetic

streamflow data (generated using the NSE-optimal param-

eter set) when the observation-based likelihood is used. The

Bayes factor considers p(.|H2) to be the prior parameter dis-

tribution and p(.|H1) to be one of the parameter posteri-

ors that includes or ignores the inter-signature error correla-

tions. Figure 3 summarizes the variability in the Bayes factor

for the different combinations of signatures for all 84 catch-

ments. Boxplots are color coded by the total number of sig-

natures combined, when the inter-signatures error correlation

is considered in the likelihood function definition. The grey

dashed boxplots correspond to the results obtained assuming

that the inter-signature errors are independent when defin-

ing the likelihood function. Although the colored boxplots

visually seem to have higher values than the grey dashed

boxplots, these differences are not statistically significant at

a 95 % confidence level (Kolmogorov–Smirnov two-sided

tests).

To better evaluate whether the incorporation of additional

sources of information improves parameter identification,

one-sided Kolmogorov–Smirnov tests are applied between

any combination of certain signatures (e.g., [SE, SFDC]) and

any other combination that contains the same signatures and

a new one (e.g., [SE, SFDC, HPC]). It is found that adding

more signatures improves parameter identification in 82.5 %

of the cases (66 out of 80 cases) at a 95 % confidence level.

Figure 4 summarizes the variability in the analog Nash–

Sutcliffe efficiency measure NSEprob for different combi-

nations of signatures for all 84 catchments. The colored

boxplots correspond to the results obtained when the inter-

signature error correlations are considered in the likelihood

definition and the grey dashed boxplots correspond to the

results when the inter-signature errors are assumed to be

independent. There is no visual or statistical (two-sided

Kolmogorov–Smirnov tests) difference between the colored

boxplots and the grey dashed boxplots in Fig. 4. Moreover,

visually, adding more response signatures seems to improve

streamflow predictions in terms of accuracy and precision

when no model structure error exists. However, only in 59 %

of the cases (47 out of 80 cases) more signatures contribute to

improved streamflow predictions at a 95 % confidence level

(one-sided Kolmogorov–Smirnov test). The other 33 cases

always involve the inclusion of the most poorly regionalized

signatures (with the highest variance from the five regional-

Figure 3. Boxplots representing the distribution of the Bayes factor

for each combination of signatures for synthetic streamflow data.

The colored boxplots correspond to the results obtained when inter-

signature error correlations are considered in the likelihood func-

tion, whereas the grey dashed boxplots correspond to the results

obtained assuming that the inter-signature errors are independent.

ized signatures) – SE, SFDC, or HPC – as additional sources

of information (see Table 2).

It is worth noting that very similar results (not shown

here) are obtained when instead of regionalized signatures,

“observed” signatures are used but with the same error de-

rived from regionalization. This suggests that the uncertainty

around the regionalized signatures values, as well as signa-

ture information content, are the key factors leading to the

results shown in Fig. 4.

3.3.2 Observed streamflow data (observation-based

likelihood)

Figure 5 shows the results when the same methodology as in

the Sect. 3.3.1 is applied using the observed streamflow data.

As in the synthetic streamflow case, the differences between

the Bayes factor distributions when inter-signature error cor-

relations are considered and when inter-signature errors are

assumed to be independent are not statistically significant

at a 95 % confidence level (Kolmogorov–Smirnov two-sided

tests).

Further, by comparing Fig. 5 with Fig. 3, it becomes clear

that the signatures contribute less information and there is

a smaller increase in performance as more signatures are

added. It is found that adding more signatures tends to im-
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Figure 4. Boxplots representing the distribution of NSEprob values

for each combination of signatures for synthetic streamflow data.

The colored boxplots correspond to the results obtained when inter-

signature error correlations are considered in the likelihood func-

tion, whereas the grey dashed boxplots correspond to the results

obtained assuming that the inter-signature errors are independent.

prove parameter identification only in half of the cases when

compared to the synthetic streamflow case at a 95 % con-

fidence level (42.5 vs. 82.5 % in the synthetic streamflow

case). Furthermore, and contrastingly to the case where no

structural error exists, in five situations, adding more sig-

natures contributes to a decrease in performance. These five

cases always involve adding either SFDC or HPC as an addi-

tional source of information. This performance deterioration

can be attributed to model structure and observational error.

Overall, a statistically significant drop in performance with

regard to the Bayes factor is observed most of the time when

model structural error is present.

Figure 6 presents the results in terms of NSEprob us-

ing the observed streamflow data. As in the synthetic study

in Sect. 3.3.1, there is no statistically significant differ-

ence at a 95 % confidence difference between the NSEprob

distributions when the inter-signature error correlations are

considered and when the errors are treated independently

(Kolmogorov–Smirnov two-sided tests).

Figure 6 shows that better results in terms of NSEprob are

not necessarily achieved when all five signatures are used si-

multaneously. It is found that adding more signatures tends

to improve parameter identification only in 36 % of the cases

at a 95 % confidence level (compared to 59 % when there is

no model structure error). Furthermore, and contrasting the

Figure 5. Boxplots representing the distribution of the Bayes factor

for each combination of signatures for observed streamflow data.

The colored boxplots correspond to the results obtained when inter-

signature error correlations are considered in the likelihood func-

tion, whereas the grey dashed boxplots correspond to the results

obtained assuming that the inter-signature errors are independent.

case where no model structure error exists, in two situations,

adding more signatures may contribute to a decrease in per-

formance (when we start with [RR, BFI] and add HPC, and

when we start with [RR, BFI] and add SFDC). This might be

due to regionalization biases in SFDC and HPC and/or due

to the inability of the PDM model to maintain a satisfactory

overall performance when conditioned on high peak flow

and medium flow information. This negative impact is not

observed when synthetic streamflow data are used (Fig. 4),

indicating that the decrease in performance may be due to

model structural deficiencies. Moreover, a statistically sig-

nificant drop in performance with regard to NSEprob is ob-

served most of the time when there is model structural error.

In summary, unless there is no model structural error, an

all-round performance improvement is not guaranteed by

adding more signatures. Furthermore, model structure uncer-

tainty seems to have a much bigger effect on the performance

than the explicit inclusion of the inter-signature error corre-

lations.

3.4 Limitations and applicability

The main feature of the method suggested in this paper lies in

the possibility of allowing a large number of signatures to be

added to the conditioning process, without worrying about

double counting of information or degree of uncertainty in
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Figure 6. Boxplots representing the distribution of NSEprob values

for each combination of signatures for observed streamflow data.

The colored boxplots correspond to the results obtained when inter-

signature error correlations are considered in the likelihood func-

tion, whereas the grey dashed boxplots correspond to the results

obtained assuming that the inter-signature errors are independent.

signature estimates and avoiding subjective decisions about

removal of possibly non-independent information. Although

the proposed framework can be applied to any number of

signatures, the limited sample size (i.e., number of gauged

catchments available) can have an impact on the definition

of the likelihood distribution. For this specific study 83 sam-

ples were available to define that distribution. When a sin-

gle response signature is used to condition the hydrological

model, this sample size is likely to be sufficient to confi-

dently judge whether the normal distribution assumption is

sufficient. However, when moving to multidimensional prob-

lems, in which various signatures may be used simultane-

ously to condition the hydrological model, it is increasingly

difficult to judge the adequacy of any multivariate parametric

distribution and to judge which catchments are outliers. This

implies that as more signatures are used simultaneously in

the conditioning of the hydrological model, the more gauged

catchments should be used to define the likelihood func-

tion. As stressed by Gupta et al. (2014), large samples are

of great importance to support statistical regionalization of

uncertainty estimates and this is particularly the case if de-

pendencies between information sources are to be specified.

While the work presented in this paper addresses a number

of issues associated with model regionalization, it is impor-

tant to highlight some additional areas for future research. An

important source of uncertainty comes from model structure

error (Gupta et al., 1998; Kuczera et al., 2006). The condi-

tioning framework suggested here is independent of the se-

lected model and, in principle, Figs. 5 and 6 could be created

by using the model structure that is considered suitable for

each catchment rather than using a model structure that we

consider good for generalizing. Further research is needed

to diagnose the relative importance of different model struc-

tures in various climate regimes and for different catchment

characteristics (Clark et al., 2008; Hrachowitz et al., 2013).

This is crucial to both identifying the most appropriate model

structure for an ungauged location and quantifying the uncer-

tainty in the model structure that should be integrated into the

likelihood, thus allowing virtually any model choice. Simi-

larly, other sources of uncertainty, namely observational er-

ror (e.g., rainfall error), should ideally be evaluated and inte-

grated into the likelihood function. By accounting for all the

important sources of uncertainty, further insight should be

achieved into the information value of sets of signatures and

the value of including their dependencies in the likelihood

function.

Some of the results presented may be sensitive to the re-

sponse signatures used. The relationship between value of

signatures and catchment type remains ambiguous and an in-

teresting aspect for posterior evaluation would be how the

value of signatures depends on catchment type. Other as-

pects that are worth further research include whether a simi-

lar framework could be applied to different types of informa-

tion source, e.g., can some discharge measurements be added

into the model conditioning process? While Bulygina et al.

(2012) suggests a framework capable of combining multiple

sources of knowledge, namely physically based information,

regionalized signatures and spot observations to identify pa-

rameters for models of ungauged catchments, the errors be-

tween them were assumed to be independent in their case

study. A combination of the framework suggested by Buly-

gina et al. (2012) and the method proposed in this paper may

be the way forward to maximizing the value of the available

information within a framework of uncertainty reduction.

4 Conclusions

Uncertainty in streamflow estimation in ungauged catch-

ments originates not only from the traditional sources of error

generally identified in rainfall–runoff modeling (i.e., model

structural, parameter, and data errors) but also by errors in-

troduced by the transposition of information from data-rich

areas and use of this information to condition model simu-

lations. To identify which and how many types of signatures

can usefully be included in model conditioning, it is critical

to understand the effects of all these uncertainties. Moreover,

when multiple signatures are used simultaneously to con-

dition model simulations, inter-signature error dependencies

may also introduce uncertainty and affect decisions about the
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value of information. While error and uncertainty analyses

are quite common in regionalization studies, the question of

how much information can be taken from a set of uncertain

signatures and determining how many and which signatures

should be used given their error dependencies has not been

extensively studied.

The method suggested in this paper allows the specifica-

tion of a signature error structure. A common reason for not

including large numbers of signatures in regionalization stud-

ies is the potential for underestimation of uncertainty due to

duplication of information. This study helps to justify the in-

clusion of larger sets of signatures in the regionalization pro-

cedure if their error correlations are formally accounted for

and thus enables a more complete use of all available infor-

mation. The results show that adding response signatures to

constrain the hydrological model, while accounting for inter-

signature error correlations, can contribute to a stronger iden-

tification of the optimum parameter set when the error corre-

lations between different sources of information are strong.

Furthermore, the results show that assuming independency

of errors does not result in significant deterioration in model

performance, unless the error correlation is very strong. The

results also show that the effect of error correlations is likely

to be overwhelmed by model structure and observation er-

rors. The method suggested here can therefore become more

relevant if observational and structural errors are reduced. In

addition, it is illustrated that using more signatures, with and

without considering their error correlations, may lead to de-

terioration in performance. In our case, there were particular

problems when adding the slope of the flow duration curve

and/or the high pulse count. As this is likely to be specific

to the rainfall–runoff model used, the selected performance

criteria and the set of catchments, it is recommended that the

misinformative information sources are identified as part of

any regionalization study, in a similar manner as has been

done here.
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Appendix A: Model structure

A schematic representation of the model structure used in

this study is shown in Fig. A1. The snowmelt routine is

based on the degree-day method. Precipitation accumulates

as snow or rain depending whether the air temperature is

above or below a threshold temperature (Tth). When the air

temperature is above the temperature threshold for snowmelt

(Tm), snowmelt occurs at a rate that is proportional to the

degree-day factor (DDF). The soil moisture storage com-

ponent describes the water balance at the soil level. The

PDM model uses a probability density function to repre-

sent changes in the catchment storage capacity, defined by

the maximum soil moisture storage (cmax) – the maximum

soil water storage capacity within the modeled element –

and a shape parameter (b) that controls the degree of spatial

variability of storage capacity over the catchment. Intercep-

tion is not explicitly modeled. Transpiration and evaporation

are lumped into a single term. The actual evapotranspiration

(AE) is determined based on a relationship between evap-

otranspiration and soil moisture deficit (Moore, 2007). Af-

ter evapotranspiration, the remaining available water is used

to fill the soil moisture store. When effective rainfall is pro-

duced through overflow of the storage elements, excess water

is passed to the routing stores. The routing module channels

this water into two reservoirs, according to a fraction split

coefficient (α). A proportion α of the water excess goes to

the quick flow reservoir, controlled by the quick flow resi-

dence time (kq ) and (1−α) of the water excess goes to the

slow flow reservoir, controlled by the slow flow residence

time (ks). The streamflow at the catchment outlet is the sum

of the outputs from each of these quick and slow flow reser-

voirs.

The parameter ranges (Table A1) are selected after Kollat

et al. (2012) and based largely on the maximum range sam-

pled from several recent studies, such that only sufficiently

extreme values are ruled out.
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Figure A1. Schematic representation of the rainfall–runoff concep-

tual model structure used.

Table A1. Conceptual model prior parameter ranges.

Parameter Description Units Range

DDF Degree-day factor (mm day−1 ◦C−1) 0–20

Tm Base temperature for melting (◦C) 0–5

Tth Threshold temperature for snow formation (◦C) −5–5

cmax Maximum storage capacity within the catchment (mm) 0–2000

b Shape Pareto distribution (−) 0–4

be Evaporation reduction parameter (−) 0–4

kq Time constant for fast routing store (days) 0–7

ks Time constant for slow routing store (days) 7–20 000

α Fraction of slow through fast routing store (−) 0–1
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Appendix B: The Bayes factor

When evaluating the impact of inter-signature error correla-

tions on model parameter identification, results are assessed

in terms of Bayes factor (Jeffreys, 1961). This form of assess-

ment is preferred to the most commonly used QQ plots (Laio

and Tamea, 2007), due to the particular nature of the problem

under analysis. When a signature(s) (either regionalized for

the case of an ungauged catchment, or derived from actual

observations for the case of gauged catchments) is employed

to reduce uncertainty beyond what is possible by defining

the priors on model parameters, QQ plots may not be the

most effective form of assessment. Although response signa-

tures are measures of theoretically relevant system process

behaviors (Gupta et al., 2008; Wagener et al., 2007), they

reflect fragmented knowledge as different signatures capture

different catchment processes. Consequently, the quantiles of

observed flows are not conditioned to follow a uniform dis-

tribution, as QQ plots assess. Rather, quantiles of response

signatures should follow this condition (for all catchments

considered – Almeida et al., 2013). Therefore, an alternative

performance measure that more adequately reflects the aim

of this particular application (i.e., the reproduction of certain

aspects of the hydrograph) is used. The Bayes factor BF is

particularly relevant in the current context as it allows com-

parison of predictions based on two competing theories (Jef-

freys, 1961). It is defined as the ratio between the marginal

distributions of the data y for the two hypotheses (H1 and

H2) being compared (Kass and Raftery, 1995):

BF=
p(y|H1)

p(y|H2)
. (B1)

When the two hypotheses are equally likely a priori, the

Bayes factor is the posterior odds in favor of H1 (Kass and

Raftery, 1995). In other words, a value of BF greater than 1

means that H1 is more strongly supported by the data than

H2. For example, a Bayes factor equal to 2 implies thatH1 is

favored over H2 with 2 : 1 odds given the evidence provided

by the data.

For a given hypothesisH , parameterized by model param-

eter set 2, the marginal density p(y|H) represents the like-

lihood of the data and it is given by

p(y|H)=

∫
p(y|2,H)p(2|H)d2 (B2)

where p(y|2,H) is the conditional density function given

parameters 2 under hypothesis H and p(2|H) is the distri-

bution of parameters under H . Hypothesis H may represent

different model and parameter distributions. In this paper,

the same model structure is considered. However, different

parameter distributions are used in Eq. (B2) to enable pre-

diction comparison based on two theories about parameter

distributions.

The above integral can be numerically approximated as

∫
p(y|2,H)p(2|H)d2≈

1

N

N∑
i=1

p(y|2(i),H)p(2(i)
|H) (B3)

where 2(i) is the ith of N draws from p(.|2) and N is the

size of the Monte Carlo sample (in this paper N is equal

to 10 000).

In a “perfect model” study, data y are generated by a

model with parameter set 2∗, so that there is no model struc-

tural or observational error. This means that p(y|2(i),H) is

always equal to zero, except when 2(i)
=2∗. Mathemati-

cally this is expressed as p(y2(i),H)= δ2(i)
=2∗ , where δ

is the Dirac delta function. Therefore Eq. (B3) is equal to

1/N times p(2(i)
=2∗|H) and the Bayes factor is given by

BF=

1
N

∑N
i=1δ2(i)

=2∗
p(2(i)

|H1)

1
N

∑N
i=1δ2(i)

=2∗
p(2(i)|H2)

=
p(2(i)

=2∗|H1)

p(2(i) =2∗|H2)
. (B4)

While other choices can be made, two cases are considered

in this paper. First, the two distributions in Eq. (B4) are pos-

terior distributions, but with different assumptions about the

likelihood functions. Given that we are particularly interested

in evaluating the impact of considering the inter-signature

error correlations versus ignoring them, H1 will correspond

to the joint likelihood defined such that inter-signature error

correlations are considered, whileH2 corresponds to the like-

lihood when inter-signature error correlations are ignored.

For the Bayes factor defined in this way, a value greater

than 1 supports the idea that considering inter-signature error

correlations contributes to an improved specification of the

optimum parameter set. In this paper we are also interested

in the value of adding/not adding more signatures in model

conditioning, and so the Bayes factor will be also calculated

for p(.|H2) set to be the prior parameter distribution, and

p(.|H1) set to one of the derived parameter posteriors. For

the Bayes factor defined in this way, a value greater than 1

supports the idea that additional sources of information con-

tribute to a stronger identification of the optimum parameter

set.
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