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Abstract. Statistical downscaling is a commonly used tech-

nique for translating large-scale climate model output to a

scale appropriate for assessing impacts. To ensure down-

scaled meteorology can be used in climate impact studies,

downscaling must correct biases in the large-scale signal.

A simple and generally effective method for accommodat-

ing systematic biases in large-scale model output is quan-

tile mapping, which has been applied to many variables and

shown to reduce biases on average, even in the presence of

non-stationarity. Quantile-mapping bias correction has been

applied at spatial scales ranging from hundreds of kilometers

to individual points, such as weather station locations. Since

water resources and other models used to simulate climate

impacts are sensitive to biases in input meteorology, there is

a motivation to apply bias correction at a scale fine enough

that the downscaled data closely resemble historically ob-

served data, though past work has identified undesirable con-

sequences to applying quantile mapping at too fine a scale.

This study explores the role of the spatial scale at which the

quantile-mapping bias correction is applied, in the context of

estimating high and low daily streamflows across the western

United States. We vary the spatial scale at which quantile-

mapping bias correction is performed from 2◦ (∼ 200 km) to

1/8◦ (∼ 12 km) within a statistical downscaling procedure,

and use the downscaled daily precipitation and temperature

to drive a hydrology model. We find that little additional

benefit is obtained, and some skill is degraded, when us-

ing quantile mapping at scales finer than approximately 0.5◦

(∼ 50 km). This can provide guidance to those applying the

quantile-mapping bias correction method for hydrologic im-

pacts analysis.

1 Introduction

Climate modeling is an imperfect science, with uncertain-

ties in simulated land-surface climate that vary in space and

with the forecast time horizon (Hawkins and Sutton, 2009,

2011). This presents a challenge when projecting climate

change impacts at a local and regional scale. The most re-

cent coordinated global climate model (GCM) experiments

conducted as part of the fifth Coupled Model Intercompari-

son Project (CMIP5; Taylor et al., 2012) have been used to

simulate historic and future climate. These CMIP5 runs have

demonstrated improvements over earlier generations of mod-

els, both in the representation of physical processes and the

simulated fields (Flato et al., 2013; Watterson et al., 2014).

While improved skill over the United States has been found

for both mean and variability of climate (Sheffield et al.,

2013a, b), biases remain that must be accommodated for

projecting future impacts, e.g., on streamflow characteristics

(Wood et al., 2004).

In this study we focus on a common method used for

bias correction, namely, quantile mapping. Quantile map-

ping is effective at removing some climate model biases, is

relatively simple to apply, and has been incorporated into

many statistical downscaling schemes used for local and re-

gional impacts analysis (Li et al., 2010; Maraun et al., 2010;

Panofsky and Brier, 1968; Piani et al., 2010; Themeßl et al.,

Published by Copernicus Publications on behalf of the European Geosciences Union.



686 E. P. Maurer et al.: The impact of spatial scale in bias correction

2011). While quantile-mapping bias correction does inher-

ently assume that the biases exhibited by a climate model re-

main constant in future projections, there is some indication

that this is not an unreasonable assumption (Maraun, 2012;

Maurer et al., 2013), especially where biases are driven by

persistent climate model characteristics, such as inadequate

representation of topography. Other discrepancies between

historic climate model simulations and observations, espe-

cially due to internal natural variability (for example, El Niño

events simulated by a freely evolving GCM not coinciding

with observations), are not necessarily model biases (Eden et

al., 2012), but are corrected nonetheless by quantile mapping,

which is blind to the source of the bias. For this reason, the

training (or calibration) period for the bias correction should

be long enough (typically 10–30 years) so that internal vari-

ability is not a dominant source of bias between the climate

model and observations.

In statistical downscaling approaches that incorporate a

quantile-mapping bias correction, large-scale climate model

output is typically first interpolated onto a regular grid and

then bias corrected using quantile mapping with a gridded

observational data set at the same spatial resolution (Mau-

rer et al., 2010b; Thrasher et al., 2012). This was originally

developed as a method of convenience to place the climate

models, which operate natively at many different spatial res-

olutions, onto a single grid to enable straightforward inter-

comparisons. Using a common grid for all climate models

also ensures that the bias corrected output from each (regrid-

ded) climate model, for the time period on which the quantile

mapping is calibrated, is statistically identical.

The scale at which global climate models were bias cor-

rected for the archive of downscaled climate model output

(from the prior CMIP3 experiment; Meehl et al., 2007), de-

scribed by Maurer et al. (2007) for the conterminous United

States, was 2◦ (latitude and longitude) or roughly 200 km,

approximately corresponding to the finest spatial resolution

of the participating climate models. Using similar logic, for

the expansion of the archive with downscaled CMIP5 climate

model output (Maurer et al., 2014), which included climate

models operating at higher spatial resolutions, the resolution

at which bias correction was performed was refined to 1◦. Of

course, when further spatial disaggregation to finer scale is

performed after the bias correction, the correspondence be-

tween bias corrected climate model output and observations

at the fine scale degrades, since fine-scale climate informa-

tion is not incorporated in the bias correction.

To ensure closer correspondence between the final down-

scaled product and observations, a temptation is to apply

quantile-mapping bias correction at a finer scale, which in its

limit would be applied at the scale of observations (either at

the original grid scale, or even to point observation stations).

This approach has been applied to climate model output at

many spatial scales: for example, Wood et al. (2004) applied

it at a 2◦ (∼ 200 km) spatial scale, Li et al. (2010) used quan-

tile mapping at 1◦ (∼ 100 km), Hwang and Graham (2013)

and Tian et al. (2014) applied it at 1/8◦ (∼ 12 km), Abatza-

glou and Brown (2012) applied quantile mapping at 1/12◦

(∼ 8 km), and Tryhorn and DeGaetano (2011) used quantile

mapping to bias correct to point observations of precipitation

and temperature.

One problem with applying quantile mapping at fine scales

has been identified by Maraun (2013, 2014). In summary,

the adjustment by quantile mapping inappropriately applies

a deterministic variance correction, implicitly assuming that

any unexplained variance at the fine spatial scale can be ac-

commodated by rescaling the variance from the large scale.

In other words, a climate model grid scale precipitation

value (representing average precipitation over approximately

10 000 km2) would be used to adjust the precipitation (prob-

ability distribution) at a much smaller scale (for example,

100 km2). In essence, this assumes the unexplained variabil-

ity of fine-scale precipitation can be described with a de-

terministic function of large-scale precipitation variability.

Since variability at the coarse-scale (due to synoptic circu-

lation, for example) and fine-scale (due to local topographic

features, land–atmosphere interactions, etc.) have distinct

sources, application of quantile mapping to simultaneously

include spatial downscaling is arguably inappropriate. For

example, Maraun (2013) highlighted an example where a

high large-scale precipitation value is translated by quantile

mapping to high values at all points within the large-scale

grid box, producing an erroneously large and uniform extent

of an extreme event; fine-scale variability among the points

is not replicated by the deterministic transformation of quan-

tile mapping. It should be noted that where downscaling to

point observations is required, others have proposed alter-

native approaches that expand beyond the quantile mapping

used in this study (e.g., Haerter et al., 2015).

Another issue with fine-scale application of quantile map-

ping of precipitation has been related to spatial correlation

of storm events (Bárdossy and Pegram, 2012). They found

quantile-mapping bias correction of precipitation at 25 km

decreased spatial correlation with observations, and hence

underestimated areal precipitation at larger scales. This could

have potential negative effects on flood estimates for large

river basins, and Bárdossy and Pegram (2012) proposed a

re-correlation technique to restore some of the observed spa-

tial structure of precipitation events. A further consideration,

when applying quantile mapping to future precipitation pro-

jections, is that the relationship between the spatial scale of

fine- and coarse-scale precipitation may change in ways that

could affect extreme runoff projections (Li et al., 2015).

In addition to those noted above, there are other known

shortcomings of quantile mapping, some of which have been

accommodated by modifying or augmenting quantile map-

ping or by developing alternative statistical procedures. For

example, where it is desired to maintain a joint distribution of

multiple variables through bias correction, as opposed to in-

dividual variable downscaling as used here, joint downscal-

ing methods have been developed (Abatzoglou and Brown,
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Figure 1. Schematic of bias correction–spatial disaggregation pro-

cess used in this experiment. Values for X vary from 2◦ (latitude-

longitude) to 0.125◦ as described in the text.

2012; Mehrotra and Sharma, 2015; Zhang and Georgakakos,

2012). The probability transformations in quantile mapping

are incapable of correcting for GCM biases in low-frequency

variability, and autoregressive and spectral transformations

have been developed to accommodate these biases where im-

portant (Mehrotra and Sharma, 2012; Pierce et al., 2015).

While we recognize the deficiencies in quantile mapping, as

discussed for statistical bias correction in general by Ehret et

al. (2012), and there is the promise of recent advances in bias

correction, it remains that quantile mapping is widely used

and generally effective at removing biases (Gudmundsson et

al., 2012), even in the presence of some non-stationarity (La-

fon et al., 2012; Maurer et al., 2013; Teutschbein and Seibert,

2013). Our aim in this study is not to advocate for a specific

downscaling method, but to understand a specific aspect of

this widely used method.

The question we aim to address in this study is whether

there is a practical limit to spatial scale that should be con-

sidered when applying quantile-mapping bias correction in

statistical downscaling in the context of projecting hydro-

logic impacts. Past work on western US hydrology has found

negligible predictive skill, and in some locations a degrada-

tion, when bias correction is performed at a fine spatial scale

(Maurer et al., 2010b).

To assess this, we begin with large-scale climate data (ap-

proximately 200 km spatial scale) and perform a quantile-

mapping bias correction at a variety of spatial scales, as part

of a statistical downscaling approach, to obtain fine-scale

gridded daily precipitation and temperature values. These

downscaled meteorological data are used to drive a hydro-

logical model over the western United States to simulate

streamflow at sites where streamflow is observed, represent-

ing drainage areas from approximately 100 to 600 000 km2.

Skill is assessed by comparing the streamflow simulated by

the downscaled meteorology and the streamflow from a sim-

ulation using observed meteorology. Ultimately, we aim to

determine whether the improved correspondence between

downscaled large-scale climate and fine-scale observed me-

teorology comes with a cost of degraded skill outside of the

training period used for bias correction. This can be helpful

for guiding future downscaling efforts for assessing the im-

pacts of climate change on water resources.

2 Data and methods

The quantile-mapping bias correction is performed as a first

step in the bias correction–spatial disaggregation (BCSD;

Wood et al., 2004) technique. A schematic of the procedure is

shown in Fig. 1. Observations of gridded daily precipitation

and temperature (Livneh et al., 2013) are available at a 1/16◦

spatial resolution; to reduce the computational load they are

aggregated to a 1/8◦ (0.125◦) resolution for this experiment.

The Livneh et al. data use approximately 20 000 sites with

daily meteorological records to define their field. These 1/8◦

gridded observations are then aggregated to different spatial

resolutions to match the interpolated large-scale daily data

(X◦ in Fig. 1).

A quantile-mapping approach is used to bias correct the

large-scale data, in which empirical cumulative distribution

functions (CDFs) are developed for both the aggregated ob-

servations and the interpolated large-scale data for a calibra-

tion period. The quantile for each large-scale value is then

determined using its CDF, and the value is transformed to the

observed value at the same quantile. This transfer function,

following Li et al. (2010), can be written as

xmodel-adjusted = F−1
obs (Fmodel(xmodel)) , (1)

where F is the CDF for the calibration period, x is a daily

value of precipitation or temperature, with the CDF, at each

X◦ grid cell, developed for a moving window of ±15 days

from the day pertaining to x. The subscripts indicate large-

scale model data or observations (obs). After the quantile-

mapping bias correction, precipitation and temperature val-

ues are expressed as anomalies relative to the climatolog-
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ical mean for the moving window, using a difference for

temperature and a fraction for precipitation. These anoma-

lies are interpolated from the large scale to the final 1/8◦

grid and applied to climatological values to obtain final daily

downscaled data. Details of the quantile mapping and BCSD

method as applied here are available elsewhere (Maurer et

al., 2010b; Thrasher et al., 2012).

The large-scale climate data we use are daily precipitation

and maximum and minimum surface air temperature from

the National Centers for Environmental Prediction and the

National Center of Atmospheric Research (NCEP/NCAR)

reanalysis (Kalnay et al., 1996) as a surrogate for a GCM. Be-

cause NCEP/NCAR reanalysis ingests some atmospheric ob-

servations (though, importantly, not precipitation) in its pro-

duction, it exhibits a higher skill than possible with GCMs

(Reichler and Kim, 2008). While it arguably represents a best

possible simulation capability of a GCM, it still can exhibit

substantial regional biases, especially in precipitation (Mau-

rer et al., 2001; Widmann and Bretherton, 2000; Wilby et al.,

2000). The assimilation of some observed atmospheric states

means that NCEP/NCAR reanalysis can be expected to have

some correspondence to observed events, which would be

impossible with a freely evolving GCM. These characteris-

tics make the use of reanalysis data for evaluating bias cor-

rection and downscaling procedures common practice (e.g.,

Huth, 2002; Schmidli et al., 2006; Vrac et al., 2007).

Reanalysis data are available on a T62 Gaussian grid (ap-

proximately 1.9◦ square), a resolution comparable to cur-

rent GCMs. Daily reanalysis precipitation, maximum and

minimum temperature are bilinearly interpolated onto reg-

ular grids of varying spatial resolutions (designated as X in

Fig. 1) prior to bias correction: 2.0, 1.0, 0.5, 0.25, 0.125◦.

The gridded observations are aggregated to the same spatial

scale as the interpolated reanalysis data and the bias correc-

tion is then performed at that scale. The period 1960–1989 is

used to calibrate or train the bias correction, and 1990–2011

is used to validate the downscaled data. This analysis was

conducted over the conterminous United States for all of the

spatial resolutions except the 0.125◦ experiment, which used

a smaller domain over the western United States for compu-

tational reasons.

Both the downscaled meteorology and the gridded obser-

vations were used to drive three Soil Water and Assessment

Tool (SWAT; Arnold et al., 1998) hydrologic models over

the western United States (for the Columbia River basin,

Sierra Nevada, and Upper Colorado River basin). SWAT sim-

ulates the entire hydrologic cycle, including surface runoff,

snowmelt, lateral soil flow, evapotranspiration, infiltration,

deep percolation, and groundwater return flows, at the sub-

basin scale. The subbasins delineated for these SWAT models

have average areas ranging from 246 km2 (for the Colorado

basin) to 191 km2 (for the Sierra), comparable to that of the

1/8◦ gridded observational data (approximately 140 km2 per

grid cell). Each SWAT subbasin uses the meteorology from

the nearest 1/8◦ grid cell. Calibration was performed at 185

different streamflow sites, shown in Fig. 2, where natural-

ized or unimpaired streamflow observations were available.

All SWAT models were calibrated and validated, at the 185

sites, during the 1950–2005 time period, though because ob-

servations were not complete at all sites some gauges did not

encompass the entire period. The contributing drainage areas

of these sites varied from approximately 100 to 600 000 km2,

and these calibration sites are the locations where stream-

flows are analyzed for this study. The parameterization, cali-

bration, and validation of the SWAT model used in this study

for three major western US river basins are described in de-

tail in other references (Ficklin et al., 2012, 2013, 2014).

The streamflow metrics applied in this study are the annual

3-day peak flow and 7-day low flow at each site, and only the

validation period of 1990–2011 is used. These metrics aim to

quantify extreme high and low values without applying a the-

oretical distribution, as would be required to estimate more

rare events from the relatively short validation period. The

3-day peak flow is a widely used measure for flood planning

purposes (e.g., Das et al., 2013) and the 7-day low flow is fre-

quently used for characterizing water quality and ecosystem

impacts (WMO, 2009). The annual extreme streamflow val-

ues are analyzed using the non-parametric Mann–Whitney

U test (Haan, 2002) for equality of medians to determine the

significance of the difference between flows driven by obser-

vations and those driven by downscaled reanalysis data.

3 Results and discussion

As an overview of the larger domain of the study, Fig. 3

shows the biases in mean annual (daily) precipitation for

each of the experiments. Figure 3 demonstrates that, as will

always be the case due to natural variability, the biases be-

tween climate model output (or reanalyses) and observations

will be different for different time periods. It is also evident,

for the precipitation statistic depicted, that the difference in

bias between the two periods is much smaller than the bias

itself, explaining why bias correction generally does improve

skill, especially given the role of topography in precipitation

formation and the lack of detailed topographic representa-

tion in the large-scale reanalysis data (e.g., Maurer et al.,

2013). Comparing the change in bias between the two peri-

ods at different spatial scales (each row of the right column),

Fig. 3 shows that the non-stationarity has the same overall

pattern at all scales, but at finer scales there is greater spa-

tial variability, with some isolated grid cells showing greater

non-stationarity at fine scales. Figure 3 shows the mountain-

ous regions to have higher biases (and greater values for

non-stationarity), which may be expected given greater lo-

cal complexity of the terrain and thus more heterogeneity in

the local precipitation that the bias correction is attempting

to correct. However, the apparent higher non-stationarity in

mountainous areas is also partially due to the greater pre-

cipitation at high elevations. Expressing bias as a relative
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Figure 2. Streamflow locations used in this study.
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Figure 3. Mean precipitation bias, measured as the difference between reanalysis and observations for the calibration (1960–1989) and vali-

dation (1990–2011) periods, and the difference in bias between the two periods. Reanalysis data are interpolated and observations aggregated

to the spatial resolution indicated in the left column.
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Figure 4. Cumulative distribution function plots (for quantiles 0.5–

0.99) of bias-corrected and spatially disaggregated daily precipita-

tion for a single grid cell at latitude 45, longitude −116. Spatial

resolution in degrees at which the bias correction is performed is

indicated in the legend. “Obs” is the CDF for the observations at

1/8◦ spatial resolution.

change in bias (by dividing the bias at each grid cell by the

mean observed precipitation) shows higher non-stationarity,

and the amplification at some locations, to occur not only in

some mountainous areas but also more broadly over much of

the domain, including some prominent valleys such as Cal-

ifornia’s Central Valley. The mechanisms driving the spatial

variability in bias non-stationarity, and its amplification when

bias correcting at finer scales, is reserved for future research.

These locations where non-stationarity is amplified could be

a concern for cases where bias correction is applied at fine

scales, as there would be increased risk that the bias correc-

tion could ultimately degrade the skill of the climate data. A

similar plot to Fig. 3, but for annual maximum precipitation,

showed comparable patterns and characteristics.

To illustrate how these characteristics vary at different

scales, Fig. 4 shows the impact of bias correction at differ-

ent spatial scales on the downscaled precipitation at a single

grid cell. Only quantiles above 0.5 (50 % non-exceedance

probability) are shown to focus on the higher precipitation

values. While not used for quantitative analysis at this point,

Fig. 4 does demonstrate some of the impacts of performing

bias correction at different scales. As would be expected, in-

terpolating the reanalysis data to the 1/8◦ spatial scale prior

to bias correction (reversing the process to the SDBC tech-

nique) provides the best fit to the observations for the calibra-

tion period. However, Fig. 4 shows that this also provides the

worst correspondence to the CDF for observations at most

quantiles during the validation period, illustrating that the in-

stability of the biases at the finer scale may be a disincentive

to performing the bias correction at too fine a scale. In other

words, the CDF of precipitation at the finest resolution used

Figure 5. Similar to Fig. 4, but for the validation period for mini-

mum daily temperature (upper panel) and maximum daily tempera-

ture (lower panel).

here (1/8◦) is likely not as stationary between two time pe-

riods as a CDF at a larger spatial scale would be. It should

be noted that this stark of an example will not exist at every

grid cell. Eden et al. (2012) suggest that model errors due to

unrepresented topographic effects on precipitation or inade-

quate climate model parameterization are most successfully

corrected by quantile mapping, so where other small-scale

variability is less important there may be more successful re-

moval of biases using quantile mapping at finer scales.

While precipitation is the primary variable affecting

streamflow, in many parts of the western US temperature

has a large impact in the hydrologic response to a chang-

ing climate, due to its effect on the nature of precipitation

and the rate of snowmelt (Barnett et al., 2008). Figure 5 is

similar to the lower panel of Fig. 4, showing the CDFs (for

quantiles above 0.5) for the validation period for maximum

and minimum daily temperatures for the same location. At

this one sample point performing the bias correction of mini-

mum temperatures at the finer spatial resolution provides the

closest correspondence to the observations at these higher

quantiles, with progressively worse results with bias correc-

tion at the larger scales. For maximum temperature, the re-

sults are inverted, with bias correction at the largest scale ap-

pearing slightly closer to observations, though all resolutions

are clustered together. This shows how the results can vary

across quantiles, for different variables, as well as with loca-

tion (shown in Fig. 3).

Since the interest of this study is on the ultimate hy-

drologic impacts of these differences in downscaling ap-

proaches, not the precipitation or temperature, we turn the

focus to how streamflow skill is affected by bias correction

at different spatial scales. Figure 6 shows the distribution of

daily streamflows simulated by the SWAT model for the Tule

River basin (see Fig. 2), which has a contributing drainage
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Figure 6. Cumulative distribution function for the daily streamflows

at the Tule River gauge. The full CDF is in left panel, upper right

panel expands the highest 10 % of flows, and the lower right high-

lights the 10 % lowest flows.

area of 1015 km2, approximately equivalent to 1/3◦ spatial

resolution. The simulated flows are overpredicted at all quan-

tiles for this location, with the departure more visible at the

high and low extremes. The upper right panel of Fig. 6 shows

that for the highest 10 % of daily flows performing bias cor-

rection at the coarsest 2◦ resolution results produces less cor-

respondence with observations than bias correcting at finer

resolutions, while other spatial resolutions are more tightly

clustered. Only the most extreme flows (the highest 1 %)

show a change in the spatial resolution with the higher skill,

where the 0.5◦ experiment more closely resembles the ob-

served flow probabilities. The lower right panel in Fig. 6 plots

the lower 10 % of streamflows, showing the 2◦ and 1◦ experi-

ments overpredicting the observed flow frequency more than

those at 0.5, 0.25, and 0.125◦, which are all nearly coinci-

dent.

As a point of contrast, Fig. 7 shows the same informa-

tion as Fig. 6 but for a larger basin, the Sacramento River

(see Fig. 2), which has a drainage area of 18 835 km2, ap-

proximately equivalent to a 1.4◦ spatial scale. Similar to the

smaller Tule River site, the experiment with the bias correc-

tion performed at 2◦ performed worst overall, especially evi-

dent at high flows (shown in the upper right panel of Fig. 7).

The 1◦ bias correction produced the best correspondence

with observed flows at the low extremes (lower right panel),

with the coarse 2◦ overpredicting daily low-flow magnitudes

and the finer scale 0.25 and 0.125◦ bias correction under-

predicting low flows to the greatest degree. As with Fig. 6,

Fig. 7 shows worse performance of bias correction in many

cases at the high and low extremes compared to the center

of the distribution, as would be expected with fewer observa-

Figure 7. Similar to Fig. 6, but for the Sacramento River stream

gauge site.

tions for defining the driving precipitation and temperature

CDFs in the relatively short calibration period. Thus, while

quantile mapping generally reduces the biases compared to

using raw GCM output, significant biases may remain, es-

pecially at the tails of the distributions. If streamflows pro-

duced using bias corrected and downscaled GCM output are

to be used for analysis of extreme events, it may be desirable

to use a further bias correction (such as quantile mapping

of simulated streamflows to match observed streamflows), as

has been done for water resources system operations and sea-

sonal forecasting (Snover et al., 2003; Yuan and Wood, 2012)

to ensure downscaled streamflows are comparable to obser-

vations at all quantiles.

Figures 6 and 7 raise the question of whether a limit exists

for the scale at which bias correction should be performed,

or whether, for improved skill of simulated daily stream-

flows there may be a correspondence between the scale at

which bias correction is done and the drainage area of the

streamflow site. To investigate this, Fig. 8 shows the results

of the Mann–Whitney U test for all basins for 3-day max-

imum flows. Since the null hypothesis is that the stream-

flows produced by driving the SWAT model with observa-

tions are statistically indistinguishable from simulated flows

using downscaled reanalysis data, a small p value indicates

that the two can be confidently claimed to be different. There

is no clear relationship between drainage areas and the skill

(defined by the p values) for the different experiments. One

observation based on Fig. 8 is that there are more basins

with p values < 0.1 (indicating low correspondence between

observation- and reanalysis-driven streamflows) when bias

correction is done at 2.0◦ than for the other experiments. Re-

gardless of the spatial scale of the bias correction, there are

always some small basins (< 1000 km2) where the correspon-

Hydrol. Earth Syst. Sci., 20, 685–696, 2016 www.hydrol-earth-syst-sci.net/20/685/2016/



E. P. Maurer et al.: The impact of spatial scale in bias correction 693

Table 1. Summary of the percentage of streamflow sites with p < 0.1 and p < 0.05 (shown in Figs. 8 and 9).

Percent of sites with p < 0.1 Percent of sites with p < 0.05

Spatial resolution used 3-day maximum 7-day minimum 3-day maximum 7-day minimum

for bias correction flows flows flows flows

2.0◦ 22.0 30.6 17.7 23.7

1.0◦ 12.4 19.9 5.9 14.5

0.5◦ 6.5 13.5 4.3 8.1

0.25◦ 9.1 17.2 4.3 10.8

0.125◦ 9.1 18.3 5.4 15.1

Figure 8. P values from the Mann–Whitney U test vs. the drainage

area for each of the streamflow sites in Fig. 2. The dashed hori-

zontal line at p = 0.1 is shown for reference; p values less than

this are indicative of poor correspondence between observation- and

reanalysis-driven streamflows.

dence between observation- and reanalysis-driven stream-

flows is weak. Bias correction at scales smaller than 0.5◦

appears to offer little improvement in skill, and may even

result in more streamflow sites having poor skill (p < 0.1).

This apparent 0.5◦ limit may reflect both the finest scale at

which the large-scale reanalysis variance in meteorology can

be effectively rescaled (Maraun, 2013) and the degradation

of larger-scale spatial structure of driving meteorology (Bár-

dossy and Pegram, 2012) when applying quantile-mapping

bias correction at finer spatial scales.

Figure 9 shows the relationship between the Mann–

Whitney p value and the drainage area for each of the stream-

flow sites for 7-day minimum flows. Similar to the 3-day

peak flows, there is a weak correspondence between the scale

at which the bias correction is performed and the skill for

basins of different drainage areas. As with 3-day peak flows,

bias correction at 0.5◦ appears as a point at which finer scale

bias correction does not offer any improvement, and may in-

Figure 9. Similar to Fig. 8, but for the 7-day low flows at each

streamflow site.

crease the number of streamflow sites with poor correspon-

dence with observation-driven streamflows. Table 1 summa-

rizes the results of Figs. 8 and 9, listing the number of stream-

flow sites for which skill is low, both for p < 0.1 and p < 0.05.

The bias correction being performed at 0.5◦ is revealed as

an optimum, confirming the visual interpretations of Figs. 8

and 9.

Limitations of this study include the use of a single large-

scale forcing data set; GCMs at different native spatial reso-

lutions may produce different results. The biases in different

GCMs will also affect the performance of the bias correc-

tion, and thus would affect the outcomes. The spatial scale

of the hydrological model, and its representation of sub-grid

spatial variability, may also affect the results, thus different

parameterizations of the SWAT model or the use of other hy-

drology models would affect results (Ficklin and Barnhart,

2014; Maurer et al., 2010a). Results may also be dependent

on the metric used for testing correspondence, for example,

examining impacts other than streamflow. Also, this study fo-

cused on biases at different scales for output from the BCSD

process as it is typically applied. We did not assess the influ-
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ence of each step in the BCSD process (as shown in Fig. 1)

on the biases, though this could be a fruitful avenue for future

research.

4 Conclusions

When applying statistical downscaling methods to adapt cli-

mate model data for use in regional hydrologic impacts stud-

ies, a bias correction step is typically included. A common

method for bias correction is quantile mapping, which can

be performed in many different ways. One way in which ap-

plications of quantile mapping vary is in the spatial scale at

which it is applied, which can range from the large scale of

climate model output (generally 1 to 4◦ latitude-longitude)

down to the finest resolution of observed data. This experi-

ment investigated the effect of the spatial scale at which pre-

cipitation (and temperature) is bias corrected (as part of a sta-

tistical downscaling approach) on the streamflow produced

by a hydrologic model.

Similar to many prior studies, as a surrogate for climate

model data, this experiment used reanalysis data, which is

at a spatial scale of approximately 1.9◦. A gridded obser-

vational data set of daily precipitation and temperature was

used as the observational baseline, and was aggregated to

spatial resolutions of 0.125, 0.25, 0.5, 1.0, and 2.0◦ to be

used in the bias correction step of the statistical downscal-

ing scheme. The principal findings were that bias correction

at the coarsest scale (2.0◦) performed worst, and performing

bias correction at scales finer than 0.5◦ produced little ad-

ditional benefit, and even degraded the correspondence be-

tween observation-driven streamflows and those driven by

downscaled meteorology.

This suggests that the primary assumption inherent in

quantile-mapping bias correction, namely, that the biases be-

tween modeled and observed meteorological variables for a

calibration period are relatively stationary in time and can be

applied to a projected period, may become less valid at spa-

tial resolution finer than approximately 0.5◦. This may indi-

cate a shift in the sources of uncertainty causing the biases as

spatial resolution changes. Some biases, such as those caused

by inadequate topographic representation in the large-scale

model, are better described at fine scales and benefit from

having bias correction performed at as fine a scale as pos-

sible. Other biases, due to incorrect location of climate fea-

tures at the larger scale, may be less able to be corrected at

very fine spatial scales (e.g., Maraun and Widmann, 2015).

For the region and data sources used in this study, the spatial

resolution of 0.5◦, or approximately a 50 km scale, appears to

provide an optimal balance between these competing effects.

The findings of this study caution against the temptation

to apply quantile-mapping bias correction at the finest possi-

ble scale, even though it provides the closest correspondence

to observations for the calibration period. For independent

validation periods, these findings suggest that very fine scale

quantile mapping will perform no better, and possibly worse,

than coarsening observations to approximately 0.5◦, and ap-

plying bias correction at that scale.
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