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Abstract. The prediction of flow duration curves (FDCs) in

ungauged basins remains an important task for hydrologists

given the practical relevance of FDCs for water manage-

ment and infrastructure design. Predicting FDCs in ungauged

basins typically requires spatial interpolation of statistical or

model parameters. This task is complicated if climate be-

comes non-stationary, as the prediction challenge now also

requires extrapolation through time. In this context, process-

based models for FDCs that mechanistically link the stream-

flow distribution to climate and landscape factors may have

an advantage over purely statistical methods to predict FDCs.

This study compares a stochastic (process-based) and sta-

tistical method for FDC prediction in both stationary and

non-stationary contexts, using Nepal as a case study. Under

contemporary conditions, both models perform well in pre-

dicting FDCs, with Nash–Sutcliffe coefficients above 0.80

in 75 % of the tested catchments. The main drivers of uncer-

tainty differ between the models: parameter interpolation was

the main source of error for the statistical model, while vio-

lations of the assumptions of the process-based model rep-

resented the main source of its error. The process-based ap-

proach performed better than the statistical approach in nu-

merical simulations with non-stationary climate drivers. The

predictions of the statistical method under non-stationary

rainfall conditions were poor if (i) local runoff coefficients

were not accurately determined from the gauge network, or

(ii) streamflow variability was strongly affected by changes

in rainfall. A Monte Carlo analysis shows that the streamflow

regimes in catchments characterized by frequent wet-season

runoff and a rapid, strongly non-linear hydrologic response

are particularly sensitive to changes in rainfall statistics. In

these cases, process-based prediction approaches are favored

over statistical models.

1 Introduction

The flow duration curve (FDC) provides a compact summary

of the variability of daily streamflow by indicating what pro-

portion of the flow regime exceeds a given flow rate. FDCs

have considerable practical relevance, particularly in sup-

porting decisions that are affected by the availability and

reliability of surface water. Common applications of FDCs

include the design and management of hydropower infras-

tructure (e.g., Basso and Botter, 2012; Müller, 2015), the de-

termination of environmental flow standards for ecosystem

protection (e.g., Lazzaro et al., 2013), the allocation of water

resources for consumptive uses (e.g., Alaouze, 1989), or the

prediction of streamflow time series in ungauged or poorly

gauged catchments (e.g., Hughes and Smakhtin, 1996; West-

erberg et al., 2014).

Despite their utility, empirical FDCs are unavailable for

many basins, primarily because they require extensive on-

site observations of daily streamflow (Vogel and Fennessey,

1994). Globally, the majority of catchments remain un-

gauged (or the gauge data that exist are subject to significant

quality assurance and data availability constraints). Further-

more, the global number of stream gauges continues to de-

cline because of ongoing budgetary constraints faced by wa-

ter monitoring agencies (Stokstad, 1999; United States Ge-

ological Survey, 2015). Therefore FDCs must typically be

estimated in data-scarce areas. The most widely used tech-

niques for FDC estimation are simple, graphical methods.

Such empirical methods are easy to implement but often

rely on overly simplistic assumptions that lead to substantial

prediction errors. For instance, in Nepal, the regionalization

method prescribed in official design manuals (e.g., Chitrakar,

2004; Alternative Energy Promotion Center, 2014) relies on

one in situ observation of streamflow during the dry season
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to scale standardized regional indices for monthly flows. The

procedure neglects the inter-annual variability of low flows,

which leads to important biases in the predicted flow distri-

butions (see Sect. S1 of the Supplement). Even in gauged

catchments, FDCs constructed from historical observations

may not represent current flow conditions well, because flow

regimes are impacted by climate change and anthropogenic

alterations of the catchments (e.g., Botter et al., 2013; Mu

et al., 2007). Predicting streamflow in ungauged basins, par-

ticularly in the context of environmental change, remains

both a fundamental necessity for water managers and a ma-

jor research challenge (Blöschl et al., 2013; Montanari et al.,

2013).

Recent efforts to predict FDCs in ungauged catchments fo-

cus on statistical approaches that predict the flow distribution

based on the catchment’s similarity to nearby, gauged water-

sheds (Castellarin et al., 2013). Index flow approaches, which

regionalize specific index flows (typically the mean flow),

and use those indices to rescale empirical FDCs from simi-

lar catchments, are particularly popular (e.g., Chalise et al.,

2003; Castellarin et al., 2004b; Sauquet and Catalogne, 2011;

Arora et al., 2005). While differing in methodological de-

tails, all index flow approaches assume that FDCs do not vary

within homogeneous regions, except by a scaling factor. Be-

cause they do not assume any specific runoff-generating pro-

cess, statistical methods are versatile. They have been suc-

cessfully applied globally to predict FDCs in a variety of

climates and catchment types (Blöschl et al., 2013). How-

ever, methods are also insensitive to the diversity of con-

trols on the shape of the FDC exerted by climate processes

and catchment characteristics. This may affect their reliabil-

ity under non-stationary conditions (Milly et al., 2008). Fi-

nally, the calibration of statistical methods relies on exten-

sive streamflow observations from a large number of rep-

resentative and well-characterized catchments (e.g., Cheng

et al., 2012; Coopersmith et al., 2012). Their performance is

therefore sensitive to the spatial density of available gauges

(Blöschl et al., 2013), and their reliability in regions where

streamflow data are truly scarce is uncertain.

Stochastic, process-based models that mechanistically link

the drivers, state, and response of the system are a promis-

ing avenue to address these issues. In these models, basic

assumptions about the stochastic structure of rainfall and

the (deterministic) response of catchments allow the ana-

lytic derivation of streamflow probability density functions

(PDFs). (Note that because the FDC can be obtained directly

by transforming the PDF, a predictive technique that yields

the streamflow PDF will also allow the FDC to be estimated.)

Botter et al. (2007b) show that runoff follows a gamma dis-

tribution if catchments behave as a linear reservoir, forced by

stochastic rainfall that follows a marked Poisson process. The

resulting gamma distribution depends on two parameters that

are determined by the recession characteristics of the catch-

ment, and by the frequency and intensity of effective rain.

This process-based approach to the streamflow PDF has been

extended to include the fast flow component of streamflow

(Muneepeerakul et al., 2010), non-linearities in subsurface

storage–runoff relationships (Botter et al., 2009), the effects

of short-term snowmelt (Schaefli et al., 2013), and the car-

ryover of subsurface storage between seasons in seasonally

dry climates (Müller et al., 2014). Although the stochastic

framework allows the effects of changes in climate or land-

scape to be independently modeled, it relies on strong sim-

plifying assumptions about the spatial homogeneity of catch-

ments. These assumptions make the existing process mod-

els less versatile than statistical methods. Nonetheless, the

approach has low calibration requirements because it relies

on a small number of parameters, which can be determined

using rainfall, climate, and geomorphological characteristics

of the catchments (Doulatyari et al., 2015). This informa-

tion is increasingly available in ungauged basins, thanks to

remote-sensing technologies, even when ground-based mea-

surements are sparse.

Process-based models successfully reproduce streamflow

PDFs in numerous gauged catchments worldwide (Botter

et al., 2007a; Ceola et al., 2010), including Nepal (Müller

et al., 2014). Yet their predictive performance in ungauged

basins remains largely unassessed, particularly in regions

where the local gauge density is globally representative

(as opposed to densely monitored catchments in developed

countries such as, e.g., France and Austria in Castellarin

et al., 2013). For lower gauge densities, it is unclear whether

the advantages of the process-based approaches, which are

derived from an explicit representation of flow-generating

processes, are outweighted by the limitations imposed by

the restrictive assumptions underlying these methods – and

whether this trade-off is altered by non-stationarity in climate

drivers.

Using Nepal as a test case, this study compares the

process-based and statistical approaches on the basis of

(i) their ability to predict FDCs in ungauged basins, (ii) their

sensitivity to data scarcity, represented both by the spatial

density of the stream gauge network and by the tempo-

ral extent (length) of the available streamflow records, and

(iii) their ability to accommodate changes in the rainfall

regime.

Nepal provides an ideal setting to compare the two ap-

proaches, for four reasons. First, the country is representa-

tive of global availability of streamflow data, as measured

by the density of its stream gauge network (Fig. 1a). Sec-

ond, methods drawn from both statistical and process-based

approaches have been developed and validated in Nepal.

Here we compare the stochastic–dynamic framework devel-

oped in Müller et al. (2014) with the index flow model de-

scribed in Chalise et al. (2003). Third, flow generation pro-

cesses in Nepalese Himalayan catchments are complex, par-

ticularly with respect to the spatial and temporal proper-

ties of precipitation. Rainfall derives from the Indian sum-

mer monsoon and is strongly affected by topography. As a

result, local rainfall is temporally autocorrelated, spatially
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Figure 1. (a) Global histogram of the approximate spatial density of streamflow gauges by nation, represented by the sample of 8540 gauges

indexed by the Global Runoff Data Center for 146 countries (Global Runoff Data Center, 2014). With a density of 1.6 gauges per 10 000 km2,

Nepal falls close to the mode of the global distribution. (b) Location of the rain gauges, streamflow gauges, and corresponding Nepalese

catchments used in the analysis.

heterogeneous, and highly seasonal. There is also signifi-

cant carryover of groundwater storage between the wet and

dry seasons, so that dry-season discharge reflects the fea-

tures of the antecedent wet season. These characteristics vio-

late many of the assumptions that underlie the process-based

method. The analysis in Nepal is therefore likely to provide

a conservative estimate of the potential performance of the

process-based method in ungauged basins. Finally, develop-

ing reliable methods for FDC prediction in Nepal represents

an opportunity for “use-inspired science” (Thompson et al.,

2013b). Nepal has an enormous untapped hydropower po-

tential and is in dire need of electrical power, particularly in

rural areas. A reliable method to estimate FDCs in ungauged

catchments would be a valuable tool to support the devel-

opment of micro-hydropower, a sustainable technology for

rural electrification (Müller, 2015).

Section 2 describes the two models and the procedures

used to estimate their parameters from streamflow and rain-

fall observations. Section 3 presents the results of the com-

parative analysis in Nepal. Section 4 examines the key

sources of errors for both models and discusses implications

for both “Prediction in ungauged catchments” (PUB) and

“Predictions under change” (PUC) beyond Nepal.

2 Methods

2.1 Compared approaches

2.1.1 Process-based model

The process-based approach models daily streamflow as a

random variable. Subject to strong simplifying assumptions

about rainfall stochasticity and runoff generation, the stream-

flow PDF can be analytically derived. During the wet season,

daily rainfall is represented as a stationary marked Poisson

process with exponentially distributed depths. Assuming lin-

ear evapotranspiration losses, Botter et al. (2007b) showed

that effective rain, that is, the portion of the total rainfall

that contributes to streamflow generation, also follows a sta-

tionary marked Poisson process. For a spatially homogenous

catchment with an exponentially distributed response time

(i.e., a catchment that behaves as a linear reservoir), this ef-

fective rainfall will produce gamma-distributed streamflow.

The parameters of the gamma distribution are derived from

the frequency (λP) and mean depth (αP) of rainfall, and from

the recession constant (k) of the catchment. If rainfall in the

dry season is sufficiently minimal that effective rainfall does

not contribute to runoff generation, then dry-season stream-

flow represents only the discharge of groundwater stored dur-

ing the previous wet season. This discharge is modeled as

a single seasonal recession with stochastic initial conditions

that depend on the wet-season properties. Because ground-

water is not replenished during the dry season, the water ta-

ble is subject to a large transient drawdown, resulting in a

non-linear discharge behavior and a power-law relation be-

tween recession rate and discharge (Brutsaert and Nieber,

1977). We showed in Müller et al. (2014) that the distribu-

tions of streamflow, and therefore the FDC, in seasonally dry

climates that meet the assumptions above, can be expressed

analytically as a function of seven independent parameters:

the frequency (λP) and mean intensity (αP) of wet-season

rainfall, maximum daily evapotranspiration during the wet

season (ET), the water storage capacity of the soil in the

root zone (SSC), the (linear) wet-season recession constant

(k), the duration of the dry season (Td), and the exponent

of the power-law recession during the dry season (b). The

model admits an additional input parameter, the scale a of the

power-law seasonal recession, which we showed in Müller

et al. (2014) can be expressed as a function of k, b, λP, and

αP. The formal derivation of the model is summarized in Ap-

pendix A.
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The model was successfully validated in a variety of re-

gions with seasonally dry climates worldwide, including

Nepal, where observed FDCs were predicted in 24 gauged

catchments with a median Nash–Sutcliffe coefficient of 0.90

on log-transformed flow quantiles (Müller et al., 2014). The

approach successfully reproduced both the rain-driven dis-

tribution of flows during the wet season and the release

of stored monsoon water during the dry-season recession.

In this study, we assess the operational performance of the

process-based approach as a tool to predict streamflow in un-

gauged catchments. Therefore, we do not further attempt to

attribute model errors to parameters versus the model struc-

ture in the results presented in Sect. 3, since in practice these

errors are confounded in any real application. The relative

significance of these two error sources is nonetheless dis-

cussed in Sect. 4.1.1.

In ungauged catchments, the process-based model is im-

plemented as follows. Three of the seven parameters of the

model (Td, λP, αP) are rainfall characteristics that can be es-

timated in ungauged basins using meteorological observa-

tions. Recession parameters (k and b) describe aquifer prop-

erties that are challenging to observe at the catchment scale.

They can be estimated using observed streamflow time series

in nearby gauged basins and subsequently interpolated from

nearby gauges using the geostatistical approach described in

Müller and Thompson (2015), which accounts for the topol-

ogy of the stream network. The last two parameters (ET)

and (SSC) describe catchment-scale soil moisture dynamics

that are arduous to determine empirically. Previous applica-

tions of the model relied on reasonable values of ET and

SSC, based on land use, soil, and climate characteristics of

the catchment (e.g., Botter et al., 2007a; Ceola et al., 2010).

Alternatively, runoff coefficients can be used to directly re-

late rainfall statistics to streamflow increments (Doulatyari

et al., 2015). Runoff coefficients describe the ratio of mean

discharge to mean precipitation, and can be predicted in un-

gauged basins using water balance models and meteorologi-

cal observations. This approach circumvents the need to esti-

mate ET and SSC, but the accuracy of predicted runoff coef-

ficients in ungauged catchments is critically dependent on the

type of water balance model used and on the availability of

appropriate calibration data (Doulatyari et al., 2015). Instead,

this study follows the former procedure and uses reasonable

estimates of ET and SSC for Nepal.

2.1.2 Statistical model

The statistical approach is entirely driven by observation data

and does not assume any specific runoff generation process.

Instead, it identifies and exploits statistical correlations that

may occur between streamflow observed at existing gauges

and the geology, topography, and climate of the correspond-

ing catchments. The index flow model used in this study was

developed by Chalise et al. (2003) to regionalize FDCs in

Nepal to assess the potential for small hydropower develop-

ment. The model is based on local flow indices for mean

(Qm = E[Q]) and low (q95 =Q95/Qm, where Q95 is the

95th streamflow percentile) flows, and uses a non-parametric

approach to represent the shape of the FDC. Empirical FDCs

from available gauges are normalized byQm and pooled into

equally sized groups based on the q95 index of the gauge.

A standardized curve is determined for each group by tak-

ing the average of the normalized flows corresponding to

each duration, in order to represent the average catchment

response in the group. The chosen statistical approach is con-

siderably less complex than many alternative state-of-the-art

methods using multiple (often non-linear) equations to relate

multiple flow quantiles to a variety of observed covariates

(see Castellarin et al., 2013, for a review). However, Chalise

et al. (2003) is, to our knowledge, the most recent statisti-

cal method specifically developed and validated in the study

region. The approach is parsimonious and adapted to situ-

ations, where in situ observations of catchment characteris-

tics are scarce. The method is therefore representative of the

level of complexity of statistical approaches likely to be im-

plemented in developing countries for practical hydrological

engineering purposes.

Predictions in ungauged catchments are obtained by first

using linear regressions to predict Qm and q95. Although

the original method calls for a stepwise multiple regression

approach to determine regression covariates inductively, we

used the regression models obtained in Chalise et al. (2003):

Qm is regressed against annual rainfall (Ry) and gauge el-

evation (zmin) as a proxy for evapotranspiration, and q95 is

regressed against the ratios of catchment area occupied by

each of the considered geological units. The two regressions

loosely represent the long-term water balance and short-term

response of the catchment. The predicted low-flow index is

then used to determine the standardized FDC shape, which

is finally multiplied by the predicted mean flow to obtain the

FDC. An important assumption, inherent to the linear regres-

sion models, is that the dependent variable (hereQm and q95)

is not spatially correlated when controlling for the considered

covariates. This assumption is reasonable in Nepal, where the

typical distance between stream gauges is much larger than

the correlation scale of runoff (Müller and Thompson, 2015).

In more densely gauged areas (or if runoff is correlated over

larger distances), streamflow observations at neighboring or

flow-connected gauges are likely to be correlated. In these

regions, accounting for the effect of distance and stream net-

work topology when interpolating flow indices (e.g., using

TopREML Müller and Thompson, 2015) will improve pre-

dictions.

2.2 Study region and data

The two methods were evaluated using observed streamflow

data from 25 Nepalese catchments mapped in Fig. 1b. The

gauges in this data set (HKH-FRIEND, 2004; Department

of Hydrology and Meteorology, 2011) have at least 10 years
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Table 1. Catchment characteristics. Median values and interquartile distances (IQD) are given for the whole sample of 25 gauges. The table

also presents characteristics of the Chepe Kohla watershed considered in the analysis as a case study.

Streamflow Topography Climate Recession

Qm q95 Ny A zm zM Py Tmons λP αP AR CV ET k b

All gauges

Median 76.1 0.14 22 1355 481 5209 1952 99 0.71 18.8 0.29 0.92 2.5 0.17 2.38

Min 7.3 0.06 10 130 116 1913 1260 88 0.54 12.1 0.09 0.61 0.40 0.07 1.99

Max 1462.4 0.25 41 32 817 1641 8369 4030 152 0.91 33.0 0.51 1.53 3.27 0.32 2.99

Chepe Kohla 23.0 0.14 31 277 475 4711 3050 100 0.84 26.5 0.09 1.03 2.1 0.20 2.41

Qm is mean annual flow in m3 s−1; q95 is the 95th flow percentile normalized by Qm; Ny indicates the number of observation years; A is the catchment area in km2; zm and zM

are, respectively, the minimum and maximum elevation of the basin’s meters; Py is mean precipitation in mm yr−1; Tmons is the estimated duration of the monsoon in days; λP is

rainfall frequency during the monsoon (in d−1); αP is mean rainfall intensity in mm d−1; AR is the first-order autocorrelation coefficient of rainfall occurrence (AR= 0 if rainfall

follows a Poissonian process), CV is the coefficient of variation of rainfall intensity on rainy days (CV= 1 if depths are exponentially distributed); ET (mm d−1) is the reference

evapotranspiration during the rainy season (Lambert and Chitrakar, 1989); k is the linear recession constant estimated during the monsoon (in d−1) and b is the non-linear

exponent of the seasonal recession. A soil moisture capacity of 16 mm is assumed throughout the country (Müller et al., 2014).

of daily streamflow records. They were checked for consis-

tency, using double mass plots (Searcy and Hardison, 1960)

and bias: we discarded non-glaciated catchments that had a

precipitation deficit in their long-term water balance. Water-

sheds were delineated using the ASTER GDEM v2 digital

elevation model (NASA Land Processes Distributed Active

Archive Center, LP DAAC). The study watersheds are lo-

cated in central Nepal but cover a wide variety of catchment

sizes, elevation ranges, precipitation characteristics, and ge-

ological units (Table 1).

We focused on the Chepe Kohla catchment in central

Nepal (Fig. 1b, insert) as a case study for analyses requiring

resampling (Sect. 2.3.1) or simulation (Sect. 2.3.2) of stream-

flow time series. The Chepe Kohla watershed has a long (by

Nepalese standards) record of daily streamflow observations

(31 years) and is representative of the full sample of gauges

in terms of topography and recession behavior (Table 1). The

catchment is also small (i.e., close to spatially homogenous),

and local rainfall is well approximated by a marked Pois-

son process (first-order autocorrelation coefficient of rain-

fall occurrence (AR): 0.09; coefficient of variation of rainfall

depths (CV): 1.09), echoing the underlying assumptions of

the process-based model.

Rainfall characteristics over the sampled catchments were

obtained from 178 precipitation gauges (HKH-FRIEND,

2004; Department of Hydrology and Meteorology, 2011),

also mapped in Fig. 1b. The average duration of the dry sea-

son (Td) was estimated at each precipitation gauge by fitting a

step function to the corresponding rainfall time series (Müller

and Thompson, 2013), and wet-season precipitation records

were used to compute the frequency and mean intensity of

rainfall (λP and αP). Rainfall characteristics were then aggre-

gated at the catchment level by assuming that the rain process

aggregates linearly within the basins. For rainfall occurrence,

we assumed that the duration between rain events caused by

two consecutive storms can be estimated as the average of

the inter-arrival times measured at the rain gauges within the

catchment. This allows us to compute catchment-level rain-

fall frequency as

λP =

 1

Ng

Ng∑
i

1

λ
(i)
P

−1

,

where λ
(i)
P designates rainfall frequency observed at gauge i

andNg the number of rain gauges within the catchment. Sim-

ilarly, the catchment-level duration between rainy seasons is

assumed to be the average of the durations observed within

the catchment:

Td =
1

Ng

Ng∑
i

T
(i)
d .

Finally, the precipitation depth received on any given day

by a catchment is assumed to be the average of the precipi-

tation depths observed by individual rain gauges. It follows

that the aggregated mean rainfall intensity can be expressed

as

αP = λ
−1
P

1

Ng

Ng∑
i

λ
(i)
P α

(i)
P .

If no precipitation station is located within the catchment,

rainfall characteristics observed at the rain station closest

to the catchment centroid were considered. Although aggre-

gating rainfall time series before computing their statistics

would better account for spatial correlation in rainfall, aggre-

gating rainfall statistics instead allows for non-overlapping

observation periods (assuming rainfall is stationary). This is

important in the context of Nepal, where rain gauges are

scarce with sporadic observations. Unfortunately, the low

density of rain gauges within the considered basins prevents a
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formal treatment of spatial correlation when aggregating fre-

quencies. However, in a previous study (Müller and Thomp-

son, 2013) we observed large spatial correlation ranges on

rainfall occurrence in Nepal (125 km during the monsoon).

Under these conditions the selected method stands out as the

most parsimonious approach to utilize multiple, yet sparse,

rainfall observations.

Recession characteristics were estimated using streamflow

observations as described in Müller et al. (2014). We com-

puted wet-season recession constants (k) by regressing the

logarithm of streamflow against time for each period of con-

secutively decreasing streamflow during the wet season. The

recession constant was then obtained by taking the median

value of the regression coefficients of recessions lasting more

than 4 days. The power-law exponent of dry-season reces-

sions (b) was obtained by fitting a non-linear recession curve

Q(t)= (Q1−b
0 − a(1− b)t)

1
1−b (1)

to base flow, which was computed from observed stream-

flow time series using the Lyne–Hollick algorithm (Nathan

and McMahon, 1990). The last streamflow peak of the wet

season was taken as initial flow condition Q0, and we used

a stochastic optimization algorithm (simulated annealing,

Bélisle, 1992) to minimize least square fitting errors. In un-

gauged catchments, the scale exponent of the seasonal reces-

sion was approximated as (Müller et al., 2014)

a ≈
λ

−r

(
e
−r
m − 1

)(
αQ · (m+ 1)

)
, (2)

where r = 1− b; m is the ratio between the frequency λ of

effective rain events and the linear recession constant k, and

αQ is the average depth of effective rain events (see Ap-

pendix A).

Potential evapotranspiration was approximated by apply-

ing the empirical relation estimated by Lambert and Chi-

trakar (1989) for Nepal during the rainy season (July–

September):

ET≈ 4.0− 0.0008 · zmean,

where ET is given in mm d−1 and zmean is the average eleva-

tion of the catchment in meters. The formula provides daily

average evapotranspiration estimates for each month. It ac-

counts for elevation but assumes a spatially homogenous el-

evation gradient. A uniform soil moisture capacity of 50 mm

was assumed throughout the country, based on empirical ob-

servations reported in Shrestha (1997). By neglecting local

variation in soil characteristics, this produces conservative

estimates of the performance of the process-based model in

ungauged basins.

2.3 Comparative analyses

2.3.1 Predictions in ungauged basins

We used three cross-validation techniques to evaluate the

predictive ability of both methods in ungauged basins.

Firstly, a leave-one-out analysis was carried out to assess

predictive performances in a realistic situation, where FDCs

are predicted in Nepal using all streamflow gauges available

in the region. Secondly, we examined the sensitivity of the

methods to decreasing data availability by reducing the num-

ber of gauges available to calibrate the models. Finally, we

performed a similar data-degradation procedure, but in this

case we reduced the number of daily streamflow observa-

tions, while holding the number of gauges constant. This fi-

nal analysis accounts for the challenges posed by recent or

temporary installation of stream gauges, which introduce un-

certainties into the estimation of model parameters due to the

short streamflow records used. These errors can propagate

through the model and affect the prediction of FDCs.

In a leave-one-out analysis, one gauge is “left out” of the

data set, and streamflow is predicted at the “missing” loca-

tion using observations from the remaining gauges. The pre-

dicted FDC is then compared to observations from the omit-

ted gauge. The resulting error between observation and pre-

diction yields the prediction performance of the method at

that catchment if it was not gauged. Repeating the procedure

for all gauges offers an approximation to the overall pre-

diction error of the method. To measure this error, we con-

structed error duration curves (Müller et al., 2014), where

the relative prediction error at each flow quantile is plotted

against the corresponding duration. Error duration curves al-

low the partitioning of prediction errors across flow quantiles

to be visualized. General prediction performances (across

all durations) at individual gauges were also determined us-

ing the Nash–Sutcliffe coefficient (NSC) on log streamflow

quantiles (Müller et al., 2014):

NSC= 1

∑364
t=1

(
lnQ

(emp)
t − lnQ

(mod)
t

)2

∑364
t=1

(
lnQ

(emp)
t −E lnQ

(emp)
t

)2
, (3)

where Q
(emp)
t and Q

(mod)
t are the empirical and modeled

streamflow quantiles of duration t .

The effect of the number of calibration gauges was as-

sessed using a jackknife cross-validation analysis (Shao and

Tu, 2012; Müller and Thompson, 2013). At each of 10 000

iterations, a selected fraction of the available gauges was ran-

domly sampled (without replacement) and used to predict the

FDC at one (randomly selected) remaining gauge. Prediction

accuracies for flow duration curves (given by the NSC) and

uncertainties on the spatial interpolation of model parameters

were reported for each iteration. The procedure was repeated

for decreasing numbers of selected “training” gauges.

The available streamflow data did not allow a direct eval-

uation of the effects of time-series length through cross-

validation, because such an analysis requires substantial

overlaps in the monitoring periods of all gauges. Therefore

we focused the final analysis on the Chepe Kohla catchment,

which has the longest observation record in our data set. We

evaluated the effect of the length of the available observation

Hydrol. Earth Syst. Sci., 20, 669–683, 2016 www.hydrol-earth-syst-sci.net/20/669/2016/



M. F. Müller and S. E. Thompson: FDC predictions in ungauged basins 675

Low-�ow
q95

Statistical 
(Chalise 2003)

Predicted Future FDC
(Statistical)

Mean �ow 
Qm (Case 1)

Mean Flow
Qm (Case 2)

PSynth(t)

QSynth(t)

Rainfall-Runo�
(Section 2.3.2)

Stoch. Rain Gen.
(Muller 2013)

Rain 
λP ; αP  
CV ; AR

Synthetic Future FDC

Rain
λP ; αP

Recession 
k ; b

Process-based 
(Muller 2014)

Predicted Future FDC
(Process-Based)NSC NSC

Current parameters Future parameters

Model FDC output

Legend:

Figure 2. Numerical simulation analysis to assess predictions under change. Future rainfall characteristics (frequency λP, mean intensity

αP, auto-correlation coefficient AR and coefficient of variation CV) are determined according to expected changes in rain regimes in Nepal

(see Sect. 2.3.2) and fed into a stochastic rainfall generator. The resulting 1000 years of synthetic daily rainfall values (PSynth(t)) are fed

into a rainfall–runoff model that simulates the processes described in Sect. 2.1.1. The rainfall–runoff model uses current recession, soil, and

evapotranspiration conditions observed at the Chepe Kohla catchment. The resulting 1000 years of synthetic daily flow values (QSynth(t))

are then reordered to construct an empirical synthetic (future) FDC, which was compared (in terms of the Nash–Sutcliffe coefficient) to

modeled FDCs predicted by the statistical and process-based models. The process-based model admits current recession conditions but

future estimates for rainfall frequency (λP) and mean intensity (αP). Note that unlike the numerically generated empirical FDC, the process-

based model assumes Poissonian rainfall with exponentially distributed depths, that is, CV= 1 and AR= 0. Current low-flow characteristics

(q95) are fed into the statistical model, as well as the current or future (i.e., computed from synthetic streamflow time series) mean flow,

depending on the extent to which mean rainfall is an unbiased predictor of mean flow (Cases 1 and 2 described in Sect. 2.3.2).

records on parameter estimation, and propagated the ensuing

uncertainty in the parameters to the FDCs predicted by each

model. To do this, we selected a fixed number of full years of

streamflow observations, estimated the parameters, predicted

the FDC using these parameters, and compared the results to

the empirical FDC obtained from the full observation record.

The procedure was repeated 10 000 times. The estimation er-

rors in the model parameters and the resulting FDC predic-

tion performances (NSC) were recorded as a function of the

number of sampled years. This analysis is not intended to de-

scribe the models’ ability to predict FDCs at catchments with

short observation records: in this case, constructing an em-

pirical FDC using the available (however short) observation

record is likely to be the best course of action (Castellarin

et al., 2004a). Instead, the analysis is intended to simulate

the effect of short observation records on FDC prediction at

nearby, ungauged catchments. The underlying assumptions

behind this analysis are that (i) the error associated with inter-

polation is independent of the flow record length, and (ii) the

Chepe Kohla catchment is representative of Nepalese basins.

2.3.2 Predictions under change

We used numerical simulations to assess the ability of both

models to predict streamflow when subject to changing rain-

fall regimes, as described in Fig. 2.

Synthetic streamflow time series were generated by cou-

pling the stochastic rainfall generator described in Müller and

Thompson (2013) to a rainfall–runoff model. The generated

wet-season rainfall is a first-order Markov process (i.e., rain-

fall occurrence on a given day is correlated with rainfall oc-

currence on the previous day) with gamma-distributed rain-

fall intensities, and as such produces a rainfall record that ex-

plicitly violates the assumptions under-pinning the process-

based model. The duration of the rainy season was assumed

constant, and no rainfall was generated during the dry sea-

son. Wet-season streamflow was simulated by feeding syn-
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Figure 3. Sensitivity of models to changes in the precipitation regime. (a) Empirical and simulated flow duration curves at Chepe Kohla.

The simulated FDC obtained from the stochastic rainfall generator and the bucket watershed model (solid) reproduce the empirical FDC

constructed from the observed streamflow well (grey dots). Rainfall changes expected in Nepal (αP/αP,0 = 1.2, λP/λP,0 = 0.98) do not have

a substantial influence on the simulated flow distribution (dashed). αP and λP designate the mean depth and frequency of wet-season rainfall,

respectively. (b) Sensitivities to relative changes in rainfall frequency and intensity over the Chepe Kohla catchment. The performance of

the process-based model is not affected by rainfall changes (dotted). The sensitivity of the statistical model depends on its ability to predict

changes in mean flow from annual rainfall. The model is highly sensitive to rain changes if average streamflow cannot be predicted (dashed),

and is robust to moderate changes if average flow is perfectly predicted (solid). (c) The linear regression of the statistical model underestimates

annual flows at the Chepe Kohla when using a cross-sectional sample (25 gauges) to estimate the local relation between average rainfall and

average runoff.

thetic rainfall into a linear reservoir (with a recession con-

stant k) with linear evapotranspiration losses, as in Müller

et al. (2014). Dry-season discharge was obtained by simulat-

ing non-linear seasonal recessions of duration Td starting at

randomly selected runoff peaks in the (previously generated)

wet-season streamflow. These assumptions are close to the

observed reality in Nepal, as seen in Fig. 3a, where the FDC

constructed from the simulated streamflow is a close approx-

imation to the empirical FDC in the Chepe Kohla watershed.

We translated the effect of shifts in precipitation regimes into

changed streamflow for the Chepe Kohla catchment by con-

sidering a range of future combinations for rainfall frequen-

cies and intensities. In line with what is expected in Nepal

(Turner and Slingo, 2009; Turner and Annamalai, 2012),

we considered negative changes in the frequency and posi-

tive changes in the mean daily rainfall depth. We neglected

changes in soil moisture capacity, evapotranspiration, rainfall

autocorrelation, and the duration of the rainy season. These

parameters are explicit in the process-based model, so we

expect differences in the sensitivity of the process-based and

statistical models to climate change to be underestimated by

this procedure. For each rainfall scenario, we evaluated the

performance of the models in a changing climate by gen-

erating 1000 years of daily streamflow using future rainfall

frequencies and intensities.

We compared the synthetic FDCs to model predictions

that were made with future rainfall statistics but contempo-

rary recession and low-flow parameters (Fig. 2). The statis-

tical method in Chalise et al. (2003) uses a linear regression

over a cross-sectional sample of observations to predict mean

flow based on mean rainfall and altitude. The regression may

fail to capture a variety of unobserved characteristics affect-

ing both rainfall and streamflow (e.g., local topographic fea-

tures), and hence may not capture the causal relation between

the two variables. The extent of this bias cannot be quanti-

fied a priori, so we considered two extreme cases: infinite

and zero bias. The infinite bias case (Case 1 in Fig. 2) rep-

resents the case where no effective relationship can be de-

termined between rainfall and mean flow. The best estimator

of future mean flow is then the current flow condition. Con-

versely, if regression coefficients perfectly describe the effect

of annual rainfall on average flow (Case 2 in Fig. 2), then

the future flow conditions can be perfectly estimated using

the (known) future annual rainfall. We modeled this situation

by estimating Qm directly from the (simulated) future flow

conditions. While the two cases differed in the determination

of mean flow (Qm), the low-flow parameter (q95) was deter-

mined from current flow conditions in both cases. In Chalise

et al. (2003), q95 is normalized by Qm and represents reces-

sion behavior, which is assumed independent of rainfall. The

process-based predictions were obtained by inserting future

rainfall statistics and contemporary recession constants into

the analytical FDC equation described in Appendix A. The

two models were compared by plotting prediction perfor-

mances (NSC) against the relative change in the frequency

and intensity of synthetic rainfall.

Although the recession assumptions of the process-based

model are taken to generate the synthetic streamflow used as

a control, we believe that the analysis is not biased against

the statistical approach for three reasons. Firstly, the only

parameter of the statistical approach that is influenced by

rainfall (Qm) is also computed from synthetic streamflow

(Case 2 in Fig. 2). Secondly, although based on identical re-

cession assumptions, the process-based model and the syn-

thetic streamflow generator are driven by different stochastic

rainfall processes (i.e., Poisson and Markov, respectively).
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Figure 4. Flow duration curve prediction performance in ungauged basins. The error duration curves of the leave-one-out cross-validation

analysis using the process-based and statistical models are presented in panels (a) and (b), respectively. Relative errors are plotted on a log

scale in order to allow the graphs to be balanced on the y axis: a relative prediction error of 2 (the model predicts double the observed value)

is at the same distance from y = 1 (perfect prediction) as a relative error of 1/2 (the model predicts half the observed value). Durations are

plotted on the x axis, with x = 0 and x = 1 for the highest and lowest flow quantiles, respectively. Panel (c) shows box plots of Nash–Sutcliffe

coefficients computed from log-transformed flow quantiles.

Lastly and most importantly, empirical observations reveal

that synthetic streamflow distributions generated under con-

temporaneous rainfall conditions reproduce closely FDCs

constructed from gauge records (Fig. 3a), showing that the

underlying recession assumptions are, in fact, representative

of runoff processes actually occurring in Nepal.

3 Results

3.1 Prediction in ungauged basins

Results from the leave-one-out cross-validation analysis are

presented in Fig. 4 and show that both methods perform sim-

ilarly in the prediction of FDCs in ungauged basins. Error

duration curves (Fig. 4a and b) show comparable streamflow

prediction uncertainties: 75 % of the predicted flow quantiles

are between half and double the observed streamflow for both

models, although the low flows in the process-based model

display an increasing upwards bias (Fig. 4b). Considering the

Nash–Sutcliffe coefficients computed at the individual basin

level, the mean and median performances are again com-

parable for both models, but the accuracy of the statistical

model predictions is more variable across sites than the pro-

cess model predictions, as indicated by the larger spread of

the Nash–Sutcliffe coefficients (Fig. 4c).

Figure 5a (top) shows prediction performances of both

models as the number of streamflow gauges available for

predictions decreases, and indicates that the performance of

both models is relatively insensitive to the gauge density,

until it declines to less than approximately 0.6 gauges per

10 000 km2. For such situations, which represent discarding

of more than half the available gauges in Nepal, the statis-

tical model performance declines rapidly compared to the

process-based model. Prediction performances are strongly

affected by uncertainties on the interpolation of model pa-
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Figure 5. Sensitivity of models to data scarcity. (a) Cross-validation

analysis showing the sensitivity of both models to a decreasing

number of calibration gauges. (b) Resampling analysis of stream-

flow observations in the Chepe Kohla (N = 10 000) catchment

showing the effect of the number of observation years. In panels (a)

and (b), the effects on FDC prediction performances (top) are shown

by plotting the ratio of calibration gauges sampled (or the number

of observation years) against the relative Nash–Sutcliffe coefficient

(with the NSC for the full set of available data as reference). The

plot shows the median value for all iterations, and the error bars in-

dicate the interquartile (25–75 %) range. The prediction uncertain-

ties of model parameters (bottom) are given in absolute values of

relative prediction errors.
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rameters, as seen in Fig. 5a (bottom). Interpolation uncer-

tainties are generally larger for the flow indices of the sta-

tistical model (Qm and q95) than for the recession param-

eters of the process-based model (k and b). This explains

the larger spread in prediction performances of the former

(Fig. 4c and error bars in Fig. 5a (top)). The parameter un-

certainties are also relatively insensitive to the total gauge

density until about 60 % of the originally available gauges

are discarded. At this point, the uncertainties associated with

estimation of the flow indices increase significantly, while the

process-based model parameters remain more reasonably es-

timated.

When considering short observation windows, parameter

uncertainties also drive the performance of the models. Fig-

ure 5b (top) shows the prediction performance of both mod-

els at the Chepe Khola watershed, as the number of observa-

tion years used to estimate the model parameters is reduced.

In this case, the statistical model outperforms the process-

based model when less than 10 years of streamflow obser-

vations are available. The parameter uncertainties associated

with the short time-series estimates (Fig. 5b, bottom) suggest

that a longer time series of streamflow observations is needed

to accurately estimate the wet-season recession parameter

(k), resulting in the lower performance of the process-based

model for short streamflow records.

3.2 Prediction under change

Simulation results presented in Fig. 3b show both models’

ability to predict a simulated future flow duration curve of the

Chepe River under a range of different possible changes in

rainfall regimes. In all simulations, parameters describing the

hydrological response of the basin (k, b, and q95) are deter-

mined using current flow conditions, and evapotranspiration

is assumed constant. The results show that explicitly model-

ing rainfall–runoff processes allows the process-based model

to accommodate the effects of the changing precipitation

regime. In contrast, the performance of the statistical model

is affected to various degrees by shifts in rainfall regimes, de-

pending on how the model translates changes in annual pre-

cipitation to changes in average flows. If these shifts are per-

fectly represented by the model, then prediction errors arise

solely from changes in the shape of the FDC, and the pro-

cess and statistical models perform similarly in the Chepe

Kohla watershed across the full range of considered rainfall

scenarios (Fig. 3b, dashed curve). If, however, average (fu-

ture) streamflows cannot be reliably predicted from the pre-

dicted changes in annual rainfall, the statistical model does

not accommodate flow regime changes at all. In this case,

future FDCs are modeled using current streamflow observa-

tions, and the ensuing prediction errors can be substantial

(Fig. 3b, dotted curve). The simulated cases provide upper

and lower bounds for the actual performance of the statistical

model in future rainfall regimes. We evaluated the model’s

ability to predictQm by using cross-sectional data (i.e., aver-

age streamflow and annual rainfall from the 25 catchments)

to estimate the linear relation betweenQm and annual rainfall

Ry. Applied to the Chepe Kohla watershed, the estimated re-

gression coefficients allowed the annual streamflow to be es-

timated from annual precipitation with a bias of−13 % and a

coefficient of determination of R2
= 0.57 (Fig. 3c). Regard-

less, prediction errors remained negligible for both bounds

(NSC> 0.95) for the range of changes actually anticipated

in Nepal (e.g., 1λP/λP ≈ 0.98 and 1αP/αP ≈ 1.20 for the

2 ·CO2 scenario – Turner and Slingo, 2009).

4 Discussion

4.1 Predictions in ungauged basins

The analysis suggests that both statistical and process-based

methods to estimate FDCs in ungauged basins perform com-

parably in Nepal, over a wide range of gauge densities and

observation durations. Yet prediction performances varied

significantly between the models as data became increas-

ingly sparse. The statistical method is more sensitive to spa-

tially sparse data, which degrades the interpolation accuracy

of Qm. In contrast, the estimation method for recession pa-

rameters makes the process-based approach more sensitive

to temporally restricted observations, which reduce the accu-

racy with which recession parameters can be estimated. This

suggests that the performance of the two models in ungauged

basins is affected by different sources of uncertainty. In this

section, we investigate the source of prediction error in each

method and discuss the implications for their application in

ungauged basins beyond Nepal.

4.1.1 Sources of uncertainty

The statistical model relies on two assumptions about the

correlations of observed data. The first assumption is that

catchments with similar low-flow indices (q95) have identical

hydrological responses, and therefore identical FDC shapes.

Second, the model assumes that the flow indices (Qm and

q95) at ungauged catchments can be best predicted using lin-

ear regressions against observable covariates (annual rain-

fall, elevation, and geology). The latter assumption does not

hold if the flow indices are spatially auto-correlated, or if the

posited linear relations are spatially heterogeneous or, in fact,

non-linear. Furthermore, “omitted variable” biases (Greene,

2003) will arise if an unobserved variable is correlated with

both a covariate and a flow index. For instance, local topo-

graphic features may affect both the annual rainfall and the

average streamflow in mountainous regions. Violation of the

second assumption leads to substantial uncertainty in the in-

terpolation of the flow indices in Nepal and drives the predic-

tion errors of the statistical approach, as shown in Sect. S2 of

the Supplement.

While the performance of the process-based model is also

driven by parameter estimation uncertainties, these errors
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arise from simplifying assumptions about local hydrologi-

cal processes (rather than uncertainties from their statistical

interpolation from neighboring gauges). Additional cross-

validation analyses (shown in Sect. S2 of the Supplement)

suggest that uncertainties caused by the aggregation of ob-

served point-rainfall statistics at the catchment level drive

prediction errors of high-flow quantiles. While increasingly

accurate remote sensing rainfall data will progressively al-

low such spatial heterogeneities to be resolved, current pre-

cipitation products (e.g., TRMM 3B42) remain substantially

biased in mountainous regions like Nepal, where they do not

outperform available rain gauges in predicting the frequency

and intensity of areal rainfall (Müller and Thompson, 2013).

A second source of error arises from the simplifying assump-

tions made about streamflow recession that do not hold per-

fectly in the observed catchments. Because they describe the

same watershed, the wet and dry recession parameters are

assumed to be physically related. In Müller et al. (2014), the

scale parameter of the non-linear seasonal recession (a) is

expressed as an explicit function of the two recession param-

eters (k and b) for sufficiently short recession times, where

power-law recessions can be approximated by exponential

functions. We show in the Supplement (Sect. S2) that, al-

though this approach provides more accurate estimates of a

than would be obtained through spatial interpolation, estima-

tion uncertainties remain, propagate through the model, and

result in prediction errors during the dry season.

4.1.2 Applicability beyond Nepal

This study compares two specific methods on their ability to

predict FDCs in the particular context of ungauged Nepalese

basins. Results are thus not necessarily representative of the

relative performance of process-based and statistical meth-

ods in general, particularly in regions where abundant field

data allow more advanced statistical approaches to be im-

plemented. Yet fundamentally, the statistical model relies on

observed correlations rather than assumptions about hydro-

logic mechanisms. Because FDC shapes are modeled non-

parametrically, the approach is applicable to regions with

highly variable catchment responses. However, prediction

performance in ungauged basins is constrained by interpo-

lation errors in the mean flow. This makes the method un-

suitable for regions where the local determinants of mean

flow (i.e., rainfall, evapotranspiration, glacial melt) cannot

be accurately monitored at the catchment level. In contrast, a

key advantage of the process-based model is its ability to ex-

ploit characteristics of the stochastic structure of rainfall that

can be estimated from daily rainfall observations. The model

is appropriate for regions where the spatial heterogeneity of

runoff is driven by rainfall, and where the frequency and in-

tensity of rainfall depths at the catchment level can be readily

estimated (i.e., small catchments with numerous rain gauges,

or places where satellite observations provide a good rep-

resentation of rainfall statistics). Unlike rainfall, recession

behavior arises from lumped and complex interactions be-

tween climate, vegetation, and groundwater processes that

typically cannot be monitored in a spatially explicit manner.

The process-based model is therefore inappropriate for re-

gions where the hydrologic response of the catchment is the

main source of runoff heterogeneity, or where the assumed

recession behavior (in particular the relation between a, k,

and b) does not occur.

Conveniently, the appropriate implementation contexts for

both methods appear to be complementary, and the optimal

method in a given region is determined by the driving source

of runoff heterogeneity in the catchments. Ultimately, the

performance of both methods is constrained by their abil-

ity to estimate their parameters in ungauged basins. This re-

lation is apparent in Fig. 5, where drops in prediction per-

formances correspond to increases in the estimation uncer-

tainty of model parameters. Under these conditions, the per-

formance of each method is driven by the ability of the avail-

able observations to capture the variability of the model pa-

rameters. When interpolated from neighboring gauges, un-

certainties are governed by the interplay between the layout

of the gauges and the spatial correlation range of the consid-

ered model parameter. When estimated from short observa-

tion records, accuracy is determined by the extent to which

the available record is representative of the temporal variabil-

ity of the parameter. These interactions between data avail-

ability and runoff variability are inherently local and will af-

fect the determination of the most appropriate method for any

given region.

4.2 Prediction under change

Expected shifts in the frequency and intensity of monsoon

rainfall over Nepal only have a marginal impact on the

streamflow distributions in the Chepe Kohla catchment, as

shown by the numerical simulation presented in Fig. 3a

(dashed curve). Consequently, changes in rainfall regime

do not appear to affect the performance of either model

(Fig. 3b), unless they are significantly larger than expected.

Climate change may nonetheless affect flow predictions else-

where. It is therefore helpful to consider the conditions under

which FDCs can be reliably predicted in a changing climate.

Although rainfall stationarity is an inherent assumption of

the process-based approach, climate change can be incorpo-

rated by updating the relevant parameters to their future value

to predict the (pseudo-)stationary future state of the system.

The method accounts for otherwise confounding changes in

the frequency and intensity of rainfall, which are expected

in Nepal. By explicitly accounting for soil moisture dynam-

ics and recession behavior, the model emulates the (causal)

effect of rainfall on streamflow. As a result, the method reli-

ably predicts the distribution of future streamflow, provided

that governing flow generation processes are in line with the

basic assumptions listed in Sect. 2.1.1.
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In contrast, the statistical model is solely based on ob-

served correlations, leading to two important sources of er-

rors for predictions under change. First, the model only ac-

commodates rainfall changes to the extent that the estimated

statistical relation between rainfall and runoff is representa-

tive of local runoff coefficients. The model will not reliably

predict future streamflows if runoff coefficients are strongly

spatially heterogeneous, or if the cross-sectional sample of

gauges fails to capture important processes governing mean

flow. This source of uncertainty appears to be significant in

Nepal, as illustrated by the substantial bias in annual flow

predictions in Fig. 3c. Secondly, the statistical model only

considers the effect of average rainfall on average flow: the

effect of rainfall distribution on streamflow distribution is

ignored. As a result, the model cannot predict changes in

the shape of FDCs that are brought about by changing rain-

fall. The prediction performance of the statistical approach

is therefore determined by the resilience of the flow regime,

that is, the extent to which streamflow distribution is affected

by shifting rain signals (Botter et al., 2013): the method

will perform poorly in catchments with non-resilient flow

regimes. The Monte Carlo analysis presented in the Supple-

ment (Sects. S3 and S4) shows that streamflow resilience in

seasonally dry catchments depends on two distinct seasonal

effects: a “direct” effect driven by the ratio between λP and k

during the wet season, and an “indirect” effect during the dry

season, when resilience is determined by the interplay be-

tween Q0 (i.e., wet-season rainfall) and b. In seasonally dry

climates, we expect the statistical method to be most reli-

able in regions where wet seasons are short with limited total

rainfall but persistent flow regimes, and where the recession

behavior during the dry season is close to linear.

Lastly, a key assumption in this study is that catchment

response (in terms of low-flow or recession characteristics)

is independent of climate. It is possible that shifts in climate

have an effect on catchment response by affecting the parti-

tioning of effective rainfall between storage and runoff. Al-

though not quantitatively assessed in this study, we expect

that this effect would negatively affect the performance of

both approaches.

5 Conclusions

Stochastic, process-based models predicted the FDCs for un-

gauged catchments in Nepal well, with a performance that

was comparable to that of statistical models. It suggests that

in regions with globally representative gauge densities, and

under seasonally dry climates, the advantages of the statis-

tical approaches relative to stochastic models noted in pre-

vious analyses (Blöschl et al., 2013) may not apply. Funda-

mentally, the performances of both approaches are strongly

affected by the method chosen to estimate model parameters

in ungauged basins, so this conclusion comes with the caveat

that this study cannot be interpreted as a general benchmark

to compare these approaches at a global level. Although we

believe that the selected models are appropriate to compare

process-based and statistical approaches for practical PUB

application in Nepal, their relative performance may be dif-

ferent in other regions, where more abundant information on

catchment characteristics allow more complex (and presum-

ably more accurate) regionalization approaches to be applied.

Thus, substantial research remains to be done to compare

these approaches in other parts of the world, where locally

appropriate methods should be carefully considered.

Nonetheless, this study finds a complementarity between

the different sources of uncertainty in the stochastic and sta-

tistical methods. This suggests that model selection should be

driven by a consideration of the main drivers of heterogeneity

in any study catchment: process-based models are advisable

if climate is likely to be the main source of runoff hetero-

geneity. Conversely, statistical methods are more appropriate

for regions with substantially different recession behaviors

across catchments. These distinctions provide a potentially

robust basis for model selection in any given application.

The results also suggest that the sensitivity of statistical

approaches to changes in rainfall statistics is dependent on

the “resilience” of the flow regime as defined by Botter et al.

(2013). Overall, the process-based models are more reliable

in projecting FDCs into new rainfall regimes. This is par-

ticularly true for catchments characterized by a strong wet-

season runoff and a rapid, strongly non-linear hydrologic re-

sponse, because their flow regime is particularly vulnerable

to rainfall changes, making the assumptions of the statistical

model inappropriate.

The excellent performance of both process-based and sta-

tistical models for the FDC and PDF in ungauged basins

suggests that extending probabilistic analyses in such basins

to also include flow-derived variables such as hydropower

capacity (Basso and Botter, 2012) or ecological responses

(Thompson et al., 2013a) may be feasible. While these

prospects are enticing, we note that a model’s ability to pre-

dict an FDC with high fidelity is not necessarily indicative of

prediction performances on all derived stochastic properties.

For instance, Dralle et al. (2015) demonstrate that the cross-

ing properties of streamflow can be very poorly estimated by

stochastic process-based models, even in applications where

the same models predict the PDF of flow well. Further explo-

ration of the potential opportunities and limitations afforded

by use of probabilistic models in ungauged basins offers a

promising avenue for future study.
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Appendix A: Process-based streamflow distribution

model for seasonally dry climates

This appendix presents the analytical expression of FDC

in seasonal climates derived in Müller et al. (2014).

The approach assumes that rainfall can be represented as

a marked Poisson process with exponentially distributed

depths. Catchments are modeled as spatially homogenous

linear reservoirs with linear evapotranspiration losses. Un-

der these conditions, wet-season streamflow can be repre-

sented as a gamma-distributed random variable (Botter et al.,

2007b):

Qw ∼ 0(m,α
−1
Q ),

with m= λ/k and αQ = αPkA, and where k is the linear re-

cession constant, A the area of the contributing catchment

and αP the mean intensity of wet-season rainfall. The fre-

quency λ of runoff events can be expressed as a function

of the frequency (λP) and intensity of rainfall (Botter et al.,

2007b):

λ= η
exp(−γ )γ

λP
η

0L (λP/η,γ )
, (A1)

where 0L(·, ·) is the lower incomplete gamma function, and

where η = ET/SSC and γ = SSC/αP are, respectively, the

ratio between maximum evapotranspiration and soil storage

capacity, and the ratio between soil storage capacity and

mean rainfall intensity.

Dry-season streamflow is modeled as a seasonal reces-

sion starting at the last discharge peak of the wet season.

Because wet-season streamflow is a gamma-distributed vari-

able, streamflow at discharge peaks, and therefore the ini-

tial condition of the seasonal recession, is itself a gamma-

distributed variable (Müller et al., 2014):

Qpeak ∼ 0(m+ 1,α−1
Q ).

Assuming a power-law relation between discharge and

recession rate, the cumulative distribution function of dry-

season streamflow can be expressed as (Müller et al., 2014)

PQd (Q)=


1+

qrd01−α
r
Q02

arTd0(m+1)
, if Q>−(arTd)

1
r

and r < 0

1+
qrd01−α

r
Q02

arTd0(m+1)
otherwise

+
αrQ04+(Q

r
−arTd)03

arTd0(m+1)
,

with

01 = 0U(m+ 1,α−1
Q Q),

02 = 0U

(
r +m+ 1,α−1

Q Q
)
,

03 = 0U

(
m+ 1,α−1

Q (Qr
+ arTd)

1
r

)
,

04 = 0U

(
r +m+ 1,α−1

Q (Qr
+ arTd)

1
r

)
.

0(·) and 0U(·, ·) denote the complete and upper incom-

plete gamma functions; Td is the duration of the dry season;

r = 1− b and a are the parameters of the non-linear reces-

sion, which are assumed stationary. Because they describe

the same watershed, recession parameters for the wet and

dry seasons are related. If power-law recessions can be ap-

proximated by an exponential function for sufficiently short

recession times, we can express a as a function of k and b

(Müller et al., 2014):

a ≈
λ

−r

(
e
−r
m − 1

)(
αQ · (m+ 1)

)
. (A2)

The law of total probability can finally be used to combine

seasonal streamflow distributions and derive the cumulative

distribution function of streamflow for the whole year:

PQ(Q)=

(
1−

Td

365

)
·PQw(Q)+

Td

365
·PQd

(Q). (A3)

The FDC for seasonally dry climates is finally obtained

by plotting the streamflow quantiles Q against 1−PQ(Q),

the complement of the cumulative distribution function of

streamflow.
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